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Summary

The current cloud market is dominated by a few providers, which offer cloud services in

a take-it-or-leave-it manner. However, the dynamism and uncertainty of cloud environ-

ments may require the change over time of both application requirements and service

capabilities. The current service-level agreement (SLA) management solutions can-

not easily guarantee a trustworthy, distributed SLA adaptation due to the centralized

authority of the cloud provider who could also misbehave to pursue individual goals. To

address the above issues, we propose a novel SLA management framework, which facil-

itates the specification and enforcement of dynamic SLAs that enable one to describe

how, and under which conditions, the offered service level can change over time. The

proposed framework relies on a two-level blockchain architecture. At the first level, the

smart SLA is transformed into a smart contract that dynamically guides service pro-

visioning. At the second level, a permissioned blockchain is built through a federation

of monitoring entities to generate objective measurements for the smart SLA/contract

assessment. The scalability of this permissioned blockchain is also thoroughly evalu-

ated. The proposed framework enables creating open distributed clouds, which offer

manageable and dynamic services, and facilitates cost reduction for cloud consumers,

while it increases flexibility in resource management and trust in the offered cloud

services.

K E Y W O R D S

blockchain, cloud computing, distributed ledgers, distributed management, service-level

agreements, smart contracts

1 INTRODUCTION

Despite the potential cloud computing's benefits in terms of providing on-demand computing services, some limitations and barriers prevent its

wide adoption. One of the most important limitations is related to quality of service (QoS) guarantees, that, if offered at all, are defined in natural

language, are concerned mostly with availability, and are specified just once and for all. However, cloud services are offered in dynamic environments

and have their service level constantly changing over time, while the delivered service level might not be objectively measured. This often leads to

disputes and moves the monitoring burden on consumers. At the same time, consumers and providers cannot easily change the terms of the contract

Abbreviations: IaaS, infrastructure-as-a-service; SLA, service-level agreements; VM, virtual machine. All authors have contributed equally to this work.
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when they have an increase in workload, faults, incidents, or change of requirements. For example, currently contracts using the IaaS cloud model just

define that a specific instance of a VM type will be made available to the user. This means that new instances will have to be actually associated with

new contracts, leading to an increase in the amount of work needed for contract management. Even when contracts enable users to create multiple

instances up to a certain limit for each VM type, cloud bursting and vertical scaling scenarios, which require using a different number of instances

of different VM types, cannot be properly considered. Currently, to handle this situation, it would be necessary to terminate the active contract and

to create a new one. The same applies to non-hardware-related SLA terms, for example, response time, availability, monitoring frequency, penalties

and security, and to other cloud service models (eg, software-as-a-service [SaaS] and platform-as-a-service [PaaS]).

The lack of flexibility of contracts and objective service measurement also increases the lock-in effect.1 This means that in the presence of uncer-

tainty about the moving costs, users are reluctant to move to another cloud provider even if their current provider does not supply its service(s) at the

promised (quality) level. Furthermore, the reluctance in migrating is reinforced by the extra effort, including the adoption of different cloud-specific

technologies, data migration, and the additional management overhead needed to stop old contracts and start new ones. For a complete analysis of

the benefits of dynamic service-level agreements (SLAs) and several use case scenarios, we refer the interested reader to Reference 2.

Smart contracts and distributed ledgers (eg, blockchain) have the potential to address the above issues. Smart contracts are agreements

described in an executable language that enables trusted transactions. One of their specific features is that they can be consistently executed by a

network of mutually distrusted nodes, without the arbitration of a trusted authority.3 Smart contracts have great expressive power and are used

in different areas, from finance to cloud services. Blockchain4 is an implementation of the concept of distributed ledgers that securely registers

transactions, even for completely decentralized systems, and removes the need for trusted intermediaries, such that the only trusted element is the

distributed and verifiable computing system.

Using a combination of smart contracts and blockchain in the cloud setting can lower costs and bring predictable results.5,6 This combination

offers a purely decentralized system that handles cloud services and applications along their whole life cycle and does not depend on the trustwor-

thiness of individual partners. Thus, the combination of smart contracts and blockchain paves the way to a truly open cloud market, which has been

hindered by the issues of security and trust. Furthermore, this integration makes it possible to verify that the delivered service is the desired one

and that the agreed QoS is enforced.

Blockchain and smart contacts have been used in the cloud domain only recently and with a focus on commercial targets.6 In fact, the design

choices of the most advanced projects in the area have been taken on an ad hoc basis with no systematic study, mainly concentrating on delivering

a platform without any QoS guarantees.6 To address the above issues, we propose an SLA management framework for smart contracts, which relies

on a two-level architecture.

Our two-level architecture is built using both permissionless and permissioned blockchains, with the former allowing anyone to participate and the

latter restricting such a participation to selected users. On the first level of our architecture, the dynamic, smart SLA agreed by two signatory parties

is transformed into a smart contract, which is executed in a permissionless blockchain to handle the indisputable management of the respective

cloud service. The second level of the architecture supports the first one through a permissioned blockchain, which is instrumental in raising the

trust in the SLA assessment and in guaranteeing that a smart contract moves to a new state only when the agreed conditions hold. The permissioned

blockchain is formed by a randomly selected set of oracles, which perform service monitoring and provide objective measurements and undisputed

transactions. The outcome of these transactions is compared with the smart contracts of the first level to determine violations of service-level

objectives (SLOs) or the need to change the contract state.

The proposed framework relies on our previous work2,7 that (i) introduced a new SLA definition language called SLAC covering the distinctive

aspects of cloud services and (ii) offered novel mechanisms for dealing with the SLA dynamism. These mechanisms offer the possibility of properly

formalizing the elasticity of cloud services while guaranteeing flexibility to the involved parties. However, our previous work relied on service man-

agement frameworks based on the central authority of the cloud service provider, which could misbehave to, for example, increase its profit. The

framework we propose here, instead, follows a model-driven architecture to transform dynamic SLAs into smart contracts and automate the dis-

tributed SLA enforcement. It offers a neutral and deterministic intermediary that manages the collection and verification of monitoring data and

the changes in the services levels and sets up services billing and payment. Thus, services are measured objectively while dynamic management are

automated.

