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A Cost-Quality Beneficial Cell Selection Approach
for Sparse Mobile Crowdsensing with Diverse

Sensing Costs
Zhengqiu Zhu1, Bin Chen1,*, Wenbin Liu, Yong Zhao, Zhong Liu, and Zhiming Zhao*, Senior Member, IEEE

Abstract—The Internet of Things (IoT) and mobile techniques
enable real-time sensing for urban computing systems. By recruit-
ing only a small number of users to sense data from selected
subareas (namely cells), Sparse Mobile Crowdsensing (MCS)
emerges as an effective paradigm to reduce sensing costs for
monitoring the overall status of a large-scale area. The current
Sparse MCS solutions reduce the sensing subareas (by selecting
the most informative cells) based on the assumption that each
sample has the same cost, which is not always realistic in real-
world, as the cost of sensing in a subarea can be diverse due to
many factors, e.g. condition of the device, location, and routing
distance. To address this issue, we proposed a new cell selection
approach consisting of three steps (information modeling, cost
estimation, and cost-quality beneficial cell selection) to further
reduce the total costs and improve the task quality. Specifically,
we discussed the properties of the optimization goals and modeled
the cell selection problem as a solvable bi-objective optimization
problem under certain assumptions and approximation. Then,
we presented two selection strategies, i.e. Pareto Optimization
Selection (POS) and Generalized Cost-Benefit Greedy (GCB-
GREEDY) Selection along with our proposed cell selection
algorithm. Finally, the superiority of our cell selection approach
is assessed through four real-life urban monitoring datasets
(Parking, Flow, Traffic, and Humidity) and three cost maps (i.i.d
with dynamic cost map, monotonic with dynamic cost map and
spatial correlated cost map). Results show that our proposed
selection strategies POS and GCB-GREEDY can save up to
15.2% and 15.02% sample costs and reduce the inference errors
to a maximum of 16.8% (15.5%) compared to the baseline-
Query by Committee (QBC) in a sensing cycle. The findings
show important implications in Sparse Mobile Crowdsensing for
urban context properties.

Index Terms—Sparse Mobile Crowdsensing, Cost-quality ben-
eficial cell selection, Cost inconstancy, Bi-objective optimization.

I. INTRODUCTION

THE rapid development of the Internet of Things (IoT)
and mobile computing technologies [1], [2] promotes the
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emergence of intelligent, open, and large-scale sensing mech-
anisms, which allow citizens to effectively collect and share
real-time information, and enable innovative urban computing
solutions to tackle city-level challenges like carbon emission
[3], noise [4], traffic congestion [5], and infrastructure status
[6]. With the widely adopted sensor-rich smartphones, mobile
crowdsensing (MCS) [7], [8] plays an increasingly important
role in urban computing for addressing various urban-scale
monitoring needs. To ensure high-quality sensing services,
MCS systems often require a large number of mobile users
to satisfy the high coverage ratio (quality metric) [9], [10],
[11], which is often expensive and unrealistic when budgets
and the number of participants are limited. Since sensing maps
usually have a low-rank feature, researchers proposed to use
compressive sensing (CS) [12] techniques to collect data from
only a few subareas, and then to deduce the missing data of
unsensed cells by exploiting the inherent correlation of sensing
data. In this way, Wang et al. [13] proposed Sparse MCS
to reduce the number of required samples but still keep a
predefined data quality required for the MCS organizers.

In Sparse MCS, one important issue is cell selection; the
organizer needs to decide where and when to collect sensed
data from mobile users. Data of different MCS systems may
involve diverse spatiotemporal correlations, it is thus a non-
trivial task to design proper cell selection strategies. We
reviewed the following methods used by existing Sparse MCS
studies. The first one is based on Query by Committee (QBC),
which selects the next salient cell to sense by calculating the
uncertainty of the missing data in unsensed cells. While QBC
only considers the subarea which is the most uncertain at
that moment [14], Liu et al. [15], [16] proposed a deep Q-
network based cell selection strategy, which can approximate
the global optimal strategy relying on sufficient data training.
Different from the above-mentioned approaches, Xie et al. [17]
proposed a bipartite-graph-based sensing scheduling scheme to
actively determine the sample locations, which is suitable for
linear systems and requires the knowledge of matrix rank in
advance. Thus, it is hard for this method to apply in real-world
nonlinear systems. More importantly, these methods only aim
to maximize the informativeness, but without considering
the diversity of sample costs when selecting subareas for
recovering the unsensed values.

To the best of our knowledge, the state-of-the-art Sparse
MCS techniques assume that the sensing cost is constant
spatially and temporally. However, in practical MCS activities,
an activity organizer has to consider the diversity of sensing
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costs for several reasons: (1) Sensors possessed by mobile
users are inherently diverse, and measurement accuracy largely
depends on the sensors. Generally, data reports with high
precision should be offered with higher rewards; (2) The cost
of reporting a sensed data to the organizer varies based on the
network condition, distance to the nearest cell tower, cellular
data plan, or other concurrent activities on the device [18];
(3) Prior work also found evidence that the final cost may
also be affected by the subjective perception of participants.
For instance, a user would ask for a higher reward when he
is running out of battery [18]. In brief, different conditions
can result in vastly different costs in crowdsensing activities.
Therefore, this paper aims to improve the existing MCS
solutions by reducing sample costs and inference errors (i.e.
the quality metric for Sparse MCS systems) with explicit
incorporation of cost-diversity into cell selection strategies.

Fig. 1. Example case

To realize the research target of this paper, an effective cell
selection strategy is crucial. Since a cell with low-cost might
run counter to the need of collecting more information for
inferring the missing data. For instance, if we have quantified
the informativeness and sample cost in all subareas (shown
in Fig. 1), one naı̈ve approach is always to select sample
locations with the lowest cost, which will inevitably result in
poor recovery of missing data. In other words, the predefined
data quality requirement cannot be satisfied. Another naı̈ve
approach is to simply divide the informativeness by the sample
cost. But it may fail when one of the two factors dominates
the other. Suppose that we have an elaborate selection strategy
selecting more informative subareas on the premise of reduc-
ing or not increasing the overall cost. Since more cells are
sensed with real values, the inference error is also improved.
For instance, if we set the cost budget in one selection to
120 (e.g. the unit of cost is CNY), a selection containing the
top-left cell and the bottom-left cell in Fig. 1 is evidently
better than the selection of the bottom-right cell because more
information is obtained. However, such a selection mechanism
is difficult to design. First, a quantitative model is needed
to model information on selected subareas for inferring the
missing data. Second, a proper sample cost estimation method
is required for accurate estimations of sample cost. Finally,
proper strategies to find cells that are low-cost, and yet collect
sufficient information are the most important requirement for
capturing the underlying data structure to enable accurate
recovery.

To tackle the above-mentioned challenges, this paper thus
aims to contribute:

(1) We select four city-level datasets of various application
domains and verify the inherent low-rank feature and spatial-

temporal correlation feature in these urban datasets, which is
the basis of the research in this paper.

(2) To the best of our knowledge, we are the first work
providing comprehensive modeling of the cost diversity in
Sparse MCS and considering dynamic cost budget in bi-
objective cell selection problem. Incorporating such a cost
enhances the practicability of the Sparse Mobile Crowdsensing
methods. A novel cell selection approach, consists of three
steps: information modeling, cost estimation and cost-quality
beneficial selection, is proposed in this paper. Significantly,
three important cost factors, i.e. routing cost, measurement
cost, and perception cost, are discussed in detail and proposed
to formulate a cost estimation function. Finally, the cell
selection process is formulated as a bi-objective optimization
problem with the target of maximizing the informativeness in
the selected subareas for recovery and minimizing the total
sample costs. To solve the optimization, we propose two
selection strategy, namely Generalized Cost-Benefit Greedy
(GCB-GREEDY) selection and Pareto Optimization Selection
(POS).

(3) We provide extensive discussions on the objective func-
tions of our cell selection optimization problem. Note that
submodularity is an attractive property encoding a natural
diminishing returns condition. But submodularity and mono-
tonicity are not always acquired in any conditions. Since
a subset selection problem is NP-hard, our cell selection
problem is definitely NP-hard and only solvable under certain
assumptions (sufficient participants in each subarea and thus
routing costs can be ignored). Under the solvable condition, we
formalize the cost-quality beneficial cell selection algorithm
for a MCS task.

(4) We discuss the potential of applying the cost-quality
beneficial Sparse MCS approach on urban context computing
and activation. By integrating the power of crowds, the urban
context can be sensed in a cost-aware and sparse way over
a large-scale region; By leveraging the wisdom of crowds,
the efficiency of smart city systems is optimized, like the re-
balancing problem of shared bikes in modern cities.

(5) We evaluate the performance of our proposed cell
selection strategies using real-world cases. After taking QBC
as the information modeling method and generating three types
of cost maps (i.i.d with dynamic cost map, monotonic with
dynamic cost map and spatial correlated cost map) based on
the cost estimation function, we conduct extensive experiments
on Parking, Flow, Traffic, and Humidity monitoring datasets.
The results can verify the effectiveness and feasibility of our
proposed approach and strategies. Taking humidity sensing as
an example, our proposed strategies outperform the baselines
QBC and SIMP-GREEDY by lowering up to 15.2% and 8.5%
sample costs while reducing inference errors to a maximum
of 10.1% (3.8%). Similar tendencies are observed in the other
three sensing tasks.

The remainder of the paper is organized as follows. We
first review the related works in Section II. Then, the research
problem is formulated and the system model is explained in
Section III. Next, our three-step cell selection approach is
presented in Section IV. Subsequently, we analyze the potential
of cost-quality aware Sparse MCS assisted urban sensing
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and actuation. Finally, we evaluate the performance of the
proposed strategies in Section VI and conclude this paper in
Section VII.

II. RELATED WORKS

In this section, we review the related work from three
perspectives: (1) Multi-objective task assignment methods in
MCS, (2) Sparse MCS, and (3) Techniques in Subset selection.

