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Introduction

Fundamental physics aims at unraveling Nature at its deepest level. Its driving
principle is reductionism, and its holy grail is a theory of everything. Not
surprisingly, searching for the ultimate constituents of matter is one of its
main focuses.
The status of particle physics is encompassed by the Standard Model (SM),

which is a triumph of fundamental physics: with the important exception
of gravity, this theory underlies every physical phenomenon whose origin we
know. Much more than a catalog of particles and interactions, the SM achieves
a complete description of electromagnetic and nuclear phenomena through a
complex and elegant interplay between its parts. Its formal language is Quan-
tum Field Theory (QFT), which describes particle dynamics complying to
special relativity and quantum mechanics. Among its experimental tools, par-
ticle accelerators play a leading role: the large majority of fundamental particle
discoveries, as well as the measurements of their key properties, were accom-
plished through high-energy scattering experiments.
QFT might be theoretically unsatisfactory: its path-integral formulation

lacks a formal mathematical definition, and its predictions are based on asymp-
totic expansions. In addition, it is perhaps disappointing that such a compre-
hensive theory as the SM should eventually reduce to computing and measuring
cross sections for scattering processes. However, this practice finds justification
in the spectacular level of agreement within theory and experiment, spanning
across several orders of magnitude in energy: very few fields of science may
afford setting a 5σ deviation as their standard for new discoveries.
Despite this remarkable agreement, there are facts that the SM does not ex-

plain. Besides the inclusion of gravity, the most striking examples are perhaps
the nature of dark matter and the origin of baryon asymmetry. Because of
these and other theoretical considerations, the search for physics beyond the
Standard Model is an extremely active topic. In absence of obvious places
where to look, and without conclusive evidence of new physics at the Large
Hadron Collider (LHC), there is consensus on the need of precision physics.
Rather than with the sudden discovery of a new particle, it is likely that the SM
will be falsified by an increasing number of small but significant discrepancies.
This thesis focuses on Quantum Chromodynamics (QCD), the theory de-



2 Introduction

scribing the strong sector of the SM through the interplay of quarks and gluons.
Besides providing one of the fundamental building blocks of nature, QCD is
indispensable to present-day collider phenomenology. First, the most powerful
accelerator in action, the LHC, accelerates and scatters protons, and protons
are described by QCD. Second, the strong interaction was named so for a rea-
son, and virtual QCD corrections have a large impact on cross sections; in an
age of precision physics, these corrections cannot be ignored.
The most prominent feature of QCD is color confinement, the fact that

quarks and gluons cannot be observed directly, but only inside bound states
named hadrons. Investigating the internal structure of hadrons will be the
main goal of this thesis: the aim will be studying initial-state colliding pro-
tons, as well as final-state hadrons fragmenting from high-energy particles.
Specifically, I will focus on the transverse momentum of these hadrons, where
transverse is with respect to the direction of motion. Historically, collider
analyses mainly focus on longitudinal physics: extending the description to
the transverse direction is a relevant generalization, that allows for mapping
the hadron structure with a higher level of detail. The main result that makes
this study possible is factorization, the separation of high-energy from hadronic
physics.
The strategy I will follow, and the main element of originality of my doctoral

work, is studying the transverse momentum dependence of hadrons using alter-
native definitions of jets. Jets are collimated sprays of particles that, because
of the nature of QCD, populate the final state of a collision: before reaching
the detectors, highly energetic quarks and gluons produced in a hard scatter-
ing will undergo a large number of splittings, showering into a collection of
hadrons. By describing sprays of final-state hadrons as a single object, one
attempts at reverting this description, and extract precious information about
the early stage of a collision. This task is complicated for a number of reasons,
not least the quantum nature of the system. A relevant issue is the presence of
low-energy (soft) radiation. Soft radiation can communicate between different
jets and between jets and proton beams, exposing a jet to multiple sources of
contamination. As I will clarify later, this effect has a larger impact for mea-
surements in the transverse direction. Using recoil-free jets – whose direction
is insensitive to soft radiation – reduces the contamination due to this source,
while achieving a considerable simplification of the theoretical framework.
The thesis is structured as follows: the first two chapters provide the theo-

retical grounds, while the last three present applications. In ch. 1 I review the
main aspects of perturbative QCD relevant to the present work: although this
is mainly textbook material, I will use this opportunity to present the topic in
a functional way for the rest of the thesis. The focus will be on the soft and
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collinear limit of the theory, which underlies the physics discussed here. In
particular, the last section introduces Soft Collinear Effective Theory (SCET),
the framework on which my results build upon. Ch. 2 bridges between theory
and phenomenology, complementing the picture with a discussion of jets and
transverse momentum dependence. On the first topic, the emphasis will be on
recoil-free jets and soft drop, another established technique to cut down soft
contamination inside jets. The second part introduces Transverse Momentum
dependent Distributions, one of the main subjects of study of this work. The
next three chapters will present the results of my research: besides the intrinsic
relevance to collider phenomenology, I will use them to show some of the SCET
methodologies in action. Ch. 3 carries on a study of transverse-momentum-
dependent fragmentation of hadrons inside recoil-free jets. The work described
here was one of the first applications of the Winner-Take-All jet recombina-
tion scheme, and we left large room to elucidating its properties. Moving on
to ch. 4, I will discuss the application of WTA jets to the extraction of pro-
ton TMDs. This study is highly promising in view of the future Electron-Ion
Collider; in this chapter, I also expand in detail the one-loop calculation of
a transverse-momentum dependent jet function. Finally, ch. 5 discusses soft
drop as a valid alternative to the extraction of proton TMDs. Besides remark-
ing on differences and similarities with respect to recoil-free jets, I give some
discussion of hadronization effects. Each of these applications strongly relies
on factorization; although I will not rigorously give a factorization proof for
these processes, I will argue for it and amply discuss its physical meaning.
The main result of the thesis is that the absence of recoil largely simplifies

the theoretical framework in a number of transverse momentum dependent
processes, allowing for a cleaner extraction of the relevant collinear physics. I
will try to convince the reader that reconstructing jets using these alternative
jet definitions is advantageous for LHC and EIC studies.





1
Quantum Chromodynamics for
multi-scale processes

Quantum Chromodynamics (QCD), the theory of the strong interaction, is a
pillar of modern physics. Governing the elaborate interplay of color-charged
particles from the extreme temperatures of the quark-gluon plasma to the low
energies of protons and nuclei, QCD has shaped the history of the universe.
Imposing its strength over other fundamental interactions, it dominates a mul-
titude of collision and decay processes that consolidate our confidence in the
Standard Model (SM) or guide the search for physics beyond it.
To a novice of perturbative Quantum Field Theory (QFT), QCD appears

as a self-standing, slightly cumbersome analog of Quantum Electrodynamics
whose non-abelian nature brings technical complications into the game. At
the Lagrangian level, its interplay with the rest of the SM is limited: QCD
does not participate in the spectacular symmetry breaking and electroweak
mixing that established the SM as a comprehensive theory of particle physics,
and one could imagine a consistent universe where the strong interaction is the
only actor on stage. However, rather than its purely theoretical aspects, what
makes QCD special is the rich phenomenology, since virtually every relevant
scattering process involves gluons and quarks or receives dominant quantum
corrections from them. If we collide two protons at high energies, we need some
knowledge of their inner structure to formulate quantitative predictions about
the final state, even when the latter is leptonic and the leading interaction elec-
tromagnetic (such as Drell-Yan scattering, DY); the same occurs if we smash
the proton with an electron probe (Deep Inelastic Scattering, DIS). The domi-
nant mechanism to produce Higgs bosons at the Large Hadron Collider (LHC)
is gluon fusion mediated by a top-quark loop, and a colliding electron-positron
pair will preferentially annihilate into a colored state, eventually showering into
hadrons. In addition to these examples, measurements that select hadrons or
jets in the final state, like Semi-Inclusive Deep Inelastic Scattering (SIDIS) or
Higgs + jet production, deal with intrinsic QCD objects.
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Ultimately, what makes QCD phenomenology so relevant and varied is the
peculiar dependence (or running) of the strong coupling constant on the energy
scale at which the system is probed. As a three-fold charge allows gluons to
proliferate, the effective strength of the interaction between colored particles
increases with their distance. At very high energies we can think of quarks and
gluons as weakly-interacting, well-defined entities (asymptotic freedom), while
at ordinarily low energies the strong force segregates them into color-neutral
hadrons (color confinement). This fact determines the predominance of QCD
over other fundamental interactions, but at the same time seems to foreshadow
the death of the perturbative QFT approach, since the particles whose degrees
of freedom appear in the Lagrangian differ from the objects that we accelerate
and detect in a collider experiment.
The picture above anticipates why a major theoretical result in QCD is

factorization. Separating low-energy and high-energy dynamics, factorization
overcomes the need to simultaneously describe quarks as confined into hadrons
and asymptotically free. Low-energy, non-perturbative physics is isolated in
hadronic matrix elements, that are universal and fitted to data, while the
high-energy, process-dependent physics is still calculable in terms of Feynman
diagrams, saving the predictive power of field theory in QCD. Furthermore,
factorization paves the road to resummation, a technique to supplement cross
sections with dominant terms at all orders in perturbation theory. Factorized
observables involve multiple, largely separated physical energies (or scales);
Renormalization Group Evolution (RGE) bridges this separation, and resum-
mation captures the relevant physics between them, including it in our pre-
dictions. Very often, when studying differential cross sections, the agreement
with experimental data is spectacularly enhanced by resummation.
The present chapter aims to give an overview of some of the main theoreti-

cal aspects of QCD relevant to multi-scale collider phenomenology. I will start
from the Lagrangian and its renormalization: not only does this allow me to
introduce the relevant notation, but it also serves as reminder of the vast tech-
nology that underlies the theory. I will then discuss how the description of soft
and collinear dynamics in QCD leads to the factorization and resummation
of physical observables. There exist two different, well-established approaches
to the field: the first one dates back to the early ’80s, with the original work
of Collins, Soper and Sterman, and builds on a systematic study of the in-
frared singularities of QCD amplitudes to prove factorization at the level of
Green functions (and subsequently, physical observables). Following common
terminology, I will refer to this approach as diagrammatic. The second one,
Soft Collinear Effective Theory, was formulated in the early 2000s and sets up
the description at the Lagrangian level. In SCET, soft and collinear particles
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correspond to different fields, with factorization directly following from a field
redefinition. The results presented in this thesis were obtained within SCET,
and this is the preferred language that I will use throughout. Nonetheless, I
find it instructive to include a very brief discussion of the diagrammatic ap-
proach to resummation, as many of the concepts and tools are common to the
two schools. It is useful to keep in mind that SCET and the diagrammatic
approach are different languages to describe the same physics, and provide the
exact same predictions when it comes to any observable.

1.1 QCD beyond tree level

1.1.1 The Lagrangian

If we accept the rules of perturbative QFT, then in principle all we need to
know to describe QCD is the Lagrangian,

LQCD = −1

4
Fµνa Fa,µν +

∑

f

ψf,i
(
i /Dij −mf δij

)
ψf,j + LFP + Lgh . (1.1)

This explicitly features a set of nf spin-1
2 fermions ψf (quark fields of flavor

f), while the spin-1 boson A (gluon field) hides in the field strength tensor

Fµνa = ∂µAνa − ∂νAµa − gsfabcAµbAνc (1.2)

and in the covariant derivative

Dµ
ij = δij ∂

µ + igs(ta)ijA
µ
a . (1.3)

The strong coupling parameter gs sets the strength of quark-gluon and gluon-
gluon interactions. The ta are the generators of the Lie group SU(3), and fabc
its structure constants. The quark fields live in the fundamental representation
of the group, thus their excitations over the vacuum state come in three colors,
indexed by {i, j . . . }; the gluon field lives in the adjoint representation, so
there exist 32 − 1 = 8 independent gluons, indexed by {a, b . . . }. To comply
with special relativity, the Lagrangian is invariant under the Lorentz group,
whose metric is chosen gµν = diag(+,−,−,−). Greek indices denote Lorentz
components and follow the Einstein summation convention; unless explicitly
stated, SU(3) indices are also understood to be summed over.
The Lagrangian in eq. (1.1) is invariant under the gauge transformations

(here in infinitesimal form)

Aµa(x)→ Aµa(x)− ∂µθa(x)− gsfabc θb(x)Aµc (x) ,
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ψi(x)→ ψi(x) + igsθa(x)(ta)ijψj(x) , (1.4)

parametrized by the set θa. For global transformations θ(x) = constant,
Noether’s theorem translates the symmetry into conservation of color charge,
thus making color a well-defined quantum number. However, eq. (1.4) is valid
also for local transformations, enforcing the theory to obey the principle of
locality through the presence of interactions. Gauge invariance has the further
consequence that the theory is redundant, since infinite field configurations de-
scribe the same physics. In order to define the gluon propagator and be able to
compute physical quantities, it is necessary to solve this degeneracy by fixing
the gauge to a particular value. The Faddeev-Popov mechanism implements
this in a Lorentz-covariant way, at the price of introducing non-physical ghost
fields. Different choices of gauge result in different, arbitrary definitions of the
gluon propagator, and ghosts couple to physical fields in such a way to remove
the arbitrariness, enforcing the consistency of the theory. The most popular
choice of gauge is

LFP = − 1

2ξ

(
∂µA

µ
a

)(
∂νA

ν
a

)
, (1.5)

and the corresponding ghost Lagrangian is

Lgh =
(
∂µca

)(
Dµ
ab cb

)
. (1.6)

The ghost field c couples to the gluon field through the covariant derivative in
adjoint representation, Dµ

ab = δab∂µ + gsfabcAµ,c . Setting ξ = 1 in eq. (1.5)
defines the Feynman-’t Hooft gauge and will be the default in the thesis.
Having specified the meaning of every term in the Lagrangian, one can use

standard QFT techniques to generate Feynman rules in the quantized theory,
and computing physical observables becomes a matter of drawing Feynman di-
agrams, calculating amplitudes and performing phase-space integrations. Un-
fortunately, this plan would fail very soon for two distinct reasons. The first
issue, of technical nature, is the presence of ultraviolet (UV) divergences in
loop diagrams. This is common to every physical QFT, but particularly rel-
evant for QCD, where gs is large and the tree level approximation is often
extremely poor. The second problem, conceptual and specific of QCD, is that
our predictions for quark and gluon processes are meaningless unless we trans-
late them to the level of hadrons, the objects we actually collide and detect.
Renormalization is the procedure to fix the former issue, but also clarifies why
the latter arises, so I will shortly have a look at it in the next section.



1.1. QCD beyond tree level 9

1.1.2 Renormalization

The main need for renormalization is dealing with UV divergences in loop
diagrams. Still, its physical meaning is not necessarily linked to divergences,
but is found in the quantum-relativistic nature of the theory. Let us ignore for
a moment that quarks and gluons are undetectable objects, and imagine to test
the Lagrangian in eq. (1.1) against experiment (in fact, the following reasoning
applies directly to QED). We would first select a set of measurements to fix the
free parameters mf and gs, and only then would the theory provide genuine
predictions for independent processes. However, beyond tree level, Lagrangian
parameters would differ from measured quantities.
Let me argue for this, focusing for definiteness on the fermion mass. Consider

the two-point fermion correlator in momentum space,

G2(p) =

∫
d4x

(2π)4
e−ip·x 〈0|T

[
ψ(x)ψ(0)

]
|0〉 , (1.7)

which at tree level simply coincides with the fermion propagator,

G
[0]
2 (p) = =

i

/p−m
. (1.8)

It is the presence of a pole at /p = m that allows, at tree level, to interpret the
Lagrangian parameter m as the fermion mass: if quarks were free entities, we
would experimentally observe this as a resonance in cross sections, as it actually
occurs for leptons. Beyond tree level, the correlator receives corrections from
virtual particles. The first correction comes from a single amputated diagram,
a virtual gluon loop on the fermion line, Σ(/p,m) in the following. Accounting
for an arbitrary number of uncorrelated insertions yields

G
[1]
2 (p) =

∞∑

n=0

[
n gluons

]

=
i

/p−m
∞∑

n=0

[
− iΣ(/p,m)

i

/p−m
]n

=
i

/p−m− Σ(/p,m)
. (1.9)

The last equality in eq. (1.9) is purely formal (as obtained taking the geometric
series of an inverse Dirac operator), but one can foresee that loop corrections
may shift the pole in the correlator, which in general differs from the La-
grangian parameter m. Specifically, as I will show in a moment, the one-loop
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two-point function takes the form

G
[1]
2 (p) =

iR

/p−mpole
+ finite , (1.10)

where finite refers to regular terms in /p. This clarifies that in a theory allowing
for virtual pair production and annihilation, physical constants are not an
input, but rather the dynamical product of particle interactions. The same
reasoning applies to the coupling parameter gs; in particular, loop corrections
change their size with the energy of a process, turning coupling constants to
functions of the energy.
Having accepted that Lagrangian parameters differ from physical constants

because of loop corrections, one introduces renormalization factors Z that
reabsorb such corrections in a redefinition of the parameters,

mf = mR
f Zm , gs = gRs Z

1
2
g , (1.11)

where the superscript R denotes renormalized quantities. We can write anal-
ogous relations for the fields, as their norm is also modified by quantum cor-
rections,

ψ = Z
1
2
ψψ

R , Aµa = Z
1
2
AA

Rµ
a , ca = Z

1
2
c c

R
a , (1.12)

and substitute them in eq. (1.1) to rewrite the Lagrangian in terms of renor-
malized quantities,

LQCD = LRQCD + 1
4(ZA − 1)

(
∂µARνa − ∂νARµa

)(
∂µA

R
a,µ − ∂νARaµ

)

+ (ZgZ
3
2
A − 1)gRs fabc(∂µA

R
a,ν)ARµb ARνc

− 1
4(Z2

gZ
2
A − 1)(gRs )2fabcfadeA

R
µbA

R
νcA

Rµ
d ARνe

+ (Zψ − 1)
∑

fψ
R
f,ii/∂ψ

R
f,i − (ZψZm − 1)

∑
fm

R
f ψ

R
f,iψ

R
f,i

− (Zc − 1)cRa ∂µ∂
µcRa − (ZgZ

1
2
AZc − 1)gRs fabc(∂µc

R
a )ARµb cRc

− (ZgZψZ
1
2
A − 1)gRs ψ

R
i /A

R
a (ta)ijψ

R
j . (1.13)

Here LRQCD is the renormalized Lagrangian, i.e. a copy of the original (bare)
Lagrangian where the parameters and fields have been replaced by the renor-
malized counterparts. What follows is a list of counterterms, combinations of
fields (operators) that also appear in the bare Lagrangian, but weighted with
a combination of renormalization factors. Eq. (1.13) states that we can in-
clude loop corrections in a redefinition of constants and fields, at the price of
supplementing the Lagrangian with additional terms.
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The renormalization factors in (1.11) need to be updated order by order in
perturbation theory; in the example of eq. (1.9), including higher-loop diagrams
will further shift the pole of the propagator. Therefore,

Zκ = 1 +

∞∑

n=1

(αs
4π

)n
Z [n]
κ , (1.14)

where αs = g2
s/(4π). Superscripts in square brackets will denote coefficients

in the αs/(4π) expansion throughout the whole thesis. From now on I will
manipulate only renormalized objects and drop the R superscript. At tree
level the renormalization factors are just one, and because the Lagrangian
parameters coincide with the physical constants.
The formalism becomes essential in presence of UV divergences. The one-

loop quark self-energy in d spacetime dimensions yields

Σ(/p,m) = i =

∫
dd`

(2π)d
−ig2

sCF γ
µ
(
/p− /̀+m

)
γµ(

`2 + iη
)[

(p− `)2 −m2 + iη
] , (1.15)

where CF = (ta)ij(ta)ij = 4
3 , the trace of the generators in the fundamental

representation of SU(3), arises when summing over loop color, and the in-
finitesimal positive quantity η locates the poles in the denominators relative to
the integration path. For d = 4 the integrand has a logarithmic singularity at
`→∞, hence the UV divergence. Loosely speaking, because of virtual parti-
cles carrying arbitrarily high energies, the Lagrangian parameters differ from
the physical parameters by an infinite amount. Still, we now that physical
parameters must be finite, which is possible if the counterterms in eq. (1.13)
cancel the divergence. To make this quantitative, one needs to parameterize
the divergence within a regularization scheme. Although many of these exist,
in practice only dimensional regularization works systematically for perturba-
tive QFT, as it simultaneously preserves Lorentz and Gauge symmetry while
keeping the analytic complexity under control.
The method requires to work in a generic d = 4 − 2ε dimensional space,

with ε → 0 delivering the physical limit. In the following, I will assume basic
knowledge of d-dimensional integration; provided with this tool, for positive ε
the integral converges to

Σ(/p,m) =
αs
π
CF

(
4πµ2

m2

)ε
Γ(−ε)

[(
m− /p

4

)
+O(ε)

]

=
αs
π
CF

[
1

ε
+ ln

(
4πµ2

m2

)
− γE

][(
m− /p

4

)
+O(ε)

]
, (1.16)

and the divergence manifests itself through the ε pole. The renormalization
scale µ is required for dimensional consistency: if we want the regularized
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Lagrangian to be homogeneous in mass dimensions while keeping the physical
coupling constant dimensionless, we must replace eq. (1.11) with

mf = mR
f Zm , gs = µεgRs Z

1
2
g . (1.17)

The value of µ is arbitrary; the renormalized Lagrangian parameters will also
depend on µ, so that the dependence cancels out in physical observables. The
result in eq. (1.16) allows one to fix the one-loop renormalization factors Zψ
and Zm, as the two counterterms in the fourth line of eq. (1.13) yield effective
vertices (here symbolized by boxes) with respective Feynman rules

= i(1− Zψ) /p , = i(1− ZψZm)m : (1.18)

in order for the ε pole to cancel,

Z
[1]
ψ = −

(
1

ε
+ k

[1]
ψ

)
, Z [1]

m = −3

(
1

ε
+ k[1]

m

)
. (1.19)

The finite parts k[1]
i are unconstrained, and making a choice specifies the renor-

malization scheme. Minimal schemes set them to a constant; in particular,
modified minimal subtraction (MS) fixes k[1]

i = ln(4πeγE ) and will be used in
the rest of this thesis. Practically, it is convenient to substitute

µ =
e−γEµ

4π
, (1.20)

so renormalization amounts to subtracting all and only the poles and relabeling
µ→ µ at the end of the calculation.
The freedom in the choice of scheme is already implicit in the arbitrary

separation between counterterms and renormalized terms in eq. (1.13) and is
due to the lack of a unique definition for the constants (αs,mf ). The latter
are not directly measurable, but are extracted from some observable O (e.g.,
a cross section) whose theoretical prediction is also sensitive to the choice of
scheme. These constants will enter genuine predictions for new observables O′

computed in the same scheme:

L({ki}, αs,mf )→ O({ki}, αs,mf ) ≡ Omeas → (αs,mf )→ O′({ki}, αs,mf ) .
(1.21)

The implicit scheme dependence in the extraction of (αs,mf ) will then com-
pensate for the explicit scheme dependence when generating predictions for
the new observables. Applying the same reasoning to the choice of renormal-
ization scale poses the basis to renormalization group evolution, which will be
the subject of the next section.
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To make renormalization systematic, one can first map all the possible
sources of UV divergences by UV power counting. This amounts to track-
ing how many powers of loop momenta each element (line of vertex) brings
to a given diagram G in the UV limit. The answer is the superficial degree of
divergence

ωG = 4L− 2Ib − Iq + V3 , (1.22)

where L is the number of loops, Ib and Iq the number of internal boson (includ-
ing ghosts) and quark lines, V3 the number of three-particle vertices. Positive,
null or negative ωG correspond respectively to power divergent, logarithmically
divergent or convergent integrals. Basic graph identities and the knowledge of
the vertex content of the theory allow one to rewrite eq. (1.22) in terms of only
the number of external lines (Eb and Eq for respectively bosons and quarks),

ωG = 4− Eb −
3

2
Eq . (1.23)

This form is much more insightful, because it makes evident that in QCD a
finite number of correlators diverge, regardless of the number of loops. Were
this not the case it would be impossible to renormalize the theory, as starting
at some perturbative order we would run out of counterterms in eq. (1.13)1.
It is further reassuring that all the divergent correlators resemble by number
and type of legs one of the Lagrangian interactions (fig. 1.1), since these are
the only counterterms that the theory delivers. For this to be true, it is im-
portant to notice that the superficial degree of divergence gives only an upper
bound to the scaling behavior of the loop integrals. Eventually, symmetries
can mitigate the divergence, as occurs to the four-ghost correlator. Specifi-
cally, the symmetry of the correlator under interchanges of external momenta,
combined with the ghost Feynman rule derived from eq. (1.6), forces the nu-
merator to be proportional to two powers of loop momenta, so loop integrals
converge. This is fundamental for the theory to be renormalizable, since QCD
lacks four-point ghost interactions to start with. The same effect applies to
the two-ghost, two-gluon correlator.
A further, fundamental condition that guarantees the consistency of the

theory is that gauge invariance survives renormalization, so that color charge
is conserved beyond tree level. This requirement is implicit in eq. (1.13), where
the eight coefficients of the counterterm operators are written in terms of only
five renormalization factors, while a priori we could expect each correlator to

1As I will discuss in sec. 1.3.1, this condition is looser in Effective Field Theories, where an
infinite number of divergent correlator still allows the theory to be renormalized order by
order in a power expansion.
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Figure 1.1 UV-divergent QCD correlators, as predicted by the superficial degree
of divergence (dotted lines represent ghosts). The last two correlators in the bottom
row actually converge, as renormalizability of QCD requires.

renormalize independently. The result that all-order renormalization preserves
gauge invariance is known as Ward-Takahashi identities (or Slavnov-Taylor
identities in the specific instance of QCD) and constitute a proof that the
theory is renormalizable.

1.1.3 Renormalization Group Evolution

Renormalization Group Evolution (RGE) is a powerful tool that turns the
ambiguity in the definition of renormalized quantities into an advantage. It
plays a crucial role in resummation, so underlies most of the results presented
in this thesis. RGE studies variations with respect to the renormalization scale,
building a dictionary between different values of µ.
The starting point is noticing that the logic of eq. (1.21) also applies to

the choice of renormalization scale. Different choices of µ lead one to extract
different physical constants αs(µ),mf (µ). The implicit dependence of a phys-
ical observable O on µ through the constants must then cancel the explicit
dependence, yielding

µ
d

dµ
O
(
µ, αs(µ),mf (µ)

)
= 0 . (1.24)

Eq. (1.24) is an example of Renormalization Group Equation (also RGE), and
is valid at all orders in perturbation theory. Truncating the perturbative expan-
sion poses a practical issue, because varying µ affects the expansion parameter
αs(µ), reshuffling contributions between perturbative orders and potentially
impacting the convergence of the series.



