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Abstract. The use of metadata to characterise scientific datasets, making data
easier to discover and use directly by researchers and via various online data
services, is one of the primary concerns of research infrastructures (RIs); also,
of concern is the use of metadata to describe equipment, facilities, services and
other research assets.Metadatamodels and terminology differ greatly between dif-
ferent communities and infrastructures however, and so make synthesising com-
plex interdisciplinary scientific workflows involving assets frommultiple RIs very
challenging.

‘Semantic linking’ addresses the need to enhance the interoperability of RI
services and data by bridgingmetadata schemes, ontologies and vocabularies used
by different research communities,whether by standardising the terminologies and
schemes used by those communities, or by dynamically transforming metadata
from one standard to another when retrieved by services on behalf of researchers
executing their scientific workflows.

Multiple techniques for and modes of semantic linking have been investigated
in the context of the ENVRI community cluster of environmental and Earth sci-
ence RIs, including top-downmodelling of entities and activities within a standard
reference model, enrichment of existing metadata records with shared terminol-
ogy, full transformation of metadata records from one standard to another, and
the generation of additional links to existing online data. We review some of
these activities and their application to the promotion of semantic interoperability
between RIs, and discuss other possibilities and recent developments that may
also be useful for enhancing interdisciplinary data science.

Keywords: Metadata · Semantics · Linking

1 Introduction

The adoption and use of metadata for characterising and cataloguing scientific data and
other research assets is one of the primary concerns of modern scientific research infras-
tructures (RIs). The production and maintenance of good metadata has bearing on the
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entire research lifecycle, from acquisition and curation through to publishing, processing
and use. The adoption of standard protocols,metadata schemes and controlled vocabular-
ies for use in scientific data and their associatedmetadata by a given research community
is supposed to expedite data sharing and the development of interoperable data services
within a scientific discipline. The increasing need for interdisciplinary research makes
such standardisation more challenging however, as the range and diversity of scientific
products that should be normalised grows ever greater. Even mature standards do not
always meet all community requirements, or else have ambiguous semantics that lead to
variation in how they are applied. In addition, many communities have already adopted
and adapted to their own preferred standards independently, and have their own estab-
lished best practices and legacy systems. It therefore seems unavoidable that there will
always be variation in metadata schemes, vocabularies and protocols, and thus a need
to be able to translate information between different semantic contexts, as represented
by specific data models and terminology, whether on request or performed dynamically
out of sight of researchers. Regardless of how it is carried out, we refer to this kind of
translation as semantic linking; techniques for bridging the gap between two or more
semantic domains to permit cross-domain data science.

Semantic linking is of great importance in the development of an interdisciplinary
‘data science commons’ for researchers—a common environment for getting access to
and contributing scientific data. The ideal scenario is that researchers can retrieve data,
tools, models and other services from different RIs based on scientific requirements
without having to knowwhich specific infrastructure serves which specific data, and can
use them in complex workflows without having to manually rework data inputs at each
step [41]. Specifically, the use of semantic linking is necessary in the development of joint
catalogues or indexes of research assets (needed for cross-RI search and discovery), to
export data andmetadata into different operational contexts, and to glue together services
with different input and output formats.

Semantic linking was thus identified as one of the three main cross-cutting activities
of the ‘Data for Science’ theme of the ENVRIplus project1, alongside the development
and exploitation of the ENVRI Reference Model (ENVRI RM) [1, 2] and the specifi-
cation of common abstract architecture for the construction of interoperable services.
One of the results of this activity was the development of Open Information Linking for
Environmental Research Infrastructures (OIL-E) [3] as a kind of architectural hub ontol-
ogy for RI descriptions. Using OIL-E as our baseline semantic model, we surveyed four
different kinds of semantic linking during the project; in this chapter we review these
four kinds in turn and consider how they reflect on the challenge of achieving semantic
interoperability in data science research in general and within the environmental and
earth sciences in particular.

In the next section (Sect. 2), we examinemore closely the background andmotivation
for the investigation of semantics in environmental and Earth science RIs. We describe
the methodology applied in ENVRIplus for surveying and rationalising the semantic
landscape of RIs involved in the project (Sect. 3), before then moving on to discussing
the four semantic linking scenarios we proceeded to investigate (Sect. 4). We discuss
some of the technological developments that might have bearing on RI semantics and

1 https://www.envriplus.eu/.

https://www.envriplus.eu/
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metadata and on semantic linking activities in general (Sect. 4) before finally drawing
our conclusions (Sect. 6).