The first level of the proposed architecture has been presented in Reference 8; the new framework provides an extension, which offers

the possibility of objectively assessing smart SLAs/contracts. Another contribution of this article is a thorough discussion of the challenges

in implementing the proposed architecture and a description of the new implementation of both architectural levels. A final contribution

of this article is the thorough evaluation of the second architectural level with a focus on scalability. Such an evaluation has been con-

ducted by using specific workloads on different clouds and data centers and by varying the communication bandwidth between VM's. The

main findings of the evaluation are the followings: (i) the stability of the performance of a permissioned blockchain depends on the net-

work and on resources utilization in data centers, (ii) the use of better VMs significantly increases performance but slightly decreases

stability, (iii) the throughput of many management scenarios can be controlled by regulating the network bandwidth and by carefully

selecting VMs.
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The advantages of our SLA management framework based on smart contracts and on the two-level blockchain architecture are manifold. In

particular, it:

(a) supports environments where parties do not need to trust each other; thus lowering market barriers;

(b) automates the SLA management life cycle;

(c) brings transparency to service provisioning by clearly defining all rules for SLA management in public smart contracts;

(d) enables the objective measurement of cloud services;

(e) introduces flexibility in the cloud service/resource management, thus enabling cloud providers to change the delivered service levels on

demand;

(f) adds flexibility for consumers who can require service-level changes;

(g) reduces the probability of service renegotiation, thanks to the dynamic service-level adjustment.

The rest of this article is organized as follows. Section 2 reviews some related work and provides some essential background knowledge.

Section 3 presents the overall architecture of the envisioned framework and its first architectural level. The second architectural level is presented

in Section 4. The experiments and the evaluation results are presented in Section 5. The final section summarizes the contents of this article and

suggests possible directions for future work.

2 DECENTRALIZED MULTICLOUD ENVIRONMENTS: BACKGROUND AND RELATED WORK

A blockchain records digital events or transactions in a distributed database shared among the network participants. These transactions are

nonerasable; cryptographic proofs are used to attest authorship, and they are verified by a consensus protocol, which is usually based on the

majority of the participants in the system. Each transaction is broadcasted to every node in the network and, after verification,9 it is recorded

in a public ledger. This paradigm has the potential to automate and replace third-party entities that guarantee security and privacy in digital

transactions.

Smart contracts, instead, are computer programs that automatically execute the terms of a contract. When a condition is met, an action is auto-

matically executed in a transparent and auditable manner, for example, the payment for a service. They can be used in different contexts, such as

financial, notary, and games (betting and game industry).10

Successful implementations of such technologies, for example, Bitcoin and Ethereum, have encouraged the development of projects focus-

ing on different types of decentralized solutions. In the cloud context, the situation is similar, and several decentralized solutions for the cloud/fog

market are emerging. The most advanced blockchain-based cloud projects are Golem∗, iExec†, and SONM‡. iExec is the only project that aims at

covering QoS guarantees, but it relies on standard SLAs and does not cover dynamic aspects. Moreover, considering the public roadmap of these

projects, there are no plans to support SLAs within smart contracts.6 On the contrary, according to their adopted architecture, SLAs would prob-

ably be defined and controlled by the provider without smart contracts. In our previous work,6 we have presented a thorough analysis of these

projects, discussed the challenges involved in building decentralized cloud/fog solutions and supplied an overview of the standards applicable in

the area.

Figure 1 depicts a high-level architecture for blockchain-based clouds, which comprises two main layers: (i) the transaction network (also

referred as the main chain) and (ii) the side-chain network.

The transaction network uses the blockchain to improve trust and security in the decentralized system to safely register transactions and reg-

ulate payments. In the case of decentralized cloud solutions, smart contracts are established and enforced, the transactions are registered and

managed, and the reputation of the participants is maintained. All operations in the blockchain must be deterministic, that is, the same operation

performed at different nodes of the network must return the same result(s); otherwise, inconsistency in the blockchain would be introduced, which

can lead to failure in results validation and storage.

Since transaction networks have several limitations related to high cost of storing and processing data, reduced scalability, and low trans-

action confirmation speed, alternatives, such as off-chain or side-chains networks, may be adopted.11 The term off-chain refers to compu-

tations executed outside the blockchain. The major drawback of off-chain computations is that either users of the transaction network (eg,

the cloud consumer) must trust the parties running the computation or specific methodologies have to be devised to verify the results (like

the one proposed in this article). Moreover, instead of off-chain execution, separated blockchain-based networks, called side-chains, can be

created with restricted access (permissioned blockchain) but such that their transactions and smart contracts can be publicly verified by

their users.

∗https://golem.network/
†http://iex.ec/
‡https://sonm.com/

https://golem.network/
http://iex.ec/
https://sonm.com/
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F I G U R E 1 Multicloud architecture

In this article, we use both types of alternative chains: side-chains to verify the results of computations and reach consensus, and off-chain

execution for computation-intensive tasks that require external data. The latter are executed using resources from third-party providers, who are

rewarded for their work. More specifically, the following tasks are executed off-chain: (i) the actual services, (ii) the marketplace module, which

supports software verification and negotiation, (iii) the service monitoring, and (iv) the verification module, which checks whether the service is

executed according to the specification and whether its outcome is correct.

In the high-level architecture of Figure 1, cloud service providers create and make their cloud applications/services available in the marketplace.

Then, to access such services, consumers negotiate the terms of the respective SLA and, as a result, smart contracts that regulate the provisioning

of the services are generated. However, off-chain operations could be nondeterministic. This different behavior of the blockchain used in the trans-

action network and the side or off-chain requires an interface, the so-called oracle, which, after retrieving the relevant information, evaluates it, by

running a consensus protocol, and transmits the information to the transaction network. Specifically, the oracle receives (by executing service mon-

itors drawn from the service contract) service monitoring data and inserts them into the transaction network, which uses them for smart contract

execution.

An oracle implementation could rely on retrieving data directly from trusted services, such as Provable4, Town Crier,12 and TLS-N.13 These,

however, are centralized services that suffer from the well-known single point of failure (SPoF) problem and deviate from the discipline of decen-

tralization, which is widely adopted in the blockchain. ChainLink14 works on distributed oracles that carry the data onto the chain or can trigger

transactions only when an agreement is achieved among all the oracles. However, neither ChainLink nor any of the previously mentioned solutions

support any kind of QoS monitoring.