1.1. QCD beyond tree level 15

To clarify this, let me go back to the quark self-energy result of eq. (1.16) and
focus on the logarithmic scale dependence. Logarithms of the ratio µ/m would
appear at every perturbative order n, since each loop integral contributes in
general an extra 1/ε and

1

εn
(gsµ

ε)2nm−2nε = (4παs)
n

n∑

k=0

1

εn−k
nk

k!
lnk
( µ2

m2

)
+O(ε) (1.25)

(the mass is the available physical scale to make the argument of the logarithm
dimensionless). This implies the all-order schematic form

Σ(/p,m) =
∞∑

n=0

n∑

k=0

σn,k α
n
s lnk

( µ2

m2

)
. (1.26)

Choosing µ � m compromises the convergence of the perturbative series,
because the expansion effectively occurs in terms of

αs ln
µ2

m2
,

which is now large because of the logarithm. Clearly, µ ∼ m guarantees a much
better convergence. Generalizing, fixing µ = E optimizes the convergence of
the perturbative series for observables measured at the scale E. One can
foresee that in presence of multiple, largely-separated physical scales choosing
µ becomes a problem; this is where resummation will become important.
The same two-point fermion correlator offers the opportunity to examine an

RGE more closely. The bare quantity is independent of µ, thus

µ
d

dµ
G2(p,mf , αs) = 0 . (1.27)

From the definition in eq. (1.7) and eq. (1.12) (here explicitly denoting renor-
malized quantities with R for clarity),

G2(p,mf , αs) = Zψ
(
αRs (µ)

)
GR2
(
p,mR

f (µ), αRs (µ), µ
)
. (1.28)

Note that the renormalization factors depend on µ through the coupling con-
stant (because they admit perturbative expansion) but are constant functions
of the kinematics (because of working in a minimal scheme). Entering eq. (1.28)
in eq. (1.27) returns a Callan-Symanzik equation,
[
µ
∂

∂µ
+ µ

dαs
dµ

∂

∂αs
+ µ

dmf

dµ

∂

∂mf
+ µ

d lnZψ
dµ

]
G2

(
p,mf (µ), αs(µ), µ

)
= 0 .

(1.29)
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Its fomal solution in terms of an evolution kernel U is

G2

(
p,mf (µ), αs(µ), µ

)
= U(µ, µ0)G2

(
p,mf (µ0), αs(µ0), µ0

)
, (1.30)

and relates the correlator at two different renormalization scales. Evolution
kernels satisfy

U(µ0, µ0) = 1 , U(µ0, µ1)U(µ1, µ) = U(µ0, µ) , (1.31)

thus they have the algebraic structure of semigroup (they are in general not
invertible), whose action on the correlators is parametrized by µ. This is
referred to as Renormalization Group (RG).
Rather than finding a specific expression for the evolution kernel of this

correlator by solving eq. (1.29), it is interesting to focus on some of the terms
that appear there. The quantities

γψ
(
αs(µ)

)
= µ

d lnZψ
dµ

, γmf
(
αs(µ)

)
=

µ

mf

dmf

dµ
(1.32)

take the name anomalous dimensions, because they govern the scaling of phys-
ical quantities due to loop effects (anomalies). The importance of the objects
defined in eq. (1.32) resides in their universality, as they enter every correlator
involving fermion fields. Even more important is the beta function,

β
(
αs(µ)

)
= µ

dαs
dµ

, (1.33)

describing the evolution of the coupling constant at different reference scales.
This is an ingredient in every RGE and also shows the existence of asymptotic
freedom. It can be computed from differentiating the second equation of (1.17),

β(αs, ε) = −αs
(

2ε+ µ
d lnZg

dµ

)
(1.34)

and further be expressed in terms of the coefficient of the simple ε pole of the
renormalization factor,

β(αs) = 4α2
s

d

dαs

(
ResZg

∣∣
ε=0

)
. (1.35)

Given the expansion

β(αs) = −α
2
s

2π

∞∑

n=0

βn

(αs
4π

)n
, (1.36)
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the first coefficient β0 is then determined from the one-loop renormalization
factor,

β0 = −2 ResZ [1]
g

∣∣
ε=0

. (1.37)

Gauge invariance offers various ways to access Zg, but none of them is direct.
For instance, one could compute the gluon self-energy and vertex corrections
to extract

+ + → Z
[1]
A , (1.38)

+ → Z [1]
g + Z

[1]
ψ + 1

2Z
[1]
A , (1.39)

while Z [1]
ψ is known from the first equation in (1.19), leading to

Z [1]
g =

1

6ε

(
11CA − 4nfTF

)
+O(ε0) . (1.40)

In the standard choice of group basis, CA and TF are

CA = fabcfabc =
N2
c − 1

2Nc
= 3, TF δab = (ta)ij(tb)ji =

1

2
δab , (1.41)

and arise when tracing over respectively a gluon-to-boson and a gluon-to-quark
splitting. Since color is always traced over, these are the only group factors
(together with CF ) that physical observables depend on. In particular, TF is
always accompanied by the number of fermions nf , as all active flavors circulate
in fermion loops. This, and the knowledge that every QCD loop comes with a
color factor, offers a helpful tool to organize and check QCD calculations.
From eq. (1.37) one gets the famous one-loop result

β0 =
11

3
CA −

4

3
nfTF . (1.42)

The most striking features of QCD come from the evidence that β0 is positive.
This makes the coupling constant is a monotonically decreasing function of the
energy,

µ
dαs
dµ

= −β0

2π
α2
s(µ) < 0 , (1.43)

predicting asymptotic freedom at high energies. Since the first prediction by
Gross, Politzer and Wilczek [5, 6], asymptotic freedom has received precise
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Figure 1.2 Running of the QCD coupling constant with the energy scale Q, from
the 2019 update of the Particle Data Group Collaboration [7]. The various colors label
results from different classes of experiments, and black curves correspond to analytic
predictions for the schemes nf = (3, 4, 5). NLO to N3LO refer to the precision of the
fixed-order QCD ingredients employed in the analysis.

experimental confirmation, see fig. 1.2. The differential equation (1.43) has
solution

αs(µ) =
αs(µ0)

1 + β0
2παs(µ0) ln µ

µ0

, (1.44)

explicitly showing that the coupling constant goes to 0 in the limit µ → ∞.
On the other hand, the (Landau) pole at

µpole = µ0 exp
[
− 2π

β0αs(µ0)

]
(1.45)

clearly shows that perturbative QCD fails at low energy, thus providing a jus-
tification for color confinement. Substituting the world average value from [7],

αs(MZ = 91.1876 GeV) = 0.1179 (1.46)
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in eq. (1.45), and evaluating β0 with nf = 5, yields

µpole = 87 MeV . (1.47)

This is a rough estimate for ΛQCD, the energy where confinement takes over
and hadronization occurs. The precise value in eq. (1.47) is not particularly
meaningful, because higher order corrections will sensitively affect it and the
use of perturbative QFT itself becomes unjustified. In practical analyses, ΛQCD

is often assumed to be order of few hundreds MeV.
In general, one can wonder whether the conclusions of the one-loop analysis

survive higher order corrections. In fact, the series in eq. (1.36) has been
computed up to four [8] and five loop [9], making it the most accurate QCD
calculation and providing an even more robust check of asymptotic freedom.
The strong coupling constant is one of the most studied quantities in QCD
from both the high-energy and lattice perspective, see e.g. [10] for a recent
review.
Asymptotic freedom offers a window on quarks and gluons, and a hope to

perturbative QCD. Still, this a quantum mechanical window, meaning that
our glimpsing through it will distort the vision. At the typical center-of-mass
energy of a collision, the value of αs is small enough that we can safely describe
the system with perturbative QCD; however, particle detection occurs at much
lower energies, where color confinement is already active. Some trick is needed
to separate the two phases of the process. In the early times of QFT, this was
done within the parton model, treating colliding protons as the incoherent sum
of point-like constituents (partons) and postulating the high-energy scattering
to probe a single parton a time. This is clearly an approximation, as quantum
mechanics in fact entangles the various partons, but it proved very successful
to describe data. Factorization gives the parton model a theoretical basis.

1.2 Soft and collinear QCD

1.2.1 The physical picture: on-shell intermediate states

According to the path-integral formulation of quantum mechanics, we can
imagine a dynamical process as the superposition of all the stories that could
have occurred to the system from a known initial configuration to its measure-
ment. No matter how bizarre a trajectory is from the classical perspective; it
will nonetheless get a weight in the path integral. Still, those paths that give
the largest contribution to the action are the ones that are allowed even classi-
cally, while destructive interference will dampen the most unlikely trajectories.
The same reasoning applies in Quantum Field Theory, where we model the

story of a process as a collection of steps of particle creation and annihila-
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tion. The role of each propagator i/(p2 − m2) is suppressing configurations
with large virtuality. Since by construction the theory enforces momentum
conservation at each vertex, virtuality manifests itself through violation of the
on-shell condition p2 = m2. As a side remark, it is interesting to consider
an alternative formulation (Time-Ordered Perturbation Theory) where virtual
particles are on shell and propagators parametrize the violation of energy-
momentum conservation. Either way, whenever the process allows for propa-
gation of intermediate-state low-virtuality particles, we expect these configura-
tions to dominate the path integral. This is the principle behind the detection
of new particles via resonances: in the example of an e+e− collider2, when the
center-of-mass energy

√
s of a collision is tuned to the mass M of a particle,

then the latter is produced on shell and we observe a peak in the cross section.
As it will turn out useful in ch. 4, it is worth looking at the example of

the Z boson resonance in e+e− → qq. The process by itself is non-physical
(we cannot observe the final-state pair) but provides the leading order result
for inclusive hadron production (meaning that we sum over all hadrons in the
final state). The tree level amplitude in QED, Feynman gauge, in the limit of
negligible fermion masses is

q

q

e+

e�

= −ie2Qf
1

s
v(p+)γµu(p−)u(p)γµv(p) , (1.48)

whereQf is the charge of the quark of flavor f in units of e. Squaring, averaging
(summing) over inital (final) spin, color and flavor, integrating over the phase
space, and including the flux factor, returns the cross section

σe+e−→X =
4πα2Nc

3s

∑

f

Q2
f ≡ σ0 , (1.49)

where α = e2/4π is the fine structure constant. Famously, measuring this
quantity played an important role in setting the number of colors Nc to three
and confirming the fractionary charge of quarks. A way to account for the Z
boson and its interference with the photon is the effective replacement

Q2
f → Q2

f +
(v2
f + a2

f )(v2
e + a2

e)− 2Qfvfve(1−M2
Z/s)

(1−M2
Z/s)

2 +M2
ZΓ2

Z/s
2

, (1.50)

2Because of the composite nature of protons, a pp collider probes a whole range of energies.
In this case it is of course still possible to detect particles via resonances, but not to tune
the energy to one value.
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where the relevant EW parameters are collected in appx. A.4, eq. (A.27) and
following. By substituting the numerical values, one can easily see that the Z
boson contribution is negligible at low (few tens GeV) center of mass energies,
but becomes dominant around MZ , where it enhances the cross section by
almost three orders of magnitude.
Something conceptually similar occurs in massless gauge theories, and in

particular in the high-energy limit of QCD. In this case propagators can go on
shell not due to resonant particle production, but because of simple kinematics.
Take for definiteness a q → qg splitting,

p

k
µ, a

=
itaγ

µ(/p+ /k)

(p+ k)2
=

itaγ
µ(/p+ /k)

2EkEp(1− cosϑ)
, (1.51)

where E are the energies of the two products and ϑ their relative angle. The
virtual particle goes on shell if one of the products3 is soft, meaning its energy
vanishes, or if the two are collinear, namely they move in the same direction,
ϑ = 0. As both limits correspond to vanishing sqared momentum, they concern
the low-energy behavior of the theory and are collectively referred to as infrared
(IR). These are the kinematical configurations allowed also classically, thus we
expect them to dominate QCD observables. This indeed leaves a signature
in high-energy collisions, where collimated sprays of hadrons (jets) typically
carry a large fraction of the center-of-mass energy.
Physical intuition suggests that studying small kinematical perturbations

around the soft and collinear configurations should simplify the problem while
retaining most of the relevant QCD physics. In the diagrammatic approach
this is called eikonal approximation; the name reminds of taking the classical,
infrared limit of infinite wavelength when studying light propagation, and in
a way we are applying the same idea to QCD. On the other hand, having
identified the relevant IR degrees of freedom, effective field theories provide
a natural language to systematically incorporate perturbations from the high-
energy completion into their dynamics. I will postpone the discussion of SCET
to sec. 1.3 and take a full QCD viewpoint for the time being.
A consequence of having taken the fermion masses to zero is that we lost any

characteristic energy scale in the IR (we are not involving ΛQCD for the mo-
ment). Virtual particles are then allowed to carry arbitrarily low (or “arbitrar-
ily collimated”) momentum, which generates IR divergences in loop integrals.

3In fact, at leading power, only a soft gluon (not a soft quark) generates a singularity.
Showing this requires considering the interplay with phase-space integration and adjacent
propagators, and is not evident by simply looking at eq. (1.51).
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The same issue affects phase-space integrals: whenever final-state kinemat-
ics allows for soft or collinear emissions, the integral diverges in the IR. The
solution is that sensible observables always involve both real and virtual con-
tributions, and divergences cancel when the two effects are accounted for. The
idea behind the cancellation is that every virtual state that is allowed on-shell
should also be included as real final state, or there will be a mismatch in the
physical content of the theory. Quantities that are free of IR divergences are
called infrared safe. Even if physical observables can be IR unsafe, a direct
comparison between QCD parton-level predictions and measured quantities
is possible only for infrared-safe quantities. A practical way to confirm the
IR safety of a candidate observable O involving a set of final-state particles
j with momenta pj , is checking whether soft and collinear splittings leave it
unchanged,

O
(
. . . (j, pj) . . .

)
= O

(
. . . (j, pj), (j

′, 0) . . .
)

O
(
. . . (j, pj) . . .

)
= O

(
. . . (j, xpj)(j

′, (1− x)pj) . . .
)
, (1.52)

where x ∈ [0, 1] represents the energy fraction of one of the collinear products.
This requirement is consistent with the impossibility of detect a zero-energy
particle in experiments, or tell a single particle from a perfectly collimated
pair. Trivial examples are the number of particles (not infrared safe) or the
total energy or momentum (infrared safe), but (dis)proving the IR safety of
more complicated observables can be rather subtle.
If IR divergences ultimately cancel, intermediate stages of the calculation

still require a regulator. Dimensional regularization proves itself fundamental
in fixing divergences arising from the scaling behavior of loop integrals at high
momentum, while holding the symmetries of the problem; it seems natural to
apply the same technique to the other end of the energy spectrum. Working
in 4 − 2ε dimensions with ε < 0, IR divergences show up again as poles in
ε. In presence of both UV and IR divergences, one can imagine a conflict in
the choice of ε. I will comment on this point in the following, where I show a
specific instance of what discussed here while introducing resummation.

1.2.2 Example: hadron production with a cut on thrust

To familiarize with the role of soft and collinear physics in QCD it is useful to
consider a specific example. I will sketch the calculation of the next-to-leading
order QCD corrections to the e+e− → hadrons cross section in eq. (1.49),
starting with imposing a cut on thrust. Thrust is a typical example of event
shape, a class of observables that characterizes the global properties of an event
through the spatial distribution of final-state energy and momentum. Event
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shapes (and thrust in particular) have been a testing ground for resumma-
tion techniques, see e.g. [11–15], and lead precise determinations of the strong
coupling constant [16–18]. In this section, I will consider imposing a cut on
thrust as an intuitive way to regulate IR divergences, but this procedure has
also phenomenological relevance, see refs. [19–21].
Thrust is defined by maximizing the scalar sum of the particle three-momenta

projected on a reference vector t̂ [22],

T = max
t̂∈S2

∑
i |~pi · t̂|∑
i |~pi|

. (1.53)

The direction t̂ that determines the maximum is called thrust axis. One can
check the IR safety of eq. (1.53) from eq. (1.52). The definition is frame
dependent, and for e+e− collisions the natural choice is the center-of-mass
frame. When all final-state particles are aligned then T = 1, while an isotropic
momentum distribution corresponds to the lower bound T = 1

2 . Therefore,
thrust is a measure of how “pencil-like” or “two-particle-like” an event is. At
tree level, the qq pair is always produced back to back, so the thrust is one,

dσe+e−→X
dT

(T ) = σ0 δ(1− T ) , (1.54)

where σ0 is the inclusive tree-level cross section from eq. (1.49). Higher order
corrections smear the distribution, but soft and collinear splittings do not, so
the limit T → 1 coincides in fact with the IR limit. This makes thrust a useful
probe of soft and collinear dynamics.
I will now move on to the calculation of the inclusive cross section. At order

αs five diagrams contribute to the process: two radiative emissions and three
virtual loop corrections (fig. 1.3). If a cut on thrust is imposed, T < Tc, only

Figure 1.3 Next-to-leading order (NLO) diagrams for e+e− → hadrons.

real diagrams contribute, as the virtual ones have a two-particles final state
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(thus T = 1). Summing the two amplitudes yields

MR =
e2gsQf

2s
v(p+)γµu(p−)u(p)ta

[
/ε(k)

/p+ /k

p · k γ
µ − γµ /p+ /k

p · k /ε(k)
]
v(p) ,

(1.55)

where k is the gluon momentum and ε(k) its polarization vector. Using Dirac
algebra and momentum conservation, one can write the squared amplitude
averaged over spin, flavor, color and polarizations as

〈|MR|2〉 =
512π3αsα

2CFNc

3s

∑

f

Q2
f

(p · k)2 + (p · k)2 + 2(p+· p−) (p · p)
(p · k) (p · k)

.

(1.56)

The three-particle phase space involves a twelve-dimensional integral,
∫
{dPs}

2→3
=

1

(2π)5

∫
d4p

∫
d4p

∫
d4k δ+(p2)δ+(p2)δ+(k2) δ(4)(p+ p+ k − q) ,

(1.57)

but on-shell conditions, momentum conservation and angular symmetry reduce
the number of nontrivial integrations to two. In other words, we can specify
the final-space kinematics with

p = (E, 0, 0,−E) , p = (E,E sinϑ, 0, E cosϑ) , (1.58)

and let momentum conservation fix k. The on-shell condition for the latter
relates then the angle

cosϑ =
E2 + E

2 − (
√
s− E − E)2

2EE
(1.59)

to the quark/antiquark energies, taken as independent variables. It is conve-
nient to further introduce the energy fractions

x =
2E√
s
, x =

2E√
s
, (1.60)

in terms of which eq. (1.56) takes the simple form

〈|MR|2〉 = 128π2αsCFσ0
x2 + x2

(1− x)(1− x)
(1.61)
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and the radiative cross section (including the flux factor 1/(2s)) reads

σR =
αsCF

2π
σ0

∫ 1

0
dx

∫ 1−x

0
dx

x2 + x2

(1− x)(1− x)
. (1.62)

The bound x̄ < 1 − x arises because also the gluon energy fraction 2 − x − x
cannot exceed 1. This expression is purely formal: as expected, the integral
has infrared logarithmic divergences when x→ 1 and x→ 1.
Nonetheless, eq. (1.62) becomes well-defined if we apply a cut on thrust. To

see this, one can use the result that in a three-particle configuration the thrust
axis aligns to the most energetic, and

T = max(x, x, 2− x− x) . (1.63)

One can therefore split the integration domain depending on what particle has
larger enrgy (fig. 1.4), and perform the substitution (1.63) region by region (in
fact, one can assume x > x by symmetrizing the integration domain). This
yields

σR =
αsCF
π

σ0

∫ 1

2
3

dT

[∫ 1−T

T
dx

T 2 + x2

(1− T )(1− x)
+

∫ 1−T/2

2−2T
dx

(2− x− T )2 + x2

(T + x− 1)(1− x)

]
.

(1.64)

This form makes it clear that the IR divergences arise from the limit T → 1,

T = x

T = z

T = x

(T = z)

1

1 1

1

x

x z

x

00

Figure 1.4 Three-particle massless phase space in terms of the energy fractions
x, x, z = 2 − x − x. Different colors correspond to the thrust axis lying on different
particles. The green (yellow) domain is related to the blue (red) one by x→ x̄.

thus a cut T < Tc acts as a physical IR regulator. Performing the x integral
allows one to extract the cross section differential in thrust,

dσ

dT
=
αsCF
π

σ0

[
ln
(2T − 1

1− T
)( 2

1− T +
2

T
− 3
)
− 3

2(1− T )
+

15

2
− 9

2
T

]
,

(1.65)
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while the cumulant yields

σ(T < Tc) =

∫ Tc

2
3

dT
dσ

dT
=
αsCF
π

σ0

[
ln2
(1− Tc

Tc

)
+

3

2
(1− 2Tc) ln

(2Tc − 1

1− Tc

)

+ 2Li
(1− Tc

Tc

)
− 4− π2

6
+

15

2
Tc −

9

4
T 2
c

]
, (1.66)

where Li2 is the dilogarithm. In the limit Tc → 1, it simplifies as

σ(T < Tc) =
αsCF
π

σ0

[
ln2(1− Tc) +

3

2
ln(1− Tc)−

π2

6
+

5

4

]
+O(1− Tc) .

(1.67)

A characteristic feature of this observable is the quadratic logarithmic de-
pendence on 1 − Tc. I will comment extensively on this in sec. 1.2.4, where
eq. (1.67) will be the starting point to discuss resummation.

1.2.3 Inclusive hadron production

The previous example considered a simple observable where IR divergences are
cut off by a physical regulator. To see dimensional regularization at work in
the infrared, one can repeat the calculation removing the cut on thrust.
The squared amplitude for the radiative diagrams in 4− 2ε dimension reads

〈|MR|2〉 = 128π2αsµ
4εCFσ0

(1− ε)2

1− 2
3ε

x2 + x2 − ε(2− x− x)2

(1− x)(1− x)
, (1.68)

where the scale µ is needed in view of renormalization. Integrating over the
three-particle phase space in 4− 2ε-dimensions yields

σR =
αsCF

2π
σ0

(1− ε)2

1− 2
3ε

(4πµ2

s

)2ε 1

Γ(2− 2ε)

×
∫ 1

0
dx

∫ 1

1−x
dx

[
x2 + x2 − ε(2− x− x)2

(1− x)1+ε(1− x)1+ε(x+ x− 1)1+ε

]
. (1.69)

The limit x, x→ 0 is now safe since ε < 0, and the integral evaluates to

σR =
αsCF
π

σ0

(µ2eγE

s

)2ε 3(2− 2ε+ ε2)(1− ε)2

3− 2ε

Γ(1− ε)Γ2(−ε)
Γ(1− 2ε)Γ(3− 3ε)

, (1.70)

whose expansion reads

σR =
αsCF
π

σ0

[
1

ε2
+

1

ε

(
2 ln

µ2

s
+

13

6

)
+ 2 ln2 µ

2

s
+

13

3
ln
µ

s
− 5

6
π2 +

259

36

]
.

(1.71)
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The limit x → 1, x → 1 where the gluon is soft and collinear at the same
time produces the double infrared pole (hence, the double logarithms). The
argument of the logarithms is the renormalization scale over the center-of-mass
energy. This is inevitable, as µ comes in powers of ε and

√
s is the only available

scale in the problem, and is a common feature to every calculation involving
soft and collinear physics.
Next comes the virtual amplitude, the first diagram in fig. 1.3

MV = e2Qfg
2
sCFµ

2εv(p+)γµu(p−)u(p)

∫
dd`

(2π)d
γν(/p+ /̀)γµ(/p− /̀)γν
`2(p+ `)2(p− `)2

v(p)

=
ie2g2

sQf
32π2s

(4πµ2

−s
)εΓ(ε)Γ2(−ε)

Γ(−2ε)

(2− ε+ 2ε2)

(1− 2ε)
v(p+)γµu(p−)u(p)γµv(p) .

(1.72)

At order αs, this interferes with the tree-level diagram to give

〈2Re
(
MVM

∗
tree

)
〉 =

32πα2αsCFNc

s2

∑

f

Q2
f

(4πµ4

s

)ε
cos(πε)

Γ(ε)Γ2(−ε)
Γ(−2ε)

× (2− ε+ 2ε2)

(1− 2ε)

[
p+ · p p− · p+ p− · p p+ · p− εs/4

]
. (1.73)

Integrating over the 4− 2ε dimensional 2→ 2 phase space finally yields

σV = σ0
αsCF
π

(4πµ2

s

)ε 3Γ(ε)Γ3(−ε)(2− ε+ 2ε2)

8(1− 2ε)ε(3− 2ε)Γ2(−2ε)
cos(πε) , (1.74)

and expanding

σV =
αsCF
π

σ0

[
− 1

ε2
− 1

ε

(
2 ln

µ2

s
+

13

6

)
− 2 ln2 µ

2

s
− 13

3
ln
µ

s
+

5

6
π2 − 58

9

]
.

