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Although the first descriptions of age-related mental deficiency date from the 7th century 

B.C., dementia remained largely uninvestigated and was seen as an unavoidable part of 

aging. Only with the introduction of the systematic classification and a scientific approach 

to clinical observations of mental disorders in the 19th century, different types of dementias 

were identified and this gained more interested in studying these (Berchtold & Cotman, 

1998). In 1906, Alois Alzheimer described an unusual case of psychiatric illness and 

specific morphological changes in the brain of the 51-year-old Auguste Deter (Strassnig 

& Ganguli, 2005). The description of this clinical and neuropathological case became 

known as Alzheimer’s disease, named after him by Emil Kraepelin. At about the same time 

the neuropathological hallmarks of AD were also described by Oskar Fischer (Berchtold & 

Cotman, 1998).

Worldwide there are currently an estimated 50 million people with dementia, of which 

Alzheimer’s disease (AD) - affecting about 30 million people - is the most prevalent form 

(Patterson, 2018). In the Netherlands around 270.000 people suffer from dementia, of 

which 70% have AD (Stichting Alzheimer Nederland, 2018). Other forms of dementia 

include mixed dementia, Lewy body dementia, frontotemporal degeneration, and vascular 

dementia (Patterson, 2018). The impact of the disease on a person’s daily life is disastrous. 

Over the course of several years, patients lose their independence, due to memory loss 

and decline in cognitive abilities. They will depend more and more on their caregivers. In 

the final stage, patients are bed-bound and AD is ultimately fatal (Alzheimer’s Association, 

2018). The prevalence of AD increases from the age of 65 onwards, and as a consequence of 

an increasing life expectancy (Kontis et al., 2017), the world-wide social-economic burden 

of AD will only further rise in the nearby future. The estimated world-wide cost of dementia 

is a trillion US dollars a year. This includes the estimated costs of caregivers. The number 

of people with dementia will only further increase, and is estimated to affect around 150 

million people in 2050 (Patterson, 2018). This increasing social-economic impact indicates 

the importance of research into AD pathogenesis, which is essential to develop effective 

AD therapies. 

AD is a neurodegenerative disorder that is clinically characterized by progressive memory 

loss and impairment in cognitive functions (Querfurth & LaFerla, 2010). Hallmarks of AD 

pathology are the aggregation of extracellular amyloid-beta (Aβ) in plaques, intraneuronal 

hyperphosphorylated tau tangles, reactive astrocytes and activated microglia (i.e. gliosis), 

and synaptic and neuronal loss (Davies, Mann, Sumpter, & Yates, 1987; Itagaki & Mcgeer, 

P.L. Akiyama, 1989; Selkoe, 1991; Kato et al., 1998). In AD, Aβ peptides form long insoluble 

amyloid fibrils that accumulate in plaques (Haass & Selkoe, 2007). Aβ peptides are produced 

by proteolytic cleavage of amyloid precursor protein (APP) by β- and γ-secretases (Fig.1a) 

(Haass & Selkoe, 2007; Qiu, Liu, Chen, Zhao, & Li, 2015). The early biochemical findings related 

to amyloid indicated the APP gene as a site for causative AD mutations (Haass & Selkoe, 

2007). Indeed, up to now 44 different mutations in the APP gene have been discovered 
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in families with early-onset AD (Chartier-Harlin et al., 1991; Goate et al., 1991; Mullan et 

al., 1992) (https://www.alzforum.org/mutations). Even more, i.e. 346 mutations, have been 

found in the presenilin1 (PSEN1) and PSEN2 genes, which both are subunits of γ-secretase, 

the enzyme that cleaves APP (https://www.alzforum.org/mutations). Together these findings 

underlie the amyloid cascade hypothesis, stating that the accumulation and aggregation of 

Aβ in plaques are the first events in AD pathogenesis, eventually resulting in microglia and 

astrocyte activation, formation of neurofibrillary tangles, progressive neuronal loss, synaptic 

dysfunction, and eventually in cognitive deficits (Hardy & Allsop, 1991; Selkoe, 1991; Hardy 

& Higgins, 1992; Hardy & Selkoe, 2002). The refined version of the hypothesis includes Aβ 

oligomers, seen as the most toxic form of Aβ, as an important factor in AD pathogenesis 