2 Background

Modern day environmental research depends on the collection and analysis of large vol-
umes of data gathered via sensors, field observations, controlled experiments, simulation
and modelling. In this context, the role of research infrastructures (RIs) is to support
researchers with datasets, platforms and tools that allow them to engage effectively
with the available data, but no single research infrastructure can hope to encompass
fully the whole research ecosystem [4]. Consequently, today there is a host of differ-
ent research infrastructures, each with their own intersecting speciality areas, but more
broadly sharing many common scientific, technical, political and governance-oriented
interests. Meanwhile, researchers are being called upon to address societal challenges
that are inextricably tied to the stability of our native ecosystems. These challenges
are intrinsically interdisciplinary in nature, requiring collaboration across traditional
disciplinary boundaries. The challenge, therefore, is to help researchers to freely and
effectively interact with the full range of research assets potentially available to them
across many different research infrastructures, with the intention that they are allowing
them to collaborate and conduct their research more effectively than ever was possible
before. This is the challenge that initiatives such as the Research Data Alliance2 and
proposals for FAIR (Findable, Accessibility, Interoperable and Reusable) data [5] seek
to address, and it is one that fundamentally relies on the proper elicitation and application
of semantics in research data in general.

Data semantics are provided by the various schemas produced for datasets and meta-
data and are embedded in the choice of vocabulary used to describe different data ele-
ments. For metadata in particular, having well-defined and rigorous descriptions in a
machine-actionable format confers a number of advantages to both the provider and user
of the data or other resources being described. Publishing metadata about the resources
(not only data, but also services, tools and facilities) that RIs offer online (indicating
such information as the type of resource and their provenance) allows them to advertise
their offerings and allows researchers to browse and discover resources (including data,
models, tools, services and other kinds of resources both digital and physical) that could
be useful to their research. It also permits comparison and the integration of resources
into larger workflows or toolchains. More fundamentally however, it also ensures that
the resource (and this is especially vital for scientific datasets) is and continues to be
correctly understood, and not subject to confusion regarding the exact thing being mea-
sured or observed, the units used, or the time and location when/where a measurement
or observation was made. Semantic rigour is thus vital for well-grounded, reproducible
and accountable research.

In this space there are many metadata standards, old and new; some of which are
de facto standards long adopted by particular communities, while others have achieved
de jure status as recommendations by certain community institutions such as the Inter-
national Organization for Standardization (ISO) and the Open Geospatial Consortium

2 https://www.rd-alliance.org/.

https://www.rd-alliance.org/
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(OGC). For example, in the geospatial area, which concerns many environmental and
Earth science RIs, there exist established standards such as ISOs 19115 [6] (for geospa-
tial data) and 19139 [7] (the accompanying XML profile), which form the basis for the
INSPIRE3 recommendation for spatial metadata in Europe. In practice, however, the
implementation of these and other standards can sometimes be partial or idiosyncratic
across communities, with resulting variations in how metadata elements are realised
or terms applied. There are also standard protocols for accessing catalogues of meta-
data records used to describe data collections via the Web; standards such as DCAT [8]
describe how data catalogues should be structured, and protocols such as CSW [9] and
OAI-PMH [10] describe how they ought to be accessed. Many RIs use these established
protocols, but some RIs also use Semantic Web [11] technologies such as OWL [12]
and SKOS [13] to describe their resources and use SPARQL [14] to access them. These
RIs adapt ontologies such as OBOE [15] (for observations) and vocabularies such as
EnvThes [16] (for ecology) to meet their own community’s needs while building upon
the semantic harmonisation work of other neighbouring communities. Continuing har-
monisation of vocabulary and metadata between research infrastructures thus remains
an on-going concern; for example, the European Open Science Cloud initiative (EOSC)
[17] considers it a major priority to integrate existing terminological resources with the
services provided by European RIs to realise its goals for better cross-disciplinary open
science, and a similar urgency can be seen in other open science initiatives around the
world.

The integration of resources requires alignment of data formats and content. One
of the roles of an RI within the context of its target community is to facilitate stan-
dardisation, and as such RIs are very useful vehicles for aligning the use of semantics
within a community. Nevertheless, such standardisation activity becomes very difficult
once boundaries between communities (even within the same scientific discipline) are
crossed. This is because intrinsically, the requirements and usage of data products can
be very different between communities. This means that the metadata models used, and
indeed how the very datasets being described are even structured for use by researchers,
likewise differ considerably between communities. A simple example would be how
some communities gather all data related to a given location into a single dataset that
might then partitioned by time period, while other communitiesmay gather all of a single
kind of observation into one dataset with the locality of each observation reduced to a
single field within each row of data. Thus, it remains necessary, even in the presence
of initiatives such as RDA (which provides a forum for discussion of best practices
for addressing various data science challenges) and initiatives such as Copernicus4 and
GEOSS5 (which act as aggregators for specific classes of data and thus promote cer-
tain standards for such data), to consider how to transform metadata between models in
order to allow different data services and tools to work together as part of a cohesive
operational workflow.

The semantic linking work of ENVRIplus was intended to guide the harmonisation
of semantics across environmental science research infrastructures by providing both

3 https://inspire.ec.europa.eu/.
4 https://www.copernicus.eu/.
5 https://www.earthobservations.org/geoss.php.

https://inspire.ec.europa.eu/
https://www.copernicus.eu/
https://www.earthobservations.org/geoss.php
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contextualisation and a standard ‘connective’ upper ontology for the different kinds
of entities and activities commonly found in those infrastructures. Notably, there is
no catch-all solution to the problem of mapping between different metadata schemes
used by RIs, for which there has been considerable effort already expended and for
which considerable effort will be expended in future. Instead, there exist many tools
and frameworks for handling such mappings and a great body of research. Our concern
then is rather with providing some baseline support for analysing the diversity of such
schemes and mappings where they exist, and so help research infrastructure developers
to focus their efforts on specific problem areas.