(1.75)

While the poles in eq. (1.71) are clearly of IR origin (it is a tree-level graph),
eq. (1.75) contains a mix or IR and UV poles. Explicitly labeling their origin,

− 1

ε2
− 1

ε

(
2 ln

µ2

s
+

13

6

)
= − 1

ε2
IR

+
1

εUV
− 1

εIR

(
2 ln

µ2

s
+

19

6

)
. (1.76)

The distinction can be seen for instance by repeating the calculation with
a different infrared regulator, so that all the remaining poles would be UV.
However, ultraviolet poles in the final result would mean that QCD corrections
require counterterms in QED, spoiling the renormalizablity of the latter.
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This potential issue is fixed by the second and third diagrams in fig. 1.3,
virtual corrections on a single quark/antiquark leg.4 In a massless theory
these graphs are scaleless, as the loop has no reference energy (by contrast,
connecting the two outgoing legs, the loop in eq. (1.72) knows about p ·p = s).
The loop integral that appears here has the form

∫
d4−2ε`

(2π)4−2ε
`2(`− p)2 =

∫ 1

0
dx

∫
d4−2ε`

(2π)4−2ε

1

(`2 − 2x` · p)2
=

∫
d4−2ε`

(2π)4−2ε

1

`4

=
(4π)ε

8π2Γ(2− ε)

∫ ∞

0
d` `−1−ε =

(4π)ε

8π2Γ(2− ε)

[
1

εUV
− 1

εIR

]
. (1.77)

The second step involves a shift in the integration momentum, and in the final
step the different origin of the poles is clear since they regulate opposite ends
of the momentum spectrum. In dimensional regularization, scaleless integrals
are formally vanishing, but in fact they bridge between UV and IR physics,
converting the relative poles. The presence of a numerator alters the final
coefficient in eq. (1.77), but does not affect the logic. Summing over the three
virtual diagrams in fig. 1.3 the UV pole in eq. (1.76) is effectively replaced by
an IR one: eq. (1.75) is formally unaffected, but all the poles are now infrared.
At this point, one can appreciate the cancellation of infrared divergences

and unphysical µ dependence delivering one of the neatest QFT results,

σe+e−→hadrons = σ0 + σR + σV = σ0

(
1 +

3αsCF
4π

)
= σ0

(
1 +

αs
π

)
. (1.78)

1.2.4 Resummation

I will now use the calculations in the previous two sections to motivate for
resummation, and show its effects in a simple setting. Let me consider to this
aim the cross section with a lower cut on thrust, Tc < T < 1, which in the
limit of large Tc follows from the difference of eq. (1.78) and eq. (1.67),

σ(T > Tc) = σ0

{
1 +

αsCF
π

[
−ln2(1− Tc)−

3

2
ln(1− Tc)+

7π2

12
− 5

4

]}
. (1.79)

This simple quantity already exhibits some characteristic features of IR physics
relevant to phenomenology. The cross section is free of soft and collinear

4In fact, being one-particle reducible, these diagrams do not enter the cross section directly,
but they do it through replacement factors for the external spinors in the Lehmann-
Symanzik-Zimmermann reduction formula, see e.g. [23]. This subtlety does not impact
the logic of what presented here.



1.2. Soft and collinear QCD 29

singularities, but the logarithms of 1−Tc are reminiscent of their existence. In
particular, eq. (1.79) contains double logarithms, terms of the kind

αns ln2n(1− Tc)

that arise whenever an emission can be soft and collinear at the same time.
To practical purpose, it could be useful to set a large cut Tc . 1, as most of
the events in a real collider occur very close to T = 1 [24]. In this case, the
power corrections that were dropped passing from eq. (1.66) to eq. (1.67) are
mostly negligible, but in turn the logarithms become large. The size of the
logarithms is not per se a problem, but it becomes worrying since their power
grows with the perturbative order. Indeed, the all-order structure of the cross
section would be

σ(T > Tc) =
∑

n

αns

[
σn,2n ln2n(1− Tc)︸ ︷︷ ︸

LL

+σn,2n−1 ln2n−1(1− Tc)︸ ︷︷ ︸
NLL

+ . . .
]
,

(1.80)

so the presence of the logarithms would spoil the convergence of the perturba-
tive series. In particular one can distinguish Leading Logarithms (LL), Next-
to-Leading Logarithms (NLL), and so on, depending on the power of the loga-
rithms relative to the power of the coupling constant.5

Although I have not proven the structure (1.80), there is a powerful physical
argument while this should be the case. First, in the IR limit, subsequent emis-
sions are uncorrelated. The idea is that we are describing a radiative process
as the succession of splittings of on-shell particles, any splitting corresponding
to a decay that occurs with some rate P . This is formalized by introducing
splitting functions, and I will come back to this point in sec. 2.2.1. Second,
infrared emissions are not associated with any particular energy, so nothing
prevents them to become even more soft and collinear. We can thus consider
the strongly ordered limit in which each emission has angle and energy much
smaller than the previous one,

#1 ⌧ 1 #2 ⌧ #1 #3 ⌧ #2

(E1 ⌧ p
s) (E2 ⌧ E1) (E3 ⌧ E2)

(1.81)

5Often the series exponentiates, see eq. (1.84), and the terminology LL, NLL, etc. refers to
the logarithms in the exponent, rather than in the cross section itself. However, the logic
is unaltered.
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The leading logarithms in eq. (1.80) come then from n uncorrelated strongly
ordered emissions. Relenting the strong ordering condition for one of the emis-
sions would generate the next-to-leading logarithms, and so on.
The presence of such an iterative structure suggests that it must be possible

to predict the coefficients of the logarithms at every order in perturbation the-
ory by performing a finite-order calculation. In fact, if the emissions are truly
uncorrelated, the order-n coefficient is simply (up to a common normalization,
and including the combinatorial factor 1/n! for identical particles) the n-th
power of some ∆1, and the whole LL series exponentiates,

∆ =
∞∑

n=0

(4αsCF
π

)n∆n
1

n!
= exp

[4αsCF
π

∆1

]
. (1.82)

the exponential defined in eq. (1.82) is called Sudakov form factor. To under-
stand the coefficient of ∆1 and the link between double logarithms and strongly
ordered limit, switch coordinates to the gluon energy fraction z = 2 − x − x
and the angle between the gluon and the emitting (anti)quark in eq. (1.62).
The soft and collinear limit now reads z → 0, ϑ→ 0, yielding

σR = σ0
4αsCF
π

∫
dz

z

∫
dϑ

ϑ
. (1.83)

This expression is generally valid for q → qg splittings in the strongly ordered
limit. Imposing a measurement fixes the integration bounds, and determines
the specific form of ∆1. In the case of lower cut on thrust, entering θ(T −
TC) under integral in eq. (1.83) allows one to fix ∆1 = −1

4 ln2(1 − TC), thus
retrieving the double logarithms in eq. (1.79).6. The prediction for e+e− →
hadrons with a cut on thrust including LL becomes

σLL(T > Tc) = σ0 ∆ = σ0 exp
[
− αsCF

π
ln2(1− Tc)

]
. (1.84)

This process of including a whole class of logarithms in our predictions is called
resummation. One could also include in the form factor the single logarithms
in eq. (1.67), but to achieve full NLL accuracy one would need to perform
a two-loop calculation. Eq. (1.84) is now well-behaved for Tc → 1, and in
this limit, even without including the full αs correction, it will describe data
much better than the fixed-order result. In fact, for the purpose of extracting
the LL behavior in eq. (1.84), the full NLO result in eq. (1.66) was largely
superfluous. One could have aimed from the beginning at just the coefficient

6To do so, one uses θ(T −TC) = 1− θ(TC −T ). The first term produces a formally infinite
integral, that cancellation of IR divergences sets to zero; in other words, we know the total
cross section to be free of large logarithms.
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of the logarithms, for example by performing an expansion under integral.
This is indeed a valid strategy in practical situations where the full calculation
becomes too complicated.
The resummation example that I sketched here is perhaps misleadingly sim-

ple, since it hides the central role played by factorization. Systematically per-
forming resummation requires in general to factorize the observable and evolv-
ing the various factorization ingredients up to a common energy scale using
Renormalization Group Equations. Practical situations often require a choice
between retaining power corrections, of the kind I dropped from eq. (1.66) to
eq. (1.67), or including resummation. In ch. 3 I will give a first example of this
interplay.
Before moving on, let me note that the strong ordering picture (1.81) is a

key ingredient of the event generators commonly used in particle physics sim-
ulations, such as Pythia [25] and Herwig [26]. These Monte Carlo programs
are a fundamental tool to benchmark both theoretical predictions and experi-
mental analyses. Event generators model the infrared QCD dynamics through
parton showers: quarks and gluons generated in an initial subprocess undergo
multiple branchings, assuming independent splitting probability and ordering
in either angle or transverse momentum. A hadronization model converts the
final-state quarks and gluons into hadrons. At the time of writing, the accu-
racy of parton showers is currently limited to LL (and leading color), although
relevant steps are being made to overcome these limits, see e.g. [27–31].

1.2.5 Factorization in diagrammatic language

Before discussing Soft Collinear Effective Theory, I will sketch how factoriza-
tion was first derived from a systematic study of soft and collinear singularities
at the diagrammatic level. I will keep the discussion very brief, and the inter-
ested reader can look for instance at the textbook [32] or some of the original
papers [33–36] for details. I will focus on an inclusive 1→ N process. Impos-
ing a measurement on the final state (e.g., the transverse momentum of one of
the products) may change the picture; this is related to the difference between
SCETI and SCETII, and I will comment on this point in sec. 1.3.2 from that
perspective.
The goal is making a systematic approximation that captures the IR limit

of the theory, and showing that amplitudes (and observables) factorize in this
limit. The key steps are the following: first, one classifies all the IR singulari-
ties by looking at the general structure of Feynman diagrams; next introduces
IR power counting to tell truly divergent singularities from spurious ones. This
tool provides us with the most generic IR-divergent graphs and with a prac-
tical way to implement the eikonal approximation; finally, one shows that in
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this limit the general graph reduces to the product of subdiagrams, each de-
scribing either soft or collinear divergences, or hard high-energy physics. An
important ingredient are Wilson lines, that loosely speaking represent a high-
energy parton from the perspective of soft and collinear radiation. Showing
that the phase space also factorizes extends factorization from amplitudes to
observables. I will now quickly comment on these steps in turn.
Following an analysis first due to Landau, to identify the IR singularities a

generic Feynman diagram G, one describes it as a function of external momenta
pi and loop momenta `j . The denominators can be recombined through (for
definiteness) Feynman parameters xk,

G(pi · pi′) =

(∏

k

∫ 1

0
dxk

)
δ(1−

∑

k

xk)

(∏

j

∫
dd`j
(2π)d

) N (pi, `j , xk)

Dα(pi, `j , xk)
, (1.85)

where the numerator N includes Dirac structures and overall constants, and
the denominator D is quadratic in the loop momenta,

D(pi, `j , xk) = ajj′(xk)`j ·`j′ + qj(xk, pi)·`j +m2(xk, pi ·pi′) + iη , (1.86)

for some functions a, q,m2 linear in their arguments. The indices j, j′ are
understood to be summed over, and the infinitesimal imaginary phase iη spec-
ifies the position of the poles relative to the integration path. While UV
divergences are simply related to the overall `2 → ∞ limit of the integral,
IR singularities require specific configurations of the denominator, where the
integration path cannot be deformed away from poles. Specifically, the inte-
grand must either have a pole at the endpoint of some integration path (if
the latter is an open interval), or a pair of poles pinching the path at some
value `2j = c2(pi, kj′ , xk) − iη . These requirements are formalized by Landau
equations, which although fully general, are a rather cumbersome way to tackle
the problem.
A much more intuitive picture was given by Coleman and Norton [37], that

mapped the solutions of Landau equation to graph identities. They essentially
state: given a conjugate Feynman diagram in position space, an IR singularity
occurs when each line either is on shell, or connects two points with zero space-
time separation (fig. 1.5). This formalizes the physical intuition that on-shell
states dominate the path integral, giving the largest contribution to physical
observables. Off-shell particles are still allowed, but they are effectively seen as
a single, large-momentum dot. Let me note that this picture already suggests
an effective field theory description, with low-energy particles propagating and
high-energy physics collapsed to an effective vertex.
The Coleman-Norton picture allows one to identify the most general graph

affected by IR singularities: for a 1 → N QCD process, this involves a bunch
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Figure 1.5 Coleman-Norton picture in an example graph. Lines and vertices should
be thought of in Minkowski space rather than momentum space. IR singularities occur
when each line is on shell (red, blue) or collapses to a point (grey dot). The picture
does non exhausts the possible configurations.

of off-shell interactions close to the innermost vertex, after which a number
of on-shell emissions recombine into the N -particle final state. To understand
what configurations actually diverge and identify soft and collinear particles,
the following step is introducing infrared power counting, which I now discuss.
Formally, one parametrizes each singular surface in the multi-dimensional

loop momentum space with a set of intrinsic coordinates {ka}. The remaining
integration variables {nb} = {`j} − {ka} are called normal coordinates, and
vanish at the singular surface. To study small perturbations around the sin-
gular configuration, one introduces a power counting parameter λ and rescales
each normal coordinate as

nb → λωbnb , (1.87)

for some power ωb to be determined. The eikonal approximation consists in
dropping subleading powers of λ,
(∏

a

∫
ddka
(2π)d

)(∏

b

∫
ddnb λ

ωbd

(2π)d

) N (pi, ka, λ
ωbnb, xk)

Dα(pi, ka, λωbnb, xk)
∼ λωGI

[
1 +O(λ)

]
,

(1.88)

where the resulting integral has homogeneous scaling in λ and ωG is called IR
degree of divergence, in analogy with the UV counterpart of eq. (1.22).
Practically, finding normal coordinates reduces to identifying independent

loop momentum components that vanish when intermediate lines go on shell.
Because of collinear configurations, this is best done in lightcone coordinates:
for each direction i, one introduces two lightlike vectors ni, ni, representing
parallel and antiparallel propagation relative to i. Each momentum is thus
decomposed along the two vectors and the plane perpendicular to them. I will
use the convention n · n = 2, with further conventions for lightcone vectors
collected in appx. A.1. Given such decomposition, momentum conservation
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and the requirement that intermediate states are on shell when λ → 0 force
the propagator momenta to scale as either

pc ≡ (p+, p−, ~p⊥) ∼ Q(λ2, 1, λ) , or pus ∼ Q(λ2, λ2, λ2) , (1.89)

where Q is the hard momentum scale (for definiteness, the center of mass
energy in e+e− collisions). Eq. (1.89) defines soft and collinear scaling; I
use the subscript us for consistency with the standard SCET notation, where
radiation with such scaling is called ultrasoft.
Off-shell hard lines simply scale as Q(1, 1, 1). Each of the N collinear direc-

tions has its own scaling, but the sum of a soft and a collinear momentum is
still collinear, thus soft radiation is allowed to communicate between different
collinear sectors without spoiling the power counting. This leads to the picture
in fig. 1.6.

Figure 1.6 Generic graph resulting from applying power counting to the Coleman-
Norton picture. At leading power only one collinear line connects the hard blob (black)
to each collinear sector (blue, green) while soft radiation (red) can communicate
between collinear sectors with an arbitrary number of gluon emissions. Light colors
denote connections that do not contribute at leading power.

Equipped with IR power counting, one can systematically tell which singu-
larities contribute at a definite order in λ, and in particular which diagrams
are logarithmically divergent, λ = 0. The degree of divergence of each graph
is determined as a function of the number of lines between the hard, soft and
collinear subgraphs. Phrasing the scaling of a diagram in terms of connections
between the various subgraphs is very convenient, because it gives relations
that hold regardless of the number of loops. Furthermore, it is a fundamental
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step in view of factorization, as shows that one needs to worry about a finite
number of connections between the elements we wish to separate. This oper-
ation is done analogously to the UV case by counting how many powers of λ
each line or vertex brings,

∝ /pc

p2
c

∼ λ−2 , ∝ 1

p2
s

∼ λ−4 , . . . (1.90)

and simplifying the overall sum by means of graph identities. In ref. [38] I did
this for QED. There I found

ωG = 2Sγ + 3Sf +
N∑

i=1

(
sif + Cif + Ciγ − 1

)
, (1.91)

where Sκ, Ciκ and siκ are respectively the number of soft-to-hard, collinear-
to-hard and soft-to-collinear connections, κ is either fermion or photon, and i
labels the collinear sector. Since every collinear subgraph (or jet) has at least
one connection to the hard function, the lower bound for eq. (1.91) is zero,
which corresponds to configurations with no lines connecting soft and hard
subdiagrams, only gauge bosons between the soft subdiagram and jets, and
no further link from jets to the hard subgraph. These are the IR divergent,
leading power configurations, the only ones retained by eikonal approximation.
Among the scaling relations of the kind (1.90) one is rather subtle,

∼ λ0 , ∼ λ . (1.92)

If k is the gauge boson momentum and p the fermion one, the Dirac structure
corresponding to these configurations is

(/p+ /k)γµ/p = −(/p+ /k)/pγ
µ − 2(p+ k)µ/p . (1.93)

The first factor on the right hand side is order λ, because the leading term
1
4p

2
−/n/n = 0; the second factor is order λ0, and for soft emissions from collinear

lines this determines the overall scaling. For collinear emissions from collinear
lines, one can show that the latter structure vanishes upon summing over
physical, transverse polarizations, thus explaining the scaling ∼ λ. This is
an important step to derive eq. (1.91), which then is evident on a diagram-
by-diagram basis only when working in a gauge that explicitly suppresses un-
physical polarizations, like axial gauge. In Feynman gauge, single diagrams
would exhibit a different scaling, but when summing over a gauge-invariant
set, suitable cancellations would result in an extra suppression. Although in
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deriving eq. (1.91) we had QED in mind, the same leading-order picture applies
to QCD. A practical consequence is that fig. 1.6 in Feynman gauge allows for
extra gluon connections between jets and hard subdiagrams, as long as they
carry longitudinal polarization. The effect of these extra emissions is described
by a Wilson line in the respective collinear direction,

Wn = P exp

[
− igs

∫ ∞

0
ds n ·A(ns)

]
, (1.94)

where the path ordering operator P arranges the group generators to preserve
causality. Physically, Wilson lines describe a cluster of collimated radiation
from the point of view of an IR probe: the latter cannot resolve single soft
emissions and collinear splittings, but knows only about the direction of the
energetic parton that originated them. As the discussion above suggests, Wil-
son lines are essential to enforce gauge invariance in the theory. I will try to
elucidate this in sec. 1.3.4 from the SCET perspective.
The fundamental result of factorization theorems is that the soft and collinear

subgraphs in fig. 1.6 can be computed in fact as separate matrix elements,

S(p̂i ·p̂j) = 〈0|
N∏

i=1

Wp̂i |0〉 , Ji(pi ·ni, µ2) = 〈0|Wniψ(0)|pi〉 , (1.95)

and the amplitude in the eikonal limit reduces to their product,

M(pi ·pj , µ2) = H(Q2, pi ·ni, µ2)S(p̂i ·p̂j)
N∏

i=1

Ji(pi ·ni, µ2)

JSi(p̂i ·ni)
. (1.96)

The jet functions J describe collinear radiation7, and their soft limit JS need to
be subtracted to avoid double-counting the overlap between soft and collinear
emissions. In SCET language, the same concept is referred to as zero-bin sub-
traction [39]. The directions p̂i are determined by the external momenta, while
the reference vectors ni are unphysical and their dependence must ultimately
cancel. In sec. 1.3.4, I will describe this through reparametrization invariance.
The hard function H depends on the specific process, but since it lives at the
hard scale Q, it is guaranteed to be calculable in perturbation theory.
Sketching a diagrammatic proof of factorization theorems is largely beyond

the scope of this thesis, but to get a little flavor one can go back to the radiative

7To avoid any confusion, let me note that the word jet function is used here with a different
meaning than in the rest of the thesis. In ch. 2, jets will describe sprays of particles within
a definite angular distance, built with a specific jet algorithm. Here, I use “jet function”
as a synonym “collinear function”.
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amplitude in eq. (1.55) and notice that in the soft limit the rightmost spin
structure simplifies as

ū(p)taγ
µv(p)

[
p̂ · ε
p̂ · k −

p̂ · ε
p̂ · k

]
. (1.97)

The factor in brackets is universal, is independent of the spin of the fermion,
and knows about the kinematics only through the directions p̂, p̂. The emission
of a soft gluon factors with respect to the qq pair production, which has the
same spin structure as the tree-level cross section.
The factorization in eq. (1.96) is one of the greatest theoretical achievements

of QCD, and in the following I will further comment on its importance. To
begin with, it trades one complicated object for a bunch of simpler ones, mak-
ing calculations easier. The universal ingredients describing IR physics are
computed once and for all and reused for different processes by matching them
onto different hard functions. Moreover, in the eikonal limit the phase space
also factorizes, extending this result to cross sections.
Second, although I considered an inclusive process, factorization applies to

a large class of more exclusive observables; one just needs to make sure that
the measurement also factorizes. This is perhaps where factorization proves
itself the most important: in inclusive hadron production, we use the fact that
quarks and gluons would eventually shower into some hadron to overcome the
impossibility to detect free partons. If instead we measure single hadrons or
make protons collide, we cannot rely on this effect and QCD loses its predictive
power. In such cases factorization comes to the rescue, because an analog of
eq. (1.96) is still valid where the inclusive jet function is replaced by an ex-
clusive counterpart describing hadron production or the extraction of a quark
and gluon from a proton. The most common example is given by Parton Dis-
tribution Functions and Fragmentation Functions, that will be the subject of
sec. 2.2.1. These collinear ingredients are non-perturbative, but still universal:
once measured from experiment, they are used in different processes, and the
predictive power of perturbative QCD is restored.
Finally, different ingredients in eq. (1.96) depend on the renormalization

scale. If physical observables do not, it means that the µ dependence of sepa-
rate ingredients is related. This observation provides the key for systematically
implementing resummation, and the applications presented in the following
chapters will illustrate this point.
In this section I tried to make clear that already within QCD systematic

tools exist to study its IR limit. Still, it is a natural question whether rather
then expanding away subleading powers on a diagram-by-diagram basis, an
IR approximation could not be implemented directly in the Lagrangian. If
soft and collinear particles approximately behave as separate entities, why not
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encode this separation at the deepest level of the theory? It turns out that
effective field theories are an ideal language to do so, and in the next section
I will elaborate on this topic.

1.3 Soft Collinear Effective Theory

1.3.1 Effective Field Theories

Effective Field Theories (EFTs) are a powerful and systematic tool to model
physical phenomena in terms of a minimal number of degrees of freedom. The
main idea is that to make physics at an energy scale Q we do not need to
know in detail what happens at Λ� Q. In support of this claim, classical me-
chanics works well for everyday-life systems even if they are made of quantum
constituents; atomic physics does not require the details of QED; but rather
than adding examples, one can just take it as an EFT working assumption.
To be more precise, consider two sets of degrees of freedom

(
{φi}, Q

)
,

(
{ΦJ},Λ

)
,

where Q and Λ denote the order of typical energy scales within the set. EFTs
postulate that the effect of the ΦJ ’s at the scale Q is described by supplement-
ing the Lagrangian with effective interactions

Ca({ΦJ})Oa
[
φi(x)

]
,

where the operators O are functionals of the fields φi while the Wilson coef-
ficients C are dimensionful constants suppressed by powers of the ratio 1/Λ.
In practical cases, one may know what the ΦJ are and use this knowledge to
fix the Wilson coefficients (top-down EFTs), or ignore their nature and just
fit the coefficients to experiment (bottom-up EFTs). However, from the the-
ory perspective the distinction doesn’t really matter, because in both cases we
want a description where only the φi’s are dynamical fields.
The spirit of an EFT is giving up the pretense of having the ultimate theory

of nature in favor of delivering precise predictions through an effective approx-
imate description. In this sense, EFTs are a quite modest approach to physics,
and not surprisingly their popularity is reflorishing in a time where particle
physics does not foresee specific revolutionary discoveries. Still, they provide a
highly valuable tool to make model-independent predictions and systematically
implement approximations in the Lagrangian.
Many introductions to EFTs are available in the literature, see for instance [40,

41]. To show a standard example of EFT at work, I will make an excursion to
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the electroweak sector of the SM and have a look at the Fermi theory of elec-
troweak interactions. Fermi had in mind the nuclear beta decay n→ p+e−+νe,
that corresponds at the fundamental level to a valence down quark converting
into an up quark. Since it violates isospin, it must be driven by weak inter-
action, and in fact in the Standard Model it is mediated at tree level by a
W− boson. However, for illustration purpose it is more convenient to consider
instead the muon decay (fig. 1.7 left), because the initial muon is a well-defined
state in QFT and its large mass mµ = 105.7 MeV allows one to neglect in turn
the electron mass.

⌫µ

e�

⌫e
µ� µ�

e�

⌫e

⌫µ

W�

Figure 1.7 Tree-level muon decay diagrams in the SM (left) and in Fermi theory
(right), where the heavy W boson is replaced by an effective four-point interaction.

The charged electroweak current responsible for the decay is described in
the SM by the interaction term

Lcc = − ig

2
√

2

∑

`

[
ψ` /W

−
(1− γ5)ψν` + ψν` /W

+
(1− γ5)ψ`

]
, (1.98)

where the index ` runs over lepton families. The weak coupling parameter
g = e/ sinϑW is related to the electric charge by the weak mixing angle, and
the spin structure 1

2(1 − γ5) selects fermion states of left chirality, enforcing
maximal CP violation in the charged sector. The corresponding tree-level
amplitude reads

MEW =
ig2

8

gλρ − qµqλ
M2
W

q2 −M2
W

u(p)γλ(1− γ5)u(pµ) v(p)γρ(1− γ5)u(pe) , (1.99)

where pµ, pe, p, p are the momenta of respectively µ, e, νµ and νe and q =
pµ − pe flows through the W propagator. In the rest frame of the muon pµ =

(mµ, 0, 0, 0), and
√
p2
µ = mµ sets the energy available for the process. This is

much smaller than MW ∼ 80 GeV, so a good approximation is

MEW =
−ig2

8M2
W

u(p)γλ(1− γ5)u(pµ) v(p)γλ(1− γ5)u(pe)

[
1 +O

( m2
µ

M2
W

)]
.