A. Multi-objective task assignment methods in MCS

Quality, coverage, cost, and etc. are main factors affecting
the performance of designed algorithms in task allocation
process of MCS. Therefore, the recent researches aimed to
formulate the task allocation problem from a multi-objective
perspective considering the aforementioned factors. In [19],
Liu et al. discussed the existing strategies to reduce the
resource cost and improve quality of service (QoS). Specif-
ically, Xu et al. [20] proposed a Compressive Crowdsensing
(CCS) framework to realize reduced amounts of collected
data and acceptable levels of overall accuracy at the same
time. The limitation of this work is the assumption that the
structure and relationships within the data and phenomenon
are unchanged from what is observed in historical data. To
balance between signal quality and crowdsourcing cost, He et
al. [21] proposed an incentive mechanism based on Bayesian
Compressive Crowdsensing. The contribution of work is the
link between missing value inference and confidence estima-
tion & stopping. Differently, Meng et al. [22] focused on
the unevenly distributed user observations over the monitored
entities and they designed an integrated framework to realize
truth discovery from redundant and sparse data. Xia et al.
[23] designed a mobile edge computing architecture to select
the minimal set of users in each time cycle with maximized
user spatiotemporal coverage while keeping the predefined
data requirement. To provide a unified task assignment design,
UniTask [24] optimized the overall system utility by jointly
considering the representative MCS performance metrics (i.e.
coverage, latency, and accuracy). Focusing on the vehicle-
based crowdsourcing, Zhang et al. [25] formulated the worker
recruitment problem as a bi-objective optimization model w.r.t.
query reliability and sensing coverage.

Different from the above-mentioned studies, we followed
the research line of Sparse MCS and focused on providing
a comprehensive modeling of the inconstancy sensing cost.
The task assignment problem is simplified as a bi-objective
cell selection process (i.e. informativeness and sensing cost).
Also, we discussed the solvable conditions and assumptions of
our model. Moreover, we proposed two heuristic cell selection
strategies and evaluated their performance on four city-level
real-world datasets.

B. Sparse MCS

As almost all physical conditions monitored are continuous,
sensory data generally exhibit strong spatial-temporal correla-
tion, thus the environment ground truth matrix [26] often has
a low-rank feature.

With this insight, Wang et al. [27] proposed to use the
overall inference error, rather than the sensing area coverage,
as the data quality metric. In such MCS tasks, compressive
sensing has become the de facto choice of the inference
algorithm. Then, Wang et al. [13] defined the specific MCS
problem as Sparse MCS and discussed the challenges as
well as the opportunities from three aspects. Next, Wang
et al. [28] extended the Sparse MCS to dynamically select
a small set of sub-areas for sensing in each timeslot for
multi-task scenarios. Later, Wang et al. [29] also added a
privacy protection mechanism into Sparse MCS. In the above-
mentioned Sparse MCS, since the entropy-based cell selection
only chooses the cell which is the most uncertain at that
moment, and ignores whether the current selection would help
the inferring in the future or not. Thus, Wang et al. [30] and
Liu et al. [15] proposed the deep reinforcement learning-based
cell selection method in Sparse MCS. This method proves to
narrow the gap with the optimal solution.

Different from the previous works, Xie et al. [17] found that
the matrix completion method saves more samples than the
vector-based compressive sensing methods. They proposed an
active sparse MCS scheme which includes a bipartite-graph-
based sensing scheduling scheme to actively determine the
sampling location positions in each upcoming time slot, and
a bipartite-based matrix completion algorithm to robustly and
accurately recover the unsensed data in the presence of sensing
and communication errors. Recently, Liu et al. combined the
deep reinforcement learning-based cell selection method with
practical user recruitment model to deal with the data inference
improvement [31]. In this paper, we also focus on cell selection
process and aim to incorporate cost-diversity into our cell
selection strategies.

C. Techniques in Subset selection
It is a fundamental problem to select the optimal subset

from a large set of variables in various learning tasks, such
as feature selection, sparse regression, and dictionary learning
[32]. Obviously, our research problem of selecting partial
sample locations, and inferring missing data in the unsensed
cells can also be transformed into a subset selection problem.
The subset selection problem is, however, generally NP-hard
[33].

To address this problem, previous techniques can mainly be
categorized into two branches, greedy algorithms and convex
relaxation methods. Generally, greedy algorithms iteratively
select or abandon one instance that makes the objective
currently optimized [34]. Though the greedy nature of the
generalized greedy algorithm can guarantee an efficient fixed
runtime, but limits its performance at meantime. Besides,
convex relaxation methods usually replace the set size con-
straint (i.e., l0-norm) with convex constraints, then find the
optimal solutions to the relaxed problem, which however can
be distant to the true optimum. In recent years, Qian et al.
proposed an evolutionary algorithm, namely POSS, treated
the subset selection problem as a bi-objective optimization
problem that optimizes some specific criterion and the subset
size simultaneously. This algorithm is an anytime method that
can use more time to find better solutions.
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Note that Huang et al. [35] was the first work leveraging the
POSS algorithm to solve the bi-criteria feature acquisition in
low-rank active matrix approximation problems. Inspired by
their work, we can formulate our cell selection process into a
subset selection problem with bi-objective as well (maximize
the information in selected cells and minimize the sample costs
at meantime). But in our paper, we proposed two heuristic
strategies, not only the POS strategy. Also, the cost budget in
[33] and [35] is constant, but the cost budget in a selection
of our paper is dynamic because we set it as the biggest cost
value of unsensed cells plus one. Moreover, we also adjusted
the definition on the information goals and its form.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first present the three-stage model to
describe the activity in a Sparse MCS platform: cell selection,
quality assessment, and data inference, and then introduce
the quality assessment method, i.e. leave-one-out statistical
analysis (LOO-SA) and the data inference method, i.e. com-
pressive sensing (CS) in brief. Finally, we discuss the cost-
quality beneficial cell selection solution in Sparse MCS using
a running example. Table I shows the main concepts and
notations used in this paper.

TABLE I
MAIN NOTATIONS AND CONCEPTS

Notations Explanations
n The sensing campaign is divided into n cycles
T The theoretical repeat iterations in POMC
V , m The subarea set (cell), with m subareas (cell)
Gm×n, Ĝm×n The ground truth data matrix of m subareas in

n sensing cycles; and the inferred one
Sm×n The cell selection matrix, which marks whether

a subarea is selected (its entry equals to 0 or 1)
Mm×n The actual measurement data matrix, which

records the actual sensed data M = G ◦ S
f1(S) The information estimation algorithm, which

estimates the information of selected cells
f2(S) The cost estimation algorithm, which estimates

the dynamic sample cost of each cell
Im×n, Cm×n The information matrix and the cost matrix
εk The overall sensing error in each cycle k: εk =

error(Ĝ[:, k], G[:, k])
error() function The specific metric for calculating the over-

all sensing error and in this paper it is
mean absolute error: error(Ĝ[:, k], G[:, k]) =∑m

i=1 |Ĝ[:,k]−G[:,k]|
m

(ε, p)-quality It is data quality requirement for n cycles and
the quality guarantee means that in p × 100%
of cycles, the inference error is not larger than
the predefined error bound ε [27] . Formally, we
have |{k|error(G[:, k], Ĝ[:, k]) ≤ ε, 1 ≤ k ≤
n}| ≥ n · p

Ballcost The total cost budget for a MCS task over all
cycles

Bonecost The cost budget in a selection
cυ , cb The measurement cost and the perception cost

A. System model

A typical MCS sensing scenario begins with a sensing task
launched by its organizer to obtain fine-grained urban context

results, e.g. humidity over a large-scale target area for a long
time, as shown in Fig. 2. To provide high-quality sensing
services, the target sensing area is divided into m subareas
according to the organizer’s requirement. In the meantime, the
whole sensing campaign is also split into n equaling sensing
cycles. For instance, the organizer needs to update the full
humidity sensing map once every hour (sensing cycle), and
in each sensing cycle, the data quality requirement is that
the mean absolute error for the whole area should be less
than 1.5% (humidity). To meet the data quality requirement
under the constraint of task budget Bonecost in each selection, the
organizer needs to carefully select subareas to make a tradeoff
between the informativeness (i.e. maximize the information to
reduce inference error) and the sensing cost (i.e. reduce total
costs) in a subarea. After meeting the quality requirement in a
sensing cycle, the humidity values of the remaining cells are
deduced based on the sensed humidity values of those selected
cells. Through this crowd-powered subset sensing approach,
the organizer can obtain sufficient data based on the sensing
requirement and costs.

Fig. 2. The general process of the system model

B. Data inference

In Sparse MCS, we often leverage the historical and the
current sensed data to infer the data of the remaining unsensed
cells. Compressive sensing, as a good choice for inferring the
full ground data matrix from the partially collected sensing
values with convincing theoretical deviation, has shown its
effectiveness in several scenarios [36], [26]. Now we recover
the full ground data matrix Ĝm×n based on the low-rank
property as follows:

min rank(Ĝ) (1)

s.t., Ĝ ◦ S = M

where ◦ denotes the element-wise multiplication and each
entry Sij denotes whether the cell i at cycle j is selected
for sensing. Thus, Sij equals 0 or 1. Based on the singular
value decomposition (SVD) and compressive sensing theory,
i.e. Ĝ = LRT , we convert the above nonconvex optimization
problem as follows:
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min λ(||L||2F + ||R||2F ) + ||LRT ◦ S −M ||2F (2)

This optimization changes the rank minimization problem
(minimize the rank of Ĝ) to minimizing the sum of L and R’s
Frobenius norms. And λ allows a tunable tradeoff between
rank minimization and accuracy fitness. To get the optimal
Ĝ, alternating least squares [37] procedure is leveraged to
estimate L and R iteratively.

Moreover, strong spatial-temporal correlations can be dis-
covered in the sensing data [38], [39]. Thus, adding the
explicit spatiotemporal correlations into compressive sensing,
the optimization function can be further formulated as:

min λr(||L||2F + ||R||2F ) + ||LRT ◦ S −M ||2F (3)

+λs||S(LRT )||2F + λt||(LRT )TT ||2F
where S and T are spatial and temporal constraint matrices
respectively; λr, λs and λt control the tradeoff between
different correlations. Concerning the spatial and temporal
constraint matrix, interested readers are referred to this study
[26].

C. Quality assessment

In this paper, LOO-SA is used to assess the inference quality.
First, a leave-one-out resampling mechanism is implemented
to obtain the set of (inferred, true) data pairs. Then, by com-
paring the inferred data with the corresponding true collected
data, Bayesian inference or Bootstrap analysis is leveraged
to assess whether the current data quality can satisfy the
predefined (ε, p)-quality requirement.