(Selkoe & Hardy, 2016). The amyloid hypothesis and the discovery of causal mutations in 

the APP, PSEN1, and PSEN2 genes contributed to the generation of various transgenic AD 

mouse models (Elder, Gama Sosa, & De Gasperi, 2010). The APPswePS1dE9 mice, a widely 

used transgenic mouse model of AD, is a good model to study the development of both 

Aβ pathogenesis and gliosis. In these APPswePS1dE9 mice, reactive astrocytes and activate 

microglia are found surrounding Aβ plaques (Fig.1b-c) (Kamphuis et al., 2014; Orre et al., 

2014). However, neurofibrillary tangles of hyperphosphorylated tau are not seen in AD mice, 

unless animals express human (mutant) tau (Duyckaerts, Potier, & Delatour, 2008; Moreno-

Gonzalez, Estrada, Sanchez-Mejias, & Soto, 2013). In the hippocampus, the first synaptic loss 

is indicated in this model at the age of 4 months (Hong et al., 2016). 

Astrocytes are the most abundant glial cells in the central nervous system (CNS) (Chung et 

al., 2013). They are involved in many different functions, including neurotransmitter uptake, 

extracellular potassium buffering, and maintaining blood-brain barrier function (Abbott, 

Rönnbäck, & Hansson, 2006; Seifert, Schilling, & Steinhäuser, 2006; Halassa, Fellin, & Haydon, 

2007; Sofroniew & Vinters, 2010; Khakh & Sofroniew, 2015; Verkhratsky & Nedergaard, 

2018). Astrocytes support neuronal function and can modulate synaptic communication 

and plasticity (Halassa, Fellin, & Haydon, 2007; Santello, Toni, & Volterra, 2019). Under 

pathological conditions, astrocytes adopt a reactive state which is characterized by an 

upregulation of the cytoskeletal intermediate filament proteins glial fibrillary acid protein 

(GFAP), vimentin, and nestin (Hol & Pekny, 2015; Pekny et al., 2016), and various functional 

changes. These changes include, but are not limited to, an increased intracellular calcium 

level, increased frequency of spontaneous calcium transients (Kuchibhotla, Lattarulo, 

Hyman, & Bacskai, 2009; Delekate et al., 2014), increased gliotransmitter release (Jo et al., 

2014; Yi et al., 2016), and transcriptomic changes (Wirz et al., 2013; Orre et al., 2014). The 

astroglial transcriptomic profile of aged APPswePS1dE9 mice shows a reduced expression of 

neuronal support genes and genes involved in neuronal communication, and an increased 

expression of genes involved in the immune response (Wirz et al., 2013; Orre et al., 2014). 

Molecular and functional changes of reactive astrocytes in AD are reviewed in detail by 

(Osborn, Kamphuis, Wadman, & Hol, 2016). 
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Microglia are the resident macrophages of the CNS (Kettenmann, Hanisch, Noda, & 

Verkhratsky, 2011; Ginhoux, Lim, Hoeffel, Low, & Huber, 2013), where they dynamically survey 

their environment (Nimmerjahn, Kirchhoff, & Helmchen, 2005; Madry et al., 2018). During 

development, they are involved in the modulation of neuronal circuits by pruning synapses 

(Paolicelli et al., 2011; Schafer et al., 2012; Weinhard et al., 2018). Animal studies show that 

microglia also contribute to synapse removal during AD pathogenesis (Hong et al., 2016; 

Luchena, Zuazo-Ibarra, Alberdi, Matute, & Capetillo-Zarate, 2018; Rajendran & Paolicelli, 

2018). Other functional changes in activated microglia are changes in phagocytosis of 

amyloid (Wyss-Coray et al., 2001; Fu et al., 2012), seeding of Aβ (Venegas et al., 2017), and 

the release of inflammatory factors (Sarlus & Heneka, 2017). 

Transcriptomic analysis identified subpopulations of microglia that are associated with 

AD pathology in AD mouse models, this so-called disease-associated microglia (DAM) 

signature revealed a reduced expression of homeostatic microglial genes, and upregulation 

of several genes associated with lipid metabolism and phagocytosis (Keren-Shaul et 

al., 2017; Krasemann et al., 2017). Human genetic studies identified several genetic loci 

associated with an increased AD risk. Some of the common (ApoE) or rare (Trem2, Cd33) 

genetic variants, code for proteins that are predominantly expressed in microglia (Lambert 

et al., 2013; Hemonnot, Hua, Ulmann, & Hirbec, 2019). Also, recent RNAseq studies showed 

a distinctive phenotype of microglia in AD pathology (Mathys et al., 2019; Srinivasan et al., 

2019). These human genetic studies indicate a key role for microglia in AD pathogenesis. 