(1.100)
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After performing the Clifford algebra taking the spin average, this yields

〈|MEW|2〉 =
g4

32M4
W

p · pµ p · pe
[
1 +O

( m2
µ

M2
W

)]
, (1.101)

and further integrating over the 1→ 3 massless phase space and including the
flux factor 1/(2mµ) one gets the decay width

Γµ =
g4m5

µ

6144π3M4
W

[
1 +O

( m2
µ

M2
W

)]
. (1.102)

This tree-level, approximate prediction is already in good agreement with ex-
periment, because the EW coupling constant is small, the electron mass tiny,
and neglected W mass power corrections have weight ∼ 10−6 from the ratio in
brackets.
The same prediction was in fact obtained within the Fermi model of weak

interactions, more than thirty years before the formulation of the SM. Fermi
postulated a four-point contact interaction between leptons and neutrinos, that
for our case of interest is described by

LF =
GF√

2
ψνµγ

λ(1− γ5)ψµ ψνeγλ(1− γ5)ψe + h.c. , (1.103)

yielding the amplitude

MF =
−iGF√

2
u(p)γλ(1− γ5)u(pµ) v(p)γλ(1− γ5)u(pe) . (1.104)

Carrying on the same calculation again one concludes

Γµ =
G2
F m

5
µ

192π3
(1.105)

and by looking at eq. (1.103) identifies the Fermi constant,

GF =
g2

4
√

2M2
W

. (1.106)

From the point of view of the Standard Model, Fermi theory is an EFT where
the weak gauge bosons have been integrated out. The interaction Lagrangian
in eq. (1.102) consists of an four-fermion effective operator, with GF its Wilson
coefficient. The role of high-energy scale Λ is played by MW , and the Wilson
coefficient (1.106) is suppressed by two powers of the scale. This is inevitable,
because the mass dimension 4 · 3

2 = 6 of the operator exceeds by two units
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the mass dimension of a Lagrangian. The effective theory works well as long
as we consider processes at energies Q�MW and power corrections Q2/M2

W

are under control. This happens automatically for the muon decay where
Q = mµ is fixed, but in a scattering process (e.g. eν → eν) would depend on
Q =

√
s, with the description gradually losing accuracy when approaching the

W resonance.
A point to stress is that the Lagrangian (1.102) fails to provide a correct

theory of the EW interactions not only because it is disproved by data, but
even a priori because it lacks theoretical consistency. To name two major
problems, it is not unitary nor renormalizable. Ultimately, the issues come
from the coupling constant GF being dimensionful; in other words, the theory
allows for interactions involving too many fields. In the following I will try to
clarify this point, focusing on the issue of renormalizability.
It is interesting to look back at the QCD UV superficial degree of divergence

of eq. (1.23), ω = 4− 3
2Eq−Eb, and notice that the coefficients of the external

lines Ei are exactly the mass dimensions of the respective fields. This means
that logarithmically divergent correlators (ω = 0) have mass dimension four.
Four is also the mass dimension of the Lagrangian, and in presence of only
dimensionless constants, the mass dimension of operators: provided that the
Lagrangian contains all possible dimension-4 operators compatible with the
symmetries of the theory, every logarithmically divergent correlator is therefore
guaranteed to match a counterterm. What happens in the case of (1.102)?
Instead of eq. (1.23), we would find

ωG = 4 + 2V4 −
3

2
Ef , (1.107)

where V4 is the number of effective four-fermion vertices in the diagram G.
Inserting two four-fermion vertices generates logarithmically divergent six-
fermion correlators, but the theory lacks six-point interactions to build the
corresponding counterterms. We could then try to fix the problem by supple-
menting the Lagrangian with six-fermion vertices, but this would not suffice8

if V4 = 3. In brief, as soon as the theory involves just one operator of mass
dimension higher than four, we are forced to include in the Lagrangian infinite
operators with arbitrarily high dimension. This not only largely complicates
the theory, but also destroys its predictive power, because we need infinite
measurements to fix all the Lagrangian parameters.
What condemns Fermi theory to fail as ultimate description of nature makes

in fact perfect sense according to the logic of EFTs. In general, effective theories

8It would actually make the problem worse, as the power counting formula would get an
additional term proportional to V6.
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do allow for operators with arbitrary mass dimension D,

LEFT = Lkin[φi] +

∞∑

D=4

LD[φi] , (1.108)

but simply because of dimensional analysis these are suppressed by more and
more powers of the scale of high-energy physics,

LD[φi] =
∑

a

ca

ΛD
Oa[φi] , (1.109)

where I introduced the reduced mass dimension D = D − 4 and redefined the
Wilson coefficients Ca → Λ−Dca to make their scaling explicit. Either mul-
tiple insertions of operators D > 0 or single insertions of higher-dimensional
operators enhance the suppression by bringing additional powers of 1/Λ into
the game (fig. 1.8). Truncating the series in 1/Λ at some D delivers a perfectly
consistent theory, because this causes violation of unitarity, renormalizability,
etc. only at order D + 1. Fermi theory at power 1/M2

W allows for only one
four-point vertex, and eq. (1.107) predicts only four-point divergent correla-
tors. This generalizes at every power [42]. Two four-point insertions generate
O(1/M4

W ) corrections, but at this point we should include anyway dimension-8
operators in the Lagrangian, that also contribute the same power.

2 4 2 2 2

Figure 1.8 Example diagrams at power 1/M6
W in Fermi theory. Both higher-

dimensional operators (left) or multiple insertions (right) increase the power. The
numbers on vertices are the reduced dimensions of the corresponding operators.

In conclusion, EFTs provide a systematic way to implement an approxi-
mate theory in presence of a hierarchy of energies. Whether the high-energy
completion of the theory is known or not, one can follow the steps:

1. Determine the degrees of freedom φi of the theory. These are described
by dynamical fields.

2. To reach power accuracyD, list all the independentD-dimensional opera-
tors compatible with the symmetries of the φi’s. The effective Lagrangian
is the sum of these operators weigthed by Wilson coefficients.
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3. Compute a set of independent order D processes within the EFT. Com-
parison with experiment (bottom-up) or the high-energy completion (top-
down) allows one to fix the Wilson coefficients.

This grand plan can be challenging in practice. Finding a basis of independent
operators for a given EFT is nontrivial [43, 44]: higher dimension operators
involve higher powers of fields and their derivatives, and integration by parts,
equations of motion and symmetries of the theory may relate operators in
a subtle way. The problem is particularly relevant for bottom-up EFTs like
the Standard Model Effective Field Theory, where a basis is known up to
dimension 8 but an efficient determination of the operators is still an open
problem [45–49]. In addition, the Wilson coefficients could be in general too
many to be fixed from a limited number of experiments.

1.3.2 Degrees of freedom in SCET

Soft Collinear Effective Theory applies (or rather, extends) the general ideas
of EFTs to describe the IR limit of QCD in this intuitive language. It was first
formulated in refs. [50–53] using the label formalism and later complemented in
refs. [54–56] with the alternative (but equivalent) position-space formulation.
Besides dedicated reviews, the subject is also covered by lecture notes, see for
instance [57].
The main difference from the example of Fermi theory is the nature of the

degrees of freedom of the EFT. The dynamical fields of SCET are the IR de-
grees of freedom of QCD, while high-energy QCD (as the rest of the SM) is
described through effective interactions: one does not integrate out a particle,
but high-virtuality dynamical modes. The top-down process of building SCET
from QCD requires then the additional step of identifying and isolating such
modes. An interesting consequence is that the quantity suppressing higher-
dimensional SCET operators is not a mass scale 1/Λ, but the dimensionless IR
power counting parameter λ. Moreover, the relevant degrees of freedom, effec-
tive operators and power counting parameters vary with the physical process.
To describe an event invoving N well-separated directions ni, SCET intro-
duces N different sets of dynamical collinear modes. The effective operators
involve fields along various ni and depend on the high-energy QCD dynamics
through the large momentum ωi flowing along these directions. Schematically,
the Lagrangian reads

LSCET = Lkin[φni ] +
∑

a

(∏

j

∫
dωj

)
Ca
(
{ω}

)
Oa[φni ]

(
{ω}

)
, (1.110)

with the standard product between Wilson coefficients C and operators O re-
placed by a convolution. The precise form of the convolution depends on the
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operator and will be discussed in sec. 1.3.4. Rather than a single effective
theory of QCD, SCET can be thought of as a collection of EFTs for differ-
ent QCD processes: each application to phenomenology requires identifying
the relevant modes and setting up a dedicated analysis, within the general
framework provided by the theory.
Ultimately, what determines the relevant directions and modes is the type

and energy of the colliding particles or the measurement imposed on the final
state. To illustrate this, I will consider a simplified picture for three QCD
processes of main relevance to this thesis (fig. 1.9) and argue for the modes
that arise there. These processes involve jets, collimated sprays of final-state
hadrons. The precise definition will be given in sec. 2.1, but for now one can
roughly think of a collection of final-state particles within a cone of aperture
R centered in the collision vertex, collectively described as a single spray of
radiation moving along the jet axis.

#

kT

Figure 1.9 Two processes related to the ones considered in this thesis. In-jet frag-
mentation (left) is described by one collinear mode along the direction of the frag-
menting hadron (blue) and – with a standard jet definition – soft radiation (red).
Dijet production (right) involves one collinear mode along each of the two jets, and
soft modes that communicate between the two jets: measuring thrust or rather the
relative angle of the jet pair changes the relative scaling of soft and collinear modes.

Consider first fragmentation, the process of hadron production from a high-
energy quark or gluon, and imagine measuring the transverse momentum kT
between the hadron and the hard particle producing it. I will take the relative
transverse momentum to be much larger than the hadronization scale, kT ∼
ω � ΛQCD, and roughly the same size as the energy of the parton ω, since we
want the perturbative description to be valid. Of course one cannot directly
measure kT by detecting the initiating parton, but we can reconstruct a jet
and use the direction of the jet as a proxy for the direction of the parton (I
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will do this explicitly in ch. 3). There is only one relevant direction in the
problem, the one of the hadron relative to the parton/jet. To describe low-
energy fluctuations induced by IR QCD dynamics around this direction, SCET
introduces the collinear mode

pc = (p+, p−, p⊥) ∼ ω(λ2, 1, λ) , λ =
ΛQCD

ω
, (1.111)

where the lightcone decomposition is along the direction of the parton/jet.
Here I defined the power counting parameter λ with respect to ω, but I could
have used kT as well, as it is only indicative of the parametric size of the
scaling. One can argue for eq. (1.111) as follows: in the rest frame of the
hadron, fluctuations are isotropic and of the typical size of the hadronization
scale, p ∼ (ΛQCD,ΛQCD,ΛQCD). However, since the initiating parton carries
large energy, in the frame of the collision the hadron will be highly boosted
along the direction of parton, ∼ (0, ω, 0⊥). In lightcone coordinates, a boost
with rapidity y reads p± → p±e

∓y, hence eq. (1.111).
On the other hand, we know that QCD has also IR divergences corresponding

to homogeneous momentum scaling, which advocate for the soft mode

ps ∼ ω(λ, λ, λ) , λ =
ΛQCD

ω
. (1.112)

In absence of additional constraints, the scaling with a single power of λ natu-
rally follows from ΛQCD setting the scale for IR physics, and the EFT featuring
this hierarchy of modes is referred to as SCETII. Fig. 1.10, left panel, illus-
trates the corresponding mode picture in the lightcone plane. Soft and collinear
modes lie on the same hyperbola, which is a line of constant virtuality λkT ,
while the hard mode has virtuality ω ∼ kT ; points on the same hyperbola are
connected by a boost.
The scaling in eq. (1.112) contrasts with the one of hadron production shown

in eq. (1.89) in the diagrammatic language. The difference is due to the number
of collinear directions being fixed in that case, as the next example will help
clarify.
To show an example of SCETI scaling, one can take dijet production in

e+e− collisions, meaning that we consider events where the number of jets is
limited to two. There is a natural way to do so, namely considering events
where the thrust defined in eq. (1.53) is T ∼ 1. The natural power-counting
parameter is therefore 1− T , and SCET introduces the two collinear modes

p(i)
c ∼

√
s (τ2, 1, τ)(i) , i ∈ {1, 2} , τ = 1− T . (1.113)

The two sectors employ in principle a different lightcone decomposition in
terms of (n(i), n(i)). In practice, since the two directions are back to back up
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to power corrections, it suffices to have a single set (n, n) with one of the jets
along the anti-collinear direction,

pc ∼
√
s (τ2, 1, τ) , pc ∼

√
s (1, τ2, τ) . (1.114)

This choice exploits reparametrization invariance, the fact that changing ref-
erence vectors should not affect the theory up to power corrections. In the
leading-power description, the initial qq pair produces the dijet and further
splittings are not allowed to carry large momentum away from these direc-
tions: an additional hard prong would result in a third jet. This forces the
soft mode to take the dominant scaling that does not alter the collinear power
counting in eq. (1.114),

pus ∼
√
s (τ2, τ2, τ2) . (1.115)

To emphasize the different scaling with respect to eq. (1.112), it is common to
call this modes ultrasoft. The central panel of fig. 1.10 shows the mode picture
for this case: ultrasoft and collinear modes lie on different hyperbolae, as they
are hierarchically separated in virtuality (τ

√
s� τ2√s). This relative scaling

defines the SCETI regime.
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Figure 1.10 Mode picture in the lightcone plane in the three cases discussed in the
text. The central configuration defines SCETI, while the left and right panels show
instances of SCETII. Black dots represent non-dynamical, hard modes.

To emphasize the fundamental role played by the measurement in deter-
mining the mode picture, let me consider a third example. Take again dijet
production in e+e− collisions, but now measuring the relative angle ϑ between
the two jets (defined with respect to π, so the dijet pair is back to back if ϑ = 0).
This quantity is assumed small for factorization to hold, and determines the
power counting of collinear modes,

pc ∼
√
s (ϑ2, 1, ϑ) , pc ∼

√
s (1, ϑ2, ϑ) . (1.116)
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By assumption, measuring ϑ displaces the jets from the back-to-back configu-
ration of a small but finite amount. Fixing the angle corresponds to measuring
the relative transverse momentum of the jets, as the two variables are propor-
tional for small angles. Since transverse momenta are additive, soft radiation
contributes to the measurement only if its transverse component has the same
size as the collinear one

ps ∼
√
s (ϑ, ϑ, ϑ) , (1.117)

so we are back to the SCETII description (fig. 1.10, right). In summary, when
measuring thrust the cross section is dominated by back-to-back jets, and the
scaling of soft radiation is suppressed not to spoil this configuration. Instead,
measuring the angle pins soft radiation to be energetic enough to shift the jets
slightly away from the back-to-back limit.
In the examples above, the derivation of the modes was entirely driven by

physical intuition, and this is often how such analyses are set up. Since physical
intuition is certainly not infallible and modes proliferate in presence of mul-
tiple scales, one may desire more robust checks. One possibility is relying on
complementary information from the diagrammatic approach; another power-
ful tool is the method of regions [58–60]9. In addition, Renormalization Group
Evolution allows nontrivial consistency checks, since it provides all-order pre-
dictions on the scale dependence of the factorization ingredients that can be
checked against fixed-order results. Finally, nothing prevents one from trying
adding more modes in the analysis, as long as the overlap with existing modes
is removed. If a newly-introduced mode overlaps entirely with existing ones,
the former does not describe any physics. Throughout this thesis I will assume
the validity of the mode picture derived by physical arguments. Consistency
under RGE and factorization will provide the framework with robust checks
at the perturbative order and resummation accuracy I consider, but I will not
attempt at proving the all-order validity of our descriptions.
Before moving to the SCET Lagrangian, let me note that SCETI and

SCETII describe the most common physical situations, but are not exhaustive.
Extensions exist to account for e.g. Glauber gluons [61, 62] or modes with in-
termediate virtuality [63]. The phenomenological applications presented here
focus on transverse momentum dependence, and can be thought of as SCETII

applications.

9In brief, this technique expands QCD integrands at all orders in ratios of the physical
scales, decomposing the integral into contributions from single modes. Misidentifying
modes would originate a mismatch between QCD integrals and the sum of the regions.
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1.3.3 Building the SCET Lagrangian

Deriving the SCET Lagrangian requires one to define the dynamical fields
and determine their mutual interactions, starting from full QCD. This step
is not present in the standard EFT construction and has to be done prior to
looking for effective operators, which encode instead the interaction of soft and
collinear fields with hard QCD interactions and the EW sector of the Standard
Model. One needs to

• identify from QCD fields components with definite scaling;

• integrate out hard-scaling, off-shell terms;

• depending on the order in the EFT expansion, expand away subleading
terms;

• disentangle large- and small-scaling momentum component through a
multipole expansion.

This task is complicated by the fact that the symmetries of the theory are
hidden at intermediate stages of the construction. On the other hand, the final
result has the advantage of having amplitude factorization explicitly written in
the Lagrangian. I will go through this process without presenting calculations
in detail, but try to show the main steps and ingredients of the leading-power
derivation. Extending the construction beyond leading power and applying
it to a variety of processes is a highly active topic, but beyond the scope
of the thesis. I will just mention that the framework (both in SCET and
diagrammatic approach) is mature enough to produce the first next-to-leading
power resummed predictions for QCD [64–67].
It is a common choice in the literature to explicitly derive the SCETI La-

grangian rather than the SCETII counterpart, since the construction for ul-
trasoft scaling is more general. In fact, one can derive SCETII from further
expanding SCETI: because of the harder scaling of soft radiation, some of the
QCD interactions that are integrated out in the former are kept in the lat-
ter (but never the opposite). I will describe the SCETI derivation, but point
out differences at intermediate stages. I will focus for brevity on quark-gluon
interactions, which still contain most of the complexity of the full analysis.
As first step, one replaces the QCD fields with the sum of their (ultra)soft

and collinear counterparts,

ψ(x)→
∑

i

ψni(x) + ψus(x) + . . .

Aµ(x)→
∑

i

Aµni(x) +Aµus(x) + . . . , (1.118)
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which affects the covariant derivative as well,

Dµ → ∂µ − igs
∑

i

Aµni(x)− igsAµus(x) + . . . . (1.119)

The replacement does not involve hard-scaling fields, since these are integrated
out and are described by the Wilson coefficients instead. The dots denote sub-
leading corrections that would mix different fields already at this stage. From
the point of view of one collinear direction, different collinear sectors appear
as hard radiation (the sum of two momenta collinear to different directions
has hard scaling) and their mutual interactions are always integrated out, so
additional sectors are just replicas. For this reason, from now on, I will restrict
the analysis to only one collinear sector, labeled by its reference direction n.
The corresponding fermion Lagrangian has the form

Lψ → iψus /Dusψus + gsψus /Anψus + iψn /Dψn + iψus /Dψn + iψn /Dψus ,
(1.120)

where the ultrasoft covariant derivative is

Dµ
us = ∂µ − igsAµus . (1.121)

The way terms in eq. (1.120) are organized looks arbitrary at this stage, but
will be justified by the manipulations that I will introduce shortly.

(1,�2,�)(�2,�2,�2)

forbidden allowedallowed (SCET I) 
forbidden (SCET II)

Figure 1.11 Examples of quark-gluon vertices involving different combinations of
(ultra)soft (red) or collinear (blue) fields. Configurations where momentum conser-
vation forces one of the lines off shell are integrated out from the Lagrangian.

To begin with, many interactions in eq. (1.120) are explicitly incompatible
with power counting, namely momentum conservation at vertices forces one of
the lines to be off shell. Fig. 1.11 shows examples for the quark-gluon vertex,
but this is a kinematical property that applies regardless of the nature of fields.
Off-shell configurations are safely integrated out the SCET Lagrangian; this
allows us to drop from eq. (1.120) every term that contains one and only one
collinear field, as its large momentum component is unmatched at the vertex,

Lψ → iψus /Dusψus + iψn /Dψn + iψus /Dn ψn + iψn /Dn ψus , (1.122)
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where

Dµ
n = ∂µ − igsAµn . (1.123)

In SCETII we can also drop interactions that contain one and only one soft
field, because its + component spoils collinear power counting. An interesting
consequence is that in this regime only two terms survive,

LII
ψ → iψs /Ds ψs + i ψn /Dnψn : (1.124)

at least in the fermion sector, SCETII exhibits soft-collinear factorization even
at this preliminary stage!
The following step is assigning a scaling to fields, which allows to tell leading

from subleading interactions. This is straightforward for bosons, and can be
argued by looking at the QCD propagator in a generic Feynman gauge,

∫
d4x eip·x〈0|Aµ(x)Aν(0)|0〉 =

i

p2

[
gµν − (1− ξ)p

µpν

p2

]
, (1.125)

and comparing the two sides of the equations in the ultrasoft and collinear
limits. For instance, the collinear measure scales as λ−4, collinear squared mo-
mentum as λ2, so we conclude A+

nA
−
n ∼ A−nA

+
n ∼ A2

n,⊥ ∼ λ2 . This reasoning
shows that gluon fields take component by component the same scaling of the
corresponding momenta,

Aus ∼ (λ2, λ2, λ2) , An ∼ (λ2, 1, λ) , As ∼ (λ, λ, λ) , (1.126)

consistent with the fact that covariant derivatives should be homogeneous.
Power counting follows the same logic for (ultra)soft fermions, but is less

immediate for collinear ones, as different spin components can in principle
scale differently depending on their orientation with respect to the reference
vector. One introduces the operators

Pn =
/n/n

4
, Pn =

/n/n

4
, (1.127)

which being idempotent and summing up to unity provide a projection onto
two complementary spin subspaces. Since the Dirac equation in lightcone
components reads

(
/np− + /np+ + /p⊥

)
u(p) = 0 , (1.128)

it follows from collinear scaling that /nu(pn) ∼ λ while /nu(pn) ∼ 1. This
means from the definition 1.127 that Pn selects the leading spin components
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over external spinors, while Pn projects them out. One thus defines10

ξ̂n(x) = Pn ψ(x) , ϕn(x) = Pn ψ(x) , (1.129)

so that

ψn(x) = ξ̂n(x) + ϕn(x) , (1.130)

where the second field carries spin components which are suppressed on exter-
nal, on-shell states. Analogous to eq. (1.125), it is now possible to determine
the scaling for the leading spin component from the collinear expansion of the
fermion propagator,

∫
d4x eip·x〈0|ξ̂n(x)ξ̂n(0)|0〉 =

i/p

p2
∼ i/n

2n · p+
p2⊥
n·p

, (1.131)

ultimately concluding

ξ̂n ∼ λ , ψus ∼ λ3 , ψs ∼ λ
3
2 . (1.132)

Having derived the scalings in eqs. (1.126) and (1.132) one can isolate leading
interactions in eq. (1.122). Rather than in the Lagrangian, we actually seek
the leading terms in the action

S =

∫
d4xL(x) . (1.133)

The difference does not matter in standard EFTs, but is relevant in SCET,
where coordinates have their own scaling because of the dynamical nature of
the degrees of freedom. Ultrasoft and collinear phase space yield respectively
λ−8 and λ−4; the former compensates for the higher suppression of ultrasoft
fields and saves interactions among only such fields. Terms mixing ultrasoft and
collinear fields receive the collinear enhancement λ−4, as the sum of collinear
and soft momenta has still collinear scaling: this allows for dropping the last
two terms in eq. (1.122), which feature ψus among collinear fields. Besides
purely ultrasoft interactions, the interesting term left is

Ln = ψni /Dψn = iψn

(
/n

2
n ·D +

/n

2
n ·D + /D⊥

)
ψn , (1.134)

where it is now more convenient to expand the covariant derivative in terms of
lightcone components, rather than type of field (D still contains both ultrasoft
10The hat on the leading spin component ξ̂n is convenient in label formalism to leave the
symbol ξn free in view of a future transformation.
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and collinear gluons). Further employing the spin decomposition of eq. (1.130)
we can rewrite this as

Ln = i

(
ξ̂n

/n

2
n·D ξ̂n + ϕn /D⊥ ξ̂n + ξ̂n /D⊥ ϕn + ϕn

/n

2
n·Dϕn

)
, (1.135)

which is still completely unexpanded. Terms involving the subleading spin
component ϕn are not in directly suppressed by power counting, but the equa-
tion of motion (1.128) causes the corresponding fields to never appear as ex-
ternal states. Therefore, ϕn does not propagate, but still contributes to the
Lagrangian via effective interactions. To integrate it out, one could perform
a matching calculation in a QCD process along the lines of the Fermi theory
example, but at leading power it suffices to solve the equations of motion

δLn
δϕn

− ∂µ
δLn

δ(∂µϕn)
= 0 (1.136)

for the subleading spin component

ϕn =
1

n·D
/D⊥

/n

2
ξ̂n , (1.137)

and plug the solution back in the Lagrangian,

Lnξ = i ξ̂n

(
n·D + /D⊥

1

n·D
/D⊥

)
/n

2
ξ̂n . (1.138)

At this stage of the derivation, the Lagrangian contains only dynamical
SCET fields with a definite scaling in position space. As QFT preferentially
uses momentum-space Feynman rules, the next step is providing a consistent
and general translation of the picture in terms of momenta. To simplify the
issue here, consider Fourier transforming the derivative of a collinear field,

∫
d4x ∂µξn(x) eip·x =

∫
d4x (ipµ)ξn(x) eip·x , (1.139)

and note that this operation reinstates some subleading terms through the
small momentum components of the collinear momentum p. It is preferable to
set up a formalism where we can separately address small and large momentum
components without the need of further expansions. A solution is carrying out
a position-space multipole expansion, that would naturally lead to position-
space Feynman rules. The alternative is provided by performing a multiple
expansion directly in momentum space: this is called label formalism, which
I’ll briefly describe.
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The idea, inspired by Heavy Quark Effective Theory [68], is separating mo-
menta into a large-scaling label momentum p` and a residual order λ2 pertur-
bation r around it,

pµ = pµ` + rµ , p` ∼ Q(0, 1, λ) , r ∼ Q(λ2, λ2, λ2) , (1.140)

such that the small component of label momenta is exactly zero. The space
(p−, p⊥) of label momenta is discretized into a two-dimensional grid, with the
physical case retrieved in the continuum limit, while the space of residual
momenta is unconstrained (fig. 1.12). The grid spacing in the two directions
reflects the power counting of the respective components. We can imagine
residual momenta to live in a box centered in the node of the grid, labeled by
a pair of indices `; to address a point in momentum space, we first specify the
box through p`, then move within the box by a small amount r. Momentum

p?

p�

⇠ Q�

⇠ Q

p`
r

⇠ Q�2

Figure 1.12 Label formalism. Large-scaling momentum directions are discretized,
and a four-dimensional box assigned to each node of the grid. Every point in momen-
tum space is specified by a node (label momentum p`) and a small shift within the
corresponding box (residual momentum r).

integration is now performed by summing over boxes and integrating within
the box,

∫
d4p

(2π)4
→
∑

` 6=0

∫
d4r

(2π)4
. (1.141)

That one integrates on an infinite domain on each node is a possible source
of confusion, but the paradox is solved by taking the λ → 0 limit before the
continuum limit, so every box shrinks to a point. In other words, we can
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think of all the contribution to the integral coming from a neighborhood of the
node with size ∼ Qλ2. The box centered in the grid origin and labeled ` = 0
should not enter the integral over collinear momentum, because if the large
components vanish the momentum scaling is in fact ultrasoft.
With this setup, one can separate forward- and backward-propagating modes

in the collinear field,

ξ̂n(x) = ξ̂+
n (x) + ξ̂−n (x) , (1.142)

so that the + term creates particles and the − one annihilates antiparticles,
and apply the label/residual decomposition (here represented by a arrow) to
their Fourier transformed, momentum space counterparts,

∫
d4x e±ip·x ξ̂±n (x) = ξ̃±n (p)→ ξ̃±n,p`(r) . (1.143)

When transforming back to position space, using eq. (1.141), one can explicitly
solve the integral over the residual momentum and get

ξ̂±n (x) =
∑

6̀=0

e∓ip`·xξ±n,p`(x) (1.144)

where the position-space fields

ξ±n,p`(x) =

∫
d4r

(2π)4
e∓ir·xξ̃±n,p`(r) (1.145)

still depend explicitly on the large momentum component, while the argument
x contains only residual dependence. It is convenient to express the Lagrangian
in terms of these collinear fields, rather than the hatted counterparts; this is
because one wants the dependence on the hard momentum scale to be non-
dynamical. After recombining the ± terms,

ξn,p`(x) = ξ+
n,p`

(x) + ξ−n,−p`(x) , (1.146)

one defines the label momentum operator whose action on a field extracts its
large component,

Pµ ξn,p`(x) = pµ` ξn,p`(x) . (1.147)

The relations between the hatted fields and the new ones become

ξ̂n(x) = eiP·xξn(x) , ∂µξ̂n(x) = eiP·x(−iPµ + ∂µ) ξn(x) , (1.148)
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where

ξn(x) =
∑

6̀=0

ξn,p`(x) . (1.149)

The expressions (1.148) come in handy because they are formally identical in
the limit of continuum label momenta.
The same manipulations apply to collinear gluon fields, and after dropping

subleading terms, the collinear Lagrangian (1.138) reads in terms of the rede-
fined fields

L(0)
nξ = ie−ix·P ξn

(
n ·D + /Dn⊥

1

n · Dn
/Dn⊥

)
n

2
ξn , (1.150)

where the collinear covariant derivative

Dµn = −iPµ − igsAµn (1.151)

should not be confused with the object defined in (1.123). Eq. (1.150) is
the SCETI leading power collinear fermion Lagrangian. It has homogeneous
scaling λ4 and involves soft–collinear interactions through the full covariant
derivative n · D. The latter was not altered by rewriting the Lagrangian in
terms of ξn, since P ·n = 0. The SCETII Lagrangian is similar, but as already
noted the soft gluon field would not appear there.
For brevity I will not investigate the gluon sector, which undergoes the same

steps: after integrating out off shell terms, expanding subleading ones away,
and introducing label momenta, the leading power collinear gluon Lagrangian
in Feynman-’t Hooft gauge yields

L(0)
ng =

1

2g2
s

tr
([
Dµ,Dµ

]2)− i tr
([
Dµus, Anµ

]2)− 2cntr
([
Dµus,

[
Dµ, cn

]])
,

(1.152)

where the leading-power covariant derivative and its ultrasoft analogs are

Dµ =
nµ

2
n ·D +

nµ

2
n · Dn +Dµn⊥ ,

Dµus =
nµ

2
n ·Dus − i

nµ

2
n · P − iPµ⊥ . (1.153)

Besides the collinear quark and gluon terms, the final SCET Lagrangian would
contain an ultrasoft term,

L(0)
SCET = L(0)

nξ + L(0)
ng + L(0)

us . (1.154)
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Because of homogeneous scaling of (ultra)soft radiation, the latter is just a copy
of the original QCD Lagrangian where every field is replaced by its (ultra)soft
counterpart.
From the Lagrangian one can systematically derive SCET Feynman rules.

