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Abstract
At Ahold Delhaize, there is an interest in us-
ing more complex machine learning techniques for
sales forecasting. It is difficult to convince an-
alysts, along with their superiors, to adopt these
techniques since the models are considered to be
‘black boxes,’ even if they perform better than cur-
rent models in use. We aim to explore the impact
of contrastive explanations about large errors on
users’ attitudes towards a ‘black-box’ model. In
this work, we make two contributions. The first
is an algorithm, Monte Carlo Bounds for Reason-
able Predictions (MC-BRP). Given a large error,
MC-BRP determines (1) feature values that would
result in a reasonable prediction, and (2) general
trends between each feature and the target, based
on Monte Carlo simulations. The second contri-
bution is the evaluation of MC-BRP along with
its outcomes, which has both objective and sub-
jective components. We evaluate on a real dataset
with real users from Ahold Delhaize by conduct-
ing a user study to determine if explanations gen-
erated by MC-BRP help users understand why a
prediction results in a large error, and if this pro-
motes trust in an automatically-learned model. The
study shows that users are able to answer objec-
tive questions about the model’s predictions with
overall 81.7% accuracy when provided with these
contrastive explanations. We also show that users
who saw MC-BRP explanations understand why
the model makes large errors in predictions signifi-
cantly more than users in the control group.

1 Introduction
As more and more decisions about humans are made by ma-
chines, it becomes imperative to understand how these out-
puts are produced and what drives a model to a particular
prediction [Ribeiro et al., 2016a]. As a result, algorithmic
interpretability has gained significant interest and traction in
the ML community over the past few years [Doshi-Velez and
Kim, 2018]. However, there exists considerable skepticism

∗Contact author.

outside of the ML community due to a perceived lack of trans-
parency behind algorithmic predictions, especially when er-
rors are produced [Dietvorst et al., 2015]. We aim to evaluate
the effect of explaining model outputs, specifically large er-
rors, on users’ attitudes towards trusting and deploying com-
plex, automatically learned models.

Further motivation for interpretable ML is provided by
the recently enacted European General Data Protection Reg-
ulation (GDPR), which specifies that individuals will have
the right to “the logic involved in any automatic personal
data processing” [EU, 2016]. In Canada and the United
States, this right to an explanation is an integral part of fi-
nancial regulations, which is why banks have not been able
to use high-performing ‘black-box’ models to evaluate the
credit-worthiness of their customers. Instead, they have been
confined to easily interpretable algorithms such as decision
trees (for segmenting populations) and logistic regression (for
building risk scorecards) [Khandani et al., 2010]. At NIPS
2017, an Explainable ML Challenge was launched to com-
bat this limitation, indicating the finance industry’s interest in
exploring algorithmic explanations [FICO, 2017].

We use explanations as a mechanism for supporting inno-
vation and technological development while keeping the hu-
man “in the loop” by focusing on predictive modeling as a
tool that aids individuals with a given task. Specifically, our
interest lies with interpretability in a scenario where users
with varying degrees of ML expertise are confronted with
large errors in the outcome of predictive models. We focus on
explaining large errors because people tend to be more curi-
ous about unexpected outcomes rather than ones that confirm
their prior beliefs [Hilton and Slugoski, 1986]. However, it
has been shown that when users are confronted with errors in
algorithmic predictions, they are less likely to use the model
[Dietvorst et al., 2015]. Seeing an algorithm make mistakes
significantly decreases confidence in the model, and users are
more likely to choose a human forecaster instead, even after
seeing the algorithm outperform the human [Dietvorst et al.,
2015]. This indicates that prediction mistakes have a signif-
icant impact on users’ perception of the model. By focusing
on explaining mistakes, we hope to give insight into this phe-
nomenon of algorithm aversion while also giving users the
types of explanations they are interested in seeing.

In this work, we focus on explaining regression predictions
since this is what most data scientists working in forecasting



at Ahold Delhaize are confronted with, and this is what mo-
tivated our research. However, it should be noted that our
method can be extended to classification tasks by defining
‘distances’ between classes or by simply defining all errors
as large errors.