Leave-one-out is a popular resampling method to mea-
sure the performance of many prediction and classification
algorithms. Suppose that we collect sensing data from m′

out of all the m cells, the idea of LOO is that for each
time, we leave one observation out and infer it based on
the rest m′ − 1 observations by using compressive sensing
or interpolation algorithms. After running this process for all
m′ observations, we get m′ predictions accompanying with
the m′ true observations, as shown in Eq.(4).

x = 〈x1, x2, ..., xm′〉 , y = 〈y1, y2, ..., ym′〉 (4)

Based on the m′ (inferred, true) data pairs, we can use
Bayesian inference or Bootstrap analysis to estimate the
probability distribution of the inference error ε, e.g. mean
absolute error (MAE) to help quality assessment. Actually,
satisfying the (ε, p)-quality can be converted to calculate the
probability of εk ≤ ε, i.e. P (εk ≤ ε), for the current cycle
k. If P (εk ≤ ε) ≥ p can hold for every cycle k, then
(ε, p)-quality is expected to be satisfied as a whole. In this
paper, two statistical analysis methods, i.e., Bayesian inference
[40] and Bootstrap analysis [41], are leveraged for estimating
P (εk ≤ ε). Different from Bayesian inference (require the
error metric is normal distribution), the advantage of Bootstrap
is that no assumption on the distribution of the observations
needs to be made. Detailed information about Bayesian or
Bootstrap analysis can be found in reference [13].

D. Assumptions, problem formulation and use case study

1) Assumptions. We follow the basic assumptions in [16],
[27] in our study except for the assumption of sample cost.
The unsound assumption in previous Sparse MCS is that each
sample has the same cost: its goal is to simply reduce the
number of samples while achieving a good recovery accuracy.
Since the cost of obtaining a sample depends highly on the
location, time, sensing device types, condition of the device,
and many other factors of the sample, we break the assumption
in previous studies of Sparse MCS and further assume that
the cost of obtaining a specific sample of each subarea in
different cycles is diverse. To make the cell selection problem
more practical, the assumption of cost-diversity allows us to
make a tradeoff selection considering both the sample cost and
informativeness in a spatial-temporal cell.

2) Problem formulation. Based on the previous system
model, assumptions and the brief introduction on compressive
sensing and LOO-SA, we define our research problem and
focus on the cell selection. The cell selection problem can
be formulated as Eq.(5): given a MCS task with m cells and
n cycles, the sensing budget Ballcost, a sensing matrix inference
algorithm R, an information estimation algorithm f1(S), and
a sample cost estimation algorithm f2(S), the MCS organizer
attempts to select a subset of most informative sensing cells
under the task budgets during the whole process (use the
minimal costs to find the subset cells maximal in information),
while satisfying the (ε, p)-quality.

arg mins∈{0,1}mn (−f1(s), f2(s)) ,

s.t., |{k|εk ≤ ε, 1 ≤ k ≤ n}| ≥ n · p
where εk = error(Ĝ[:, k], G[; , k]),

f1(s) =
∑
i

∑
j

Sij · Iij ,

f2(s) =
∑
i

∑
j

Sij · Cij ≤Ballcost .

(5)

This optimization problem aims to maximize the infor-
mation estimation function f1(s) and minimizes the cost
estimation function f2(s) simultaneously. Here we maximize
the information of selected cells by minimizing its negative
f1(s). The overall sensing error εk and the error metric (mean
absolute error) are defined in Table I. Note that we use a
Boolean vector s ∈ {0, 1}mn to replace the cell section matrix
Sm×n, where the i + m × j bit si+m×j = 1 means that
the entry Sij equals 1. In this paper, we will not distinguish
s ∈ {0, 1}mn and its corresponding representation Sm×n. As
we cannot foresee the ground truth matrix Gm×n for a MCS
task, it is impossible to obtain the optimal cell selection matrix
Sm×n in reality. To overcome the difficulties, we propose
a novel cell selection method, which leverages an iterative
process to select sensing cells in each cycle, with details
elaborated in the following section.

3) Use case study. Fig. 3 shows the basic idea of our
proposed cell selection process in a sensing cycle. Suppose the
target area contains six cells and the sixth sensing cycle start
currently; at first, no sensing data is collected in the sixth cycle
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(Fig. 3(1)). Our proposed cost-quality cell selection method
(e.g. take the POS strategy as an example) works as follows:

(1) First, under the given cost budget (e.g. 2 CNY) of a
selection, our strategy lists all possible solution combinations
(i.e. here we have 7 possible solutions within the cost budget
and they are single cell 1 to 6 and the combination of cell
1 and 6), compares the solutions by considering the tradeoff
between information and sample costs, selects the first two
salient cells (cell 1 and cell 6) under the budget, i.e. 2 and
allocates the sensing tasks to two mobile users in cell 1 and
cell 6 respectively. Mobile users perform the sensing tasks and
return the sensing data to the MCS server (Fig. 3(2)).

(2) Then, given the collected sensing data, the quality
assessment module decides if the data quality satisfies the
predefined (ε, p)-quality requirement. If the data quality does
not meet the quality requirement, we have to select more
cells for sensing (choose cell 5 to sense in Fig. 3(3)). In this
way, our strategy continues to allocate tasks to new cells and
collects sensing data (illustrated in step (1), and more details
will be introduced in the section of cell selection, until the
quality of the collected sensing data satisfies the predefined
requirement.

(3) Given the collected sensing values, the compressive
sensing module module infers the values of unsensed cells.

Fig. 3. An example of our cell selection process (6 cells and 6 cycles)

IV. COST-QUALITY BENEFICIAL CELL SELECTION IN
SPARSE MCS

In this section, we will introduce the information modeling,
sample cost estimation and cost-quality beneficial cell selec-
tion in sequence.

A. Information modeling

In traditional active learning, if the model is less certain
about the prediction on an instance, then the instance is
considered to be more informative for improving the model
and will be more likely to be selected for label querying [35].
Inspired by this idea, we can leverage a reward criterion or
a value criterion [42] to estimate the informativeness of an
entry, i.e. a spatiotemporal cell in the matrix G. The challenge

here is how to quantify the informativeness of an instance in a
subarea for recovering the entries in other subareas. Obviously,
the entropy-based (e.g. QBC) or mutual-information-based
method (e.g. Gaussian process-based mutual information) be-
longs to a reward criterion, which indicates what is good in
an immediate sense; while the value-function-based method
(reinforcement learning based method) considers what is good
in the long run. Though mutual-information-based method and
value-function-based method can better quantify which cell
is more informative, they require sufficient historical data to
compute the informativeness of a cell. Also, they are unable to
be applied in a fresh task when no sufficient data is acquired.
Therefore, in this paper, we only take the simple but general
method, i.e. QBC as the information estimation method in the
evaluation section.

QBC originates from such an idea that if the variance
of an entry is large, it implies that the entry cannot be
certainly decided by the algorithm, and thus may contain more
useful information to recover the estimated full sensing matrix.
QBC framework quantifies the prediction uncertainty based
on the level of disagreement among an ensemble of matrix
completion algorithms. Specifically, a committee of matrix
completion algorithms is applied to the partially observed
data matrix to impute the missing values. The variance of
prediction (among the committee members) of each missing
entry is taken as a measure of uncertainty of that entry.
In this paper, the committee consists of several commonly
used inference algorithms, including CS, STCS, K-Nearest-
Neighbors (KNN), and SVD.

It is assumed that the committee includes a set of L
inference algorithms. In a sensing cycle j, the already selected
cells with measurements in this cycle are denoted by Sj
(Sj ∈ V). The sensor measurements in these selected locations
are represented by χSj = xSj . By using one of the inference
algorithms, we have Ĝ(:, j) = Rl(xSj ). For an unsensed cell
υ /∈ Sj , the informativeness of this cell can be formulated as:

Iυ,j =
∑L

l=1
(Ĝl(υ, j)− Ḡ(υ, j))

2
/L (6)

where Iυ,j represents information of unsensed cell υ in time
cycle j; Ḡ(υ, j) denotes the average value predicted by the
committee; Ĝl(υ, j) is the predicted value of the l-th matrix
completion algorithm in cell υ.

B. Cost estimation

Since the cost of obtaining a specific sample in practical
MCS systems depends highly on the location, time, condition
of the device, human expectation, density of participants,
moving distance, and many other factors, we will consider
cost-diversity in the cell selection process. Different from the
cost modeling in [18], in the following, we first discuss a more
broad types of costs occurring in MCS systems, including
routing cost, measurement cost, perception cost and their com-
bination. Then, we introduce a new cost function to estimate
the sensing cost. Finally, we present several challenges of
incorporating costs into Sparse MCS, thus we need to make
some compromises on the implementation of estimation on
costs.
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1) Cost factors: In practice, different types of costs often
occur in MCS systems, including but not limited to (1) routing
cost; (2) measurement cost; (3) perception cost.

Routing cost. Consider such a scenario, when mobile users
in some cells are insufficient, so both the costs of moving
from the present location to the target location and that of
making measurements at subareas need to be considered. We
use the cost function c(V) to denote such a cost, defined as
c(V) = cR(V) +

∑
υ∈V cυ , where cR(V) is the cost of the

shortest walk to visit each selected subareas in V at least once.
Note that cR(V) is generally non-submodular and cannot be
exactly computed in polynomial time. It will be discussed in
detail in the following subsection.

Measurement cost. We use cυ to denote the cost of
collecting measurements in each subarea υ ∈ V . Generally,
this kind of cost consists of energy consumption and data
consumption on sensing devices as well as data management
cost. Devices consume energy in both measuring and reporting
a sample, e.g. locate a GPS signal and report position. This
cost depends on the location as well as the status of the device.
The reporting cost may depend on the network, i.e. WiFi, 3G
or 4G, the signal strength, variability to the network, and the
congestion level. Meanwhile, the reporting may incur cellular
data cost when using cellular networks. Also, the submitted
data stored in Cloud or network and the quality control of data
incur a management cost.