The beauty of this construction is that every vertex and propagator comes
with a definite scaling, so there is no need for further expanding. The price we
pay is that some of the rules look fairly cumbersome compared to the QCD
analog. In the example of a collinear gluon-fermion vertex,

p p0

µ, a

= igst
a

[
nµ +

n · p′ γµ⊥/p⊥ + n · p /p′⊥γ⊥µ − /p′⊥/p⊥n
µ

n · p n · p′
]
/n

2
, (1.155)

and there is a similar collinear vertex involving two gluons. In practical sit-
uations, it is often advantageous to compute SCET observables by replacing
collinear fields with the full QCD analog in the SCET matrix elements, which
(at least at leading power) is proven to give the same result. This does not
mean that SCET was derived for nothing, and I will show some of its useful
properties in the next section. In particular, if one accepts the EFT descrip-
tion, then factorization follows almost automatically.

1.3.4 Symmetries, operators and factorization in SCET

One of the main advantages of EFTs is that they are systematic. In the past
section I showed how dynamical fields and their mutual interactions are deter-
mined, which (for a given scaling of modes) is done once and for all. Equipped
with this, one can select a specific process and describe the interactions of soft
and collinear degrees of freedom with the rest of the SM via effective opera-
tors. In the example of dijet production from e+e− collision of sec. 1.3.2, it
is evident from tree-level kinematics that there must be some operator of the
kind

O ≈ ξn Γ ξn (1.156)

responsible for producing the qq pair showering in the dijet. Now given the
scalings in eq. (1.126) and eq. (1.132), it is clear that every other combination of
fields compatible with basic kinematics11 would be power suppressed compared
to (1.156): this already concludes that at leading power in λ hard interactions
are described by tree-level kinematics at every perturbative order!

11Here we just need that two particles cannot annihilate in a single massless one.
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In order to make the search for operators systematic and understand (for
instance) how the Γ structure in eq. (1.156) looks like, one needs to study
the symmetries of the theory. These make it possible to constrain the form
of effective operators and find a complete set for the process of interest. Ulti-
mately, one identifies gauge-invariant building blocks that automatically fulfill
this task.
Besides spin symmetry, parity and charge conjugation, in which SCET does

not differ from full QCD, the symmetries of the former are gauge invariance
and reparametrization invariance. Gauge symmetry is of course inherited from
QCD, but looks different from the point of view of the dynamical fields: differ-
ent sectors transform under subsets of the original SU(3). Reparametrization
invariance deals instead with the freedom in the choice of reference vectors,
related to the Lorentz invariance of the original theory. I will briefly examine
the two in turn.
In the EFT, symmetries apply in general order by order in the power-

counting expansion. The general gauge transformations in eq. (1.4) mix soft
and collinear fields of SCET and dynamical fields with hard interactions that
we integrated out, so the full SU(3) cannot be an explicit symmetry of the
effective theory. One should instead look for those subsets of transformations
that preserve power counting within each sector. In SCET I, these are collinear
gauge transformations (one for each collinear sector),

Un :





ξn(x) → Un(x)ξn(x)

Aµn(x) → Un(x)
[
Aµn(x) + i

gs
Dus

]
U †n(x)

ψus(x) → ψus(x)
Aµus(x) → Aµus(x)

(1.157)

and ultrasoft gauge transformations,

Uus :





ξn(x) → Uus(x)ξn(x)

Aµn(x) → Uus(x)Aµn(x)U †us(x)
ψus(x) → Uus(x)ψus(x)

Aµus(x) → Uus(x)
[
Aµus(x) + i

gs
Dus

]
U †us(x)

(1.158)

Collinear gauge transformations act essentially as a copy of the full gauge
group on the collinear sector, but they do not impact ultrasoft fields, as they
would spoil their power counting. In other words, the long-wavelength ultrasoft
modes do not resolve the short-distance collinear gauge transformations. For
the same reason, transformations in different collinear sectors do not talk to
each other. Contrarily, the small components of collinear fields are affected
by ultrasoft transformations, consistent with the two fields dialoguing in the
collinear Lagrangian. This does not happen with the soft scaling of SCETII.
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It is convenient at this point to introduce the collinear Wilson line operator
(here in position space),

Wn(x) = P exp

(
igs

∫ 0

−∞
ds n ·An(ns+ x)

)
, (1.159)

which alternatively can be implicitly defined as

in · DnWn(x) = 0 , W †nWn = 1 , (1.160)

featuring the collinear covariant derivative (1.151). This should be understood
in the sense of label formalism: the dependence on the coordinate (x) is ob-
tained by Fourier transforming the residual components, but Wn still depends
on the label momentum. The definition (1.160 allows for rewriting the inverse
derivative operator appearing in the quark collinear Lagrangian (1.150 as

1

n · Dn
= −Wn

i

n · PW
†
n (1.161)

and the Lagrangian itself as

L(0)
nξ = e−ix·P ξn

(
in ·D + /Dn⊥Wn

1

n · PW
†
n /Dn⊥

)
n

2
ξn . (1.162)

Under SCET gauge transformations,

Un : Wn(x)→ Un(x)Wn(x) ,

Uus : Wn(x)→ Uus(x)Wn(x)U †us(x) . (1.163)

Wilson lines have therefore a fundamental role in enforcing gauge invariance:
in the case of eq. (1.162), they compensate for the terms generated by trans-
forming the transverse covariant derivatives. In the EFT, Wilson lines act
as gauge proxies for the fields that are integrated out, reinstating the correct
factors U,U † which these would generate in the full theory.
The second important SCET symmetry is reparametrization invariance (RPI).

This states that a change of reference basis (n, n) will not alter the Lagrangian
as long as it does not spoil the power counting of fields, consistent with the
physical intuition that collinear and anticollinear kinematic regions do not have
exact bounds. There are three different classes of RPI transformations (here
in infinitesimal form),

i :

{
nµ → nµ + δµ⊥
nµ → nµ

ii :

{
nµ → nµ

nµ → nµ + εµ⊥
iii :

{
nµ → (1 + α)nµ

nµ → (1− α)nµ

(1.164)
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depending on the parameters δ⊥, ε⊥ and α. The ⊥ subscript specifies that
only the two perpendicular components of these vectors are nonzero, δ⊥ · n =
δ⊥ · n = 0 (and similarly for ε), so the group of RPI is parametrized by five
real numbers. The idea is that the arbitrary choice of reference direction broke
down the explicit Lorentz invariance of the theory, and RPI reinstates the
missing degrees of symmetry. The request that eq. (1.164) does not alter the
scaling of SCET fields fixes the scalings

δ⊥ ∼ λ , ε⊥ ∼ λ0 , α ∼ λ0 . (1.165)

The first two transformations change the direction of the reference vectors
in the transverse lightcone plane. The scaling of the shift in n is such to
preserve the scaling of label momenta. The third transformation combines the
first two effects with a boost along the lightcone direction; in particular, it
reduces to a boost with the standard choice of back-to-back reference vectors.
Transformations i and ii also alter momenta, affecting collinear fields and
Wilson lines through their dependence on the label momentum,

i :

{
ξn → (1 + 1

4
/δ⊥/n)ξn

Wn → Wn
ii :

{
ξn → (1 + 1

2/ε⊥
1
n·D /Dn⊥)ξn

Wn → (1− 1
n·D ε⊥ · Dn⊥)Wn

(1.166)

Combining gauge and Lorentz symmetries and RPI makes it possible to
constrain the general form of the operators that enter the SCET Lagrangian.
In particular, one can prove at every order in λ [52] that collinear fields enter
SCET operators only through the combinations

χn = W †nξn, Bµn⊥ =
1

gs

( 1

n · PW
†
n

[
Dµn⊥, n · Dn

]
Wn

)
. (1.167)

These are sometimes referred to as quark jet and gluon jet fields or simply as
the collinear SCET fields. They can be thought of as an improved version of the
Lagrangian fields that are automatically gauge invariant. Together with the
perpendicular component of the label operator Pµn⊥, they can be assembled
into every operator in the collinear sector. In fact (without including weak
corrections) the correct expression for the leading order dijet operator (1.156)
reads

χn1
γµχn2 , (1.168)

where I kept the two collinear directions generic (rather than fixing n1 ≡ n2 ≡
n), and the current must be vector because it matches to an electromagnetic
vertex.
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As last topic of this section, I will describe how factorization appears in
SCET language. In the EFT, the separation of ultrasoft and collinear modes
looks quite different from the factorization of hard modes from IR. This is not
surprising, since this first property involves an interplay of dynamical fields,
while the second one concerns the non-dynamical fields through the Wilson
coefficients of effective operators.
The key observation to show soft–collinear factorization is that soft and

collinear SCET fields communicate only via covariant derivative terms of the
kind n ·D in the collinear sector, and such terms can be rephrased in terms of
Wilson lines. The trick is then reabsorbing the Wilson lines in a redefinition
of the collinear fields. In analogy with (1.159) one defines (ultra)soft Wilson
lines,

Yn(x) = P exp

(
igs

∫ 0

−∞
ds n ·Aus(ns+ x)

)
, (1.169)

satisfying

in ·DYn(x) = 0 , Y †nYn = 1 . (1.170)

The difference from the collinear counterpart is the ultrasoft gluon field in
place of the collinear one, and the direction n instead of n. Note that ultrasoft
Wilson lines still know about the collinear direction, and in fact there is a
different Yn for each of the collinear sectors. The n-component of the ultrasoft
covariant derivative satisfies the operator equation

n ·Dus = Yn n · ∂ Y †n , (1.171)

and the expanded leading power collinear fermion Lagrangian in eq. (1.150)
yields

L(0)
nξ = e−x·Pξn

(
iYnn · ∂Y †n + gsn ·An

+ (/P⊥ + gs /An⊥)Wn
1

n · PW
†
n(/P⊥ + gs /An⊥)

)
/n

2
ξn . (1.172)

The fact that at this stage the interaction between soft and collinear parti-
cles occurs only through ultrasoft Wilson lines is the SCET equivalent of the
diagrammatic statement that at leading power an arbitrary number of longitu-
dinal gluons (but nothing else) can connect the soft and collinear subdiagrams
in fig. 1.6. Now one can perform the Bauer-Pirjol-Stewart field redefinitions

ξ′n,p`(x) = Y †n (x)ξn,p`(x) , A′µn,p`(x) = Y †n (x)Aµn,p`(x)Yn(x) . (1.173)
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These apply for each separate label momentum component, but extend to the
fields ξn, An, as the ultrasoft Wilson lines (1.169) commute with the label
momentum operator P. As a consequence, the collinear Wilson lines (1.159)
also obey the relation

W ′n(x) = Y †n (x)Wn(x)Yn(x) . (1.174)

Inverting the definitions and expressing the Lagrangian in terms of the new
fields, all the ultrasoft Wilson lines cancel out, leaving

L(0)
nξ = e−x·Pξ

′
n

(
in · ∂ + gsn ·A′n

+ (/P⊥ + gs /A
′
n⊥)W ′n

1

n · PW
′†
n (/P⊥ + gs /A

′
n⊥)

)
/n

2
ξ′n , (1.175)

and soft fields completely decoupled from the collinear Lagrangian. The same
result would follow in the gluon sector. To be consistent, effective SCET
operators also need to be written in terms of redefined fields, which in general
will thus contain ultrasoft Wilson lines. BPS redefinitions replaced the original
collinear particles with collinear particles dressed up with longitudinal gluon
emissions. These new degrees of freedom only see soft radiation mediated by
high energy physics through effective operators.
If soft–collinear factorization is achieved through a field redefinition, hard

factorization occurs at this stage automatically: this is the statement that
QCD hard dynamics has been integrated out and confined in the Wilson co-
efficients of effective operators, C(ni · P), depending on the O(λ0) momentum
component flowing along each collinear direction. The delicate point is that
some dependence on ni ·P is also present in operators; this can occur explicitly,
through the label momentum of the fields, or through the collinear derivatives
ni · Dni . Thus in general

C(ni · P)O(ni · P) (1.176)

has to be read as the action of C over O, rather than a product. This is some-
what vague, but one can rephrase it in full generality in terms of convolutions.
In the example of the dijet operator (1.177) all the dependence on P is hidden
in the fields, and

χn1
γµχn2C(n1 · P, n2 · P) =∫

dω1dω2C(ω1, ω2)χn1δ(ω1 − n1 · P†)γµδ(ω2 − n2 · P)χ†n2
. (1.177)
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The first operator is daggered, because it refers to a field χ rather than χ, so
the physical momentum flows counter-arrow. In this form, Wilson coefficients
are ordinary functions of the large momentum components, and they appear
in convolution with differential operators whose large momentum component
is fixed by delta functions. The structure of eq. (1.177) is completely gen-
eral: in presence of N directions one introduces N Dirac functions. Under the
assumption that the Wilson coefficients smoothly depend on ni · P, the ex-
plicit dependence is converted to ωi while in presence of collinear derivatives,
eq. (1.161) implies

f(in · D) = Wnf(n · P)W †n =

∫
dω f(ω)Wnδ(ω − n · P)W †n . (1.178)

This concludes amplitude factorization. Provided that the phase space and
additional measurements over the final state also factorize, this would result
in factorized cross sections. The squared Wilson coefficient would yield a hard
function

|C(ωi)|2 → H(Q2, µ2) (1.179)

to be determined from a QCD matching calculation, while collinear field op-
erators and delta functions would enter jet operators. I will give examples in
the following chapters, where factorization of cross sections will be crucial to
phenomenological applications.



2
Jets and transverse momentum

Since the Rutherford experiment showed – more than one century ago – the
existence of atomic nuclei, collider experiments have established themselves as
the preferential way to unveil the nature of fundamental interactions. From
the small equipment, easily manageable by a few people, of the early days of
particle physics, accelerators evolved into tremendous machines like the Large
Hadron Collider, which is by itself a masterpiece of engineering and employs
several thousands of physicists just within the four main collaborations AT-
LAS, CMS, LHCb and ALICE. Back then, the same people developing a the-
oretical model were often the ones who physically operated the experimental
apparatus. This is almost unthinkable nowadays, when the need for precision
pushed experimental and theoretical analyses to unmatched heights of sophis-
tication, sometimes slowing down the dialogue between the two communities.
In parallel to this process, the field has observed a constant expansion of

phenomenology. This is the branch of theoretical particle physics that rather
than studying the general properties of the existing theories (or their exten-
sions) focuses on improving the predictions for specific observables. Backed
by the growing confidence in the predictive power of the Standard Model,
many different subfields developed to detailedly study some of its aspects,
often evolving their own tools and terminology. Examples within QCD are
small-x, heavy-meson, or quark-gluon plasma physics. These communities in-
teract with SCET, benefiting from the effective formulation and providing in
turn new testing ground for the theory.
The phenomenological applications presented in this thesis mainly concern

the use of alternative jet definitions to study cross sections differential in trans-
verse momentum. Before proceeding in this direction, it is convenient to intro-
duce some of the main objects that will appear later on: this chapter can be
thought of as a small phenomenological toolbox to complement the theoreti-
cal picture of ch. 1 in view of applications. The first section focuses on jets,
sprays of collimated hadrons described as a single object. The large amount of
freedom to do so turns into an advantage, as it can be adapted to probe rele-
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vant physics in a variety of contexts. The second section deals with Transverse
Momentum dependent Distributions (TMDs), generalizations of the Parton
Distribution Functions and Fragmentation Functions that carry additional in-
formation on the transverse plane relative to direction of motion. Both topics
are well integrated with the SCET formalism, and I will describe them from
this point of view.

2.1 Jets

2.1.1 Jet algorithms

At the LHC, the high center-of-mass energy implies that a large number of
particles is produced per event. The final state of a collision contains a large
amount of information, from which one wants to extract the relevant physics.
Setting up a description that simultaneously accounts for each and every de-
tected particle is teoretically impossible, but also largely uninteresting, since
most of the final-state particles are just byproducts of well-known interactions.
An obvious way to overcome the problem is tagging specific particles, selecting
events where these have been produced. Event shapes like thrust implement
an opposite strategy, ignoring single constituents and focusing on the global
properties of the event.
Jets lie between these two extremes, as they aim at describing a bunch of

collimated hadrons as a single object. The reason for doing this is precisely
given by IR QCD dynamics: energetic quarks and gluons preferentially shower
through soft and collinear emissions, so sprays of hadrons are good proxies for
single high-energy partons. For instance, detecting two jets in an e+e− collision
is suggestive of the high-energy reaction e+e− → qq, while a three-jet event
would point in the direction of e+e− → qqg, with the radiated energetic gluon
originating a third prong. The effective description gives a rigorous meaning to
these vague qualitative statements, as the identifications are valid up to power
corrections described by subleading operators.
Once we decide to describe a collection of hadrons as a single pseudo-particle,

we still need to specify the rules; we need a jet algorithm. Clearly one disposes
of a lot of freedom, since all the information on the particles in a jet is collapsed
into one four-vector. First of all, there is no intrinsic angular distance above
which particles stop being collimated and start being spread out. This is
controlled by the jet radius R, which is a free parameter of the analysis and
can be roughly thought of as half the maximum angular separation1 between
particles within a jet. Although one has in mind collimated radiation, the jet

1This is exact only for e+e− collisions, while the pp case involves pseudorapidities.



2.1. Jets 65

radius does not have to be small: for instance, CMS and ATLAS experiments
use for Run2 default values of R = 0.4 and R = 0.7 [69]. One can also consider
hemisphere jets, R ∼ π/2, where every final-state particle is assigned to one of
the hemispheres.
Second, one needs a rule to combine particles into the jet. An intuitive way

is provided by cone algorithms, that identify geometrical cones of radius R and
assign to the jet all the particles within the cone. The first jet definition by
Sterman and Weinberg [70] belongs to this category. Emissions close to the
cone boundary can potentially violate the IR safety condition in eq. (1.52),
and one needs to consider only stable cones, unaffected by such emissions.
Finding all IR safe stable cones and consistently dealing with their overlap is
not simple, and was fully achieved only with the modern Seedless Infrared Safe
Cone algorithm (SIScone, [71]). An alternative is provided by the eXclusive
cone algorithm (Xcone, [72]), based on N-jettiness [73].
Recombination (or sequential) algorithms provide a successful alternative.

The idea is to define a distance measure between particles, and sequentially
merge them, starting from the closest pairs. The limitations of the first recom-
bination algorithm proposed by the JADE collaboration in [74] were overcome
by the kT algorithm [75], that works as follows (fig. 2.1). For a given jet radius

a) b) c)

Jet 1 Jet 2

�R > R�R(', ⌘)
�R

Figure 2.1 Main steps of a kT -type recombination algorithm. A distance between
particles is defined based on their separation in solid angle, ∆R; the algorithm iden-
tifies the pair with the smallest distance (a), green) and merges them into a single
pseudo-particle (b), blue). The process continues until the distance between remain-
ing pseudo-particles is larger than the jet radius parameter R (c), and such objects
(red) are declared jets.

R, define a distance between two particles and a “single-particle distance” as
respectively

dij = min
(
k2p
T i, k

2p
Tj

)ϑ2
ij

R2
, di = k2p

T i , (2.1)
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where

ϑij =
√

(ηi − ηj)2 + (ϕi − ϕj)2 (2.2)

is the geometrical angular distance expressed in pseudorapidity and azimuthal
coordinates. The exponent p allows for weighting the distance with the smallest
transverse momentum within the pair. The original kT algorithm sets p =
1, meaning that energetic particles will be merged with lower priority; the
alternative choices p = 0 and p = −1 define respectively the Cambridge-Aachen
(C/A) [76, 77] and anti-kT [78] algorithms. These are collectively referred to
as kT -type algorithms. Starting from a list of particles I = {i}, the algorithm
loops over the following steps: as long as I is not empty,

1. determine the minimum distance dmin among the set {dij , di};

2. if dmin = di, declare i a jet; remove it from the list;

3. if instead dmin = dij , merge i and j.

The missing ingredient is of course the definition of merge. Standard kT -type
algorithms simply add the four-momenta,

{
E(ij) = Ei + Ej
~p(ij) = ~pj + ~pj .

(2.3)

The final direction of the jet is called jet axis. A consequence of eq. (2.3)
is that, for standard jets, the jet axis balances between the four-momentum
of all the constituents, a behavior that will be contrasted by recoil-free jets.
Another consequence is that even if all the initial particles are massless, the
final jet is not. This is inevitable with 1 → 2 recombination schemes, since
it is kinematically impossible to simultaneously conserve four-momentum and
on-shellness. The jet mass

mJ =

√∑

i∈jet

p2
i (2.4)

is in fact a measure of how collimated the jet is, because it reduces to zero if
all the energetic particles are aligned and grows with their spread.2 In SCET
applications it is usually assumed small compared to the jet energy, for the
soft/collinear approximation to hold.
A point to stress is that a priori all IR-safe jet definitions are equally valid.

In perturbative QCD, jet algorithms run over final-state quarks and gluons,
2This is much similar to thrust, but the sum runs over only the particles in the jet.
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while in experimental analyses they run over energy deposits in calorimeter
cells or reconstructed particles3. Different choices of radius and algorithm pro-
duce different observables, but this is perfectly consistent as long as theory
and experiment use the same definition. In practice, some definitions meet
better physical requirements. For instance, the anti-kT algorithm has the ad-
vantage of generating neat cone-shaped jets, making it the experimental choice
of preference. In general, the best definition to tackle one problem may not be
optimal for another.
The implementation of jet algorithms in SCET calculations was studied

in [80, 81], which also discuss their compatibility with power counting and
factorization. Factorization formulae for cross sections involve jet operators of
the kind (here for quark-initiated jets)

Jn(ω,Φ) =
1

2Nc

∑

X

tr
[
〈0|n

2
χn(0)δmeas(Φ)|JalgX〉〈JalgX|χ(0)|0〉

]
, (2.5)

where ω is the large momentum component, Φ collectively denotes dependence
on kinematical variables (e.g. transverse momentum of one of the products)
arisen from the measurement δmeas(Φ), and the sum/average over spin and
color introduces the trace and color factor. LO jet production is trivial, as
no splitting occurs and each jet consists of only the initial particle, regardless
of the jet definition. Starting at NLO, the jet measurement imposes final-
space cuts depending on the algorithm. One-loop quark jet functions require
computing the SCET diagrams

, (2.6)

where all the lines are collinear, crosses denote insertions of the gauge invariant
jet fields χn, and as a result of phase-space integration, diagrams are under-
stood to be cut through the loops (virtual diagrams are scaleless and vanish).
The jet algorithm determines whether both particles enter a single jet or they
define two separate jets. In terms of the momentum k of the emitted gluon
and the large momentum component ω of the initiating quark, the one-loop
condition of single jet takes the form

θ

(
tan

R

2
−
√
k+

k−

ω

ω − k−

)
(2.7)

3Finally, in event generators, the standard implementation of jet algorithms is provided by
Fastjet [79].
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for every recombination algorithm, and

θ

(
tan

R

2
−
√
k+

k−

)
(2.8)

for every cone algorithm. At this level of perturbative accuracy the dependence
on the jet definition is still very limited, and in particular all the three kT -type
algorithms yield the same predictions for every observable, compatible with the
clustering order being trivial for only two particles. Differences arise starting
at two loop, and ch. 4 will provide an example.