We focus on two aspects of explainability in this scenario:
the generation of explanations of large errors and the corre-
sponding effectiveness of these explanations. Prior methods
for generating explanations fail at generating explanations
for large errors because they produce similar explanations
for predictions resulting in large errors and those resulting
in reasonable predictions (see Table 2 in Section 4 for
an example). We propose a method for explaining large
prediction errors, called Monte Carlo Bounds for Reasonable
Predictions (MC-BRP), that shows users (1) the required
bounds of the most important features in order to have a
prediction resulting in a reasonable prediction, and (2) the
relationship between each of these features and the target.
We examine the effectiveness of explaining large errors via
MC-BRP through a user study aimed at determining users’
understanding of the explanations as well as their trust in
the model and attitudes towards deploying it based on the
explanations.

We address the following research questions:

RQ1: Are the contrastive explanations generated by
MC-BRP about large errors in predictions (i) interpretable,
or (ii) actionable?

(i) Can contrastive explanations about large errors give
users enough information to simulate the model’s out-
put (forward simulation)?

(ii) Can such explanations help users understand the model
such that they can manipulate an observation’s input val-
ues in order to change the output (counterfactual simu-
lation)?

RQ2: How does providing contrastive explanations gener-
ated by MC-BRP for large errors impact users’ perception of
the model?

(i) Does being provided with contrastive explanations gen-
erated by MC-BRP impact users’ understanding of why
the model produces errors?

(ii) Does it impact their willingness to deploy the model?
(iii) Does it impact their level of trust in the model?
(iv) Does it impact their confidence in the model’s perfor-

mance?

2 Related Work
Guidotti et al. [2018] compile a survey of current methods in
interpretable machine learning and develop a taxonomy for
classifying various methods using four criteria:

1. Problem:
(a) Model explanations: interpret black-box model as

a whole (globally)
(b) Outcome explanations: interpret individual black-

box predictions (locally)

(c) Inspection: interpret model behavior through vi-
sual representations (globally or locally)

(d) Transparent design: model is inherently inter-
pretable (globally or locally)

2. Model: neural networks, tree ensembles, SVMs, model-
agnostic

3. Explanator: decision trees/rules, feature importances,
salient masks, sensitivity analysis, partial dependence
plots, prototype selection, neuron activation

4. Data: tabular, image or text

Based on this schema, our setting is an outcome explana-
tion problem for tree ensembles. We use sensitivity analy-
sis, specifically Monte Carlo simulations, on tabular data to
generate our explanations.

To the best of our knowledge, the only other work in a simi-
lar domain is that of Sharchilev et al. [2018]. Their methodol-
ogy is based on finding influential training samples in order to
automatically improve gradient boosted decision tree models.
This differs from our work with respect to the objective: we
are not trying to improve the model, but rather help humans
understand where it makes mistakes and why it does so. Koh
and Liang [2017] also use influence functions to show the ef-
fect of upweighting samples or perturbing feature values on a
model’s parameters, but their method only applies to smooth
parametric models.

Ribeiro et al. [2016b] develop a method for explaining the
predictions of a classifier by approximating it locally with a
linear model. Their method, LIME, is model-agnostic and
uses feature importances to explain the outcome of a given in-
stance. We share their objective of evaluating users’ attitudes
towards a model through local explanations but we further
specify our task as explaining instances where there are large
errors in predictions. Based on preliminary experiments, we
find that LIME is insufficient for our task setting for two rea-
sons:

(i) For regression tasks, LIME’s approximation of the orig-
inal model is not exact. This “added” error can be quite
large given that our target is typically of order 106, and
this convolutes our definition of a large error.

(ii) The features LIME deems most important are similar re-
gardless of whether the prediction results in a large error
or not, which does not provide any specific insight into
why a large error occurs. These experiments are detailed
in Section 4.

In addition to prior work, we add (1) feature bounds that
result in reasonable predictions, and (2) the relationship be-
tween the features and the target as a tool to help users inspect
what goes wrong when the prediction error is large.

Our work can also be viewed as a form of outlier detection.
However, it differs from the standard literature outlined by
Pimentel et al. [2014] with respect to the objective: we are not
necessarily trying to identify outliers in terms of the training
data but rather explain instances in the test set whose errors
are so large that they are considered to be anomalies.

Miller et al. [2017] perform a survey of the papers cited in
the ‘Related Works’ section of the call for the IJCAI 2017 Ex-



plainable AI workshop [IJCAI, 2017] and find that the major-
ity do not base their methods on the available research about
explanations from other disciplines, or evaluate on real users.
In contrast, our method is rooted in the philosophical litera-
ture and our evaluation is based on a user study.