3 Semantic Linking in ENVRIplus

To even approach the topic of semantic linking, there is a need to understand the semantic
landscape of research infrastructure at large. By ‘landscape’, we essentially mean infor-
mation about not just whichmetadata schemes, ontologies and vocabularies are in use by
different RIs, but also how they are used and for what purpose.Without an understanding
of the landscape of the use of semantic instruments and standards, it is impossible to
identify where to target semantic linking activities—to determine where it is needed,
and which models/terminologies need alignment in order to facilitate some otherwise
hypothetical workflow. The semantic linking activity in the ENVRI environmental and
Earth science RI cluster6 was carried out in several stages:

1. We collected information from environmental and Earth science RIs and communi-
ties, regarding their requirements, adopted technologies and the current state of the
art; much of the results of this process appear in Chapter 3 of this book.

2. We used the requirements gathered in the previous step to refine the ENVRI RM
(described in detail in Chapter 4), which importantly (for the purpose of seman-
tics and shared terminology) provided a common vocabulary for describing various
kinds of component and activity deployed in RIs, and helped us to identify the most
important interactions typically facilitated (or needed) by environmental and Earth
science RIs.

3. Concurrently, we also began gathering information about the community standards,
protocols, and semantic/terminological resources used by RIs and in various aspects
of environmental research, data and process specification. This was performed
mainly via direct interactions with technical experts involved in RI development.

4. We developed Open Information Linking for Environmental Research Infrastruc-
tures (OIL-E, described more completely in Chapter 6) to capture the stereotypical
elements of environmental and Earth science RIs as identified by ENVRI RM, and
define the necessary relationships between those stereotypes across different views
of science, information, computation, engineering and technology. One of the roles
of OIL-E, aside from allowing for various RI descriptions based on ENVRI RM
to be transformed into a format that can be uploaded into an ENVRI Knowledge
Base [39] and programmatically queried, was to act as a connective ‘hub’ ontology

6 https://www.envri.eu/.

https://www.envri.eu/
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for RI architecture. This ontology allows specifications of specific concepts to be
extended with other, more specific ontologies and taxonomies used by the scientific
community.

5. Using the OIL-E ontology to structure the data, we began mapping the semantic
landscape of environment science by encoding information about the different RIs,
their component parts and their constituent processes, aswell as associating standards
and software to different entities where appropriate.

6. This has resulted in the creation of a knowledge base (also described in Chapter 6) to
contain all the formally-encoded data, and to provide a service with which architects
and developers can investigate and contribute descriptions of RIs.

7. We further investigated specific approaches for linking data encoded using OIL-E
with other (meta)data sources of interest to researchers or to the RIs that support
their activities. The next part of this chapter goes into these investigations in further
detail.

8. Within the framework of successor projects such as ENVRI-FAIR7, we can now
focus on capturing mapping information for bridging between OIL-E and other RI
knowledge representations, and on tools for semantic modelling and discovery using
OIL-E and the ENVRI Knowledge Base.

Figure 1 provides a pictorial overview of the relationship between the various parts of the
semantic landscape mapping in ENVRI, which was also used in various dissemination
materials produced by the project.

4 Semantic Linking Scenarios

‘Semantic linking’ in the context of the cluster of environmental science research infras-
tructures is fundamentally concerned with how to contextualise (meta)data regarding
research datasets, tools, methods and infrastructure such that they can be interpreted in
accordance with a particular model of reality, are meaningfully comparable with similar
metadata, and can be understood as part of a wider semantic landscape. This is so that
(for example) we can determine the role of certain data in specific processes within a
particular infrastructure. We therefore need to consider how to ‘elevate’ existing data
semantically (by providing additional context needed to do more with the data), and how
to transform those data where necessary (so that we can use them elsewhere). We need
to consider what new data must be created to provide additional context to the entities
we wish to model, as well as to describe the relationships between entities.

There are four semantic linking scenarios that need to be considered in the context of
environmental science and environmental science research infrastructure, that we chose
in the context of ENVRIplus to explore in more depth:

1. The creation of a new model for an existing artefact or process based on a formal
ontology. This could be in addition to existing semantic metadata for that artefact or
process, providing additional contextual information that could allow for multiple
means of interaction with a given research asset, for example by creating multiple

7 https://envri.eu/envri-fair/.

https://envri.eu/envri-fair/
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Fig. 1. The vision of semantic survey and linking over the course of the ENVRI projects.

metadata records in different schemes for the same data product for retrieval and use
by different services with different protocols.

2. The enrichment of an existing model using controlled vocabulary extracted from an
ontology or other formal terminological resource. In this case, the additional vocab-
ulary provides additional metadata by which services (e.g. for search and discovery)
can differentiate and classify research assets already described using a set metadata
scheme and protocol.