2.1.2 Recoil-free jets

Standard recombination algorithms employ a merging prescription, eq. (2.3),
that gives equal weight to the momentum of each constituent. This has some
interesting side effects for differential measurements, and transverse momen-
tum measurements in particular. In the effective-theory description, the jet
contains in general soft and collinear radiation. We can imagine the jet to
originate via subsequent splittings from an initial quark or gluon of large mo-
mentum component ω, and choose a frame where the light-cone momentum of
this initial particle reads (0, ω, 0⊥). By construction, the transverse momen-
tum of the jet in this frame will be zero, resulting from balancing soft and
collinear transverse momentum within the jet:

kµ⊥s + kµ⊥c = 0 . (2.9)

If we assume the SCETII picture, where soft radiation scales (λ, λ, λ), soft
and collinear transverse momenta are parametrically of the same size and the
transverse direction of the standard jet axis is affected by soft radiation. This
is a source of contamination, because soft radiation communicates between all
the collinear sectors of the event, making each jet sensitive to other jets and
the initial state of the collision. In proton-proton collisions, it introduces a
sensitivity to underlying event and pileup, that experimentally causes the jet
picture to be blurred. Theoretically, soft radiation inside the jet can complicate
factorization due for instance to to non-global logarithms [82].4

The problem discussed above motivated the search for alternative jet defi-
nitions. The main solution investigated in this work are recoil-free jets, whose
direction is by construction insensitive to soft radiation. A precise definition

4In summary, non-global observables involve arbitrary space cuts, for instance when divid-
ing the space into hemispheres. If the hemispheres are connected via soft radiation, the
ratio of the characteristic energy scales of the two will show up in calculations through
large logarithms, whose resummation is more involved than standard logarithms.
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kTc

kTs

Standard jet axis

Recoil-free jet axis

Figure 2.2 By construction, standard jet axes balance the transverse momentum
of soft (red) and collinear (blue) radiation within a jet. This makes them sensitive to
the other directions in the event. Instead, recoil-free jet axes are unaffected by soft
emissions and track the bulk of collinear splittings.

of recoil-free jet J was given in [83], but the idea is that a soft emission with
transverse momentum k⊥ should only alter the jet function of an amount which
is power suppressed with respect to the jet energy, O(k⊥/EJ).
A specific instance of a recoil-free jet is achieved with the winner-take-all

(WTA) recombination scheme [84]. It employs the same distance measure
as standard algorithms, eq. (2.1), but changes the merging prescription from
eq. (2.3) to

{
E(ij) = Ei + Ej
~p(ij) = (Ei + Ej)

[
ϑ(Ei − Ej)~pi/Ei + ϑ(Ej − Ei)~pj/Ej

]
,

(2.10)

meaning that the three-momentum of the pair is aligned with the more en-
ergetic particle, and its mass null by definition. In other words, at any re-
combination step the most energetic particle of the pair “seizes control” of the
jet axis, that at the end of the process by construction lies on a particle (the
“winner”). Note that the winner is not necessarily the most energetic among
the final-state particles, as depending on their relative distance, lower-energy
particles could be clustered first, and accumulate enough energy to ultimately
prevail. This makes it clear that the clustering ordering is still relevant, and in
particular one can still choose between the three definitions of distance given
by kT -type algorithms. In the EFT picture, WTA jets are clearly insensitive to
soft radiation, since the latter always loses to collinear. Therefore, measuring
transverse momenta with respect to the WTA axis makes the jets recoil-free.
The WTA recombination scheme provides an intuitive way to achieve in-

sensitivity to soft radiation: it is easy to implement and requires a minimal
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modification with respect to the standard merging prescription. As I will show
in sec. 3.1.3, it has the further advantage of obeying a very simple RGE. Still,
it is not the only choice. The first systematic phenomenological analysis using
recoil-free jets [85] mainly focused on the broadening axis [86]. Broadening is
an event shape, like thrust in eq. (1.53), whose definition is

Bn̂ =

∑
i |~pi × n̂|∑
i |~pi|

, (2.11)

where the unit vector n̂ needs to be specified. In fact, the common choice for
n̂ is the thrust axis, the unit vector t̂ that defines thrust. Broadening is by
itself a powerful observable, see e.g. [87–89]. If the sum is restricted to the
particles in a jet, i ∈ jet, one obtains jet broadening, which is an example of
jet shape. Jet shapes are a whole class of observables that characterize the
energy and momentum distribution within a jet, with several applications in
jet substructure (see for instance [90] for a recent review of the latter field). In
fact, the jet mass of eq. (2.4) is also a jet shape.
So far, eq. (2.11) defines a jet observable, which in general is sensitive to

recoil. The idea is now taking as jet axis the direction b̂ that minimizes broad-
ening,

b̂ : Bb̂ = min
n̂∈S2

Bn̂ . (2.12)

To get some intuition why the axis 2.12 has no recoil, it is instructive to
compare jet thrust and jet broadening in the limit of small angles,

Tn̂ '
∑

i∈jet

ziϑ
2
i,n̂ , Bn̂ '

∑

i∈jet

ziϑi,n̂ , (2.13)

where zi = 2Ei/ω is the energy fraction of the particle i, and ϑi,n̂ its angle
relative to the generic unit vector n̂. The specific n̂ that minimizes T (B) is
the thrust (broadening) axis. In the simple case of two particles, the problem
becomes planar and the position of n̂ is specified by an angle ϕ. Letting θ
be the angle between the two particles, and setting the angular origin on the
particle with energy fraction 1− z,

T (ϕ) = (1− z)ϕ2 + z(θ − ϕ)2 , (2.14)

which is minimized by ϕ = zθ. Instead, the broadening axis simply lies on
the most energetic of the pair. In the EFT, if one particle is collinear and the
other one soft, the latter will not affect the position of the broadening axis,
while the thrust axis would receive a shift which is small (z ∼ λ), but still of
the same order as the measured transverse momenta. The above argument is
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extended to the case of three or more particles by effectively describing soft
and collinear radiation as two pseudoparticles, showing that the broadening
axis is recoil-free [85].
Recoil-free axes have several potential advantages. Generally speaking, fac-

torization theorems separate soft and collinear physics in different sectors, and
each jet aims at describing one collinear sector. If the jet definition is affected
by soft radiation, then the separation is inexact and the factorization struc-
ture more involved. In the following chapters, I will show examples where
the absence of recoil considerably simplifies the theoretical framework. The
WTA axis will be the privileged choice, mainly because of simplicity of imple-
mentation, but my analysis in sec. 3.1.4 also shows a theoretical limit of the
broadening axis. It has to be noted that at the time of writing no experimental
analysis reconstructs WTA jets. One of the main goals of this thesis is showing
the potential of this tool, and it is our future responsibility to keep providing
solid evidence of their advantages.

2.1.3 Jet grooming

Recoil-free algorithms elegantly address the problem of soft contamination in
jets by a careful separation of soft and collinear effects. A more drastic ap-
proach is to take a recoil-sensitive jet and “manually” remove soft radiation at
a later stage. This class of techniques goes under the name of jet grooming,
and has proven itself highly successful in a broad range of situations. The are
many examples of jet groomers, the most relevant including jet trimming [91],
pruning [92], mass drop tagging [93], and modified mass drop tagging [94]. In
the following I will focus on soft drop [95], a generalization of the latter that
has established itself as the standard grooming technique, becoming subject of
dedicated experimental measurements, see [96,97] in the case of jet mass.
The main goal achieved by jet grooming is to mitigate the effects of pileup,

the contamination induced by simultaneous proton-proton collisions. This is
an important issue at the LHC, where the high luminosity increases the aver-
age number or interactions per bunch crossing. Even when primary vertices
are reconstructed and the hard physics isolated, soft radiation produced in sec-
ondary collisions will still affect the rest of the event. (See for instance ref. [98]
for a review from theoretical perspective). At the same time, grooming signif-
icantly reduces the contamination from multi-parton interactions (MPI) and
hadronization effects. As the name suggests, MPI are multiple fundamental
collisions taking place in the same proton-proton scattering. Although they are
formally power corrections, they play an important role in kinematic regions
where single-parton scattering is suppressed, and their theoretical description
reached a mature stage (see for example [99] for a recent short review). How-
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ever, when MPI occur at low energy they provide a source of contamination.
All the phenomenological analyses I will present deal to some extent with

hadronization effects, which I briefly turn to commenting on. These are final-
state effects due to the conversion of quarks and gluons into hadrons, which
(contrarily from pileup and MPI) impact also on e+e− collisions. Since every
colored particle in a jet ultimately goes into some hadron, to first approxima-
tion these corrections are suppressed when summing over all hadron species
within the jet. However, they can still interfere with the clustering process
and directly affect differential distributions. In the example of a transverse
momentum measurement, they will alter the cross section by a typical amount
O(Λ2

QCD/k
2
T ) and become therefore relevant at small transverse momenta. An

advantage of event generators is that they allow for switching on and off the
various effects (pileup, MPI, hadronization) that I just discussed, thus estimat-
ing the size of contaminating effects induced by soft radiation. The simulation
in fig. 2.3 shows the impact of grooming on hadronization corrections in case
of e+e− → dijet, providing important motivation for the application I will dis-
cuss in ch. 5. The figure shows hadronic to partonic ratios, namely the number
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Figure 2.3 Effect of jet grooming on hadronization corrections for dijet production
in e+e− collisions, simulated with Pythia 8. The soft drop parameter β = 0, and
an upper cut on groomed jet mass m2

J < ecuts is applied. Soft drop dramatically
reduces hadronization effects over the whole plotted range in the relative transverse
momentum of the dijet, kT .

of events obtained switching on/off the hadronization model of the event gen-
erator, as a function of the transverse momentum of the dijet. I will define
the parameters that enter there in a moment, but one can see that applying
soft drop (magenta line) drastically reduces the impact of hadronization effects
over the whole range in transverse momentum, compared to the counterpart
without grooming (black).
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The soft-drop procedure works as follows: given all the particles in a jet,
one reclusters them using the C/A algorithm (p = 0 in eq. (2.1), independent
of the original jet definition). Then, the clustering tree is opened up and
the clustering history navigated backwards (fig. 2.4, left). At each node, the

)
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ln 1
z

ln R
#

� = 0

� < 0
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collinear

soft

Figure 2.4 Soft drop. The algorithm goes backwards through the jet clustering
history (left) testing the soft drop condition at each node. When a branch fails the
test, it is dropped (light red) and the algorithm moves to the next node. As soon as
one node passes the test, the algorithm stops; further soft splittings (red) are kept.
The area corresponding to dropped emissions is displayed on the right (shades of
orange) in a ln 1

z/ ln 1
ϑ plane, for different values of the exponent β.

algorithm tests the condition

min(kT i, kTj)

kT i + kTj
> zcut

(ϑij
R

)β
, (2.15)

where ϑij is the angular distance defined in eq. (2.2), R the jet radius, and
zcut, β are soft-drop parameters to be specified. If (2.15) fails, the branch with
minimum kT is dropped from the jet, and the algorithm moves to testing the
following node. As soon as one node passes the test, the procedure stops and
the remaining jet is declared the groomed jet. The parameter zcut sets a thresh-
old in transverse momentum fraction below which emissions are dropped. As
the purpose is eliminating low-energy radiation, it is chosen small, typically
around zcut ' 0.1. Note that soft drop does not remove all the soft radiation,
because as soon as a node passes the test, the remaining branches are kept in
their entirety, without further testing the condition on subsequent splittings.
In particular, since by definition the jet has been reclustered with C/A, the
clustering history is entirely based on the angular distance, thus soft drop re-
moves in fact wide-angle soft radiation. The exponent β adjusts the threshold
with an angular weight, and corresponds to a different level of tolerance when
dealing with radiation that is soft and collinear (fig. 2.4, right). A positive
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β effectively lowers the threshold for small-angle splittings, keeping a larger
fraction of soft radiation that is also collinear. Contrarily, a negative β aggres-
sively removes soft radiation even at low angles. In this regime, it is possible
that a whole jet is dropped, and soft drop works as a tagger, discriminating
those events where the jets pass the condition.
The soft drop definition in eq. (2.15) is the default for pp collisions. In case

of e+e− collisions, one uses instead

min(Ei, Ej)

Ei + Ej
> zcut

(√
2

sin(ϑij/2)

sin(R/2)

)β
, (2.16)

testing the condition with energies instead of transverse momenta. In fact, the
same modifications occur in the definition of distance in eq. (2.1).5

Like for the jet radius R, there is no obvious choice for the soft-drop param-
eters zcut and β; different values may be advantageous in describing different
observables, and every choice is consistent as long as one compares the same
value in theory and experiment. Similar to recoil-free jets, soft drop can some-
times simplify the theoretical picture, for example by removing non-global
logarithms. However, the additional parameters zcut, β may complicate the
factorization picture by leading to new modes. In particular, the assumption
zcut � 1 introduces a new hierarchy, and the parameter zcut can compete with
other small quantities in the problem. Ch. 4 and 5 study the same physical
processes with respectively WTA jets and soft drop. The comparison will show
that soft drop trades a neat factorization picture for a stronger suppression of
soft contamination.

2.2 Transverse Momentum dependent Distributions

2.2.1 Integrated parton distributions

As already remarked, the fundamental degrees of freedom of QCD, quarks and
gluons, differ from the physical objects that we handle in experiments. In e+e−

collisions, this limitation can be overcome by considering inclusive hadron pro-
duction, as discussed in sec. 1.2.3. Clustering hadrons into jets goes in a similar
direction, because the average properties of a jet computed from quarks and
gluons well resemble the ones of the hadron counterpart, at least in those kine-
matical regions where hadronization corrections are under control. However, in

5It may look disturbing at first that different collisions use different definitions. The reason
is that, at the level of the fundamental interaction, the electron-positron pair carries
fixed energy, while two colliding quarks (or gluons) inside the proton receive a boost in
the longitudinal direction. Transverse momenta and differences in pseudorapidities η are
boost invariants, which makes them a privileged choice in this case.
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most of the relevant QCD applications following this strategy is not possible.
First, in proton-proton or electron-proton colliders one cannot avoid dealing
with single initial-state protons. Second, one may want to measure the prop-
erties of a specific final-state hadron. In these cases, the problem inevitably
involves non-perturbative physics and some notion of factorization is funda-
mental. The basic factorization ingredients describing hadronic physics are
named Parton Distribution Functions (PDFs) and Fragmentation Functions
(FFs). PDFs describe the distribution in longitudinal momentum of quarks
and gluons inside an initial-state hadron, while FFs describe the longitudinal
momentum distribution of quarks and gluons fragmenting into a final-state
hadron [100–102]. I will refer to these distributions as collinear or integrated,
in contrast with the more differential Transverse Momentum dependent Dis-
tributions (TMDs) to be introduced in the next section. In this thesis, I will
always consider unpolarized parton distributions, i.e. averaged over spin, but
polarized parton distributions are a very active field.
In factorization theorems, PDFs and FFs replace the jet functions describing

collinear physics when the collinear directions are set by proton beams or
detected final-state hadrons. For definiteness, consider the example of Deep
Inelastic Scattering (fig. 2.5), that will also play an important role in ch. 4 and
ch. 5. DIS is one of the most studied processes in particle physics, and the
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Figure 2.5 Deep Inelastic Scattering (left) is a preferential channel to extract PDFs.
As a first approximation (leading power in SCET), the high-energy electron probes
a single, free (anti)quark, while the rest of the proton does not interact. Drell-Yan
scattering (right) describes lepton pair production from a proton-proton collision. By
universality of non-perturbative physics, the same PDFs enter both processes.

preferential channel to extract information on the structure of the proton. Deep
inelastic refers to the collision energy being sufficiently high for the electron to
break the proton apart and probe its internal composition. Labeling momenta
as in fig. 2.5, and neglecting the proton mass, the tree-level kinematics is
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specified by two of the three dependent variables

Q2 = −q2 , x =
Q2

2P · q , y =
P · q
P · k , (2.17)

named respectively virtuality, Bjorken x and elasticity.6 Given the center-of-
mass energy

√
s, these are related by

s = x y Q2 . (2.18)

Since the electron-proton collision is asymmetric and the virtuality Q2 varies
event by event, there is no obvious choice of reference frame. In the following
I will consider the Breit frame, where by definition the momentum transfer is

q = (0, 0, 0, Q) , (2.19)

so the scattering electron inverts its three-momentum as a result of the col-
lision. The bottom half of fig. 2.5 is not a QCD Feynman diagram, since
perturbative QFT does not provide rules for amplitudes involving protons,
but acquires meaning thanks to factorization. Well before the theorization of
quarks and asymptotic freedom, Feynman postulated the existence of partons
as elementary constituents of the proton and assumed that at high energies
the electron scatters in fact on a single parton, whose transverse momentum
can be neglected. This ansatz motivates the formula

dσep→eX
dx dQ2

(x,Q2) =
∑

a

∫ 1

0
dξ fp→a(ξ, µ)

dσea→ea
dx dQ2

(x,Q2, ξP, µ) , (2.20)

where the sum a runs in reality over quark and antiquark flavors. It states
that the cross section for scattering on a proton is obtained from an incoherent
sum of elementary scatterings on partons that carry a fraction ξ of the proton
energy, convoluted with an energy fraction distribution fp→a. The latter is the
Parton Distribution Function, which also depends on the factorization scale.
In the light of factorization, Eq. (2.20) acquires a new meaning. In SCET,

quark PDFs in momentum space are defined by evaluating collinear quark fields
on a proton state,

fp→q(ξ, µ) = tr
{
〈p|χn(0)

n

2
δ(n · P − ξ n · P )χn(0)|p

〉}
, (2.21)

and the partonic cross section plays the role of hard function, obtained by
squaring a Wilson coefficient that depends only on the large (longitudinal)

6To be precise, the second is defined as the Feynman x, but there is no difference when
neglecting proton mass corrections. Note that the sign convention for Q2 makes it positive.
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momentum component. The factorization formula does not involve a soft func-
tion, since the PDF operator is already a color singlet; in other words, there are
no other sectors of the theory that the soft radiation can communicate with.
The definition in position space, based on ref. [103], is shown in eq. (B.1) in
the appendix.
Being genuinely non-perturbative objects, PDFs set the limit of perturbative

QCD and can only be measured from experiment7. Their great importance
is in their universality, as they can be extracted from (in principle) a single
experiment and used in a variety of applications. Another major example
is Drell-Yan scattering, the production of a lepton pair from proton-proton
collisions (fig. 2.5 right), that involves two PDFs,

dσpp→``X
dQ2

=
∑

f

∫ 1

0
dx1

∫ 1

0
dx2 fp→f (x1, µ)fp→f (x2, µ)

dσff→``
dQ2

(x1x2s,Q
2, µ) ,

(2.22)

but PDFs feature in every process involving initial-state protons where a notion
of factorization is present. Universality of non-perturbative physics is essential
to the predictive power of perturbative QCD: were this not the case, one would
need to perform a different measurement to fix the non-perturbative physics
for each process, nullifying the advantages of factorization.
Before moving on, I will comment on two properties of the PDFs. First of

all, being distributions in energy fraction, they satisfy the momentum sum rule

∑

i=f,f,g

∫ 1

0
dxx fp→i(x, µ) = 1 (2.23)

enforcing energy conservation within the proton. In addition, valence sum
rules constrain the flavor number of each quark species in accordance to the
composition p = (uud) of a proton. Another fundamental property of PDF
concerns their RGE, namely their dependence on the renormalization scale.
PDFs satisfy the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolu-
tion equations [105–107]

d

dµ
fp→i(x, µ) =

∫ 1

x

dx′

x′
fp→j

( x
x′
, µ
)
Pji(x

′, µ) . (2.24)

The QCD splitting kernels Pji are the anomalous dimensions for parton distri-
butions. In MS scheme they depend on µ only through the coupling constant;
their perturbative expansions starts at one loop, and results are known up to

7Although an alternative approach is computing them on lattice, see [104].
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three [108, 109] and partially four loop [110]. One-loop results are shown in
eq. (B.39) in the appendix, and they can be computed from the amplitude of
emission of a parton i from j in the collinear limit: we can imagine the PDF
evolution as a process of energy loss through subsequent collinear emissions.
The structure of eq. (2.24) involves a Mellin convolution, which comes from
the energy fraction x being a multiplicative variable.
Since the LHC collides protons, the determination of PDFs is a highly active

topic, see for instance the recent review [111]. PDF uncertainty dominates the
theoretical error for many QCD processes, so a more accurate extraction of
PDFs plays a vital role in precise tests of the SM, and provides one of the
motivations for the future Electron-Ion collider (EIC). Recent determinations
can be found in [112–116].
Most of what described for PDFs also holds for Fragmentation Functions

di→h(z, µ), whose main properties can be obtained by time reversal from the
initial-state counterpart. The definition from SCET operators is given in
eq. (B.2), and they are interpreted as the distributions in energy fraction z
of a hadron h produced from the parton i. They enter factorization formu-
lae describing exclusive hadron production; an example relevant to this thesis
is Semi-Inclusive Deep Inelastic Scattering (SIDIS), where specific final-state
hadron is detected on top of the electron in the final state of a e− p collision.
The factorization formula reads

dσep→ehX
dx dQ2 dz

(x,Q2, z) =
∑

i=f,f,g

∫ 1

0
dξ fp→i(ξ, µ)di→h(z, µ)

dσei→ei
dx dQ2

(ξP, µ) ,

(2.25)

where for brevity I omit the arguments Q, x2. With respect to inclusive DIS,
eq. (2.20), features the additional fragmentation function. The sum rule for
FFs enforces energy conservation for a fragmenting hadron,

∑

h

∫ 1

0
dz z di→h(z, µ) = 1 . (2.26)

In ch. 3, I will take advantage of this rule to drop the dependence of our results
on the specific set of FFs. DGLAP equations from FFs read

d

dµ
di→h(z, µ) =

∫ 1

z

dz′

z′
Pij(z

′, µ)dj→h

( z
z′
, µ
)
. (2.27)

Because of crossing symmetry, the one-loop splitting kernels for FFs are just the
transpose (in the sense of matrices) relative to the ones of eq. (2.24), although
starting at two-loop the relation is more involved.
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Extracting FFs from experiments is harder than PDFs. SIDIS is a preferen-
tial channel, but the task is complicated by the simultaneous presence of initial-
and final-state non-perturbative distributions. Because of the light mass, most
of the final-state fragmenting hadrons are pions and to a smaller extent kaons,
and the corresponding FFs are the most studied [117–120]. Refs. [121] and [122]
provide the most up-to-date global fits for respectively π and K mesons.

2.2.2 TMDs and rapidity divergences

If integrated parton distributions already encode a large amount of information
on hadrons, these clearly do not provide a complete description of their struc-
ture. A natural generalization is obtained by accounting for the momentum
component perpendicular to the direction of motion, thus obtaining Transverse
Momentum dependent Distributions (TMDs). Their operator definition is in
eq. (B.3). First studied in Ref. [102], they are a more differential version of
the collinear counterparts,

fp→i(x, µ) =

∫
dq Fp→i(x, q, µ, ζ) ,

di→h(z, µ) =

∫
dqDi→h(x, q, µ, ζ) , (2.28)

where the functions Fp→i and Di→h are respectively TMDPDFs and TMDFFs.
In addition to the energy fraction and the transverse momentum8 q, they
depend on a rapidity scale ζ, that plays a similar role as the renormalization
scale and is related to a new class of divergences. For practical reasons, it
is often convenient to work in the space of impact parameter b, the Fourier
conjugate of transverse momentum, and define

Fp→i(x, b, µ, ζ) =

∫
dq eib·q Fp→i(x, q, µ, ζ) , (2.29)

and similarly for TMDFFs. I will use the same symbol for momentum space
quantities and their Fourier conjugate, and always denote the argument for
clarity.
TMDs enter factorization formulae for cross sections differential in trans-

verse momentum, in processes like Drell-Yan scattering, SIDIS and dihadron
production in e+e− collisions [123–125]. Once again, their relevance lies in
their process-independence. To introduce the main complications that enter
factorization formulae involving TMDs, it is useful to look at a specific exam-
ple. I will explore SIDIS in some detail, since in ch. 4 the same formalism will

8In this chapter and in the rest of this thesis, I will use bold font to denote 2-vectors in the
transverse plane, and the subscript T for their norm.
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be largely reused to describe DIS+jet production. Working in the Breit frame,
one defines the transverse momentum as

q =
P h

z
+ qin , (2.30)

where P h is the transverse momentum of the detected hadron, and qin the
one of the incoming parton in the proton. In order for factorization to hold,
the transverse momentum needs to be much smaller than the virtuality of the
process, qT = |q| � Q. This is intuitive, since to have some notion of collinear
scaling we need the transverse component of the measured momentum to be
small with respect to the longitudinal component. With the definition (2.30),
the TMD factorization formula for SIDIS reads

dσep→ehX
dQ2 dx dz dq

=
∑

q

σDIS
0,q (x,Q2)HDIS(Q2, µ)

∫
dq δ(2)

(
q −

3∑

i=1

qi

)

S(q1, µ)F̂p→q(x, q2, µ) D̂q→h(z, q3, µ)

[
1 +O

( q2
T

Q2

)]
. (2.31)

Here σDIS
0,q , the tree-level cross section for DIS, is explicitly factored, so that the

hard function HDIS is just 1 at leading order. Since transverse momenta are
additive, the factorization structure takes the form of a Laplace convolution be-
tween the soft and collinear elements. In impact parameter space it reduces to
an ordinary product, hence the convenience of working in the Fourier conjugate
space. Differently from DIS, at leading power (but every loop order), the sum
over eq. (2.31) does not include the gluon, since in presence of the transverse
momentum measurement, the lepton-gluon interaction would be mediated by
additional collinear operators.
One of the most salient features of eq. (2.31) is the presence of rapidity diver-

gences [126–130], which escape dimensional regularization. Even if the TMDs
entering there are made free of IR and UV divergences (the latter accounted
for by renormalization), they are still ill-defined unless a new regulator is in-
troduced. The hats over the TMDs refer to this fact. Once regulated, rapidity
divergences in TMDs cancel against the soft function. To understand their
origin, it is convenient to go back to the SCETII mode picture in fig. 1.10,
right panel. Analogous to the examples discussed in sec. 1.3.2, measuring the
transverse momentum imposes the soft modes to scale as (λ, λ, λ), so the ob-
servable is described by SCETII. Different from dijet production, in the case
of SIDIS one of the two collinear modes refer to an incoming direction (rather
than outgoing), and the role of