3 Method
The intuition behind our method of generating contrastive ex-
planations is based on identifying the unusual properties of a
particular observation. We make the assumption that large
errors occur due to unusual feature values in the test set that
were not common in the training set in order to make our
explanations simple and more accessible to those outside the
field.

Given an observation that results in a large error, MC-BRP
generates a set of bounds for each feature that would result in
a reasonable prediction as opposed to a large error. We also
include the trend as part of the explanation in order to help
users understand the relationship between each feature and
the target.

We consider our task of identifying and explaining large
errors similar to that of an outlier detection problem. A stan-
dard definition of a statistical outlier is an instance that falls
outside of a threshold based on the interquartile range [Tukey,
1977]. A widely used version of this, called Tukey’s fences,
is defined as follows [Tukey, 1977]:

[Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)],

whereQ1 andQ3 are the first and third quartiles, respectively.
Definition 1. Let x be an observation in the test setX and let
t, t̂ be the actual and predicted target values of x, respectively.
Let ε be the corresponding prediction error for x, and let E
be the set of all errors of X . Then ε is a large error iff

ε > Q3(E) + 1.5(Q3(E)−Q1(E)),

where Q1(E), Q3(E) are the first and third quartiles of the
set of errors, respectively. We denote this threshold as εlarge.
We can viewX in Definition 1 as a disjoint union of two sets:
• R: set of observations resulting in reasonable predic-

tions
• L: set of observations resulting in large errors.

We determine the n most important features based on LIME,
{φ(x)j }nj=1, for all x ∈ X , and call this set Φ(x). It should be
noted that alternative methods can also be used for determin-
ing the most important features for a particular prediction.

Given x ∈ X , for each φ(x)j ∈ Φ(x), we determine two sets
of characteristics through Monte Carlo simulations:

1. [a
φ
(x)
j
, b
φ
(x)
j

]: the bounds for values of φ(x)j such that x ∈
R, x 6∈ L.

2. ρ
φ
(x)
j

: the relationship between φ(x)j and the target we are
trying to predict, t.

We perturb the feature values for l ∈ L using Monte Carlo
simulations in order to determine what feature values are re-
quired to produce a reasonable prediction. The algorithm for

Algorithm 1 Monte Carlo simulation: creates a set of per-
turbed instances resulting in reasonable predictions R′ for
each large error l ∈ L
Input: instance l
Input: set of l’s most important features Φ(l)

Input: ‘black-box’ model f
Input: large error threshold εlarge
Input: number of MC perturbations per feature m

1: R′ = ∅
2: for all φ(l)j in Φ(l) do
3: TF (φ

(l)
j )← Tukey’s fences for φ(l)j . Based on R

4: for i in range (0, m) do
5: φ

′(l)
j ← randomsample(TF (φ

(l)
j ))

6: l′i ← li.replace(φ
(l)
j , φ

′(l)
j )

7: t̂′i ← f(l′i) . New prediction
8: if |t̂′i − ti| < εlarge then
9: R′ ← R′ ∪ l′i

return R′

determining R′, the set of Monte Carlo simulations resulting
in reasonable predictions, is detailed in Algorithm 1. In line
3, given l ∈ L, we determine Tukey’s fences for each feature
in Φ(l) based on the feature values from R. This gives us the
bounds from which we sample for our feature perturbations.

In line 5, we randomly sample from these bounds for each
φ
(l)
j ∈ Φ(l) m-times to generate mn versions of our original

observation, l. We call the i-th perturbed version l′i, where
i ∈ {1, . . . ,mn}.

In lines 7 and 8, we test the original model f on each l′i,
obtain a new prediction, t̂′i, and construct R′, the set of per-
turbations resulting in reasonable predictions.

Once R′ is generated, we compute the mean, standard de-
viation and Pearson coefficient [Swinscow, 1997] of the top
n features of l ∈ L, Φ(l), based on this set.
Definition 2. The trend, ρ

φ
(x)
j

, of each feature is the Pearson

coefficient between each feature φ(x)j and the predictions t̂′i
based on the observations in R′. It is a measure of linear
correlation between two variables [Swinscow, 1997].
The set of bounds for each feature in Φ(x) such that t̂ results
in a reasonable prediction are based on the mean and standard
deviation of each φ(x)j ∈ Φ(x).