In traditional clouds, SLAs specify the service level to be guaranteed by a cloud service. In this respect, many SLA specification languages15 and

SLA automation frameworks have been proposed.16-19 These languages allow the definition of a single and nonmodifiable service level.15 In our

previous work,2,20 we addressed this problem by introducing a new mechanism to specify multiple service levels as well as the conditions enabling to

move from one service level to another. This mechanism opens up the opportunity to use SLAs in blockchain environments and for further extensions.

To the best of our knowledge, only21 considers smart contract-based SLA management. However, the authors focus on the specification of APIs,

while offering only a high-level description of the blockchain-based SLA management. Many important components and methods, such as consensus

and validation techniques, mechanisms for data collection, payment and billing processes, are not even mentioned.

We have also proposed a smart contract transformation module, named SLA2SC,8 that acts as a neutral third party and mediates service provi-

sion. This third-party component is similar to a third-party cloud service, which is registered in the transaction network but is not owned/controlled

by any provider. In fact, it is an immutable and auditable algorithm that is available in the blockchain and comprises methods, which are accessible

by everyone in the transaction network.

3 FROM SLAS TO SMART CONTRACTS

The definition of quality of service (QoS) is essential for consumers, especially those who require guarantees for outsourcing their needed

resources or for executing important business processes and applications. SLAs formalize the terms for the service's provisioning and its qual-

ity. In this context, with SLAC,2 the involved parties can define and cover the particularities of the cloud domain, including the capacity to

model the evolution of service requirements/capabilities over time. Although SLAC virtually covers all needs directly related to the cloud service

4 https://provable.xyz/

https://provable.xyz/
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provisioning domain, its related theoretical and practical frameworks for the evaluation of SLA agreements have been designed as centralized

and thus rely on the trustworthiness of the service provider. Lowering the entry barriers and supporting decentralized open markets are still

big challenges.

In this article, we propose a framework, named cloud service smart contract manager (CSSCM), for the definition and enforcement of SLAs

by transforming them into smart contracts, which are then executed in the blockchain. The process is mainly divided into the off-chain and

blockchain (transaction network) phases. Data processing in public blockchains is costly and collecting data from external sources requires trusted

parties or a consensus protocol. For example, the dynamic needs of the parties and the possibly high number of providers imply that match-

making and negotiation must be based on up-to-date data about all cloud offers; thus, a very large number of (contract) states needs to be

considered. For these reasons, we opted for performing off-chain negotiation and static verification of SLAs. Only after the negotiation phase,

and thus after the SLA is defined, verified and agreed, a smart contract is derived from it, which is then executed, enforced, and billed in the

blockchain.

Figure 2 illustrates the major steps of the aforementioned process. The involved parties define offers and requests in the SLAC lan-

guage, then their consistency is verified via static analysis. Subsequently, a Broker or the Marketplace matches and negotiates the request

and its related offers by using the SLAC framework to produce a final SLA. Such an SLA is then transformed into a smart contract and exe-

cuted in the blockchain. Finally, multiple oracles monitor the service execution and achieve a consensus on the actual measurements derived

by a predefined consensus protocol. Once consensus is reached, valid monitoring data are added to the blockchain to enable the evalua-

tion of the conditions of the smart contract. Our consensus protocol for QoS verification in the cloud is presented and discussed in the

next section.

Figure 3 shows the flow chart of cloud service management by considering the actions performed by the software components and

by the involved actors. First, the involved parties (providers and consumers) create an account in the system, then the consumer sends

the agreed SLA and the provider confirms it. Once confirmed, SLA2SC parses the SLA and creates a new smart contract in the transac-

tion network, that is, the service smart contract, which autonomously manages the service. This service smart contract starts its execu-

tion by requesting the provider to deploy the corresponding resources. After that, service results and QoS data are collected by oracles

(auditors), which aim at consensus to assess their correctness. Finally, the verified QoS data are sent to the service smart contract for

evaluation.

The definition of correctness and the value of the result to be submitted to the smart contract depend on the consensus protocol and on its

implementation. An important challenge to be faced when using smart contracts for QoS verification is the setting up of a decentralized mechanism

for collecting trustworthy monitoring data. Entities called oracles have been used to assess the quality of gathered monitoring data and feed them

into the consensus mechanism of a blockchain.22 To this end, we have introduced the second level in our SLA management architecture, which is able

to utilize smart contracts on a permissioned blockchain to achieve trustworthy cloud monitoring and validation.

Currently, we take the perspective that the involved oracles only verify whether SLO violations have occurred by considering the majority of

votes. In this respect, the service smart contract just takes the necessary actions for each verified SLO received, such as changes in the service

deployed (eg, scaling up and down) and contract termination due to potential violations or misbehavior. Furthermore, the service smart contract can

receive requests of changes from the signatory parties, which, if accepted, will be subsequently applied (and reflected on the contract state).
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F I G U R E 3 CSSCM
framework

3.1 CSSCM framework implementation

Here, we briefly overview the contract creation and the dynamic parts of the implementation of a prototype for supporting SLA management in the

blockchain using the contract-oriented programming language Solidity5 and the Ethereum platform.

The main tasks of the CSSCM framework are (i) registering the parties and (ii) transforming SLAs into smart contracts. An excerpt of the respec-

tive code, in Solidity, is shown below. Line 1 defines a smart contract, while lines 2-5 introduce the variables concerned with the identification of the

involved consumers and providers as well as with the definition of the contract states, each composed of a set of terms (the definition of the terms

is omitted for the sake of simplicity). Line 7 defines an event to log the creation of a service smart contract, while lines 9-12 introduce a function for

actually instantiating new smart contracts that receive as argument the SLAC SLA, creates the service smart contract (SSC), saves its references and

emits the previously defined event.