√
s is now played by Q, but the mode picture

is unaltered in its essence. In general, in the lightcone plane represented there,
each hyperbola is a line of constant virtuality, while different points on the
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same hyperbola are identified by their rapidity, y = 1
2 ln(p−/p+). Boosting the

system along one of the collinear directions corresponds to moving along the
hyperbola. In SCETII, soft and collinear modes live on the same hyperbola, so
it is not possible to discriminate them with a gap in virtuality, hence the ad-
ditional divergence. Instead, the separation between soft and collinear modes
needs to be specified through a rapidity scale ζ.
In the applications I will employ two different regularization schemes, based

respectively on refs. [128] and [129]. I will give the practical definitions later,
but for now, following the first reference, let me assume the existence of a
regulator δ, with rapidity divergences arising in the δ → 0 limit. In fact,
we can choose different (dimensionless) regulators δ, δ for the two collinear
sectors, with the soft function depending on both, and the combination of soft
and collinear ingredients in impact parameter space yields

S(b, µ, δ, δ)F̂p→q(x, b, µ, δ) D̂q→h(z, b, µ, δ)

=Fp→q(x, b, µ, ζ)Dq→h(z, b, µ, ζ) . (2.32)

On the right hand side, a square root of the soft function has been reabsorbed
in a redefinition of each TMD9,

Fp→q(x, b, µ, ζ) = S1/2(b, µ, δζ) F̂p→q(x, b, µ, δ) ,

Dq→h(x, b, µ, ζ) = S1/2(b, µ, δ ζ) D̂q→h(x, b, µ, δ) , (2.33)

where the separation of the two regulators is allowed since S depends on them
only through logarithms,

S

(
b, ln

( µ2

δδQ2

))
= S1/2

(
b,

1

2
ln
( µ2

δ2ζ

))
S1/2

(
b,

1

2
ln
( µ2

δ
2
ζ

))
, (2.34)

and the rapidity scales ζ, ζ emerge from the arbitrariness of the splitting, with
ζζ = Q4. This redefinition yields the factorization formula for SIDIS in its
final form,

dσep→ehX
dQ2 dx dz dq

=
∑

q

σDIS
0,q (x,Q2)HDIS(Q2, µ)

∫
db

(2π)2
e−ib·qFp→q(x, b, µ)Dq→h(z, b, µ)

[
1 +O

( q2
T

Q2

)]
. (2.35)

9Depending on the rapidity regulator, one may need to subtract the zero bin, removing
double-counting of soft and collinear degrees of freedom. To keep the discussion simple,
here I assume that the zero bins of both collinear sectors have already been accounted for
in a redefinition of the soft function.
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The TMDs that appear here are free of divergences, providing a definition
comparable with experiments. The hard function is simply related to the quark
form factor, and is known up to three loops [131], while the soft function has
been computed at two loop [132–134] .
The additional perturbative ingredients needed to describe TMDs are the

coefficients for matching onto integrated distributions. When the transverse
momentum is much larger than the hadronization scale, TMDs refactorize as

Fp→i(x, q, µ, ζ) =
∑

j

∫ 1

x

dx′

x′
Ci←j(x′, q, µ, ζ)fp→j

( x
x′
, µ
)[

1 +O
(

Λ2
QCD

q2
T

)]
,

Di→h(z, q, µ, ζ) =
∑

j

∫ 1

z

dz′

z′
Ci→j(z

′, q, µ, ζ)dj→h

( z
z′
, µ
)[

1 +O
(

Λ2
QCD

q2
T

)]
,

(2.36)

meaning that the transverse momentum dependence is perturbatively calcula-
ble and the hadronic physics is entirely described by the collinear distributions.
The matching coefficients are known at two loops [103,135], see also [136–140].
In general, refactorization means a further decomposition of one of the factor-
ization ingredients in terms of simpler functions, valid up to power corrections.
In SCET, this is described with multiple nested modes, hierarchically sepa-
rated,

pF ∼ Q(λ2, 1, λ) , λ =
qT
Q
, pf ∼ Q(λ2λ′

2
, 1, λλ′) , λ′ =

ΛQCD

qT
,

(2.37)

where pF is the collinear mode of the TMDPDFs and pf the collinear mode
of the integrated PDFs. Loosely speaking, the typical fluctuations around the
reference direction described with the PDF are “even more collinear”. From
the theoretical point of view, we can achieve refactorization starting from the
SCET Lagrangian and performing a further expansion in λ′, by just repeating
the steps described in sec. 1.3.3.
Before moving on to discuss their evolution, let me comment that TMDs

admit further generalizations. For polarized beams, the interplay of transverse
momentum and spin gives rise to angular correlations between the produced
particles that contain a large amount of interesting physics. In that case,
besides the unpolarized TMD that I discussed, one introduces several func-
tions corresponding to different Dirac structures, like the Boer-Mulders [141]
or Sivers [142] functions. Finally, including information on the small (plus)
momentum component leads to defining Generalized Parton Distributions as
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well as Generalized TMDs, which carry in principle the most general informa-
tion about the proton structure. These generalizations are beyond the scope
of this thesis, see for instance [143–145] for introductory reviews.

2.2.3 TMD evolution

In the following, I will discuss the Renormalization Group Evolution of TMDs.
This is more complicated than the evolution of integrated distributions, since
they depend on both the renormalization scale and the rapidity scale. I will
base my discussion on [146] and describe in some detail the formalism of
refs. [147,148] to define the so-called optimal TMDs, as this method underlies
the numerical results that we obtained in refs. [3,4]. See in particular [129] for
a common alternative approach using on the Rapidity Renormalization Group.
The following equations refer to TMDFFs for definiteness, but TMDPDFs obey
identical equations (meaning in particular that the anomalous dimensions are
the same). In this section I’ll suppress the argument z, since in contrast to
DGLAP evolution this variable does not participate in the RGE.
The RGEs of TMDs in impact parameter space are

µ
d

dµ
Dκ→h(b, µ, ζ) = +γκ(µ, ζ)Dκ→h(b, µ, ζ) ,

ζ
d

dζ
Dκ→h(b, µ, ζ) = −Dκ(µ, b)Dκ→h(b, µ, ζ) , (2.38)

where Dκ and γκ are respectively the rapidity anomalous dimension and UV
anomalous dimension, and κ can be any of the quark flavors, or gluon. In
analogy with eq. (1.32),

γκ(µ, ζ) = µ
d

dµ
lnZκ(µ, ζ) , (2.39)

where Zi is the renormalization factor for the TMDs, responsible for subtract-
ing the UV divergences. Because of the presence of Sudakov double logarithms,
it takes the form

γκ(µ, ζ) = Γκ(µ) ln
(µ2

ζ

)
− γVκ (µ) . (2.40)

Γκ and γVκ are referred to as respectively the cusp and non-cusp parts of the
UV anomalous dimension, and in minimal schemes depend on the renormaliza-
tion scale only through the strong coupling constant. The rapidity anomalous
dimension is defined as

Dκ(b, µ) = −ζ d

dζ
lnS1/2

κ (b, µ, ζ) . (2.41)
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where the soft function includes the zero-bin contribution and has already been
renormalized, so is free of UV poles. The definition is the analog – for rapidity
divergences – of eq. (2.40), since the square root of the soft function acts as
a rapidity renormalization factor, eq. (2.33), canceling rapidity divergences in
TMDs. The anomalous dimensions that appear here are known up to three
loops [108,149–152], and the cusp anomalous dimension is known numerically
at fourth order [153], and I show explicit expressions in appx. B.3.2. This
allows for resummation of logarithms of small transverse momentum at N3LL,
a remarkable level of accuracy.
From eq. (2.38) and commutativity of second derivatives, it follows

µ
d

dµ
Dκ(µ, b) = −ζ d

dζ
γκ(µ, ζ) = Γκ(µ), (2.42)

with Γκ the cusp anomalous dimension. This is the starting point for the
definition of “optimal TMDs”, which I will briefly describe in the following. The
anomalous dimensions

(
γκ(µ, ζ),D(µ, b)

)
can be thought of as two components

of a vector field in the plane (lnµ2, ln ζ). Eq. (2.42) provides an integrability
condition, stating that the field is locally conservative. This allows for defining
a scalar potential and guarantees that the evolution between two points in the
(lnµ2, ln ζ) plane is independent of the path; in particular, no evolution occurs
along equipotential lines. Among these, two special lines cross to determine a
saddle point, see fig. 2.6, corresponding to

Dκ(µsaddle, b) = 0 , ζsaddle = µ2
saddle exp

(
− γVκ

Γκ

)
. (2.43)

In practice, truncating the perturbative expansion breaks path independence,
with effects that are numerically relevant. This problem is overcome by the
improved γ scenario, that enforces path invariance by supplementing γκ with
higher-order terms. The evolution kernel R, defined as

Dκ→h(b, µf , ζf ) = Rκ(b;µf , ζf ;µi, ζi)Dκ→h(b, µi, ζi) , (2.44)

and explicitly determined by solving eq. (2.38), within the improved γ scenario
yields

Rκ(b;µf , ζf ;µi, ζi) = exp

{
Dκ(µf , b) ln

(µ2
f

ζf

)
−Dκ(µκ, b) ln

(µ2
i

ζi

)

−
∫ µf

µi

dµ

µ

[
2Dκ(µ, b) + γVκ (µ)

]}
. (2.45)

Path independence allows one to apply the ζ-prescription. The idea is setting
the initial rapidity scale ζ = ζ(µi) as a function of the initial virtuality scale
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Figure 2.6 Sketch of the geometry relevant to double-scale evolution. The anoma-
lous dimensions determine a conservative field (grey arrows) in the (lnµ2, ln ζ) plane,
and the evolution is null among equipotential lines (shades of red). The zeta-
prescription selects the saddle point at the intersection of two special equipotential
lines (bright red) to define and evolve TMDs. The quoted equations are the one-loop
analytic result for such lines.

µi such that the scale-dependence of the initial TMDs vanishes completely. At
one loop, this simply amounts to

ζ(µ) ≡ ζsaddle = µ2 exp

(
− γVκ

Γκ

)
+O(αs) , (2.46)

and the two loop expression is given in eq. (B.49). In practice, it is common
to choose the saddle point as initial point of the evolution, µi = µsaddle.
The remarkable fact with the ζ prescription is that, contrarily from standard

evolution, the cancellation of large rapidity logarithms occurs internally to
each TMD. This fact allows for a clear separation of the uncertainty coming
from evolution from other sources of uncertainty (perturbative, or related with
the non-perturbative model). Of course, constraining the initial value of ζi
removes one source of uncertainty in the evolution, reducing the theoretical
error. Ref. [148] argued that this additional uncertainty is spurious, since it is
unlinked with evolution.
In this section I tried to show how TMDs are a mature field, well inte-

grated with the factorization framework, and where the ingredients to perform
(re)factorization and resummation are known to a very high level of precision.
In ch. 4 in particular, I will largely build on the results presented here to build
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a formalism for DIS+jet. Our main finding in [1] was that the Winner-Take-
All jet axis allows to largely reuse most of the results presented here, bringing
that process on par with SIDIS.



3
In-jet fragmentation without recoil

Having reviewed the theoretical picture of soft and collinear QCD and in-
troduced the main ingredients, I will now turn to presenting in detail some
specific applications of recoil-free jets to describe processes involving a trans-
verse momentum measurement. The common thread will be the investigation
of the properties of recoil-free jets, and their relation with jet grooming. The
main message I will try to convey is that besides reducing sensitivity to con-
tamination, the Winner-Take-All algorithm largely simplifies the theoretical
framework in many relevant processes. Not only is this simplification conve-
nient to theoretical analyses, but it also proves itself advantageous when it
comes to obtaining predictions to compare with data.
In this chapter I will extensively describe a first application of recoil-free jets,

studying the transverse momentum distribution of hadrons fragmenting inside
jets. Fragmentation in jets is a natural way to probe their substructure: from
the way hadrons distribute (for example, in energy and momentum), one can
reconstruct details of the initial parton, with the ultimate purpose of extracting
precise information on the nature of QCD. For this reason, the theory of in-jet
fragmentation (without accounting for the transverse momentum dependence)
has been studied extensively. A possibility is considering hemisphere jets [19–
21, 154–156], in practice defining an event shape. The alternative relevant
to this work is using a jet algorithm, as in refs. [157–164]. These studies
led to a variety of phenomenological applications and extensions, including
predictions on spectra of charge hadrons, quarkonium spectroscopy, multi-
hadron fragmentation, and generation of quark masses, [21, 165–171].
Recently, the framework was extended to study transverse momentum de-

pendent (TMD) hadron fragmentation, where the transverse momentum is
measured relative to the standard jet axis [172–175] or groomed jet axis [176,
177]. The applications considered in these works were the study of TMDFFs in
pp and ep collisions, in both the unpolarized and polarized case, and quarko-
nium production.
The theoretical framework to describe TMD in-jet fragmentation without
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recoil was developed in ref. [83]. This work showed how the absence of re-
coil delivers a purely collinear observable, described by a “Collinear Effective
Theory” rather than full SCET. In ref. [2], we investigated the framework in
the case study of e+e− collisions, and compared numerical predictions to par-
ton and hadron-level simulations obtained with Pythia 8.2 [25] and Herwig
7.1 [178]. This analysis illustrated some of the intuitive properties of the WTA
scheme, and showed that in absence of recoil the distribution exhibits radically
different and interesting features. To summarize some of the main findings:
in contrast to the Sudakov double logarithms that appear for the standard jet
axis, the dependence of the TMD cross section is given by an (approximate)
power law for the WTA axis, see fig. 3.1. This remains true when taking
into account the limited angular resolution, as long as the angle ϑ between the
hadron and the axis is larger than the angular resolution scale. Furthermore, it
also persists when restricting to charged particles, which allows one to exploit
the finer angular resolution of the tracker. Due to these features, the WTA
observable looks promising for constraining αs, since it only involves collinear
physics and can in principle be calculated to high orders in perturbation theory.

#

#
Z

(#
)

10�110�2

100

e+e� ! 2 jet, Q = 1 TeV Herwig 7, partons
Pythia 8
analytic
hadrons

anti-kT , R = 0.4, WTA, EJ > 200 GeV

Figure 3.1 The average energy fraction of hadrons fragmenting in jets, as a func-
tion of the angle between the hadron and the jet axis. The plot exhibits the striking
features of using recoil-free jets: the absence of soft contamination results in an ap-
proximate power-law behavior, and at low angles the observable is highly sensitive to
hadronization corrections.

The MC analysis also showed that at small angles the distribution is rather
sensitive to non-perturbative physics. This provides a new opportunity to
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constrain non-perturbative collinear dynamics experimentally, which could be
used to improve hadronization models. For the standard jet axis this is harder,
as the relevant features are washed out due to smearing from soft radiation.
Finally, a promising application is studying the jet shape modification (quench-
ing) in the quark-gluon plasma originated from heavy-ion collisions. Since this
environment is heavily contaminated by soft radiation, the absence of recoil
could provide a significant advantage.
Following a common structure for the rest of the thesis, the chapter will be

split in three sections. The first one presents the framework: it discusses the
kinematics of the process and the consequent mode analysis; how the cross
section factorizes in terms of these modes; resummation of large logarithms.
Rather than a derivation of the ingredients (already known from [83]), the main
focus will be on the evolution properties of the WTA and broadening axes, that
I will study from a parton-shower perspective. The comparison between the
two will argue in favor of using the WTA scheme. The second section moves
from theory to phenomenology: here I introduce the jet shape, our privileged
observable; briefly describe how I got numerical predictions; finally, show and
discuss Monte Carlo predictions and numerical results. Last, I present a short
outlook. Besides the intrinsic relevance, I believe that the extensive study
of a recoil-free observable can help develop some physical intuition about the
physics captured by this tool. Most of the material presented here is based on
ref. [2].

3.1 Theoretical framework

3.1.1 Kinematics and modes

In the following I will define the physical quantities that enter our analysis of
in-jet fragmentation. The definitions refer to e+e− collisions, the main focus
of the analysis of sec. 3.2. Extending our analysis to pp collisions would be
a relevant generalization and interesting step towards comparison with LHC
data. The proton-proton kinematics is slightly different and is discussed in
ref. [83].
The transverse momentum k is defined as

k =
ph
zh
, (3.1)

where zh = Eh/EJ is the fraction of the jet energy carried by the hadron
and ph its transverse momentum measured relative to the WTA axis, fig. 3.2.
Normalizing to the energy fraction ensures that k is a partonic variable, thus
calculable for k � ΛQCD. I will also show results using the angle ϑ between
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Beam axis

Hadron

WTA jet axis

k

Figure 3.2 Sketch of the relevant directions for TMD in-jet hadron fragmenta-
tion. Defining the transverse momentum relative to a recoil-free jet axis makes the
observable insensitive to soft radiation.

the hadron and the axis, which is related to k by

kT ≡ |k| = EJ sinϑ ≈ EJ ϑ . (3.2)

Much of the time I will consider the average energy due to all hadrons as
function of ϑ or kT , rather than the zh spectrum of an individual hadron
species h. This is known in the literature as the jet shape [179–183], but here
it is defined with respect to the WTA axis instead of the standard jet axis.
The other relevant variables are the center-of-mass energy

√
s, jet scale EJR,

the transverse momentum kT and the scale ΛQCD of nonperturbative physics.
I will always assume the hierarchy of scales

√
s � EJR > kT � ΛQCD . (3.3)

The leftmost condition corresponds to the assumption of small jet radius,
R � π/2, which was shown in previous analyses [163, 164] to hold surpris-
ingly well up to relatively large values of the jet radius, R ∼ 0.4 − 0.5. The
rightmost condition in eq. (3.3) is the assumption of perturbative transverse
momentum, meaning that our perturbative predictions are meaningful only
where hadronization effects are under control. The central inequality simply
follows from ϑ < R and eq. (3.3) , and I will consider in turn the two cases
EJR ∼ kT and EJR � kT . Getting predictions across the whole transverse
momentum spectrum will require interpolating between the two regimes.
The process considered here is inclusive in-jet fragmentation, namely we do

not constrain the number of jets in the final state. At leading power, collinear
splittings dress an initial back-to-back qq̄ pair generated in the hard collision,
but since the jet radius is assumed small, the products of a collinear splitting
may or may not be clustered in the same jet. Therefore, in general, there are
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more than two jets per event even at leading power. The hierarchy in eq. (3.3)
implies the existence of the two modes

pc ∼
√
s (R2, 1, R) , pc,h ∼ kT

(Λ2
QCD

k2
T

, 1,
ΛQCD

kT

)
, (3.4)

describing collinear fluctuations around respectively the initial qq pair and the
direction of the hadron, the latter carrying much lower virtuality. As discussed
in sec. 2.1.2, the WTA axis simply tracks the bulk of energetic radiation within
the jet, ignoring soft emissions. Since the transverse momentum k is measured
relative to the recoil-free jet axis, it probes a single collinear sector and there is
no soft mode. Contrarily, the standard jet axis balances soft and collinear ra-
diation within the jet, introducing a sensitivity to all other collinear directions.
In particular, it forces one to discriminate soft emissions inside and outside the
jet, making the observable sensitive to non-global logarithms [183].
Building on collinear factorization, the mode picture eq. (3.4) naturally

translates into a factorized description, which I now turn to presenting.

3.1.2 Factorization

In the following, I will describe the factorization picture induced by the hierar-
chy (3.3), discussing the various steps of refactorization and emphasizing their
physical meaning. Further details are shown in [83], where the formulae were
first derived.
The cross section for producing a hadron h with energy fraction zh and

transverse momentum k = ph/zh inside a jet with energy EJ and radius R is
given by

dσh
dEJ dk dzh

=
∑

i

∫
dx

x
Hi

(EJ
x
, µ
)
Gi→h(x,EJR,k, zh, µ)

[
1 +O(R2)

]
.

(3.5)

Here the collinear approximation R � 1 is exploited to factorize the cross
section into a partonic cross section H, that describes the hard scattering,
and the fragmenting jet function G, that captures the formation of the jet.
Specifically, the parton i with energy EJ/x produced in the hard scattering
emits radiation, resulting in a jet with energy EJ that contains the hadron h.
As already noted, collinear emissions may produce multiple jets even at leading
power in SCET, thus i can be either quark or gluon, although in e+e− collisions
gluon jets are only produced starting at NLO. The hard coefficients are the
same as for inclusive jet production (integrated over transverse momentum),
and the NLO expressions are therefore well known [184–187]. In presence of
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multiple emissions, the energy fraction of the final parton is the product of
the energy fractions of each emission, hence the Mellin convolution over the
jet energy fraction. Compared to the full QCD result, eq. (3.5) misses power
corrections in R, but allows for resummation of large logarithms of the small
jet radius. The factorization formula does not involve a soft function, implying
in particular that the framework is free of rapidity divergences.
When the hadron is produced close to the center of the jet, i.e. kT � EJR,

the effects of the jet boundary B furthermore separate from the fragmentation,

Gi→h(x,EJR,k, zh, µ) =
∑

j

∫ 1

zh

dy

y
Bij

(
x,EJR,

zh
y
, µ
)
Dj→h(k, y, µ)

×
[
1 +O

(
k2
T /(EJR)2

)]
. (3.6)

This does not follow directly from collinear factorization, but requires that the
jet finding also factorizes. In other words, the effect of clustering particles at a
distance dij ∼ ϑ ≈ kT /EJ must also be power suppressed by an amount ϑ/R.
This was argued to hold for the Cambridge/Aachen and anti-kT with the WTA
axis in ref. [83]. The basic reasoning (which may fail for the kT algorithm) is
that particles separated by ∼ ϑ are clustered first, while recombination at the
scale ∼ R occurs only at a later stage.
In eq. (3.6), non-perturbative physics has been confined in the coefficients
Dj→h, which must not be confused with the TMDFFs discussed in sec. 2.2.2.
Contrary to the TMDFFs, Dj→h do not carry rapidity divergences, and they
will therefore obey a completely different evolution. However, similarly to
those, they involve an interplay of non-perturbative physics in energy fraction
and transverse momentum. Calculating the transverse momentum dependence
in perturbation theory requires the additional assumption kT � ΛQCD. Under
this condition,

Dj→h(k, zh, µ) =
∑

k

∫ 1

zh

dz

z
Cjk

(
k,
zh
z
, µ
)
dk→h(z, µ)

[
1 +O

(
Λ2

QCD

k2
T

)]
,

(3.7)

where by universality of collinear physics, dk→h(z, µ) are the integrated FFs
discussed in sec. 2.2.1. This is formally identical to the matching of TMDFFs
in eq. (2.36), with different matching coefficients Cjk.
I will also consider the case EJR ∼ kT � ΛQCD, where the hadron is pro-

duced fairly close to the jet boundary. Here O(k2
T /(EJR)2

)
power corrections

cannot be neglected, resummation of logarithms of the corresponding ratio of
scales becomes irrelevant, and eq. (3.7) delivers a poor approximation. The
factorization formula for this regime is given by
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Gi→h(x,EJR,k, zh, µ) =
∑

k

∫ 1

zh

dz

z
Jik

(
x,EJR,k,

zh
z
, µ
)
dk→h(z, µ)

×
[
1 +O

(
Λ2

QCD/(E
2
JR

2)
)]
. (3.8)

The coefficients Jik (together with Cij and Bjk) were computed at one loop in
ref. [83]. When kT � EJR, they refactorize as

Jik(x,EJR,k, z, µ) =
∑

j

∫ 1

z

dz′

z′
Bij

(
x,EJR,

z

z′
, µ
)
Cjk(k, z

′, µ)

×
[
1 +O

(
k2
T /(EJR)2

)]
, (3.9)

as required by consistency with eq. (3.5) and eq. (3.6): when simultaneously
neglecting powers of kT /EJ and ΛQCD/kT , the order in which the corrections
are expanded away should not matter. Using Jik when kT ∼ EJR, instead of
the factorized form on the right-hand side, captures the k2

T /(E
2
JR

2) corrections
that are crucial in this region. Appx. B.2.1 collects the expressions for the
various functions that appear in eq. (3.9), from which refactorization evident.
The logarithms in the cross section in eq. (3.5) become large when there

are hierarchies between the scales of the hard scattering
√
s, the jet transverse

momentum EJR and the transverse momentum k. In the most factorized
scenario, they can be resummed by evaluating each ingredient at its natural
scale

µH ∼
√
s , µB ∼ EJR , µC ∼ kT , (3.10)

and running the renormalization group evolution (RGE) up to a common scale,
as I will discuss in the next section.

3.1.3 Evolution: parton shower LL derivation

The RGEs required to implement resummation were derived in [83,163,188],

µ
d

dµ
Gi→h(x,EJR,k, zh, µ) =

∑

j

∫ 1

x

dx′

x′
Pij

( x
x′
, µ
)
Gj→h(x′, EJR,k, zh, µ) ,

µ
d

dµ
Di→h(k, zh, µ) =

∑

j

∫ 1

zh

dz

z
P ′ij

(zh
z
, µ
)
Dj→h(k, z, µ) , (3.11)

where Pij are the usual QCD splitting kernels and P ′ij involve an additional
Heaviside function

P ′ij(z, µ) = Pij(z, µ) θ
(
z − 1

2) . (3.12)
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(Expressions in Mellin space are collected in appx. B.3.1). Together with the
DGLAP evolution of the FFs, eq. (2.27), these allow to bridge the separation
between any pair of scales in eq. (3.10). The fragmenting jet function G also has
DGLAP evolution, but in the jet energy fraction x rather than in the hadron
fraction. This is already clear from the factorization formula in eq. (3.5),
because the hard functionH is known to have DGLAP evolution from inclusive
jet production, and the total cross section does not depend on the scale µ, so the
dependence of G on µ must cancel the one of H. In general, RGE consistency
is a very powerful tool to check the validity of a factorization framework:
the anomalous dimensions of all the ingredients of a factorized cross section
must ultimately add up to zero, which strongly constrains the logarithmic µ
dependence of the individual ingredients.
The modified kernels in eq. (B.41) are particular to the fragmenting function
D. The additional θ(z − 1

2) is due to the WTA axis, and was argued in [83] to
hold for the C/A and anti-kT algorithms. I now turn to showing a derivation
of this evolution equation which is limited at LL accuracy, but covers also the
kT case.
As already noted in sec. 1.2.2, at this level of logarithmic accuracy the struc-

ture of the evolution can be determined from a parton shower. Specifically, the
radiation emitted by the parton produced in the hard interaction is described
by a binary tree, see fig. 3.3, where each mother splits into two daughters with
(relative) momentum fractions zi and 1− zi and angle ϑi between them. The
tree is strongly ordered in angle, meaning that angles of subsequent emissions
are parametrically smaller, ϑi+1 � ϑi. Before addressing TMD fragmentation
with the WTA axis, let me first consider inclusive fragmentation in a jet. At
LL order, the corresponding fragmenting jet function Gincl (which differs from
the TMD jet function G in eq. (3.5), but has the same evolution) reduces to
the fragmentation function

Gincl
i→h(x,EJR, zh, µ) = δ(1− x) di→h(zh, µ) , (3.13)

evaluated at µ ∼ EJR to minimize higher-order corrections. The amplitude for
inclusive hadron production in a jet follows from summing over an arbitrary
number of emissions and integrating over their phase space. In terms of a
parton shower, this is described by

A(zh, R0) = dh(zh, R0) +

∞∑

n=1

An(zh, R0) , (3.14)

where the first term describes an initial parton that does not undergo any
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Figure 3.3 Parton shower picture for inclusive in-jet fragmentation (left) and TMD
in-jet fragmentation with the WTA axis (right). In absence of other constraints,
strong angular ordering yields DGLAP evolution. Measuring the transverse momen-
tum forces the hadron and the WTA axis to follow the same branch (red) before the
splitting that sets the measurement, resulting in the modified evolution of eq. (B.41).

perturbative splitting, while the amplitude for n emissions reads

An(zh, R0) =

( n∏

i=1

∫ 1

0
dzi P (zi)

∫ ϑi−1

R0

dϑi
ϑi

)∫ 1

0
dz′ dh(z′, R0) δ

(
zh−z′

n∏

j=1

zj

)
.