Definition 3. The reasonable bounds for values of each fea-
ture φj in Φ(x), [a

φ
(x)
j
, b
φ
(x)
j

], are[
µ(φ

(x)
j )− σ(φ

(x)
j ), µ(φ

(x)
j ) + σ(φ

(x)
j )

]
,

where µ(φ
(x)
j ) and σ(φ

(x)
j ) are the mean and standard devia-

tion of each feature, respectively, based on R′.
We compute the trend and the reasonable bounds for each of
the nmost important features and present them to the user in a
table. Table 1 shows an example of an explanation generated
by MC-BRP.



Input Definition Trend Value Reasonable range
A total contract hrs As input increases, sales increase 9628.00 [4140,6565]
B advertising costs As input increases, sales increase 18160.67 [8290,15322]
C num transactions As input increases, sales increase 97332.00 [51219,75600]
D total headcount As input increases, sales increase 226.00 [95,153]
E floor surface As input increases, sales increase 2013.60 [972,1725]

Table 1: An example of an explanation generated by MC-BRP. Here, each of the input values is outside of the range required for a reasonable
prediction, which explains why this particular prediction results in a large error.

Dataset and model. Our task is predicting monthly sales
of Ahold Delhaize’s stores with 45 features including finan-
cial, workforce and physical store aspects. Since not all of
our industry users have experience with ML, using an in-
ternal dataset with familiar features allows them to leverage
some of their domain expertise. The dataset includes 45,628
observations from 563 stores, collected at four-week inter-
vals spanning from 2010–2015. We split the data by year
(training: 2010–2013, test: 2014–2015) to simulate a pro-
duction environment, and we treat every unique combination
of store, interval and year as an independent observation. Af-
ter preprocessing, we have 21,415 and 12,239 observations in
our training and test sets, respectively. We train the gradient
boosting regressor from scikit-learn with the default settings
and obtain an R2 of 0.96.

We verify our assumption that large errors are a result of
unusual features values by generating MC-BRP explanations
for all instances in our test set using n = 5 features and m
= 10,000 Monte Carlo simulations. In our dataset, we find
that 48% of instances resulting in large errors have feature
values outside the reasonable range for all of the n = 5 most
important features, compared to only 24% of instances result-
ing in reasonable predictions. Although this is not perfect, it
is clear that MC-BRP produces explanations that are at least
somewhat able to distinguish between these two types of in-
stances.

4 Experimental Setup
Current explanation methods mostly serve individuals with
ML expertise [Guidotti et al., 2018], but they should be ex-
tended to cater to users outside of the ML community [Miller,
2019]. Unlike previous work, our method generates con-
trastive explanations by framing the explanation around the
prediction error, and aims to help users understand (1) what
contributed to the large error, and (2) what would be needed
to produce a prediction with an acceptable error. Presenting
explanations in a contrastive manner helps frame the problem
and narrows the user’s focus regarding the possible outcomes
[Hilton, 1990; Lipton, 1990].
Why LIME is insufficient. Hilton [2017] states that expla-
nations are selective – it is not necessary or even useful to
state all the possible causes that contributed to an outcome.
The significant part of an explanation is what distinguishes
it from the alternative outcome. If LIME explanations were
suitable for our problem, then we would expect to see differ-
ent features deemed important for instances resulting in large
errors compared to those resulting in acceptable errors. This
would help the user understand why a particular prediction

resulted in a large error. However, when generating LIME
explanations for our test set using n = 5 features, we do not
see much of a distinction in the most important features be-
tween predictions that result in large errors and those that do
not. For example, advertising costs is one of the top 5 most
important features in 18.8% of instances with large errors and
18.7% of instances with reasonable predictions. These results
are summarized in Table 2.

Large errors Reasonable Predictions
advertising costs 0.188 advertising costs 0.187
total contract hrs 0.175 total contract hrs 0.179
num transactions 0.151 num transactions 0.156
floor surface 0.124 total headcount 0.134
total headcount 0.123 floor surface 0.122
month 0.109 month 0.094
mean tenure 0.046 mean tenure 0.046
earnings index 0.033 earnings index 0.031

Table 2: The top n = 5 features according to LIME for observations
resulting in large errors vs. reasonable predictions.

Furthermore, we originally tried to design our control group
user study using explanations from LIME, but found that test
users from Ahold Delhaize could not make sense of the objec-
tive questions about prediction errors because LIME does not
provide any insight about errors specifically. Given that we
could not even ask questions about errors using LIME expla-
nations to users without confusing them, it is clear that LIME
is inappropriate for our task.