1 c o n t r a c t S e rv i c e S C {

2 a d d r e s s [ ] p u b l i c consumers ;

3 a d d r e s s [ ] p u b l i c p r o v i d e r s ;

4 mapping ( u i n t => Term [ ] ) s t a t e s ;

5 . . . }

6 event sSCCreated ( a d d r e s s _ c o n t r a c t ) ;

7 f u n c t i o n newSSC ( s t r u c t SLA ) i n t e r n a l {

8 a d d r e s s sSC = new SSC ( SLA ) ;

9 sSCs . push ( sSC ) ;

10 sSCCreated ( sSC ) }

The dynamic part of the agreement is verified before the respective guarantees. If the predefined conditions hold, the state, that is, the valid

terms of the agreement at that moment, is modified. To illustrate this concept, in the following listing, we report the dynamism section of a SLAC SLA;

the reader is referred to Reference 2 for a complete account of SLAC. The rule encompasses the definition of the party, its type (eg, demand, request),

the conditions under which to invoke an action and the definition of the envisaged actions. In particular, the rule specifies that upon consumer's

demand (Alice, in this case), either the type of the offered VM is changed from small to large (vertical scaling scenario where its realization depends

on the number of requests to the application component running on the offered VM) or the instances of the large VM will be increased by one

(horizontal scaling scenario where its realization depends on whether the execution time of the user application component is above 100 seconds).

On the other hand, the contract states that if the number of instances of the large VM type is greater than 1, then the availability of these instances

will become 97%. This covers the provider side, which might not be able to sustain the same availability level when it has to maintain a large number

of large VM instances. Please note that the considered SLA contains also other sections, like the static one, which corresponds to the initial state of

5 http://solidity.readthedocs.io/en/v0.4.24/

http://solidity.readthedocs.io/en/v0.4.24/
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the contract, describing the original SLA guarantees that need to be delivered. Additional details about this structure can be found in References 2

and 7.

1 on A l i c e demand :

2 i f requestNumber > 100

3 r e p l a c e SmallVM with LargeVM

4 e l s e i f executionTime > 10

5 r e p l a c e v a l u e o f LargeVM with o l d +1

6 on IMT a u t h o r i z a t i o n r e q u e s t :

7 i f LargeVM > 1 :

8 r e p l a c e v a l u e o f LargeVM . A v a i l a b i l i t y with 97

The next listing contains a short excerpt of the smart contract that executes these modifications. The implementation covers cases where the

parties (i) ask for a modification (it will be automatically executed without the need of authorization of other parties) or (ii) request authorization

from other parties (it will be granted only if accepted by the inquired party). In case of requests, we first verify if the requester is within the requested

rule's white-list, which is generated according to the definitions of the SLA. Then, in the terms of the agreement that require the authorization of

the counterparts (line 4), the service is modified only if all involved parties agree and everyone is notified of the outcome of the request. In case the

action is a demand, the service is automatically modified by sending the demand directly to the service provider and by notifying the involved parties

(by calling the modifyTerm function).

1 f u n c t i o n modifyTerm ( u n i n t r u l e I D , A c t i o n a c t i o n ) p u b l i c r e t u r n s ( bool ) {

2 i f ( w h i t e l i s t [ r u l e I D ] == msg . sender ) {

3 i f ( r u l e s [ r u l e I D ] == r e q u e s t ) {

4 r e q u e s t M o d i f i c a t i o n ( r u l e I D , a c t i o n ) ;

5 } e l s e {

6 modifyTerm ( r u l e I D , a c t i o n )

7 }

8 . . .

4 CROWD-BASED ORACLE-AS-A-SERVICE FOR CONSENSUS ON QOS MONITORING

A major limitation of blockchain technology is its inability to interact effectively with the outside world. Actual solutions are based on using a trusted

third party, termed as the “oracle.” However, the centralized concept of an oracle is to some extent not completely reliable. Centralized oracles

capture data directly from third-party service providers, websites, or different types of APIs and then report the results to smart contracts; this

makes it possible to manipulate the results. In addition, the oracle is a SPoF as both monitoring and results validation depend on a single entity.

Indeed, in the case of service monitoring, if the oracle fails, service QoS cannot be verified. A possible solution to increase credibility and resilience is

to rely on multiple distributed oracles. However, since different oracles capture data from the outside world at the same time, a protocol is necessary

to reach consensus about the collected data.

4.1 COaaS framework architecture

In this section, we propose a framework, named crowd-based oracle-as-a-service (COaaS) , which realizes the second level of our proposed architec-

ture, to enable the creation of decentralized oracle solutions based on a customizable number of oracles that do reach consensus on the outcomes

of QoS monitoring. The framework addresses some of the main limitations in the interaction between the real world and the blockchain: (i) the need

for trusted third parties, (ii) the lack of transparency, and (iii) a SPoF, when relying on a single oracle. In our framework, a blockchain is leveraged to

improve the reliability of the process of reaching a consensus among distributed oracles. Figure 4 shows the architecture of the COaaS framework.

First, we introduce a smart contract for managing all the oracles implemented on the transaction network, which is named “crowd oracle

manager” (COM). The functionalities of this COM smart contract include:

• Individual oracles can register in the COM to become members of the crowd oracle pool. Registration of an oracle has to be authenticated since

those oracles will form a decentralized monitoring network for the transaction network services.
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F I G U R E 4 System architecture for COaaS framework

• After registration, the oracle can claim a public key in the COM smart contract that can be used in the side chain. This allows the service smart

contract to acknowledge only those transaction data from the side chain, which contains the corresponding signatures of the selected oracles.

• The COM smart contract provides an interface to select oracles for a specific service smart contract that implements an unbiased sortition

algorithm, that is, an algorithm that ensures that the selection result is considered fair by both providers and consumers. To this end, two

alternative algorithms are described in our recent work.23,24

• The selected oracle can also get rewards (tokens) from the COM smart contract for performing service monitoring. These rewards can come from

a deposit paid by the provider and the consumer through the service smart contract.

There are also reputation issues to manage oracles. Due to space limitations, we shall not analyze in detail the content of the COM smart con-

tract; such details can be found from the witness-pool smart contract implementation in our previous work.24 The entire COaaS lifecycle, described

in Figure 4, consists of the following steps:

1. The cloud provider and consumer negotiate the service provision strategy and generate a specific SLA/service smart contract. This is achieved

using the SLA2SC component mentioned in Section 3.