3. The translation of an existing model from one semantic context to another. Rather
than augmenting or linking to existing semantic metadata, this is the scenario where
entirely new metadata is generated from existing metadata, generally for inclusion
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in another metadata catalogue or repository which requires a different scheme for
describing research assets.

4. The linking of two models for the same entity (or conceptually overlapping entities)
by generating additional ‘bridging’ metadata between existing metadata records.
This is the linked open data approach, whereby information existing independently
in multiple contexts about the same or similar entities is somehow made connected
such that an external query service can navigate between contexts and aggregate the
results from each.

All of these four scenarios have overlaps in their objective and concerns to the extent that
it is not always clear to which scenario a given semantic linking operation belongs (and
in many cases an operation could justifiably belong to more than one), but nonetheless
it is useful to consider how semantic technologies might be used to address each case in
turn.

4.1 Semantic Contextualization

The most basic form of ‘semantic linking’ is the (re-)contextualisation of data already
somehow modelled using some ontology or metadata scheme. Typically, this involves
describing and classifying entities using a new ontology or other metadata scheme,
which provides newmetadata that can be used to discover and retrieve information about
those entities (or the entities themselves if they exist as data). Doing this for multiple
ontologies/schemes binds the data in question to two ormore different semantic domains,
and so allows the data to be examined in either context; this ismost appropriate in the case
of multiple systems that might want to query the data, but where each system supports a
different schema.Abenefit of this kind of ‘multiple classification’ is that it creates sample
data for constructing more formal semantic mappings between two different semantic
models should it later be determined that all data in one model needs to be transformed
into the other. The main benefit, however, and the distinguishing factor from the scenario
where the second model is simply generated from the first model automatically, is that
the second model may capture information not representable by the first model, thus
increasing the amount of information about a data entity available. For example, one
model might not capture procedural aspects of how a dataset is created, while another
does; thus, it is not possible to simply generate the metadata required by the latter model
from the former model. It may be useful however to simultaneously describe the dataset
using both models for the additional flexibility such multi-modelling grants, such as
support for two different querying systems that each expect a specific model to be used.

In the context of the ENVRIplus project, different kinds of entities with semantic
connotations (datasets, metadata schemes, vocabularies, etc.) were described using the
OIL-E ontology and so classified in terms of ENVRI RM, where possible with direct
links to their respective access points (e.g. URLs for querying and retrieving metadata)
or specifications (e.g. landing pages for ontologies) as appropriate. Figure 2 provides an
example of such contextualisation in data acquisition, specifically the collection of data
regarding phytoplankton.

In Fig. 2, concepts from four of the five viewpoints defined inOIL-E are used (though
actually only one concept is used from the technology view). In addition, a number of
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Fig. 2. Modelling the acquisition of data regarding phytoplankton acrossmultiple views inOIL-E.

points at which entitiesmight be further explicated using other ontologies are highlighted
(using the OBOE, OBI or BCO ontologies). This allows us to describe the activity of
data collection (answeringwho, what and how), the data being created, and the processes
involved. Each of these views could be elaborated upon or linked to a larger dataset in
OIL-E or, using one of the linkingmethods described in the following sections, translated
into another ontological model.

The ENVRI Knowledge Base was the primary vehicle for exploring this kind of
semantic linkingwithin theENVRIplus project: by collecting information about different
RIs using the terminology of ENVRI RM and the framework of OIL-E, we were able to
explore and visualise the resulting knowledge network and perform some fundamental
comparative analyses.

4.2 Semantic Enrichment

Often, it is not necessary to create new descriptions of entity data from scratch. While
some aspects of research infrastructure (particularly processes) are rarely formally
described in any machine-actionable representation, other things (particularly datasets
or services) already have descriptive metadata based on some formal model. The issue
then becomes not that of how to (re-)model the entity in question, but how to ‘plug in’
the existing model into a wider semantic context such that the information within the
model can be made better use of by a greater variety of knowledge-driven services. One
approach is to transform the existing model into a new model that is somehow more
‘semantically interoperable’; we address this in the next section. Another approach is to
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enrich the existing model ‘externally’, by creating linking data hosted outwith the model
that allows an external actor to find and retrieve the information in the current model;
we address this in the section on semantic bridging. A third approach is to enrich the
existing model internally, by taking controlled vocabulary from an external ontology
or thesaurus and annotating the model where it permits the insertion of such vocabu-
lary, allowing for external services to harvest that information and thus ‘comprehend’
the context in which the model is applied. For example, we can take observation data
from an RI such as the Integrated Carbon Observation System (ICOS)8 and annotate the
datasets with terms from the EnvThes thesaurus for ecosystem observations in order to
better identify the scientific context of each observation set—e.g. that it pertains to the
North Atlantic Oscillation9, or to snow accumulation10.