Perception cost. Finally, mobile users may have different
perceptions of a given cost. In other words, this cost is a
subjective evaluation of the provided services. For example,
a user carrying on a smartphone with a full battery may not
care about the energy consumption for GPS locating to be
a large cost, whereas other users may be more sensitive to
the same amount of energy usage when they are running
out of the battery of smartphones. Such perception-based cost
adjustments cb should be considered as they are important to
user experience in MCS applications.

2) Cost functions: Here we introduce a cost function to
estimate the value of sample costs when the actual cost is
hard to acquire. Since it is assumed that sufficient participants
exist in each subarea waiting for recruitment in previous
Sparse MCS, the routing cost across different cells will thus
not be included in this paper. To estimate the measurement
cost, we can conduct outdoor measurements of GPS energy
consumption using smartphones at hundreds of subareas across
the target region and record the data consumption of 3G/4G/5G
cellular network at those locations in the meantime.

Further, we naturally consider the remaining battery level of
a device as a type of “perception cost”: the lower the remaining
battery, the more valuable it is, the higher cost it should be
assigned. We define cb = B1−b as the perception-based cost
for the remaining battery, where b is the ratio of the remaining
battery, and B is a constant. In particular, as b goes to zero,
the cost is high and approaches B quickly. The intuition is that
when b is large, mobile users are not sensitive and thus the
measurement cost dominates. On the other hand, when b is
small, users are sensitive and thus this factor will contribute
a lot to the final cost. Therefore, we choose a multiplication
combination of measurement cost (initial cost function) and

perception cost (multiplier, forming a dynamic cost function)
as the overall sensing cost function cυ · cb.

Prior study [18] proved that synthetic cost maps based
on the overall cost estimation function are also feasible for
performance evaluation when it is hard to conduct practical
measurement and estimation. Therefore, we generate three
synthetic cost maps based on our proposed cost function, and
they are i.i.d with dynamic cost map, monotonic with dynamic
cost map, and spatial correlated with dynamic cost map. Here,
we take the final dynamic cost map in traffic dataset as an
example, the cost distribution on different subareas over time
(in a day) is exhibited in Fig. 4. In the rest of the paper, we use
CT1, CT2 and CT3 to refer to i.i.d with dynamic cost map,
monotonic with dynamic cost map and spatial correlated cost
map, respectively. As we see in Fig. 4, the three sampling cost
maps present different changing characteristics (randomness
in CT1, monotonicity in CT2 and spatial correlation in CT3),
with darker color indicating larger cost.

3) Challenges of estimating costs: (1) Difficult to estimate
cost accurately. Since real cost are hard to obtain, a cost
estimation function is often required. Due to the cost-diversity,
a simple cost estimation function is hard to estimate the
value of sample cost accurately. Though in present practices,
multi-factor regression models are trained to estimate the
current cost of the operation and the influence of prior cost
observations is also considered, this design is still far from
practical values. How to design an estimator to give an entirely
accurate estimation of the sensing cost is not the focus of this
paper. Thus, we leverage the synthetic cost maps generated
by the cost function cυ · cb. (2) Difficult to accomplish
estimation on certain types of cost in polynomial time, e.g.
routing cost. Unlike other typical additive cost constraints,
such routing planning costs are themselves NP-hard to evaluate
[43]. Therefore, to ensure the algorithm efficiency in cell
selection, necessitating approximation in practices.

C. Discussions on objective functions

We first give the definition of submodularity and then
discuss whether the objective functions have this property
when certain conditions are satisfied. If Ω is a finite set, a
submodular function is a set of function f : 2Ω → R, where
2Ω denotes the power set of Ω, which satisfies the following
conditions:

For every X,Y ⊆ Ω with X ⊆ Y and every x ⊆ Ω\Y we
have that f (X ∪ {x})− f (X) ≥ f (Y ∪ {x})− f (Y ).

(1) Discussion on f1

Since f1(s) is the informativeness of the selected cell set,
it is nonnegative and non-decreasing when a new element
is added. Meanwhile, we notice that f1 : 2s → R is
a submodular function for satisfying the definition. If the
informativeness of a cell is estimated by the QBC method,
f1(s) would be the entropy of the set of random variables
s. Then, f1(s) would be a monotone submodular function.
However, if the informativeness of a cell is estimated by
the mutual-information method or the value-function based
method, then f1(s) would be a non-monotone submodular
function.
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(a) i.i.d with dynamic cost map (Cost Type 1,
CT1)

(b) Monotonic with dynamic cost map (Cost Type
2, CT2)

(c) Spatial correlated with dynamic cost map
(Cost Type 3, CT3)

Fig. 4. Three different types of cost maps on the traffic dataset

(2) Discussion on f2

If routing cost is not considered, no matter sensing cost
is constant or inconstant, f2(s) =

∑
Cij is called a linear

function. Additionally, since Cij is nonnegative, then f2(s)
is a monotone submodular function. If routing cost is con-
sidered and denoted by the number of edges (edges formed
by the vertices of subareas), then f2(s) is a non-monotone
submodular function. If routing cost is denoted as the cost of
shortest walk to visit each selected subareas in this paper, then
f2(s) is non-submodular and non-monotone.

The cell selection problem in this paper is definitely NP-
hard (the proof can be found in the reference [32] since it
is a subset selection problem) and sometimes hard to solve
when estimation on routing cost is considered. Since we
have assumed sufficient participants in each subarea (f2 is
monotone submodular) and f1 is estimated by QBC (f1 is
monotone submodular), the cell selection problem is solvable
by leveraging the following Algorithm 1 and Algorithm 2.

D. Cost-quality beneficial cell selection

1) The cost-quality beneficial cell selection strategy: With
the cost and informativeness estimation method above, in this
section, the diversity of sample cost is incorporated into the
cell selection process, and we propose two selection strategies,
namely GCB-GREEDY and POS, to balance the two objec-
tives at meantime: minimize the sensing cost and maximize the
informativeness in the collected cells. The detailed strategies
of cell selection are formulated as follows.

(1) The generalized cost-benefit greedy selection strategy
(GCB-GREEDY)

The cell selection process in previous Sparse MCS can be
described as a typical subset selection problem. Generally, the
subset selection problem tries to select a subset Sj (salient
cells) from the subarea set V with an objective function f1(S)
(information function) and a constraint of the subset size
(select one by one) in each cycle j. Therefore, the previous
cell selection problem can be formalized as:

arg max
Sj⊆V

f1(Sj) s.t. |Sj | ≤ Bsize (7)

where | · | denotes the size of a set; Bsize is the maximum
number of selected elements (the stopping criterion is decided

by LOO-SA). But in a cost-quality beneficial selection, the
constraint of subset size should be transformed into the budget
constraint as f2(Sj) ≤ Bonecost. At the core of the GCB greedy
algorithm is the following heuristic: in each iteration k, add to
the set Sj an element υk such that:

υk ← arg maxυ∈V\Sk−1
j

f1(Sk−1
j ∪ υ)

f2(Sk−1
j ∪ υ)

(8)

where S0
j =∅ and Skj ={υ1,...,υk}. The number of cells in one

selection depends on the information and cost budget. Since
the routing cost is ignored due to the sufficient participants
assumption in the cost function, our cell selection problem
is transformed into a problem of maximizing a monotone
submodular function f1 with a monotone approximate cost
constraint f2. The corresponding GCB greedy algorithm is
shown in Algorithm 1. It iteratively selects one subarea υ to
sense such that the ratio of the marginal gain on f1 and f2 by
adding υ is maximized.

Algorithm 1 The GCB-greedy-based Cell Selection Algo-
rithm.
Input:

A monotone objective function, f1;
A monotone approximate cost function, f2;
The budget constraint, Bonecost.

Output:
The solution Sj ⊆ V with f2(Sj) ≤ Bonecost.

1: Let Sj = ∅ and V = V ′;
2: repeat
3: υ* ← arg maxυ∈V′

f1(Sj∪υ)−f1(Sj)
f2(Sj∪υ)−f2(Sj) ;

4: if f2(Sj ∪ υ*) ≤ Bonecost then Sj = Sj ∪ υ* end if;
5: V ′ = V ′\{υ*};
6: until V ′ = ∅
7: Let υ* ← arg maxv∈V;f2(υ)≤Bone

cost
f1(υ);

8: return arg maxS′j∈{Sj , υ*} f1(S′j) and S′j .

(2) The Pareto optimization selection strategy (POS)
Inspired by the solutions in [32], the subset selection

problem in (7) can be reformulated as optimizing a binary
vector. We introduce a binary vector s ∈ {0, 1}m to indicate
the subset membership, where si = 1 if the i-th element in
V is selected in a sensing cycle, and si = 0 otherwise. So
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the cell selection problem can be formulated as a bi-objective
minimization model:

arg mins∈{0,1}m (−f1(s), f2(s)) ,

f1(s) =

{
−∞ if s = {0}m or f2(s) ≥Bonecost + 1∑
i

∑
jSij · Iij otherwise.

f2(s) =
∑
i

∑
j Sij · Cij

(9)
where |s| denotes the number of 1s in s; Sij denotes the entry
in cell selection matrix Sm×n; Iij represents the information
of cell i in sensing cycle j; Cij is the approximate sample
cost of cell i in sensing cycle j; Bonecost is the cost budget
in one selection, which is set as the maximal cost value of
unsensed cells (this kind of dynamic cost budget has never
been considered before); f1 is set to −∞ to avoid trivial or
over-cost solutions. We use the value Bonecost +1 instead of Bonecost
in the definition of f1 as this gives the algorithm some look
ahead for larger constraint bounds. However, every value of at
least Bonecost would work for our theoretical analysis. The only
drawback would be a potentially larger population size which
influences the runtime bounds. The bi-objective optimization
model performs active selection to maximize the informa-
tiveness and meanwhile to minimize the sample costs of the
selected cells. We then employ a recently proposed Pareto
Optimization for Monotonic Constraints (POMC) algorithm
[33] to solve this problem. POMC is an evolutionary style
algorithm, which maintains a solution archive, and iteratively
updates the archive by replacing some solutions with better
ones. It is also known as Global SEMO in the evolutionary
computation literature [44], shown in Algorithm 2.

Algorithm 2 The POMC-based Cell Selection Algorithm.
Input:

A monotone objective function, f1;
A monotone approximate cost function, f2;
The budget constraint, Bonecost;
The number of iterations, T.

Output:
The solution s ∈ {0, 1}m with f2(s) ≤ Bonecost.