2. The created service smart contract is executed and can invoke the selection interface of the COM smart contract when the respective need

arises (eg, the service is deployed and ready to be monitored).

3. The unbiased sortition algorithm of the COM smart contract selects the individual oracles. The selection result is returned as a list in the service

smart contract. This is essential to ensure that the service smart contract only admits transaction data from the selected oracles.

4. Each oracle periodically checks its status in the COM smart contract. As such, it can be notified about its selection, since the COM smart con-

tract is deployed on the permissionless blockchain, where all information on the chain is public. Each oracle can also be informed about the

other selected oracles and about the smart contract of the (cloud) service. All selected oracles create an oracle federation, which is deployed

on the underlying blockchain platform, called the side-chain. Each oracle can join the blockchain network using cloud resources like VMs and a

monitoring smart contract is deployed on the side chain.

5. The service smart contract notifies each oracle from the obtained list to start performing service monitoring and submitting transactions to

the monitoring smart contract. The latter coordinates the consensus about SLO violation. The detailed process is that each oracle monitors the

service and submits any violation detection result as a transaction to the monitoring smart contract. The transaction is then validated by other

participating oracles based on their own monitoring information. The final validation result is determined by the specific consensus algorithm

adopted by the permissioned blockchain platform.

6. Only validated transactions are recorded and stored on the blockchain. Since an SLO violation is not a common event, the transaction indicating

the SLO violation will be reported to the service smart contract on the transaction network. Any oracle can transmit this transaction data to the
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service smart contract, since the data are immutable due to the use of signatures and the service smart contract is, thus, able to verify it. In this

case, the status of the service smart contract turns to “violated” and will not accept similar reports for the same SLO violation from other oracles.

Meanwhile, the compensation is automatically enforced by the service smart contract.

It is worth mentioning that the service smart contract employs a time-window-based interface that is responsible for receiving SLO violation

reports. Within the fixed time window employed for the measurement of an SLO's metric, the same SLO violation report would not be accepted

twice. Afterwards, once the fixed time limit has passed, the SLO violation report can be accepted again, in order to count, for compensation purposes,

the number of times an SLO has been violated. The time-span of the window should be designed to be shorter than the monitoring interval of the

metric involved in the SLO. Hence, the duplicated SLO violations would not incorrectly increase the counter.

Through the architecture described above, the oracles in COaaS can offer traditional oracle functionalities while they guarantee the continuous

monitoring and validation of dynamic cloud services in a cooperative manner.

4.2 COaaS blockchain platform

Permissionless blockchains suffer from the problem of limited transaction throughput and scalability. On the other hand, permissioned blockchains

address these problems by adopting more efficient consensus algorithms, such as practical byzantine fault tolerance (PBFT),25 Proof of elapsed time

(PoET),26 and Raft.27 This type of blockchains is usually not open and requires participants to be authenticated. Thus, they are more suitable for

industrial applications in cloud computing and IoT scenarios, where there already exist basic authentication mechanisms among processing units

and collaborating organizations.

In the COaaS framework, QoS monitoring is achieved through an underlying blockchain platform (side chain) that can take a different form

(permissionless or permissioned) depending on the respective scalability, stability, and performance requirements. We have targeted a permissioned

blockchain implementation for our underlying platform in the COaaS framework because of the following rationale:

• QoS measurement accuracy: While the consensus algorithms for confirming new transactions in permissionless blockchains are nondetermin-

istic (eg, proof-of-work), in permissioned blockchains, the results are often deterministic.28 Nondeterministic consensus algorithms rely on

difficult problems (like finding a specific hash value) that have to be solved by the involved parties for safety reasons. Solving such problems

requires a considerable amount of time. For example, Ethereum takes about 15 seconds to commit the latest submitted transactions, while

Bitcoin takes around 10 minutes.29 This is the main limitation for blockchain-based cloud monitoring, in particular for the storage of cloud

monitoring data since high QoS measurement accuracy cannot be achieved (eg, service violations cannot be detected in 5-second windows

when the time to confirm transactions of the underlying blockchain is higher than that). Permissioned blockchains confirm new transactions

much faster.

• Oracle identity authentication: The transaction confirmation process on permissioned blockchains is more secure. Oracles joining the network

must be authorized to read, write, or audit the blockchain data. Moreover, permissions can be associated with different access levels and the

monitoring data can be encrypted.

• QoS monitoring cost: Permissionless blockchains are often more energy consuming than permissioned blockchains. In addition, in a permission-

less blockchain, some tokens (eg, bitcoin or ether) are required to reward participants of the network that help to confirm transactions with

transaction fees. According to our design, all the monitoring information is submitted as transactions. The oracle would then pay a large number of

tokens for transaction fees when using a permissionless blockchain. The required transaction fee precludes the submission and storage of large

amounts of data coming from continuous monitoring. In a permissioned blockchain platform, instead, all transactions can be submitted without

transaction fees, which means that long-term, large-scale cloud monitoring is possible.

Since we aim at providing insights in the appropriateness of permissioned blockchain-based clouds and not to measure or compare specific

tools, we adopted one of the most popular open source permissioned blockchain solution, the Hyperledger Sawtooth6 platform, which provides

different permissioned blockchain platforms, including Fabric7 and Sawtooth8. Among these platforms, the architecture of Sawtooth is the most

modular and contains all the typical components of a blockchain, such as the consensus mechanism, the validator, and the transaction processor

(smart contract).30 In addition, Sawtooth can support pluggable consensus algorithms; especially, the PoET consensus algorithm provided by Saw-

tooth appears to be scalable and able to improve performance. Thus, we adopt Sawtooth with PoET consensus for our prototype development and

validation.

6 https://www.hyperledger.org/
7 https://github.com/hyperledger/fabric
8 https://github.com/hyperledger/sawtooth-core

https://www.hyperledger.org/
https://github.com/hyperledger/fabric
https://github.com/hyperledger/sawtooth-core
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4.2.1 COaaS prototype implementation

Before describing the detailed monitoring and transaction validation process, we briefly introduce the smart contract execution mechanism in Saw-

tooth. Each Sawtooth node maintains a key-value structure as a state dictionary, where a key contains 70 characters. Every type of smart contract

needs to define a namespace to find its corresponding values through the mappings of the state dictionary. The transaction payload identifies the

operation and input value for executing the smart contract. The validator component of Sawtooth receives the transaction and forwards it to the

respective transaction processor. The transaction processor contains the smart contract and executes the transaction according to its payload data.