User study design. We test our method on a real dataset
with real users, both from Ahold Delhaize. We include a short
tutorial about predictive modeling along with some questions
to check users’ understanding as a preliminary component of
the study. This is because our users are a diverse set of indi-
viduals with a wide range of capabilities, including data sci-
entists, human resource strategists, and senior members of the
executive team. We also include participants from the Univer-
sity of Amsterdam to simulate users who could one day work
in this environment. In total we have 42 participants in the
treatment group and 31 participants in the control group.

All users are first provided with a visual description of the
model: a simple scatter plot comparing the predicted and ac-
tual sales (as shown in Figure 1). We also show a pie chart
depicting the proportion of predictions that result in large er-
rors to give users a sense of how frequently these mistakes
occur. In our case, this is 4%. Since our users are diverse, we
want to (1) make our description of the model as accessible as



Figure 1: The visual description of the model shown to the users: a
graph comparing the predicted sales and actual sales based on orig-
inal model.

possible, and (2) allow them to form their own opinions about
whether or not this is a good model. Participants in the treat-
ment group are shown MC-BRP explanations, while those in
the control group are not given any explanation.

The study contains two components, objective and subjec-
tive, corresponding to RQ1 and RQ2 from Section 1, respec-
tively. The objective component is meant to quantitatively
evaluate whether or not users understand explanations gener-
ated by MC-BRP, while the subjective component assesses
the effect of seeing the explanation on users’ attitudes to-
wards, and perceptions of, the model.

We base the objective component on human-grounded met-
rics, a framework proposed by [Doshi-Velez and Kim, 2018],
where the tasks conducted by users are simplified versions
of the original task. We modify the original sales prediction
task into a binary classification one: we ask users to deter-
mine whether or not a prediction will result in a large error,
as it seems unreasonable to expect humans to correctly pre-
dict retail sales values of order 106.

To answer RQ1, we ask users in the treatment group to
perform two types of simulations, both suggested by [Doshi-
Velez and Kim, 2018] and summarized in Table 3. The first
is forward simulation, where we provide a participant with
(1) the input features, (2) the explanation, and ask them to
simulate the output. Here, the output is whether or not this
prediction will result in a large error. The second is counter-
factual simulation, where we provide participants with (1) the
input features, (2) the explanation, and (3) the output, and ask
them what they would have needed to change in the input in
order to change the output. In other words, we asked par-
ticipants to determine how the input features can be changed
(according to the trend) in order to produce a reasonable pre-
diction rather than one that results in large error. These objec-
tive questions are designed to test whether or not a participant
understands the explanations enough to predict or manipulate

the model’s output. We ask every participant in the treatment
group to perform two forward simulations and one counter-
factual simulation.

For the control group, we found that we could not ask the
objective questions in the same way we did for the treatment
group. This is because the objective component involves sim-
ulating the model based on the explanations (see Table 3),
which is not possible if the explanations are not provided.
In fact, we initially left the objective questions in the con-
trol group study, but preliminary testing on some users from
Ahold Delhaize showed that this was confusing and unclear,
similar to when we tried using LIME explanations. We were
concerned this confusion would skew users’ perceptions of
the model and therefore convolute the results of RQ2. In-
stead, we show participants in the control group (1) the input
features and (2) the output – whether or not the example re-
sulted in a large error, and ask them if they have enough in-
formation to determine why the example does (or does not)
result in a large error. This serves as a dummy question to en-
gage users with the task without confusing them. We cannot
ask users in the control group to simulate the model since they
do not see the explanations, but we want to mimic the condi-
tions of the treatment group as closely as possible. Therefore,
RQ1, is solely evaluated on users from the treatment group.

Type Provide user with User’s task
Forward (1) Input values Simulate output

(2) Explanation

Counterfactual (1) Input values Manipulate
input to change
output

(2) Explanation
(3) Output

Table 3: Summary of simulations performed in the user study.

To answer RQ2, we contrast results from the treatment and
control groups. We ask both groups of users the same four
subjective questions twice, once at the beginning of the study
and once at the end. We ask the questions at the beginning
of the study to evaluate the distribution of preliminary atti-
tudes towards the model, based solely on the visual descrip-
tion. We ask the questions at the end of the study to evaluate
the effectiveness of MC-BRP explanations, by comparing the
results from the treatment and control groups. The questions
are based on the user study by ter Hoeve et al. [2017] and are
shown in Figure 2 (top).