We consider here the example of CERIF (Common European Research Informa-
tion Format) [18]. CERIF is a recommendation for the contextualisation of research
activity, relating people to organisations, to projects, to equipment, to datasets and other
research products. Investigated as a possible base scheme for cross-RI joint research asset
catalogues, CERIF is notable for how it separates its semantic layer from its primary
entity-relationship model. Most CERIF relations are semantically agnostic, lacking any
particular interpretation beyond identifying a link. Almost every entity and relation can
be assigned a classification however that indicates a particular semantic interpretation
(e.g. that the relationship between a Person and a Product is that of a creator and their
creation), allowing a CERIF database to be enriched with concepts from an external
semantic model (or several linked models). In this respect, the vocabulary provided by
OIL-E was investigated as a means to further classify objects in CERIF in terms of their
role in a research infrastructure, e.g. classifying individuals and facilities by the roles
they play in research activities, datasets in terms of the research data lifecycle, or com-
putational services by the functions they enable. This can provide additional operational
context for faceted search—for example to identify which processes generated a data
product, or to search for quality-assured datasets only.

Some examples of classifications based on ENVRI RM stereotypes defined in OIL-E
are given in Table 1. Classifying CERIF entity classes such as Person, Facility, Result
Entity or Service using OIL-E concepts such as environmental scientist, data provider,
persistent dataset and virtual laboratory is simple enough, but OIL-E can also be used
to classify various classes of RI activity involving interactions between instances of
CERIF entity in a way that is particularly suitable for describing time-bounded events
involving those entities. For example, given a CERIF relation between a Person and the
Result Entity that the person in question annotated, that relation can be classified using
the ‘annotate data’ information action concept in OIL-E, with CERIF also capturing the
time of annotation.

Semantic enrichment of this kind need not be limited to one particular semantic
context. Providing additional information about the scientific context for datasets (e.g.
categorising the experimental method applied to generate the data or the branch of sci-
ence to which the data belong) is also important, and there exist many vocabularies to

8 https://www.icos-ri.eu/.
9 http://vocabs.lter-europe.net/EnvThes/20403.
10 http://vocabs.lter-europe.net/EnvThes/20949.

https://www.icos-ri.eu/
http://vocabs.lter-europe.net/EnvThes/20403
http://vocabs.lter-europe.net/EnvThes/20949
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Table 1. Example classifications of CERIF entities based on ENVRI RM stereotypes.

CERIF entity OIL-E concept Example classifications

‘Event’ ‘behaviour’ ‘data collection [behaviour]’, ‘data replication
[behaviour]’

‘Equipment’ ‘resource’ ‘sensor network’, ‘storage system’

‘Facility’ ‘resource’ ‘data repository’, ‘research infrastructure’

‘Organisation Unit’ ‘actor’ ‘data publisher’, ‘semantic mediator’

‘Person’ ‘actor’ ‘environmental scientist’, ‘engineer’

‘Result Entity’ ‘persistent data’ ‘QA-assessed data’, ‘annotated data’

‘Service’ ‘computational object’ ‘catalogue service’, ‘data broker’

do this (and indeed many are already in use for just this purpose). Aside from the pre-
scribed code-lists of ISO 19115, environmental science research infrastructures such as
AnaEE11 and LTER-Europe12 are actively developing better vocabularies for describing
ecosystem and biodiversity research data, building upon existing SKOS vocabularies
(such as EnvThes, referenced above).

There is no need to restrict annotation of metadata to one specific controlled vocab-
ulary, especially if links between terms in different vocabularies can be established [40].
The identification of synonymous, subsuming and intersecting terms (and the publication
of such links in a machine-accessible way such as on the Semantic Web) can provide the
basis for better semantic search whereby a greater range of data products with similar
characteristics can be retrieved on query without necessarily sharing precisely the same
controlled vocabulary for their metadata. Making use of such linked vocabulary would
simplify the task of integrating resource metadata from multiple catalogues as it would
reduce the need to map all metadata values into a single master vocabulary (with the
likely resulting loss of nuance), while still retaining the benefits of cross-RI search and
discovery. A number of environmental and Earth science RIs such as AnaEE, LTER-
Europe, LifeWatch and ICOS are now investigating such linking of vocabularies as part
of an effort to make their respective resource catalogues more interoperable.

4.3 Semantic Mapping

Semantic mapping concerns the full mapping of data from one semantic context to
another, with all the necessary structural transformation that entails. Suchmappingmight
be applied on a targeted basis to specific metadata records, or to the results of specific
queries retrieved from metadata servers, or there may be a mass translation of an entire
catalogue. In general however, full semantic mapping is performed when integrating
data from multiple sources into a single corpus with a single ontology and vocabulary.
In the context of environmental science research infrastructure, this most typically arises

11 https://www.anaee.com/.
12 http://www.lter-europe.net/lter-europe.

https://www.anaee.com/
http://www.lter-europe.net/lter-europe
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in the construction of joint catalogues combining metadata records from heterogeneous
sources. In order to facilitate search and discovery over the entire joint catalogue, the
metadata gatheredmust of course be aligned to the greatest extent possible, whichmeans
one standard scheme, though cross-RI search and discovery can be further enhanced by
identifying links between synonymous or related vocabulary terms, which can be seen
as a kind of semantic bridging between controlled vocabularies (see next section).