Here, the transaction is first verified; if it is validated and consensus is reached, the corresponding values in the state dictionary are changed.

According to the smart contract programming example of Sawtooth9, the basic logic of a COaaS smart contract for service violation detection

and validation can be defined considering the following aspects:

State

The state value for a COaaS smart contract only requires one value to indicate whether the corresponding SLO is violated or not. Therefore, we

define the state value as a Boolean value.

< ‘ v i o l a t i o n ’ >

Addressing

The provider and consumer negotiate a name, “xName,” as the namespace for a specific smart contract. In addition, there should be an integer

value, “SLO,” provided by the transactions to indicate the corresponding SLO negotiated by the provider and consumer. Then, the state value can be

found through hash mapping. The following is a python example of how to perform the hash mapping to find the corresponding state value.

>>> h a s h l i b . sha512 ( ’ xName ’ . encode ( ’ u t f −8 ’ ) ) . h e x d i g e s t ( ) [ : 6 ]

+ h a s h l i b . sha512 ( ’ SLO ’ . encode ( ’ u t f −8 ’ ) ) . h e x d i g e s t ( ) [ −6 4 : ]

Transaction payload

The transaction request's payload of a COaaS smart contract contains two values: an integer value “SLO” to indicate the SLO index and a Boolean

value, “result” to indicate the corresponding state value named as “violation.”

< ‘ SLO ’ >< ‘ r e s u l t ’ >

Execution

The COaaS transaction processor, which is programmed for executing the COaaS smart contract, receives a transaction request. The transaction

is identified as invalid when one of the following three conditions holds.

• the payload of the transaction request is empty;

• the payload does not include a valid integer value (ie, a mapping to an existing SLO) and a valid Boolean value;

• the monitoring information of the “SLO” is in contrast with the payload value named as “result.”

After receiving a transaction request, the oracles communicate through a specific consensus algorithm to achieve the final validation result.

When using the PBFT consensus algorithm, there are three steps: in the prepreparation phase, an oracle submits the transaction to other oracles;

in the preparation phase, the other oracles communicate their validation results for the transaction; and in the last commit phase, all the oracles

take their decision based on the results received in the previous phase and notify their conclusions to the others. After receiving the decisions of

the others, each oracle is able to determine whether the transaction is valid and can thus be committed in the blockchain, with the corresponding

state value, “violation,” set according to the “result.”

Figure 5 depicts the sequence diagram showing the detailed process of COaaS. During the phase of COaaS deployment, cloud providers and

consumers need first to negotiate; after the successful negotiation of the terms, the service smart contract is created in the transaction network and

executed. Upon this contract's execution, when the service is deployed and ready to be monitored, the selection interface of the COM smart contract

(also implemented in the transaction network) can be invoked. Then, the unbiased sortition algorithm implemented in the selection interface selects

several oracles from a trustworthy oracle pool to form the side chain. The selected oracles, once notified, download the corresponding monitor

9 https://sawtooth.hyperledger.org/docs/core/releases/1.0.1/transaction_family_specifications/integerkey_transaction_family.html

https://sawtooth.hyperledger.org/docs/core/releases/1.0.1/transaction_family_specifications/integerkey_transaction_family.html
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F I G U R E 5 Sequence diagram of the COaaS framework

to perform the service monitoring. Since different services have specific features and promise different SLOs in their smart contract, the service

monitor should be provided by the provider and the consumer, who both should agree about its implementation. In addition, the service monitor can

be wrapped as a container for easy deployment and execution. The outcome of the service monitor's deployment and execution is the indication of

SLO violations.

In the runtime phase of COaaS, cloud providers and consumers change the SLA status to be considered and the corresponding oracles are

notified to start their monitoring service. The decentralized oracles leverage the service monitor to individually monitor the cloud service, and the

smart contract periodically query the service monitor, and submit transactions, which, based on the monitoring results, indicate to the permissioned

blockchain whether the SLO has been violated. The smart contract verifier, that is, the COaaS transaction processor, of all the oracles, validates each

newly submitted transaction. For validation, the verifier queries its own service monitor to verify the transaction based on the monitoring result.

Based on their own validation, all verifiers further communicate with each other to reach consensus. When the transaction is validated with the

consensus of all verifiers, the final validation result is committed on the side chain. If the SLO violation is confirmed, the committed transaction is

transmitted to the transaction network's service smart contract to trigger the SLA enforcement.

5 VALIDATION

In this section, we discuss the experiments related to performance, scalability, and stability of our permissioned blockchain implementation.

5.1 Performance validation for orchestrating the COaaS blockchain platform

According to the sequence diagram of the COaaS framework shown in Figure 5, each oracle needs computing resources to operate service

monitoring, smart contract, and verifier. Specifically, all oracles have to communicate to form a COaaS blockchain network. Our blockchain platform
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F I G U R E 6 Variation in performance
of different VM node numbers

relies on the Sawtooth implementation. In essence, the cloud environment is suitable for operating this blockchain service as it can offer elas-

tic VM and network resources. Here, we evaluate performances when the Sawtooth blockchain is used as the underlying platform of the COaaS

framework. Through the experimental study, we aim at getting insights about the COaaS platform's orchestration and about the relevant aspects to

consider.

First, we would like to describe basic assumptions and settings of the experiment.

• In principle, each oracle can choose the cloud resources to form the blockchain platform. However, to control variability, we simulate a scenario

where all blockchain nodes are deployed in one cloud data center where each oracle leverages one VM to be one of the blockchain nodes in the

blockchain platform.

• For the consensus algorithm, we adopt the PoET algorithm, which appears to be scalable.31

• We choose the IntKey smart contract provided by Sawtooth as the workload input. The workload contains a bunch of transactions that can be

submitted to the blockchain platform according to a specific rate.