1: Let s = {0}m and P = {s};
2: Let t = 0;
3: while t < T do
4: Select s from P uniformly at random;
5: Generate s′ by flipping each bit of s with probability

1/m;
6: if 6 ∃z ∈ P such that z � s′ then
7: P = (P\{z ∈ P |s′ < z}) ∪ {s′};
8: end if
9: t = t+ 1;

10: end while
11: return arg maxs∈P ;f2(s)≤Bone

cost
f1(s) and s.

2) The cell selection algorithm for a MCS task: The above
two strategies are proposed to compute the approximate opti-
mal solution for only one selection. Considering n cycles and
m cells in our problem, we summarize the pseudo code of the
proposed algorithm in Algorithm 3. When a new sensing cycle

starts, the MCS server needs to update the cost map at first.
Then, the information of unsensed cells needs to be computed
by QBC. Next, we set the cost budget in one selection at
the maximal sample cost (or a little bit larger). Consequently,
we adopt different cell selection strategies to solve the subset
selection problem with cost constraints. After that, the MCS
server recruits participants to collect actual sensing data in
the selected cells and aggregates the collected data to judge
if more cells are required to sense. If the predefined quality
requirement is not satisfied, we repeat the steps 6-9 until
the predefined quality requirement is satisfied. The quality
requirement satisfied indicates that the MCS server can stop
sensing in this cycle and move to the next cycle. The MCS
server repeats the above steps until (ε, p)-quality in all time
cycles is satisfied. Finally, we can deduce the unsensed data
through compressive sensing based on sensed data.

Algorithm 3 The cost-quality beneficial cell selection algo-
rithm for a MCS task.
Input:

The budget constraint, Ballcost;
Predefined quality requirement, (ε, p)-quality;
The sensing matrix reconstruction algorithm, R;
The cost map, Cm×n; The error metric, e.g. MAE or CE.

Output:
The Inferred full ground data matrix, Ĝm×n.

1: repeat
2: new sensing cycle t starts, update the cost map for the

this cycle;
3: repeat
4: compute the informativeness of the un-measured sub-

areas through Eq.(6);
5: determine the cost budget for a batch of chosen cells

in a selection;
6: solve the subset selection problem considering both

information and sample costs through different cell
selection strategies;

7: send participants to collect sensing data in the se-
lected cells;

8: assess task quality in this time cycle;
9: until the predefined quality requirement is satisfied;

10: until the predefined quality requirement in all time cycles
is satisfied;

11: return The estimated full ground truth matrix Ĝm×n.

3) Computation complexity: Since cell selection strategies
depend on informativeness modeling (QBC is selected in this
paper), and thus QBC contributes much to the running time.
Due to the fact that the runtime of QBC is mainly spent on
using different inference algorithms to reconstruct the sensing
matrix, then the complexity of QBC can be formulated as
O(
∑
l TRl

) if the computation complexity of a reconstruction
algorithm Rl is TRl

. Besides, due to the characteristics of
different strategies, their runtime performances are widely
divergent. The greedy nature of the GCB-greedy algorithm
results in itself an efficient fixed time algorithm. While POMC
is an anytime randomized iterative algorithm, it needs to spend
more time than the greedy algorithm to find the best feasible
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solutions. More specifically, the runtime of POMC depends on
the setting of parameter T.

V. ANALYSIS OF COST-QUALITY AWARE SPARSE MCS
ASSISTED URBAN SENSING AND ACTUATION

For urban computing [45], [46], traditional practices usually
depend on specialized infrastructure, e.g. surveillance cameras,
air quality stations, which incurs a high cost for deployment
and maintenance. With the advent and development of seam-
less connections among machines, smart things and humans,
it is an emerging trend that a governor or a service initiator
leverages the power of crowds, e.g. mobile users and smart
things, to monitor what is happening in a city, understand how
the city is evolving, and further take actions to enable a better
quality of life [47]. In this paper, we offer a governor with
the proposed cost-quality beneficial Sparse MCS approach to
sense the urban context in a more cost-beneficial way with
high-quality sensed data and inferred data.

(1) Benefits to urban context sensing
Nowadays, real-time information in a city, for instance, the

shortage of parking bothers the managers and causes severe
societal problems, like traffic congestion and environmental
pollution. In previous practices, a governor would employ
dedicated staff and leverage expensive resources to monitor
and report the parking occupancy situation, which incurs large
operational costs. Meanwhile, note that under a large-scale
target area, we usually have many subareas for a fine-grained
result and need to recruit a large number of participants,
which also costs a lot. Alternatively, we can leverage the cost-
quality aware cell selection approach proposed in this paper
to recruit only a few number of mobile users to collect real-
time parking availability information in some subareas and
report the collected information to the centralized server. Then,
the server would exploit the compressive sensing or matrix
completion techniques to recover the information in unsensed
subareas. Other examples, such as passenger flows in a target
area, traffic situation, and air quality, are also important issues
to a governor as well as the citizens and can be sensed by our
proposed crowd-powered way. Therefore, our proposed crowd-
powered urban context sensing can fulfill the task of sensing
in large urban regions with less cost and higher efficiency.

(2) Benefits to urban context actuation
The further intention of a governor or a service initiator is

to adopt measures or impose influence on the urban context
by leveraging the collected and inferred information. The
management mode of a city would be changed to optimize
different smart systems (e.g. smart parking, intelligent transit)
and enable better quality of life (e.g. recommendation of
parking spot, reschedule travel plans). For instance, due to
the outbreak of COVID-19, citizens are required to maintain
social distance for a certain period of time. But if the collected
information in a subarea about passenger flow index exceeds
the predefined threshold, the local governor will suggest cit-
izens in other regions to not travel to this region and take
strict isolation measures in this region to reduce the flow
index. Other examples, such as engaging users to re-balance
shared bikes, encouraging citizens and private cars to assist

package delivery, suggesting vehicles to take other routes
when meeting traffic congestion are also typical actuation
applications by leveraging the collected information. In this
crowd-powered paradigm, the efficiency of the current smart
city systems will be largely improved. It reveals the importance
of the information supported by our proposed crowd-powered
sensing paradigm.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our proposed strategies on four
sensing projects, which contain various types of sensed data,
including parking occupancy rate, passenger flow index, traffic
speed and humidity data.

A. Datasets and the inherent features

In this paper, we adopt four real-life sensing datasets,
Birmingham-Parking [48], DataFountain competitions1,
TaxiSpeed [49] and SensorScope [50] to evaluate the
applicability of our following proposed algorithms. The
datasets contain various types of sensed data in representative
IoT applications, like parking occupancy rate, flow index,
traffic speeds, and humidity. Though some of the data in these
datasets are collected by sensor networks or static stations,
mobile users can also sense the data by using smartphones,
as shown in studies [3], [51]. The detailed statistics of the
four datasets are shown in Table II and their distributions are
shown in Fig. 5.

Fig. 5. Data distribution of different urban sensing datasets

Parking (occupancy rate): The car park occupancy rate read-
ings are sensed in the Birmingham-Parking project, collected
from 32 different car parks for two months and 16 days with
a sensing cycle at 60 minutes. Since the occupancy rates are
only recorded for eight hours every day, a target area that has
30 car parks with valid readings (from 8:00 am to 4:00 pm)

1DataFountain competitions: DataFountain is the designated platform for
the 2016 CCF Big Data and Computing Intelligence Competition, which aims
to build China’s most influential and authoritative data science and big data
analysis and processing platform. The Flow (passenger index) dataset provided
by DataFountain is pre-processed through a mathematical model.
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TABLE II
STATISTICS OF FOUR EVALUATION DATASETS

Parking Flow Traffic Humidity
Project Birmingham-Parking DataFountain competitions TaxiSpeed SensorScope
City Birmingham Beijing Beijing Lausanne
Cycle length 1 hour 1 hour 1 hour 0.5 hour
Duration 76 days 12 days 4 days 7 days
Cell size car parks 200m × 200m road segments 50m × 30m
Number of cells 30 68 100 57
Mean ± Std. 0.5155 ± 0.2597 8.84 ± 13.68 13.01 ± 6.97 m/s 84.52 ± 6.32 %

are leveraged. In this scenario, we take the car parks as the
cells.

Flow (passenger index in a region): The dataset is provided
by the DataFountain competitions for predicting the future pas-
senger index in Beijing. Specifically, the flow index readings
are sensed during the outbreak of the COVID-19 from 100
different types of key regions. The sensing lasts for 30 days
from 2020-01-17 to 2020-02-15 with a collecting cycle at 60
minutes and the target region is initially divided into 997 cells
with an equal size at 200m × 200m. In this paper, only 68
cells with valid values during 12 days are leveraged.

Traffic (speed): The speed readings of taxis are collected for
road segments in the TaxiSpeed project in Beijing. The project
lasted for 4 days from 2013-09-12 to 2013-09-15. Specifically,
this dataset contains more than 33,000 trajectories collected by
GPS on taxis. And each sensing cycle lasts for 60 minutes.
According to [49], we consider the road segments as the cells,
and a target area that has 100 road segments with valid sensed
values is selected.

Humidity: The humidity readings are sensed in the Sen-
sorScope project, collected from the EPFL campus with an
area about 500m × 300m for 7 days (from 2007-07-01 to
2007-07-07). Each sensing cycle lasts for 30 minutes. For our
experiments, we divide the target area into 100 cells with each
cell size 50m × 30m. Since only 57 cells are deployed with
valid sensors, we just utilize the sensed data at the cells with
valid readings.

In these datasets, the mean absolute error is chosen as the
metric to evaluate the inference quality. Also, the datasets
used in this paper come from publicly available data on the
Internet. After the careful check by the authors, there are no
user privacy issues.

Inherent features in the urban sensing data are the prereq-
uisite for spatial-temporal compressive sensing. To ensure the
validity of our proposed models and algorithms, we need to
conduct a set of experiments on these datasets to discover
the strong spatial-temporal correlations. It is the basis and
premise of this research. Results show that the urban sensing
data matrix could have a low-rank approximation, certain
temporal stability, and high spatial correlation.