A mapping agent will access the source of the data, apply the mapping, and record
the mapped data in some target resource. The mapped data are then independent of the
original source, but this also means that the data may need to be updated at times if the
source changes, and a process is therefore needed to trigger such updates or to regularly
poll the source for changes. Various tools exist for defining mappings between different
ontologies or metadata schemes. An example of such a tool is the 3MMapping Memory
Manager13, which implements the X3ML framework [19] for specifying translations
from XML-based metadata schemes to RDF.

In addition to the enrichment activity described above, we have also explored map-
ping from various different common metadata schemes into CERIF RDF, which applies
the CERIF 1.6 standard to RDF [20]. Figure 3 shows a snapshot of semantic mapping,
in this case defining mapping rules from the metadata scheme used by the CKAN-based
EUDAT B2FIND service14 to CERIF RDF using 3M.

Fig. 3. Example of mapping rules generated in 3M: XML harvested from CKAN to CERIF RDF.

Mappings in 3M are described by X3ML mapping rules relating elements found in
the source (XML-based) scheme to RDF triples in the target scheme, subject to various
syntactic conditions (e.g. element type, parent hierarchy and internal content). Thus,
3M interprets the information fields in the source scheme based on the RDF subject-
predicate-object model; each parent node in the source document is associated with
a given RDF resource (the subject), and the content of each mapped field is used to
generate triples linking that resource to other RDF resources (objects) via predicates
derived from the field in question. For example in Fig. 3 above, each result node is
mapped to a ‘Product’ resource, and the contents of each result node’s ‘id’ field is
associated with the product via a triple linking the product to a ‘FederatedIdentifier’
object via the predicate ‘has_identifier’. 3M supports the specification of generators to

13 https://github.com/isl/Mapping-Memory-Manager.
14 https://eudat.eu/services/b2find.

https://github.com/isl/Mapping-Memory-Manager
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produce unique identifiers for new RDF resources constructed during mapping of terms,
and also provides various test and analytics facilities by which to evaluate (for example)
the completeness of a givenmapping. Examples ofmappings intoCERIFRDF, including
mapping from OIL-E to CERIF have been published online [21] as part of the technical
output of the VRE4EIC project15, which the ENVRI community participated in.

Regarding the schema mapping between XML and RDF triples, we developed
another work which provides insights in two folds [43]. Firstly, testify the validity of
single matcher in a column based manner for the semantic data types. Secondly, testify
the validity of a highly configurable framework that utilises hierarchical classification in
order to construct a composable pipeline. Based on this vision, a Reconfigurable pipeline
for Semi-Automatic Schema Matching (REPSASM)16, was implemented to solve the
customizability of the matching problem by providing an environment in which a user
can create, configure and experiment with their own schema-matching procedure.

Other tools exist for transformation of data records, particularly between formats
and models. For example, the derivation of RDF from relational database tables can be
done quite naively by treating each table as the subject of an RDF triple, each column
as the predicate, and each cell as the object, but this rarely creates a good representation
of the source data. Instead, the use of tools such as Ontop17, which applies the R2RML
standard [22] for mapping relational database schemes to RDF, can allow relational
databases to be queried as if they were RDF (see Fig. 4).

Fig. 4. Using R2RML to generate RDF from relational database tables.

This essentially performs the desired mapping on the fly, allowing for the benefits
of mature relational database management systems to be retained; such an approach is
being applied by RIs such as AnaEE18 to extract metadata for semantic annotation using
a standard ecosystem ontology built on the OBOE ontology. One thing to consider is
that because this type of mapping can be performed at query time, it is not necessary to
actually fully transform all the content of a relational database into RDF in advance, or

15 https://www.vre4eic.eu/.
16 https://github.com/JordyBottelier/arpsas.
17 https://ontop.inf.unibz.it/.
18 https://www.anaee.com/.

https://www.vre4eic.eu/
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indeed at all. Instead, transformation can be performed on the results of queries on the
database, presenting those results as native RDF without any indication that the source
data exist in a different format or schema. Based on the types of query and retrieval
operations performed on a data corpus, this kind of on-the-fly mapping might be more
performant than transforming the entire data corpus in advance, especially if changes to
the corpusmight later need to be propagated to themapped data. The decision onwhether
to map everything in advance to create a unified data source, or to map on demand just
the information extracted from queries, is an important one to make when carrying out
semantic mapping; balancing stability, performance, liveness and other concerns against
one another. It is not a binary choice however. Certain key metadata (used for locating
data for example) could be mapped in advance to create an ‘upper’ database via which
to query individual data sources, or the results of recent or recurring queries for which
mapping has already been performed could be cached in a central locale, reducing data
retrieval time. All these approaches to mapping can be automated, and so be used ‘under
the surface’ to improve the interoperability of RI systems and create the appearance of
standardisation from the researcher perspective.

4.4 Semantic Bridging

Sometimes, the main barrier to interoperability is not the format of the metadata describ-
ing the data or service of interest, nor is it the vocabulary usedwithin themetadata record,
but simply the inability to find and access the metadata in question in an efficient, seam-
less way. RIs work diligently to provide portals via which researchers can find and access
the data they are responsible for curating, but often this still carries the requirement to
visit the RI’s specific data portal and manually make the relevant request. Many RIs do
contribute specific classes of data to aggregators (such as Copernicus), but often data is
still kept in specific silos, retrievable yet isolated.