• The functionality of IntKey smart contract includes setting a value by increasing or decreasing the value by one. Hence, the execution process for

an IntKey transaction has also to check and change a value in the state dictionary. This means that the complexity of the IntKey smart contract

processor is similar to that of the COaaS transaction processor described in Section 4.2.1. Thus, the IntKey workload can impact the performance

of a COaaS-type smart contract.

• We use two clouds as test beds: AWS10 and ExoGENI11, and, for each of them, we use six data centers and three VM types.

5.1.1 Impact of VM node numbers

In this experiment, we keep the input transaction rate (9 tps) of the workload and adjust the number of VM nodes to evaluate the throughput per-

formance of our COaaS blockchain. Figure 6 and Table 1 show that the throughput performance stays stable with a different number of VM nodes.

In particular, there is no significant throughput decrease when the number of VM nodes increases. This indicates a good scalability level for the

PoET consensus algorithm, since the performance of a traditional consensus algorithm, for example, PBFT, would dramatically decrease as the node

number increases. Hence, the PoET consensus algorithm can be instrumental when a large number of oracles is required.

10 https://aws.amazon.com/
11 http://www.ExoGENI.net/

http://www.ExoGENI.net/
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TA B L E 1 Performance variation in terms of
different number of VMs

Number of VMs Average throughput (tps) Average duration (s) Variance

3 7.75 116.60 16.34

6 7.43 122.20 20.10

9 7.47 119.80 10.58

12 7.46 122.05 22.23

15 7.40 124.00 26.13

F I G U R E 7 Variation in performance
in terms of different network bandwidths

5.1.2 Impact of network conditions

To evaluate the throughput of our COaaS blockchain, we keep fixed the input transaction rate (15 tps) of the workload and adjust the bandwidth

between the VM nodes. Figure 7 shows that when the network bandwidth is greater than 100 MB, the median of throughput is stable and kept

around 12 tps. This indicates that platform performance is stable irrespective of the bandwidth, while there are only a few cases where 1 or

2 outliers occur across different bandwidths. When we limit the bandwidth to 100 MB, the performance starts exhibiting a dropping trend. If

the bandwidth drops to 1 MB, the platform performance drops to around one-third (4 tps). From the above results, we can conclude that the

bandwidth can be a bottleneck for the COaaS blockchain. Hence, when building the COaaS blockchain, the bandwidth among nodes should be

kept above a specific threshold, 100 MB in our case. Furthermore, in current cloud systems, the maximum bandwidth is also affected by the VM

type12. It is, therefore, essential to use an appropriate VM type to attain a specific bandwidth level. Finally, it has been observed that better band-

widths can be achieved if VMs are placed at the same location. Thus, this can be another recommendation for guaranteeing a specific bandwidth

target.

5.1.3 Impact of VM types

We use the workload with a large input transaction rate (50 tps) to ensure that the platform performance always reaches the bottleneck, no matter

what types of VMs are leveraged. Our objective is to evaluate the COaaS blockchain performance when adjusting the VM types with various capa-

bilities. Figure 8 shows the performance analysis results with different VM configurations, with the first three mapping to the ExoGENI provider and

the last three to AWS. Overall, in our experiments, AWS outperforms ExoGENI as it offers better VM capabilities for similar VM types. The reason

is probably that even with the same configuration (number of vCPUs, main memory, and disk size), different clouds attain a diversified performance

level. Notably, it can be observed, for both ExoGENI and EC2, that as the VM type changes from small, to medium to large, the average performance

(throughput median) of the COaaS blockchain improves in a normal or quite significant degree depending on the specific cloud involved. Hence, when

constructing the COaaS blockchain, the VM (instance) type with different capabilities should be considered. Using a VM with better capabilities can

lead to higher performance, but there is obviously a trade-off with monetary cost.

12 https://cloudonaut.io/ec2-network-performance-cheat-sheet/

https://cloudonaut.io/ec2-network-performance-cheat-sheet/
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F I G U R E 8 Variation in performance
of different VM types

F I G U R E 9 Variation in performance of different cloud providers across various data centers

5.1.4 Impact of data centers

We test whether a data center can influence performance when the same VM type is used while we make sure that the VMs of both clouds have

a similar capacity by using as a VM type “XOSmall” for ExoGENI and “t2.Small” for Amazon. Figure 9 considers the six ExoGENI data centers, all

located in the United States. Among them, the performance of UAF and PIS is more stable than that of the others, while WVN has the highest

average throughput. We checked resource utilization of different data centers (which is possible with ExoGENI) and found that lower utilization

always resulted in higher performance. When many consumers use the same cloud resource at the same time, the data center becomes busy and the

actual performance worsens due to shared resources contention (see, eg, UMASS in Figure 9). On the contrary, when the data center is relatively

idle, the performance of the Sawtooth platform improves (see, eg, WVN). In the AWS section, the California rack has the highest and quite stable

performance with an average throughput over 12 tps, followed by the data centers of Frankfurt and Virginia. By contrast, the throughput of Australia

and Singapore data centers is lower. An interesting observation is that although Singapore has the lowest (throughput) performance, its throughput

is quite stable and maintained between 8 and 10 tps. Hence, when constructing the COaaS blockchain, the selection of cloud and data center can

influence the performance. A potential reason is the utilization difference among the data centers. If utilization information is provided (like in

ExoGENI), one could select the relatively idle data centers; otherwise, the selection to achieve better performance can only be based on real-time

profiling (like in EC2).
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5.1.5 Lessons learnt

Figure 4 shows that the blockchain platform is the main component of the COaaS framework. Therefore, the blockchain infrastructure can directly

affect the efficiency of the COaaS framework when performing service monitoring and SLO violation detection, and thus can influence the service

smart contract enforcement in the transaction network.

Considering the trend of leveraging clouds to operate a permissioned blockchain service, we conducted the performance validation with

Sawtooth to simulate different scenarios according to our COaaS framework. The main findings are the following:

• The number of oracles used in the COaaS blockchain affects the performance for consensus attainment reasons. We demonstrate that the PoET

consensus algorithm guarantees a good scalability level.

• The bandwidth among the nodes of the COaaS blockchain affects performance within a certain threshold. Hence, the bandwidth should be

properly customized. Very high bandwidth values are of no help for further improving performance.

• The VM type with a bigger capacity can enhance performance. Thus, an appropriate VM type needs to be considered to achieve a balance between

performance and costs.