5 Experimental Results
5.1 Objective Questions
We aim to give insight into the problem of algorithmic aver-
sion [Dietvorst et al., 2015] by explaining mistakes in a
model’s predictions. First, we evaluate users’ comprehension
of MC-BRP explanations through objective questions based
on those in the treatment group. The results are summarized
in Table 4. We see that explanations generated by MC-BRP
are both (i) interpretable and (ii) actionable, with an average
accuracy of 81.7%. This answers RQ1. When asked to per-
form forward simulations, the proportion of correct answers



Human accuracy
Forward simulation 1 85.7%
Forward simulation 2 83.3%
Counterfactual simulation 76.2%

Average 81.7%
Table 4: Results from the objective questions in the user study.

was 84.5%, averaged over the two questions. This indicates
that the majority of users were able to interpret the expla-
nations in order to simulate the model’s output (RQ1: inter-
pretable). When asked to perform counterfactual simulations,
the proportion of correct answers was slightly lower at 76.2%,
but indicates that the majority of users were able to determine
how to manipulate the model’s input in order to change the
output (RQ1: actionable).

5.2 Subjective Questions
To ensure our populations had similar initial attitudes towards
the model, we compared their answers on the subjective ques-
tions after only showing a visual description of the model (see
Figure 1) and found no statistically significant difference (χ2

test, α = 0.05). This allows us to postulate that any dif-
ference discovered between the two groups is a result of the
treatment they were given (explanation or no explanation).
Figure 2 shows the subjective questions we asked along with
the proportion of users that agree (or strongly agree) with
these statements from both groups. Users in the treatment
group agree with SQ1 significantly more than users in the
control group (χ2 = 16.88, α = 0.001). However, we find
no statistically significant difference between the two groups
for SQ2–SQ4 (χ2 test, α = 0.05). That is, MC-BRP explana-
tions help users understand why the model makes large errors
in predictions, but do not have an impact on users’ trust or
confidence in the model, or on their willingness to support its
deployment, unlike in [Dietvorst et al., 2015].

6 Conclusion
We have proposed a method, MC-BRP, which provides users
with contrastive explanations about predictions resulting in
large errors based on (1) the set of bounds for which rea-
sonable predictions would be expected for each of the most
important features, and (2) the trend between each of these
features and the target.

Given a large error, MC-BRP creates a set of perturbed ver-
sions of the original instance that result in acceptable errors.
This is done by performing Monte Carlo simulations on each
of the features deemed most important for the original pre-
diction. For each of these features, we determine the bounds
needed for a reasonable prediction based on the mean and
standard deviation of this new set of reasonable predictions.
We also determine the relationship between each feature and
the target through the Pearson correlation, and present these
to the user as the explanation.

We evaluate MC-BRP both objectively (RQ1) and subjec-
tively (RQ2) by conducting a user study with real users from
Ahold Delhaize and the University of Amsterdam. We an-
swer RQ1 by conducting two types of simulations to quantify

Number Question
SQ1 I understand why the model makes large er-

rors in predictions.
SQ2 I would support using this model as a fore-

casting tool.
SQ3 I trust this model.
SQ4 In my opinion this model produces mostly

reasonable outputs.

Figure 2: Results from within-subject study along with subjective
question mapping.

how (i) interpretable, and (ii) actionable our explanations are.
Through forward simulations, we show that users are able in-
terpret MC-BRP explanations by simulating the model’s out-
put with an average accuracy of 84.5%. Through counter-
factual simulations, we show that MC-BRP explanations are
actionable with an accuracy of 76.2%.

We answer RQ2 by conducting a between-subject exper-
iment with subjective questions. The treatment group sees
MC-BRP explanations, while the control group does not see
any explanation. We find that explanations generated by
MC-BRP help users understand why models make large er-
rors in predictions (SQ1), but do not have a significant impact
on support in deploying the model (SQ2), trust in the model
(SQ3), or perceptions of the model’s performance (SQ4).

For future work, we intend to explore allowing the model
to abstain from prediction when a particular instance has
unusual feature values and determine the impact this has
on users’ trust, deployment support and perception of the
model’s performance. We also plan to compile a more com-
prehensive set of subjective questions by using multiple ques-
tions to evaluate users’ impressions on the same topic.
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