There are a number of ways to address this problem, including the construction
of more cross-RI joint catalogues to expose RI resources to broader communities, but
here we focus on a single approach, which is that of linked data [23]. The linked data
approach is to leverage Semantic Web technologies to publish resource metadata in
an open, retrievable way that can easily be cross-referenced by others in their own
published (meta)data, so creating a wide-spanning distributed knowledge graph that
can be navigated programmatically by discovery and query services. If RI resource
metadata is available online as linked data of this (or a functionally-equivalent) form,
then semantic linking might be reducible to simply creating more links between local
knowledge graphs to build or add to a global, cross-RI knowledge graph. We refer to
this approach to semantic linking as semantic bridging.

Semantic bridging is mainly applicable where there is a commonality of data format,
but there is a need for additional semantic context for computational services to be
able to infer that information from two or more sources actually relates to the same
artefact. One case might involve relating entities referred to in the description of an RI
process or subsystem with existing metadata regarding those entities, perhaps hosted
by the very RI being described—for example the ENVRI Knowledge Base might refer
to datasets provided by the ICOS RI, for which RDF information is provided by the
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ICOS Carbon Portal19. Simply including the URI links used by the Carbon Portal in the
metadata provided by the ENVRI Knowledge Base would allow any system querying
the knowledge base to follow through to the Carbon Portal without manual intercession
by a human investigator.

Another example involves the bridging between online provenance data structured
according to theW3CPROVstandard [24]with anOIL-E description of an infrastructure
process such that there are direct links between a provenance dataset and a reference to
that dataset in the ENVRI Knowledge Base, allowing queries to be distributed across
both datasets. We can use SHACL rules [25] to describe how to generate additional RDF
triples classifying entities in the provenance graph using OIL-E, and then automatically
assert them in the knowledge base, with pointers back to the provenance data. Figure 5
provides a (simplified) example of such a rule, for relating a PROV activity to an OIL-E
behaviour.

Fig. 5. Sample SHACL rule for mapping PROV-O activities to OIL-E science view behaviours.

SHACL allows us to define the conditions under which to produce new data (via
SPARQL construct queries) that can be inserted into the ENVRI Knowledge Base and
used by a distributed query broker to find and retrieve information from the provenance
store as if it were an extension of the RI description in the knowledge base. The main
challenge is the construction of ‘conditional’ rules that allow for the different kinds of
provenance graph, as even within the PROV standard there are various ways to build a
provenance trace depending on the primary concerns of the developer.

In this case, the linking of PROV data to RI specifications in OIL-E confers another
benefit, which is that we can validate whether the structure of PROV traces (involving
interactions between Agents, Activities and Events) matches the form of the RI prove-
nance tracking behaviour as defined using ENVRI RM. Thus such bridging allows for
possible validation of the provenance graph based on OIL-E definitions, and allows

19 https://www.icos-cp.eu/.

https://www.icos-cp.eu/
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for a distributed query broker to potentially access the provenance data directly via the
bridging data in the knowledge base.

5 Discussion

Semantics in heterogeneous distributed systems are plagued by many of the problems
of knowledge representation in general, such as how to achieve adequate computability,
consistency and completeness in data coming from various sources produced in various
different ways. The Semantic Web provides one means to represent and publish infor-
mation in a lightweight, machine-actionable way, but it does not remove the necessity to
deal with these problems, adding to them further issues of data redundancy, unreliabil-
ity and limited performance versus more tightly integrated data models such as used in
relational databases. Considerable attention has been given to the openness, extensibility
and computability of Semantic Web standards, weighing different options (e.g. the use
of SKOS over OWL [26, 27] to reduce the complexity of specifying controlled termi-
nologies and their relationships). The use of linked data for describing resources (of all
kinds) is already well-established, with research now focusing on different approaches
to generating linked data from various sources and with how to navigate and query
distributed information. Examples of such recent research include the generation of a
navigable Graph of Things from an array of live IoT data sources [28] and the use
of crowdsourcing to provide real-time transport data in rural areas [29], both topics
with relevance to how RIs gather and expose field observations acquired via sensors or
human experts. On the topic of distributed query, various frameworks have been pro-
posed such as LDQL [30] and LILAC [31], which may make linked data based search
over distributed metadata catalogues more practical and efficient than is currently the
case.

Most geospatial technologies currently used by environmental and Earth science
RIs have been developed independently of the Semantic Web, with recommendations
such as INSPIRE20 being mostly technically (albeit not conceptually) disjoint from it.
Instead, bodies such as OGC have produced a number of open standards for Web access
of metadata which are in common use by many RIs, usually brokered via software such
as GeoNetwork21. This poses a barrier for integration of geospatial catalogues published
via technologies such as CSW or OAI-PMH into the Semantic Web, and adaptors are
still needed to query such data sources and present responses in RDF format (e.g. [32]),
though there are also unifying technology proposals such as OGC’s GeoSPARQL22 to
at least partially address this gap.