(1) Low-rank feature
Generally, there often exists an inherent correlated structure

or redundancy in long-time urban sensing data. Thus, we apply
singular value decomposition (SVD) to examine whether the
ground truth sensing matrix has a good low-rank structure.
Any ground truth data matrix Gm×n can be decomposed as:

G = U
∑

V tr (10)

where V tr is the transpose of V (a n×n unitary matrix), U is
a m×m unitary matrix, and

∑
is a m×n diagonal matrix with

the diagonal elements σi (i.e. singular values) organized in the
decreasing order. The rank of a matrix, denoted by r, is equal
to the number of its non-zero singular values. Specifically, a
low-rank matrix means that its matrix rank r � min{m,n}.

According to principal components analysis, a low-rank
matrix has the character that its top k singular values occupy
the total or near-total variance

∑k
i=1 σ

2
i ≈

∑r
i=1 σ

2
i . Thus, we

use the fraction of the total variance captured by the top k
singular values as the evaluation metric:

g(k) =
∑k

i=1
σ2
i /
∑r

i=1
σ2
i (11)

Fig. 6(a) plots the fraction of the total variance captured by
the top k singular values as the k varies for different urban
sensing data. We can find that the top 1.75%-13.3% singular
values include over 98% variance in the real datasets. The
result indicates that the urban sensing data has a good low-
rank approximation.

(2) Temporal stability feature
Temporal stability indicates how the measured data changes

over time. In urban sensing, some measured data, e.g. humidity
and temperature, usually change slowly over consecutive time
slots. But other urban context data may not have this feature.
Thus, to reveal the natural phenomenon and check if this
feature exists in different urban sensing data, we analyze the
datasets in time dimension between each pair of adjacent time
measurements at a location.

The temporal stability feature at subarea i and time slot
j is computed by the normalized difference values between
adjacent time slots ∆tsf(i, j):

∆tsf(i, j) =
|G(i, j)−G(i, j − 1)|

max
1≤i≤m,2≤j≤n

|G(i, j)−G(i, j − 1)|
(12)

where i varies from 1 to m, j varies from 2 to n (n is the number
of time slots of interest), and max1≤i≤m,2≤j≤n |G(i, j) −
G(i, j − 1)| is the maximal difference of the urban sensing
data captured in any two consecutive time slots.

The Cumulative Distribution Function (CDF) of ∆tsf(i, j)
is plotted in Figure 6(b). The X-axis represents the normalized
difference between values in two consecutive time slots, i.e.
∆tsf(i, j). The Y-axis denotes the cumulative probability. It
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is observed that more than 60% of ∆tsf(i, j) values are very
small (<0.1) for the four different datasets. Even in the worst
case, the traffic values between two consecutive time slots
mostly (>90%) only change a little (<0.3). These findings
indicate that the real urban sensing data is temporally stable.

(3) Spatial correlation feature
Spatial correlation indicates the correlation of the sensing

data between nearby locations. Since environments are often
smooth in a small area, and thus environmental values are
similar at nearby locations. In this paper, we use the correlation
coefficient to quantify this kind of correlation and dependence.
Let G(i) denotes the i-th row of matrix G. In specific, G(i),
G(i′) ∈ Rn represent the data vectors of locations i and i’.
The following metric scf(i, i′) (spatial correlation) between
data at locations i and i’ can be formulated as follows:

scf(i, i′) =

∑n
j=1(|G(i, j)− Ḡ(i)| × |G(i′, j)− Ḡ(i′)|)√∑n

j=1(G(i, j)− Ḡ(i))2 ·
√∑n

j=1(G(i′, j)− Ḡ(i′))2

(13)
where i and i′ varies from 1 to m, Ḡ(i) = 1

n

∑n
j=1G(i, j) and

Ḡ(i′) = 1
n

∑n
j=1G(i′, j). To avoid the existence of negative

values in scf(i, i′), the absolute value function is added in the
covariance function. Figure 6(c) plots the CDF of scf(i, i′),
with the X-axis being the values of scf(i, i′) and Y-axis the
cumulative probability. We find that the urban sensing data
exhibits high spatial correlations in general.

In brief, the inherent features, i.e. low-rank feature, temporal
stability feature, and spatial correlation feature discovered
in urban sensing data allow us to perform spatial-temporal
compressive sensing and quality assessment actions.

B. Cost map

In this paper, we estimated three different initial cost maps
(i.e., i.i.d cost map, spatial correlated cost map and monotonic
cost map) on the target datasets respectively. In the meantime,
a dynamic, time-variant factor, i.e. the perception cost are
considered in this paper. In our evaluation, we use cb = B1−b

(B = 2, b ∈ [0, 1]) to denote the dynamic cost. The example of
three different cost maps is given in Fig. 4. More specifically,
the summary statistics over the three cost maps are shown in
Fig. 7 (the unit of cost is CNY). As we can see in the violin
diagram, each dot represents a sample cost and the height of
the violin outline indicates the range of costs. Note that the
range and std. deviation in CT1 are maximal compared to those
in the other two cost maps while the mean and the minimal
value of CT1 is smallest, that is to say, CT1 has more sample
cost with small values. This fact can explain why our proposed
algorithms will select more cells in CT1 to sense, and more
details can be referred to the experiment results section.

C. Baselines

Since this paper addresses the practical sensing problem
(usually a nonlinear system) with less historical monitoring
data, we compare our cell selection strategies with two base-
lines: SIMP-GREEDY and QBC.

SIMP-GREEDY: Since there is typically a conflict between
the informativeness and sample cost in a cell, the most

straightforward strategy is to simply divide the informativeness
by the sample cost. Thus, we can have the selection strategy
as:

arg maxυ∈V\Sj
f1(υ)/f2(υ) (14)

This strategy transforms a bi-objective problem into max-
imizing the single objective f1(υ)/f2(υ) in each selection,
which provides a simple solution for cost-quality beneficial
selection, but it may fail when one of the two factors dominates
the other [35]. Hence, SIMP-GREEDY is considered as a
baseline.

QBC: Previous works [13], [27] have proven the feasibility
and satisfying performance of QBC of cell selection in Sparse
MCS applications. Some “committee members” are contained
in QBC to determine which salient cell to sense in the next
task. More specifically, the “committee” is formed by different
data inference algorithms, such as spatial-temporal compres-
sive sensing, compressive sensing, K-Nearest Neighbors and
SVD. Finally, it chooses the cell where the inferred data of
various algorithms has the largest variance as the next selection
for sensing without considering the cost-diversity. In other
words, QBC tries to minimize the total costs of selecting
cells by selecting the unsensed cells with the largest variance.
Therefore, QBC is suitable as a baseline.

D. Experiment results

1) Errors of inferred value: We first compare the average
inference error, i.e. MAE brought by different cell selection
strategies while changing the number of selected cells for each
cycle without considering (ε, p)-quality. As exhibited in Fig.
8, similar tendencies are observed over four types of sensing
tasks. As the increment of the number of selected cells in each
sensing cycle, the average inference errors drop rapidly. The
fact implies that more information brought by the increasing
selected cells promotes the accuracy of data inference. Note
that the information modeling of our proposed strategies, i.e.
POS and GCB-GREEDY and the baseline SIMP-GREEDY are
based on QBC, and thus they share the comparable error levels
theoretically. This fact is also confirmed by the experimental
results though the inference error of our proposed strategies
is better than that of the baselines in many circumstances.
Next, we will evaluate and discuss the performances of our
cell selection strategies by considering (ε, p)-quality, which is
more practical in real-world applications.

2) The number and total costs of selected cells: Then
we focus on analyzing the research objective – how much
sample costs could our proposed algorithms save while further
obtaining more informativeness to reduce the inference errors?
The proposed strategies are compared to the baselines from
three aspects: costs, selected cells and inference errors on four
real-life datasets.

On the Parking occupancy rate sensing, for the predefined
(ε, p)-quality, we set the error bound ε as 0.1 and p as 0.9 or
0.95. In other words, we require the inference error smaller
than 0.1 for around 90% or 95% of cycles. The average number
of selected cells for each cycle is shown in Fig. 9(a), where
the baseline QBC always selects the fewest cells on three
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(a) The low-rank feature revealed by the top k
singular values

(b) The temporal stability feature revealed by dif-
ferences between two consecutive intervals

(c) The spatial correlation feature revealed by the
correlation between two subareas

Fig. 6. Inherent features in different datasets

Fig. 7. The violin diagram of different cost maps. CT1, CT2, and CT3
denote the i.i.d with dynamic cost map, monotonic with dynamic cost map,
and spatial correlated cost map, respectively; the three doted lines mark the
25% percentile, median, 75% percentile value in each violin plot, respectively

different cost maps, while GCB-GREEDY and POS can select
0.5%-4.2% (on average 2.8%) and 0.6%-5.2% (on average
3.5%) more subareas than QBC, respectively. Except for the
circumstance of CT1 (95%), SIMP-GREEDY also selects a bit
more cells (0.21%-0.9%, on average 0.5%). Note that in CT1
(i.i.d with dynamics cost map), our proposed strategies select
more cells. The phenomenon can be explained by the statistics
of cost maps since CT1 has more sample cost with small
values. So our proposed algorithms may choose more than
one cell in a selection (revealed in Fig. 3). In general, GCB-
GREEDY and POS only need to select on average 6.67 (7.23),
6.74 (7.26) out of 30 cells for each sensing cycle to ensure the
inference error below 0.1 in 90% (95%) of cycles, respectively.
Though more cells are selected by our proposed strategies, the
total costs of our proposed strategies outperform those of the
baselines. Generally, QBC costs the most while POS saves the
most costs, as shown in Fig. 9(b). Specifically, GCB-GREEDY
and POS spend 1.6%-9.1% (on average 4.7%), 2.1%-11.2%
(on average 5.7%) fewer costs than QBC. Meanwhile, our
proposed strategies perform better than SIMP-GREEDY on
cost saving in practically all circumstances. Especially in CT1,
our proposed algorithms can achieve the best performance.
Due to the simple greedy heuristic, SIMP-GREEDY cannot

ensure a full superiority over QBC. Note that in the case of
CT3 (90%), it even spends more cost than QBC. Subsequently,
let us compare the inference errors. As shown in Appendix
(Table IV), since our proposed strategies cover more subareas
in each sensing cycle, which can provide more information
for data inference, and thus enhance data accuracy compared
to the baselines.