• The data center where the COaaS blockchain platform is deployed also impacts the platform performance. According to our experiments, an idle

data center with low utilization can enable to reach a higher performance level. Nevertheless, a more practical solution is achieved by leveraging

real-time profiling before selecting the data center to perform the deployment.

6 DISCUSSION

Today, the cloud market is restricted to a very small number of large providers; this entails higher prices, vendor lock-in, and lower service quality.

Smart contracts and blockchains have the potential to reshape this market and boost the adoption of clouds; thus, improving QoS and reducing costs

and prices. Smart contracts and blockchains can also contribute to considerably reducing the potential environmental cost of the blockchain32,33 by

using appropriate consensus algorithms, like the one proposed in this article.

Moreover, supporting QoS terms, for example, response time and jitter, and considering the distributed nature of the system that gathers geo-

graphically sparse micro and traditional clouds will leverage edge computing and enable real-world use of this new paradigm for next-generation

cloud applications. This scenario and a higher adoption rate can only be achieved by increasing the trust of cloud consumers. Such a trust is currently

affected by (i) the supply of contracts in a take-it-or-leave-it basis with limited QoS guarantees; (ii) the static nature of QoS guarantees, which is not

suitable in the context of the dynamic environment under which cloud services operate; (iii) the centralized and thus untrusted SLA management

via SLA tools and techniques, which are supplied exclusively by the cloud service providers.

To address the above challenges and to pave the way to a really open and flexible cloud market, this article has proposed a novel framework,

which relies on (a) dynamic SLAs that cover a rich set of QoS guarantees and the evolution of such guarantees over time; (b) a two-level archi-

tecture of blockchains by means of which dynamic SLAs can be managed in a distributed manner through smart contracts: (i) at the top level, a

public blockchain handles the execution of the smart contract and enables any entity to participate in the open market and (ii) at the lower level, a

side-chain handles the production of objective measurements for SLA evaluation purposes through the exploitation of a carefully selected network

of oracles.

A similar architecture can also be used by a single provider to lower the market entry barrier by offering consumers some independent mecha-

nisms, that is, a smart contract and blockchain, for the verification and enforcement of service quality and distributed SLA management. In this case,

the main difference with the open marketplace is that consumers are rewarded for participating in services verification.

The envisioned framework has been realized by extending our previous work,2,8,20 concerned with a language and an associated framework

for the definition and management of dynamic SLAs, with the capability of (i) transforming dynamic SLAs into smart contracts, (ii) enforc-

ing smart contracts via the blockchain by relying on appropriate mechanisms for contract management and consensus attainment, and (iii)

exploiting an oracle interface for retrieving information about the sensed cloud service for better supporting decision making during the SLA

enforcement.

To realize the second level of the proposed architecture, we have implemented a crowd-based oracle for overcoming one of the main challenges

in the smart SLA management: the collection, validation, and insertion of objective monitoring data in the blockchain. The proposed solution, at its

highest level, is based on the public chain; however, the public blockchain does not scale well and has prohibitive costs for applications that require

many transactions and produce a multitude of monitoring data; we have, thus, used a side-chain network. We acknowledge that relying only on a

permissioned side-chained environment and avoiding the public blockchain would simplify our architecture, but it would not be aligned with our

aim to foster open cloud markets without privileged roles and with low entrance barriers for providers and users.

In order to avoid single point of failure and to avoid relying on trusted third parties, we have developed a distributed oracle in a side chain, that is,

another blockchain network with permissioned access. To measure the actual performance of the developed solutions and the underlying blockchain
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(based on the hyperledger Sawtooth), we have conducted experiments in different settings and with different cloud providers. The results high-

light that the performance of this second-level blockchain depends on many factors, including the network conditions of the cloud service provider

and the resource utilization of the respective data centers. However, if the different cluster configurations are appropriately tuned, performance

becomes insensitive to network bandwidth. Even if at a first glance the performance of the permissioned blockchain (12 transactions per second)

might appear to be a bottleneck for a large network, our framework has been designed in such a way that for every new service a new permissioned

blockchain is created among selected oracles. Therefore, full capacity is dedicated to a single service, which is more than enough in most of the cases.

Overall, our approach could be extended and improved in many ways:

• The expressive power of smart contracts brings flexibility to QoS definition, enabling users to model different scenarios, and to cover also future

needs of both signatory parties. However, matching34,35 and negotiating36 offers and requests, with such a wide range of possibilities, are challeng-

ing. Hence, we plan to support online multistate service matching and improve scalability of cloud service negotiation that is currently performed

offline with no scalability guarantees. Both capabilities could be a competitive offer in the portfolio of a cloud broker. Moreover, the system could

verify the potential interference among services by the same provider to improve the matchmaking and reduce risk of SLA violations, for example,

by using the approach described in Reference 37.

• Static analysis is currently carried out on the SLAs before they are transformed into smart contracts. We plan to support the transformation into

probabilistic automata to guarantee formally verified properties related to, for example, reachability and liveness, and to provide probabilistic

proofs of the equivalence between the defined SLA and the generated smart contract.

• The current decentralized monitoring solution can be improved by producing high-level measurements, on top of the objective raw ones, by

relying on statistical analysis and by supporting an informed selection of the oracles according to their reputation. For the actual selection of

oracles, we plan to experiment with different consensus protocols to assess their suitability under different circumstances.

• The current time-window based solution, used to filter duplicated service-level objectives violation reports, can be improved by empowering

oracles with the ability to reach consensus on the violation to report; this handling of duplicated violations avoids considering them in the actual

contract. Currently, we assume that each oracle is able to produce measurements associated with specific QoS parameters. However, we do

not investigate the actual placement of the oracles38 and the techniques they use to produce such measurements as they can depend on the

monitored QoS parameter. We plan to investigate these issues in the near future.

• Privacy needs to be better considered;39 in the proposed solution, all participants can read and execute the smart contracts and could learn about

the identity of the parties and about some intrinsic details of the offered services.

• The direct and indirect cost of creating a permissioned blockchain for each service will have to be more precisely measured.

• The performance of other permissioned blockchain platforms, such as Fabric, should be assessed.
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