Thesis outline

In this thesis we investigate the potential of reactive astrocytes as a treatment target in 

AD, the impact of aging and AD pathology on neuronal communication, the interaction of 

microglia with Aβ plaques, and Aβ1-42 oligomer-induced transcriptomic changes in a human 

model for microglia. While we focus in the first part (Chapter 1-3) of this thesis on the role of 

astrocytes and neuronal function in the AD mouse model, in the second part (Chapter 4-5) 

we use human brain sections, isolated primary microglia, and a microglia-like cell model to 

investigate microglia in AD. 

In chapter 1 we review articles that used interventions that modulate reactive astrocytes 

in the APPswePS1dE9 mice, an AD mouse model well suited to study amyloidosis and 

the development of reactive astrocytes and its consequences. We first give an overview 

of the model, i.e. how it is generated, the influence of the genetic background on AD 

pathology, and which cells express the transgenes. We then systematically review studies in 

which reactive astrocytes were either directly or indirectly targeted in the APPswePS1dE9 

mice. We also include the effect of the interventions on Aβ burden, microglia activation, 

synaptic density, and cognitive function. Overall, studies reducing gliosis by astrocyte-

specific interventions showed beneficial effects on cognition. We conclude that astrocytes
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Figure 1. Overview of the thesis. 

a. The amyloidogenic cleavage of APP 
by β- and γ-secretases results in Aβ 
peptides of different lengths. These 
accumulate and form extracellular 
plaques, surrounded by reactive 
astrocytes and activated microglia. 
b. Reactive astrocytes are classically 
characterized by their increased 
expression of GFAP. c. Activated 
microglia increase the expression 
of complement cascade factors and 
cytokines. d. The CA3-CA1 synapse 
in the hippocampus is a well-known 
synapse to study synaptic plasticity. Aβ: 
amyloid-beta; APP: amyloid precursor 
protein; CA: Cornu Ammonis; GFAP: 
glial fibrillary acidic protein. Scientific 
illustration toolkits from Motifolio 
were used to generate parts of this 
figure. Basis of synapses  (Rajendral & 
Paolicelli, 2018).

contribute to a wide range of processes in AD pathogenesis and deserve more attention as 

a treatment target for cognitive decline.

In chapter 2 we set out to investigate the use of lipopolysaccharide (LPS) application to 

acute hippocampal slices of wild-type mice, as an in vitro model for reactive gliosis. This was 

evaluated by qPCR, using markers for reactive astrocytes and cytokines. In a second series 

of experiments, we investigate the functional consequences of a glial metabolic inhibitor 

on neuronal excitability and spike-time dependent plasticity (STDP). This pharmacological 

tool could be a first tool to investigate glia-neuronal communication.

In chapter 3, we determine whether cellular excitability and synaptic plasticity in 

hippocampal pyramidal neurons are affected during early or later stages of AD pathology. 

We investigate physiological properties and synaptic plasticity in the CA1 region of the 

hippocampus of 1-, 4-, 6-, and 9-month-old APPswePS1dE9 mice and their wild-type 

littermates.

In chapter 4, we investigate transcriptomic changes induced by Aβ1-42 oligomers and LPS in 

human monocyte-derived microglia-like (MDMi) cells. First, we describe the generation of 

the MDMi cell model and their response to the strong inflammatory stimulus LPS.
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Next, we use Aβ1-42 oligomers to investigate transcriptomic changes, and compare known 

microglial gene profiles from AD patients and mice to changes in gene expression found in 

our stimulated MDMi cell model. 

In chapter 5, we investigate whether the microglia-plaque interaction differs between 

AD patients and non-demented controls with Aβ plaques. We categorize the Aβ plaques 

and plaque-associated microglia number, morphology, and use a lysosomal marker as an 

indication for microglia phagocytic activity. We also determine the levels of the pre- and 

postsynaptic markers, as a proxy for synapse elimination.

Chapter 6 provides a summary and general discussion of the results presented in this thesis.
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