For the Flow and Traffic dataset, we observe a similar
tendency in Fig. 9(c), (d), (e), and (f). It is noteworthy that
our proposed strategies achieve better performance than the
baselines since they leverage a more complex mechanism to
balance the sample cost and information. Specifically, POS
and GCB-GREEDY select more cells and save more costs
compared to those in parking sensing tasks since the average
number of selected cells in a time cycle becomes larger. Also,
the inference error of our proposed strategies is obviously
reduced.

On the Humidity dataset, our proposed strategies POS
(GCB-GREEDY) can reduce inference errors by 6.1% to
10.1% (5.7% to 8.5%) compared with QBC, and 0.8% to
2.7% (0.2% to 2.2%) compared with SIMP-GREEDY, shown
in Appendix (Table IV). Also, see results in Fig. 9(h), our
proposed strategies POS (GCB-GREEDY) reduces the sample
cost by 1.8% to 15.2% (1.4% to 15.02%) compared with
QBC, and 1.0% to 8.5% (0.6% to 7.4%) compared with SIMP-
GREEDY.

From the above-analyzed results, our proposed strategies
undoubtedly outperform the baselines on the performance of
decreasing inference errors and sample costs. Now we define
a new indicator – Cost per cell (CPC) to see which strategy
performs best. The results are shown in Fig. 10. On the Parking
sensing task, the CPC of POS performs the best in all cases.
Similarly, on the Flow, Traffic and Humidity dataset, POS also
shows its advantage in all circumstances over other strategies.
Thus, we can conclude POS is the best strategy considering
the results.

Finally, let us see whether all the strategies can achieve the
predefined task quality requirement. As shown in Appendix
(Table V), most of the values are larger than its predefined p
(all the methods adopt LOO-SA as the stopping criterion), and
this result indicates that both our proposed strategies and the
baselines can well satisfy the predefined quality requirement
for most of the time. At meantime, we also observe that some
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(a) Parking (b) Flow

(c) Traffic (d) Humidity

Fig. 8. Average inference error of different sensing datasets under the condition of fixed number of selected cells for each cycle without considering (ε, p)-
quality. The X-axis denotes the fixed number of selected cells while the Y-axis represents the corresponding average inference errors. As shown in this figure,
the proposed strategies and baselines share the similar error levels since we do not leverage the quality assessment module and these strategies are all based
on the same information modeling methods

results are slightly less than the predefined p, for instance,
0.8992 < 0.9 and 0.9496 < 0.95, but the gap is quite
small and acceptable. This is probably due to the fact that
compressive sensing and Bayesian inference in our algorithms
have the intrinsic probabilistic characteristics and would cause
some minor errors. To ensure the accuracy of the results,
each experiment sample was run five times. If time permits,
more runs should be considered to avoid this probabilistic
characteristic.

3) Results of different cost budgets: Further, to study how
the change of cost budget in a selection will influence the
evaluation results, we take the humidity sensing on CT1 as an
example and conduct more experiments on POS strategy since
POS has exhibited its superiority over other strategies. In the
previous experiments, the cost budget in a selection is set to
Bonecost = max(f2(Vj)), that is to say, Bonecost equals the maximal
sample cost in cycle j. And the reason for this setting is that
cell selection strategies can consider and select any possible
candidate subareas. Now we vary the ratio of cost budget to
the maximal sample cost, and the results are shown in Fig.
11. Generally, when the ratio rises, more subareas are selected
and the total sample costs correspondingly increase. This may
because when the ratio is less than 1, the POS strategy omits
some subareas with high sample costs; while when the ratio
is greater than 1, the POS strategy has a greater cost budget
to select more cells. Note that though the total sample costs
are reduced in the low-cost budget scenarios, the inference
errors increase significantly. When the ratio is less than 0.7, the

results cannot even meet the predefined quality requirement.
Thus, if a governor cares more about the cost reduction, the
cost budget can be set slightly below the maximum sample
cost. But to ensure the inference performance, we suggest the
ratio should be set greater than 0.9.

4) Results of leave some percentage out (LSPO) cross
validation: Though the number of selected cells in most cycles
is much smaller than the total number of cells, there still
remains the situation that in some cycles more than a half or
two thirds of the total cells are chosen since the data in these
cycles is not necessarily accurately sensed due to the failure of
sensors. In matrix completion, there is always a threshold of
the observation rate, beyond which the performance should
be satisfiable. Thus, in the above-mentioned situation, the
number of observed entries (measured cells) is likely to go
beyond the threshold, and consequently the performance may
always be satisfiable by using the LOO evaluation, because
leaving only one entry out may be too few and cannot show
when the method can work and cannot work. In [52], [16],
some other cross validation approaches are leveraged as the
quality assessment method, such as K-fold cross validation
and leave-P-out (LPO) cross validation. Note that LOO is a
particular case of K-fold and LPO. In this paper, we conduct
the evaluation by leaving various percentages (e.g. 10%, 20%,
and 30%) of data out. Suppose that we have sensed m′ cells
out of all the m cells, the idea of leave some percentage out
(LSPO) is that for each time, we leave some percentage, e.g.
10%, of the m′ observations out (i.e. leave P observations
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(a) Number of selected cells (Parking) (b) Total costs (Parking)

(c) Number of selected cells (Flow) (d) Total costs (Flow)

(e) Number of selected cells (Traffic) (f) Total costs (Traffic)

(g) Number of selected cells (Humidity) (h) Total costs (Humidity)

Fig. 9. The number and total costs of selected cells for Parking, Flow, Traffic and Humidity under the condition of considering (ε, p)-quality. The X-axis
denotes different types of cost map; the Y-axis represents the number of selected cells in (a), (c), (e), (g) while the Y-axis represents total costs of selected
cells in (b), (d), (f), (h)

out, P equals ceil(m′ × percentage)) and infer them based
on the rest (m′-P) observations. Here we take the humidity
sensing task as an example, set the error bound ε as 1.5% and
p as 0.9 and experiment on percentages 10%, 20%, 30%, 40%
and 50%, respectively. Each experiment sample is repeated 5

times (the results are averaged), and the corresponding results
are shown in Fig. 12 and Appendix (Table. VI).

It can be concluded that compared to LOO, leveraging LSPO
incurs a bit more selected cells as well as sensing costs, and
also improves the inference results to some extent. Specifically,
with the increment of the percentage, the average number of
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(a) Parking (b) Flow

(c) Traffic (d) Humidity

Fig. 10. Cost per cell of different cell selection strategies for Parking, Flow, Traffic and Humidity sensing tasks

Fig. 11. Results of different ratios of cost budget to maximum sample cost

selected cells in each cycle increases slightly. This is because
leaving more cells out in the above-mentioned situation would
reduce the observation rate and require more cells to be sensed.
In most cases, the corresponding sensing costs also increase
slightly, and the inference error in unsensed cells decreases a
little. The findings reveal that LSPO can better handle with
the inaccurate sensing situation in some cycles compared to
LOO and avoid the invalid operation when the observation
rate exceeds the threshold in matrix completion. But LSPO
cross validation requires to learn and validate Cpm′ times, so
as the value of m′ becomes too big, it would be impossible
to calculate. Therefore, in terms of computational efficiency,
LOO is a good choice; and considering the reduction of
inference error and the problem of coping with the observation
rate over threshold, LSPO is a better choice.

5) Running time: Finally, since the baseline QBC has
demonstrated its feasibility of running time performance in
the real-life scenario, we report the computation time of
our proposed strategies and SIMP-GREEDY to see whether
they can also satisfy the runtime requirements. We run the
experiments on a desktop computer (Intel Core i7-8559U CPU
@ 2.70GHz, 16GB RAM, Windows 10) with Python3.7. Table
III lists the running time for different stages of the whole task
assignment process. As we can see in Table III, the ‘Quality
Assessment’ module costs the most since it needs to run the
‘Data inference’ module for many rounds to judge whether
the sensing cycle can stop or continue. Though our proposed
strategies use QBC as the basis to estimate the information
in unsensed cells, the computation time of GCB-GREEDY is
even reduced. This is because the GCB-greedy algorithm can
ensure a fixed runtime and may select more than one cell
in a selection. Despite POS is the most time consuming, the
total runtime for allocating a new task is no more than 15.4
seconds (i.e., estimating the task quality once and, if it cannot
meet the predefined (ε, p)-quality, finds the next sensing cell).
Therefore, we believe the efficiency of our proposed methods
can also satisfy most real-world applications.

TABLE III
RUNNING TIME FOR EACH STAGE

Parking Flow Traffic Humidity
Cell Selection – QBC 0.91s 1.19s 1.36s 1.15s
Cell Selection – SIM-GREEDY 1.26s 1.65s 1.90s 1.61s
Cell Selection – GCB-GREEDY 0.67s 1.13s 1.27s 1.04s
Cell Selection – POS 1.68s 2.74s 3.21s 2.53s
Data Inference 0.51s 0.89s 1.27s 0.75
Quality Assessment < 3.9s < 8.6s < 12.1s < 7.2s
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(a) Number of selected cells (b) Total costs

Fig. 12. Results of leaving different percentages out for Humidity sensing tasks

6) Discussion: In this subsection, we will conclude the
experimental phenomena and discuss some drawbacks of this
paper.

Our proposed cell selection method explicitly outperform
the baselines, with two strategies (Pareto optimization and
generalized cost-benefit greedy) from three aspects: less sam-
ple cost, more selected cells with sensing values, and less
inference error, since we leverage a complex mechanism to
minimize the total cost and maximize the informativeness.
In other words, we select more subareas on the premise of
reducing or not increasing the overall cost. Since more cells
are sensed with real measurements, the inference error is also
improved. Whatever the sample cost type and sensing task type
is, POS strategy achieves the best performance; however, if the
running time is considered, GCB-GREEDY is a comparable
strategy. Experimental results demonstrate the feasibility of the
proposed cost-quality beneficial cell selection method.

Compared to the results in monotonic cost map (CT2)
and spatial correlated cost map (CT3), POS strategy and
GCB-GREEDY strategy perform much better in sample cost
reduction and inference error decline under i.i.d. cost map
(CT1). It is because CT1 owns cost values with a bigger range
and std. deviation and has more sample cost with small values,
thus it provides Pareto optimization and generalized cost-
benefit greedy more chances to select more than one subarea in
a selection. Thus, the average number of selected cells in CT1
of Pareto optimization and generalized cost-benefit greedy is
greater than that in CT2 and CT3. More selected cells mean
more information for recovery, and thus the inference error
reduction in CT1 is better. This finding implicates that our
proposed framework and cell selection strategies is able to
handle various kinds of cost inconstancy, especially when the
cost map has a bigger range and standard deviation.