For mapping between a modest set of standards, manual mapping with tool support
remains most practical, but automation may help to accelerate the construction of new
mappings, provided that the precision and recall of suchmappings can bemade sufficient
(most likely at present by mixing machine learning techniques with expert supervision
and refinement). While how best to map metadata between different terminologies and

20 https://inspire.ec.europa.eu/.
21 https://geonetwork-opensource.org/.
22 http://www.opengeospatial.org/standards/geosparql.
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models remains an open question, automated mapping techniques can at least be (some-
what) objectively evaluated by comparing performance against human-crafted ontology
sets covering the same domain (e.g. OntoFarm for conference organisation [33]). Given
that syntactic mapping is still a big part in building semantic mapping, it is necessary to
consider not only synonymous and otherwise-related terms in English, but also multi-
lingual support; Bella et al. [34] provide an example of how to conduct mapping not
rooted solely in measuring against a base English syntax.

Metadata descriptions of research assets are not limited to ‘characteristic’ infor-
mation; provenance data (which might be structured according to a standard such as
PROV-O) for data products and processes are also an important target for semantic link-
ing, especially for creating unified (or at least unifiable) records of how research assets
are used and where they came from; such records may be generated from scientific
workflow management systems with provenance support [35, 42]. Such systems remain
important for reproducible data science; most scientific investigations must follow a
clear workflow, and there have been a number of workflow management systems devel-
oped with different characteristics and target applications [36], several of which have
been applied to data science [37]. The use of ontologies for verification and validation of
workflows has already been explored (e.g. [38]), and the ability to construct and validate
such workflow specifications using metadata from service catalogues demonstrates that
the cataloguing problem is not wholly centred on datasets.

The need to use controlled vocabulary within scientific datasets is self-evident, as
is the need for standard schemes to describe such datasets, but it is still difficult for
researchers, particularly researchers working independently, to even identify the best
terminologies to use with their data (e.g. to use in particular data fields or to annotate
their data), let alone to apply them in order to make it easy to integrate and interpret
as part of a larger data corpus. For example, various repository services now exist that
host controlled vocabularies and ontologies for use by researchers (e.g. BioPortal23 and
AgroPortal24), but there is a lack of standard tools for discovering these terminological
resources and evaluating their appropriateness to researchers’ own needs and those of
their communities. This represents a fundamental problem that must also be addressed
when considering approaches to semantic linking—there is not much value in harmon-
ising standards that researchers themselves are not fully aware of, nor is it useful if
the mappings, translation services and other products of harmonisation are themselves
invisible to the scientific community. This is another area in which community-driven
initiatives such as ENVRI and RDA might prove invaluable.

6 Conclusion

Semantic linking is a topic of considerable importance for the effective realisation of
seamless interoperability between research infrastructure, needed to achieve the kind of
open data and open science research commons being now promoted by initiatives such as

23 https://bioportal.bioontology.org/.
24 http://agroportal.lirmm.fr/.
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DataONE25 and EOSC. While standardisation of metadata schemes, protocols and ter-
minology across different areas of domain science can and does enhance interoperability
between different data and resource providers (and can be considered the main driver of
such interoperability in practice), it is clear that there will remain necessary disparities
between communities driven by their need to attend to the specific requirements of their
own researchers and as a byproduct of legacy technology choices.As long as these dispar-
ities exist, there will be a need for some kind of translation of data between two or more
data models, executed at the intersection between different services operating in differ-
ent semantic domains. Thus, the examination of different techniques and the adoption
of specific technologies to perform these translations on demand remains an important
facet in the promotion of interoperability within and across research infrastructure.

There are various ways to enhance the semantic interoperability of data and services
provided by RIs. In this chapter we have provided an overview of some techniques that
were investigated in the context of the Horizon 2020 ENVRIplus project:

• Semantic contextualisation, where we increase the body of contextual information
available about the resources and data that already exists by applying ontologies and
other meta-models to describe those resources and data in different ways, increasing
the number of facets by which we can explore them.

• Semantic enrichment, where we use controlled vocabularies to further classify and
annotate existing metadata records to make search and discovery easier.

• Semantic mapping, where we develop transformation models by which to fully con-
vert information described in one data model into another, minimising information
loss.

• Semantic bridging, where we generate additional linking data to ‘bridge’ between
two online data sources, leveraging the power of linked data to permit distributed
querying of a wider network of knowledge.

Our overview of these techniques only scratches the surface of what is required to
improve semantic interoperability and what is currently being done by various com-
munities and community initiatives. Practical semantic alignment requires considerable
attention on the part of semantic modellers and RI developers. In particular, it is neces-
sary to identify where such attention should be focused: the specific standards, protocols,
models and terminologies that would provide the greatest benefit if linked; as well as
the specific intermediary transformation services which, if deployed in the right place,
would expedite data integration and service composition for the most relevant scientific
use-cases. To make these judgements, it’s important to understand exactly how these
semantic resources are being used already by RIs and research communities, and where
interdisciplinary research is being stymiedby a lackof standardisation or interoperability.
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