However, there remain some drawbacks in the present work.
Firstly, we still leverage LOO-SA as the stopping criterion,
in which the practical relationship between statistical results
and the stop condition is simplified. Thus, when the observed
entries are beyond the threshold in a cycle, the performance
may always be satisfiable. So that it is unclear whether LOO-
SA is working or not in this situation. Instead, LSPO-SA

would be a good choice for quality assessment. Secondly,
since we use the Query by Committee method to estimate the
uncertainty in each unsensed cells. But the direct relationship
between the uncertainty and the quality of reconstruction
remains to be proven. Finally, the accuracy of data acquisition
influences the overall performance of Sparse MCS to some
extent, which needs further discussion and analysis.

In a few cases, we observe that naive greedy strategy
even performs a bit better than the generalized cost-benefit
greedy strategy. It may because compressive sensing and
Bayesian inference in our algorithms have the intrinsic proba-
bilistic characteristics and would cause some minor errors. If
time permits, more runs should be considered to avoid this
probabilistic characteristic. It may also because there exist
certain measurement errors in the raw data, which affects the
performance of our proposed strategies in some cases.

The practicality of this work may be limited on the
simulation-based results without real-world applications and
practical experiments. The issue of human factor is avoided
by a perfect participant assumption in this paper. However, a
participant may fail, deny, or be late in doing the assigned task.
The probability of the failure should be different participant
by participant, since their personality is different. Thus, we
would clarify how the proposed methods handle human factors
happening in the real-world applications by conducting real
experiments in the future.

VII. CONCLUSION

Crowdsensing, as a typical way of urban computing, has
shown its advantage in pervasive sensing and knowledge
discovery. However, sample costs of high-quality data still
hamper MCS from being utilized at a large-scale. Thus, in
this paper, we incorporate cost-diversity into the cell selection
process. To that end, a novel three-step cell selection approach
(information modeling, cost estimation, and cost-quality ben-
eficial selection) is proposed with the target of minimizing
the total sample costs and maximizing the beneficial infor-
mativeness in the selected cells (further reducing the error of
inferred results). After reasonable approximation of the cost
and discussion on the properties of the optimization goals,
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we propose two selection strategies, namely GCB-GREEDY
and POS, to solve the optimization model. We evaluate the
proposed strategies by comparing them to two baselines, i.e.
QBC and SIMP-GREEDY, on four real-life sensing datasets
and three different cost maps. Results explicitly demonstrate
the effectiveness and applicability of our strategies in real-
world MCS systems. Our strategies can save sample costs and
reduce inference errors in the meantime. Also, we analyze
the potential of applying our proposed cost-quality beneficial
crowd-powered way in real-life urban-scale sensing and actu-
ation.

In the future, we will continue to improve this work from
the following aspects. We will firstly incorporate the sample
cost diversity into the deep reinforcement learning-based cell
selection method. Secondly, we will improve the insufficient
participant scenario by considering user’s historical mobility
traces where relocate participants to new task locations. Last
but not the least, we will provide a mathematical proof of
the relationship between the informativeness of a cell and the
reconstruction performance in the nonlinear system scenarios.

VIII. APPENDIX

Three tables in section of Evaluation Performance are listed
here.

TABLE IV
AVERAGE INFERENCE ERRORS OF DIFFERENT CELL SELECTION

STRATEGIES UNDER THE CORRESPONDING QUALITY REQUIREMENT

Parking
(ε, p) POS GCB-GREEDY SIMP-GREEDY QBC

CT1 (0.1, 0.90) 0.0697 0.0712 0.0747 0.0818
(0.1, 0.95) 0.0669 0.0674 0.0706 0.0794

CT2 (0.1, 0.90) 0.0701 0.0719 0.0732 0.0820
(0.1, 0.95) 0.0682 0.0683 0.0719 0.0806

CT3
(0.1, 0.90) 0.0702 0.0894 0.0741 0.0822
(0.1, 0.95) 0.0675 0.0685 0.0727 0.0811

Flow
(ε, p) POS GCB-GREEDY SIMP-GREEDY QBC

CT1 (1.2, 0.90) 0.9321 0.9820 1.0328 1.0544
(1.2, 0.95) 0.9185 0.9377 0.9687 0.9866

CT2 (1.2, 0.90) 1.0029 1.0058 1.0057 1.0070
(1.2, 0.95) 0.9239 0.9365 0.9771 0.9800

CT3
(1.2, 0.90) 0.9554 0.9504 1.0305 1.0261
(1.2, 0.95) 0.9293 0.9309 0.9747 0.9851

Traffic
(ε, p) POS GCB-GREEDY SIMP-GREEDY QBC

CT1 (2.5m/s, 0.90) 2.2456 2.2706 2.2904 2.3154
(2.5m/s, 0.95) 2.1924 2.2127 2.2269 2.2504

CT2 (2.5m/s, 0.90) 2.2778 2.2822 2.3068 2.3177
(2.5m/s, 0.95) 2.2045 2.2178 2.2566 2.2666

CT3
(2.5m/s, 0.90) 2.2754 2.2839 2.3108 2.3289
(2.5m/s, 0.95) 2.2121 2.2202 2.2556 2.2645

Humidity
(ε, p) POS GCB-GREEDY SIMP-GREEDY QBC

CT1 (1.5%, 0.90) 1.3244 1.3444 1.3753 1.4697
(1.5%, 0.95) 1.2694 1.2988 1.3049 1.4122

CT2 (1.5%, 0.90) 1.3604 1.3732 1.3865 1.4655
(1.5%, 0.95) 1.3301 1.3364 1.3397 1.4322

CT3
(1.5%, 0.90) 1.3733 1.3757 1.3834 1.4604
(1.5%, 0.95) 1.3170 1.3249 1.3269 1.4284
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TABLE V
FACTION OF THE CYCLES WHOSE ERRORS ARE LOWER THAN THE

CORRESPONDING QUALITY REQUIREMENT

Parking
(ε, p) POS GCB-GREEDY SIMP-GREEDY QBC

CT1 (0.1, 0.90) 0.9084 0.9049 0.9026 0.9003
(0.1, 0.95) 0.9553 0.9542 0.9530 0.9519

CT2 (0.1, 0.90) 0.9061 0.9003 0.8992 0.8995
(0.1, 0.95) 0.9507 0.9537 0.9488 0.9530

CT3
(0.1, 0.90) 0.9107 0.8981 0.9003 0.9018
(0.1, 0.95) 0.9530 0.9496 0.9542 0.9496

Flow
(ε, p) POS GCB-GREEDY SIMP-GREEDY QBC

CT1 (1.2, 0.90) 0.9341 0.9267 0.9194 0.9158
(1.2, 0.95) 0.9780 0.9780 0.9707 0.9634

CT2 (1.2, 0.90) 0.9231 0.9084 0.9158 0.9085
(1.2, 0.95) 0.9560 0.9597 0.9560 0.9524

CT3
(1.2, 0.90) 0.9304 0.9267 0.9121 0.9121
(1.2, 0.95) 0.9524 0.9670 0.9667 0.9634

Traffic
(ε, p) POS GCB-GREEDY SIMP-GREEDY QBC

CT1 (2.5m/s, 0.90) 0.9121 0.9231 0.9048 0.9011
(2.5m/s, 0.95) 0.9707 0.9707 0.9634 0.9597

CT2 (2.5m/s, 0.90) 0.9231 0.9084 0.9011 0.8974
(2.5m/s, 0.95) 0.9560 0.9634 0.9597 0.9524

CT3
(2.5m/s, 0.90) 0.9048 0.9194 0.8974 0.9048
(2.5m/s, 0.95) 0.9597 0.9780 0.9524 0.9451

Humidity
(ε, p) POS GCB-GREEDY SIMP-GREEDY QBC

CT1 (1.5%, 0.90) 0.9101 0.9109 0.9094 0.8920
(1.5%, 0.95) 0.9524 0.9645 0.9630 0.9517

CT2 (1.5%, 0.90) 0.9026 0.9018 0.9079 0.8927
(1.5%, 0.95) 0.9494 0.9630 0.9592 0.9456

CT3
(1.5%, 0.90) 0.8995 0.9063 0.9086 0.8995
(1.5%, 0.95) 0.9502 0.9502 0.9464 0.9479

TABLE VI
AVERAGE INFERENCE ERRORS OF DIFFERENT QUALITY ASSESSMENT

METHODS ON HUMIDITY SENSING TASK UNDER (ε = 1.5, p = 0.9)
QUALITY REQUIREMENT

Humidity
Quality Assessment POS GCB-GREEDY SIMP-GREEDY QBC

CT1

LOO 1.3244 1.3444 1.3753 1.4697
LSPO, per=0.1 1.3243 1.3417 1.3747 1.4698
LSPO, per=0.2 1.3237 1.3403 1.3742 1.4696
LSPO, per=0.3 1.3219 1.3392 1.3732 1.4692
LSPO, per=0.4 1.3166 1.3386 1.3720 1.4688
LSPO, per=0.5 1.3155 1.3375 1.3717 1.4680

CT2

LOO 1.3604 1.3732 1.3865 1.4655
LSPO, per=0.1 1.3604 1.3733 1.3859 1.4657
LSPO, per=0.2 1.3599 1.3724 1.3847 1.4654
LSPO, per=0.3 1.3591 1.3721 1.3842 1.4648
LSPO, per=0.4 1.3582 1.3716 1.3839 1.4637
LSPO, per=0.5 1.3566 1.3705 1.3834 1.4631

CT3

LOO 1.3733 1.3757 1.3834 1.4604
LSPO, per=0.1 1.3731 1.3756 1.3836 1.4601
LSPO, per=0.2 1.3723 1.3748 1.3814 1.4593
LSPO, per=0.3 1.3717 1.3739 1.3812 1.4582
LSPO, per=0.4 1.3708 1.3732 1.3807 1.4580
LSPO, per=0.5 1.3702 1.3729 1.3804 1.4573
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