(3.15)

The splitting fraction zi and angle ϑi of each emission are integrated over, with
the splitting function P (zi) providing a weight (for simplicity, I ignore parton
flavors). This follows from a repeated application of the collinear approxima-
tion, where the quantity

∫ 1

0
dzi P (zi)

∫
dϑi
ϑi

(3.16)

gives the probability of one splitting. The upper bound on the ϑi integration
follows from the angular ordering, which for the angle ϑ1 of the first splitting
is the jet radius R. The cutoff R0 regulates the collinear singularity, and
subsequent (nonperturbative) splittings are described by the fragmentation
function dh. Note that instead of traversing all branches of the binary tree,
we can follow the branch with splitting fraction zi (rather than 1− zi), up to
a symmetry factor absorbed in a redefinition of P . The measurement delta
function fixes the observed momentum fraction to the product of all zi.
To show that eq. (3.14) reproduces eq. (3.13), one solves the angular integrals

n∏

i=1

∫ ϑi−1

R0

dϑi
ϑi

=
1

n!
lnn

R

R0
, (3.17)
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and since µ = EJR in eq. (3.13), uses d lnµ = d lnR to obtain

dA

d lnµ
=

∫ 1

0
dz

∞∑

n=1

( n−1∏

i=1

∫ 1

0
dzi P (zi)

)
1

(n− 1)!
lnn−1 R

R0

×
∫ 1

0
dz′ dh(z′, R0) δ

(
z − z′

n−1∏

j=1

zj

)∫ 1

0
dzn P (zn) δ(zh − zzn)

=

∫ 1

zh

dz

z
P
(zh
z

)
A(z) . (3.18)

On the first line, separating out the integral over zn identifies the remainder
as A. This shows that the amplitude A for inclusive jet production satisfies
the DGLAP evolution. Furthermore, for R = R0, A is simply equal to the
fragmentation function, yielding the correct boundary condition.
The derivation above extends to TMD fragmentation with the WTA axis by

splitting the parton shower into three segments:

(a) ϑi > R: all branches yield separate jets and are summed over, since we
consider inclusive jet production. Splittings modify x = 2EJ/

√
s but do

not affect zh because the latter is defined relative to the jet energy.

(b) R ≥ ϑi > kT /EJ : splittings take place inside the jet and thus do not
modify x but will affect zh. Because of ϑi > kT /EJ and the strong
ordering in angles, the WTA axis and fragmenting hadron must at this
point in the shower still follow the same branch.

(c) kT /EJ ≥ ϑi: The first splitting sets the angle (or equivalently k) between
the WTA axis and the hadron. Subsequent splittings modify zh but
cannot change this angle due to the strong angular ordering. All of these
emissions are summed over.

We can directly repeat the above parton shower analysis in eq. (3.14) and
eq. (3.18), from which it follows that in (a) there is DGLAP evolution in x from
µ =
√
s down to µ = EJR, and in (c) there is a DGLAP evolution in zh from

µ = kT to the initial scale µ ∼ ΛQCD of the fragmentation functions. For (b),
strong ordering in angles implies that the clustering tree of any jet algorithm of
the kT family (not just C/A and anti-kT ) coincides with the parton shower tree.
For R ≥ ϑ > k/EJ only the branch that will yield the WTA axis and produce
the hadron needs to be integrated over, which corresponds to imposing zi > 1

2
and leads to the modified anomalous dimension in eq. (B.41). This justifies
the evolution equations in eq. (3.11) and the scales in eq. (3.10).
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3.1.4 Evolution with the broadening axis

While pointing out the practical advantages of the WTA scheme, the first
phenomenological analysis of recoil-free jets, ref. [85], treated the WTA and
broadening axis on an almost equal footing. I will now show (at least, for TMD
in-jet fragmentation) that the broadening axis defined in section sec. 2.1.2 fails
in satisfying a simple evolution picture, making the WTA scheme a preferred
option to eliminate recoil. In particular, I will show that resumming logarithms
of kT /(EJR) with the broadening axis takes on a much more complicated form
than for the WTA axis, because even at LL accuracy the axis finding does not
have a simple recursive structure. I will need to consider at least two splittings,
since when the jet consists of only two particles the broadening axis is along
the most energetic one, just like the WTA.
Let me start from the case where all the particles lie in a plane, as this

simplified configuration already gives some intuition of the increased complex-
ity of the evolution with the broadening axis. According to the definition in
eq. (2.12), one needs to find the unit vector n̂ that minimizes eq. (2.11). The
assumption of small jet radius justifies the approximation in eq. (2.13): in this
case n̂ is parametrized by an angle ϕ, and the broadening yields

B(ϕ) =
∑

i

zi|ϑi − ϕ| . (3.19)

Since this function is piecewise linear, its minimum coincides with the direction
of one of the particles, ϕ = ϑi. In the parton shower picture, we want to
track the axis along the showering tree (fig. 3.4, left). To determine for a
given splitting which of the two daughters takes control of the axis, requires
comparing

B` = zr(ϑ` − ϑr) +
∑

i∈L
zi(ϑi − ϑ`) +

∑

i∈R
zi(ϑ` − ϑi) ,

Br = z`(ϑ` − ϑr) +
∑

i∈L
zi(ϑ` − ϑr) +

∑

i∈R
zi(ϑr − ϑi) . (3.20)

Here L and R identify the subset of particles to the left and to the right of the
splitting. Subtracting the two lines in eq. (3.20) from one another gives

B` < Br ⇔ z` + zL > zr + zR , (3.21)

where zL and zR are the energy fractions of L and R. In contrast to the WTA
axis, it is thus not sufficient to compare z` and zr, as the other branches still
enter in eq. (3.21). It is still possible to determine the broadening axis with a
recursive procedure, as long as one also keeps track of the total energy on the
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Figure 3.4 Left: parton shower picture for TMD in-jet fragmentation with the
broadening jet axis, in the planar limit. Here all momentum fractions are relative to
the parton initiating the jet. When the branch along which the axis lies (green) splits,
the energy fractions zL and zR of the left (red) and right (blue) affect which daughter
(black) gets the axis. Right: the general angular-ordered three-particle configuration
consists of a pair and a third particle that is far away (blue dots). The position
of the broadening axis depends on the angular distances (red lines). The origin of
the coordinate system is centered between the two nearby particles and the ϑ axis is
chosen such that the third particle lies on it.

left/right of the axis. The resulting two-variable DGLAP evolution is discussed
in [2], but I stress that it is only valid in the planar limit.
I now move on to the non-planar case and consider the simplest non-trivial

configuration of three particles, arising from two splittings. I will show that
even in the strongly-ordered angular limit, the position of the broadening axis
depends sensitively on the energy fraction of the initial splitting. In other
words, the broadening axis does not behave in a Markovian manner with re-
spect to a history in the strongly-ordered angular limit. This is in contrast
to the WTA axis, whose position in this limit only depends on the branching
that is currently occurring. Without the Markovian condition, the transverse
momentum with respect to the broadening axis is not expected to admit a
simple LL resummation.
The position of the axis in the non-planar configuration is specified by two

angles (ϑ, ϕ), while the relative position of the three particles requires three
parameters. After the first splitting, the broadening axis simply is along the
particle with energy fraction z1 >

1
2 . Let us consider the case that this splits

into a pair of particles with energy fractions z2z1 and (1−z2)z1, and choose the
coordinate system illustrated in the right panel of fig. 3.4. Using that for narrow
jets the angular-separation measure of two particles is flat, dΩ ≈ dϑ2 + dϕ2,
the broadening is

B(ϑ, ϕ) = z2z1

√
(ϑ− ϑ∗)2 + (ϕ− ϕ∗)2 + (1− z2)z1

√
(ϑ+ ϑ∗)2 + (ϕ+ ϕ∗)2
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+ (1− z1)

√
(ϑ− ϑ)2 + ϕ2. (3.22)

Strong angular ordering corresponds to taking the limit ϑ→∞, and searching
for a local minimum within the convex hull of the three particles requires
setting derivatives with respect to (ϑ, ϕ) to zero in the domain

ϑ∗, ϕ∗ > 0 , −ϕ∗ < ϕ < ϕ∗ , −ϑ∗ < ϑ < ϑ . (3.23)

It is convenient to switch to the variables

ξ± =
ϑ± ϑ∗
ϕ± ϕ∗ , (3.24)

for which the condition of a local minimum takes the following form,

ξ− − ξ+ =
1− z1

z2 z1

√
1 + ξ2

+ , z2
2(1 + ξ2

−) = (1− z2)2(1 + ξ2
+) . (3.25)

A solution exists for

2z1 − 1

2z1
< z2 <

1

2z1
, (3.26)

which is given by

ξ+(z1, z2) =
−1 + 2z1 − 2z2

1z2√
−1 + 4z1 − 4z2

1 − 4z2
1z2 + 8z3

1z2 + 4z2
1z

2
2 − 8z3

1z
2
2

,

ξ−(z1, z2) =
1

z2

√
1− 2z2 + (1− z2)2ξ2

+(z1, z2) . (3.27)

As in the planar case, the position of the broadening axis depends not just
on two daughters of the splitting, but also the other particle (through z1).
However, unlike the planar case, the broadening axis does not have to lie on a
particle, though it will do so for values of z2 outside the bounds in eq. (3.26).
Indeed, these boundaries exactly correspond to the condition that the momen-
tum fractions of all of the partons are less than half, since the broadening axis
will be along a parton if its momentum fraction is larger than half.
The picture is still slightly more complicated, because I have not yet imposed

eq. (3.23), which shrinks the solution space (in particular, we know that it
should vanish in the planar limit ϕ∗ → 0). The analytic expressions obtained
from eq. (3.27) are rather complicated, but I illustrate the effect in fig. 3.5. The
right panel shows the solution space shrinking depending on the ratio ϕ∗/ϑ∗;
the left panel shows the position of the broadening axis for ϕ∗/ϑ∗ = 1, with
different paths corresponding to different values of z1. This dependence on z1

explicitly shows that the Markovian condition is violated.
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'⇤/#⇤ = 1

z1

z2

Figure 3.5 Left: the position of the broadening axis for ϕ∗/ϑ∗ = 1 is mapped out.
The curves correspond to different z1 values, showing that the Markovian condition
is violated, and run over the allowed z2 range. Right: the region in (z1, z2) where the
broadening axis does not lie on a particle, shown for different values of ϕ∗/ϑ∗. The
dotted boundaries correspond to solutions of (3.26) without taking into account the
additional constraints from eq. (3.23).

In conclusion, I have shown that even at leading-logarithmic order, the posi-
tion of the broadening axis generically (and nontrivially) depends on particles
other than the daughters of the splitting under consideration. It is there-
fore clear that there is no simple DGLAP evolution that describes this parton
shower picture, though the evolution can of course be calculated by simulating
the full shower.

3.2 Phenomenological study

3.2.1 Jet shape

The framework that I sketched in the previous sections is fairly general, in
the sense that the double differential cross section contains in principle all the
information about the energy fraction and transverse momentum dependence
of hadrons fragmenting in jets. When it comes to phenomenology, this is often
too much information. One chooses what features of the cross section are worth
investigating, projecting them onto two-dimensional plots. Furthermore, some
of the kinematical regions we get predictions for could be in fact experimentally
inaccessible, such as low hadron transverse momenta or jet energies. Moreover,
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large sources of theoretical and experimental uncertainty, such as the extraction
of FFs, could nullify the effort to increase the perturbative accuracy. These
considerations play an important role in choosing the focus of the analysis.
That the framework heavily relies on factorization only makes the situation

more delicate. Assuming wide separation between each of the energy scales
in eq. (3.3) allows for resumming logarithms of any of their ratios, but it is
important to know what power corrections are left aside: I will always ignore
ΛQCD/kT and large-R corrections, but provide a transition between the two
regimes kT ∼ EJR and kT � EJR in order to cover all of the interesting
perturbative range. How to implement the transition is not obvious, and allows
for different prescriptions.
Finally, resummation is implemented by evolving the perturbative ingredi-

ents from an initial to a final scale. Since the procedure deals by definition
with contributions beyond the working perturbative order, any choice of scales
yields results that are formally equivalent up to higher-order corrections. How-
ever, these corrections are in fact large (or we would not need resummation
in the first place) so the choice does matter. Assessing the theoretical error
induced by this choice is important, and the standard method to do so is scale
variation. There is general consensus in the field on the large degree of arbi-
trariness involved in scale variation, thus it is good practice to always specify
clearly the procedure followed.
In ref. [83] we mainly focused on the jet shape, that shows most of the

characteristic features of absence of recoil while limiting the non-perturbative
input required. In the rest of this section and the following, I will discuss the
considerations introduced above in the context of this specific observable.
The jet shape is the average fraction of the jet energy at a specific angle ϑ

with the axis. It can be obtained from the cross section differential in transverse
momentum of eq. (3.5), by expressing k in terms of ϑ using eq. (3.2), summing
over hadron species h and averaging over zh,

d〈zh〉
dEJ dϑ

=
2πϑE2

J

σ

∑

h

∫ 1

0
dzh zh

dσh
dEJ dk dzh

. (3.28)

The overall factor is the Jacobian due to switching from k to ϑ, and the full
cross section σ that gives the normalization1. In the region

√
s � EJR �

kT � ΛQCD, eqs. (3.5), (3.6) and (3.7) combine to explicitly yield

d〈z〉
dEJ dϑ

=
2πϑE2

J

σ

∑

i,j,k

∫ 1

xJ

dx

x
Hi

(EJ
x
, µ
)∫ 1

0
dy y Bij(x,EJR, y, µ)

1In fact, the results of sec. 3.2.3 use a different normalization, which I will specify later.
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×
∫ 1

0
dz z Cjk

(
k(ϑ), z, µ

)∑

h

∫ 1

0
dzh zh dk→h(zh, µ) . (3.29)

Here I used that the (first) Mellin moment of a product is the product of the
individual moments to separate the integrals in the hadron fraction. The lower
limit xJ = 2EJ/

√
s is the jet energy fraction.

The dependence on the FFs drops out because of the momentum sum rule in
eq. (2.26), which is particularly convenient because it removes one of the largest
sources of theoretical uncertainty. There is a drawback however, since neutral
hadrons are hard to detect (they escape calorimeters), reducing the overall
resolution. To avoid this issue, the jet shape can also be defined on subsets
S of particles, such as charged particles or charged pions, restricting the sum
over h in eq. (3.28). In that case the sum rule cannot be used to eliminate the
fragmentation functions completely. However, the required non-perturbative
input is rather limited, as it reduces to one non-perturbative number for each
parton flavor (the first moment of the FF), which describes the average energy
of a parton that goes into S.
In the complementary regime

√
s� EJR ∼ kT � ΛQCD, eq. (3.6) is unjus-

tified and one uses instead eqs. (3.5) and (3.8) to get

d〈z〉
dEJ dϑ

=
2πϑE2

J

σ

∑

i,k

∫ 1

xJ

dx

x
Hi

(EJ
x
, µ
)

×
∫ 1

0
dz z Jik

(
x,EJR,k(ϑ), z, µ

)∑

h

∫ 1

0
dzh zh dk→h(zh, µ) , (3.30)

capturing the full kT /(EJR) dependence. All the considerations for the maximally-
factorized case remain valid.
Resummation is formally included through the evolution kernels

Gi→h(x,EJR,k, zh, µ) =
∑

j

∫ 1

x

dx′

x′
Uij

( x
x′

;µ, µB

)
Gj→h(x′, EJR,k, zh, µB) ,

Di→h(k, zh, µ) =
∑

j

∫ 1

zh

dz

z
U ′ij

(zh
z

;µ, µC

)
Dj→h(k, z, µC) , (3.31)

solutions of eq. (3.11). The operators U and U ′ perform respectively the stan-
dard DGLAP and modified evolution discussed in sec. 3.1.3, and the convolu-
tion structure reflects the form of the evolution equations. By taking moments
of the evolution kernels and inserting them in eq. (3.29), it is straightforward
to get expressions that also account for the evolution.
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3.2.2 Numerical implementation

I will now present some detail of my numerical implementation. All the one-
loop and evolution ingredients are known from the literature, and in principle
the previous section provides all the equations needed to implement the jet
shape at NLO + LL. In practice, a number of subtleties remain to be ad-
dressed: first, the perturbative ingredients are formulated as an expansion in
plus distributions, whose evolution is not straightforward; second, one needs
to combine the factorization formulae for k � EJR and k ∼ EJR, and provide
an uncertainty estimate. I will examine these aspects in turn, starting with
how I solved the evolution equations numerically.
The starting point for all the numerical results shown in sec. 3.2.3 is the

double differential cross section. I worked with the cumulative distribution in
transverse momentum k,

∫

k<kc

dk
dσh

dk dEJ dzh
= π

∫ kc

0
dk2

T

dσh
dk dEJ dzh

, (3.32)

differentiating the result at the end of the computation. This does not com-
plicate the evolution, because the kernels in eq. (3.31) (or equivalently, the
anomalous dimensions) do not involve k. In fact, it is necessary to choose the
scales of the evolution in terms of kc, because C

(0)
ij (k) ∝ δ2(k) would cause

the distribution to vanish unless k = 0. By contrast, C(0)
ij (kc) ∝ θ(kc) as func-

tion of kc. This choice is referred to as cumulative scale settings, contrasting
differential scale settings.
The resummation was implemented in the form presented in eq. (3.11): I

started from the fragmentation functions d at some initial scale µd and evolved
them to µC ∼ kc, where they match onto the TMD fragmentation function D.
Here the convolution variable of the evolution is the energy fraction of the
hadron z. I then evolved the TMD fragmentation function using the modified
DGLAP to µB ∼ EJR, with the convolution variable still effectively being the
energy fraction of the hadron. At the µB scale, they match onto the fragment-
ing jet function G. Finally I evolved using standard DGLAP up to µH ∼

√
s,

with the convolution variable now being the energy fraction of the hard par-
ton which initiates the jet, denoted by x. At this point the corrections from
the hard function are included. Due to the matrix nature of the factorization
formulae, the various evolution/matching steps do not commute. The evolu-
tion is performed independently for each point of a linear grid in the jet energy
fraction EJ , which is finally integrated over. Each term in the NLO corrections
H [1], C [1], B[1], J [1] only has a nontrivial dependence on x or z but not both,
so these evolutions factorize and are carried out separately.
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All RGEs were solved using the classic Runge-Kutta method in the evolution
basis and accounted for heavy quark thresholds. Using the singlet/nonsinglet
decomposition

dΣ =
∑

f (df + df ) , d+
f = df + df − 1

nf
dΣ , d−f = df − df , (3.33)

evolution couples the gluon FF to only the singlet dΣ, and nonsinglet dis-
tributions d± evolve independently. However, I adopted different strategies
depending on the observable. The jet shape in eq. (3.28) is the first moment in
zh, so in this case it is natural to perform the evolution in Mellin space, where
it becomes multiplicative. To this purpose, the one-loop anomalous dimensions
for (modified) DGLAP evolution in Mellin space were given in ref. [83]. When
inclusive over all hadrons, I could use the sum rule to remove input from frag-
mentation functions, while for charged pions I took the first moment of existing
parameterizations provided by the latest DSS [121] global fit. Even at LL, the
presence of NLO fixed-order ingredients justifies the usage of their more recent
NLO sets. As a different observable, we considered the cross section differential
in the hadron energy fraction zh, varying cuts on the transverse momentum
kc. In this case I carried out the evolution directly in z space.
Small-R resummation in e+e− collisions poses the additional issue of evolv-

ing distributions in the convolution variable, such as δ(1−x), rather than func-
tions (for the convolutions in z there is no problem, as such distributions are
smeared by their convolution with FFs). I solved this issue by taking the zero
truncated moment of the distribution and exploiting that such a truncated
moment itself satisfies a DGLAP evolution equation with modified splitting
functions [189]. This is simply due to the rearrangement

∫ 1

x0

dx

∫ 1

x

dx′

x′
Pij(x

′)Gj
( x
x′

)
=

∫ 1

x0

dx′

x′
x0

x′
Pij

(x0

x′

)∫ 1

x′
dxGj(x) , (3.34)

where I omitted the non-relevant arguments. To get the evolved spectrum I
then differentiated the evolved truncated moment. Finally, because the jet
shape turns off sharply at the endpoint ϑ = R, it was necessary to resum
threshold logarithms of 1 − xJ in order to correctly describe this region. I
won’t discuss this subtlety here, and I point the interested reader to [2].
I now describe how the jet shape predictions are extended from kc � EJR

to kc . EJR. A way to smoothly transition between eq. (3.29) and eq. (3.30),
is schematically performing the matching

σ = H(
√
s)⊗x U(

√
s, EJR)⊗x

[
B(EJR)⊗z U ′(EJR, kc)⊗z C(kc)⊗z d(kc)

+ J(EJR)⊗z d(EJR)−B(EJR)⊗z C(EJR)⊗z d(EJR)
]
, (3.35)
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where the evolution kernels in eq. (3.31) run between the scales in parenthesis,
and the arguments of the functions indicate the canonical scale at which they
are evaluated. The symbol ⊗ denotes Mellin convolution over the jet energy
fraction or hadron energy fraction. The formula is read as follows: the first
term within square brackets contains leading logarithms of the ratio kc/(EJR)
(via the evolution kernel U ′), but misses power corrections of the same quantity.
Vice versa, the second term includes power corrections (via the coefficients J)
but misses LLs beyond NLO. Summing the two contributions includes both
classes of terms, but implies some double counting: the overlap is obtained
leaving out power corrections (by using the maximally factorized formula) and
logarithms (by not including the evolution kernel) at the same time, which is
precisely the term subtracted in eq. (3.35).
Let me note that eq. (3.35) is not the only possible prescription to implement

a transition. In general, a way to interpolate between two regimes I and II is
named profile. A simple profile is given by a weight function f ,

σ(y) = σI(y)f(y; a) + σII(y)[1− f(y; a)] , (3.36)

where y are kinematical variables and a profile parameters, that reduces to 1
in the kinematical region dominated by I and to 0 in the one dominated by II.
A more elegant prescription is using profile scales, choosing the scales µi(y, a)
as functions of the kinematics, see e.g. [17, 190]. By doing this, one controls
the speed at which resummation is performed across the whole kinematical
range, and can gradually switch it off in the region where logarithms are under
control. A reason why eq. (3.35) is appealing compared to these alternatives
is that it does not involve additional parameters, as it captures two classes of
terms that are already present in the all order QCD expression.
In our case, we found no clear reason to transition between the two regimes

with profile scales, and we chose as standard configuration

µH =
√
s, µB = 2EJ tan(R/2), µC = kc , (3.37)

which differs slightly from the canonical scales in eq. (3.10). In particular,
keeping the tangent (rather than just the angle R) retains some subleading
corrections in the small-R expansion underpinning eq. (3.5), improving the
behavior of the cross section in the vicinity of the ϑ ∼ R endpoint.2 To avoid
αs(µC) from hitting the Landau pole, I used the following profile for the scale
µC ,

µC(kc) =
k0

2

(
1 +

k2
c

k2
0

)
if kc ≤ k0 , (3.38)

2The same corrections were retained in our expression for the NLO ingredients, where the
relation pTR ↔ 2EJ tan

R
2
was used to convert the pp jet definition (that uses azimuthal

angles and pseudo-rapidity) to the e+e− case (that uses angles).



106 Chapter 3. In-jet fragmentation without recoil

where k0 = 1 GeV. Of course in this region non-perturbative corrections to
eq. (3.7) will be important, and our numerical predictions are just indicative.
Finally, following common lore to estimate the perturbative uncertainty, I

varied the scales by a factor 2 (and 1/2) around their central value. Specifically,
I first only varied the profile scale µC around its central value, then varied
µB and µC at the same time, and then varied all the three scales together.
This probes the resummation uncertainties related to logarithms of kc/(EJR),
R and fixed-order uncertainty, respectively. In addition, I varied the profile
parameter k0 up and down by a factor of 2, and took the final uncertainty to
be the quadrature of the four cases.

3.2.3 Results

Having specified our definition and numerical procedure, in this section I finally
show results for the jet shape, differential in angle or transverse momentum,
and the fragmentation spectrum with a cut on angle or transverse momentum.
The default setup is as follows: e+e− → jets at a center of mass energy of√
s = 1 TeV. The jets are identified using (the e+e− version of) anti-kT with

R = 0.4 and the WTA recombination scheme, and are required to have jet
energy EJ > 200 GeV. The value of the jet radius is a fair compromise between
suppressing power corrections in R and experimental significance, while the
cut on jet energy leaves out spurious jets, formed by clusters of soft radiation.
Predictions obtained from Herwig 7.1.1 and Pythia 8.226, through a Rivet
analysis [191] are compared to the analytic results based on the framework
above. The cumulant jet shape I show is obtained by integrating eq. (3.28)
over the jet energy, and has the following default normalization,

Z(ϑ) =
(d〈z〉

dϑ

)/(∫ R

ϑmin

dϑ
d〈z〉
dϑ

)
,

Z(kT ) =
(d〈z〉

dkT

)/(∫ kmax

kmin

dkT
d〈z〉
dkT

)
, (3.39)

with ϑmin = 0.1 and kmin = 20 GeV, kmax = 100 GeV. The lower cut on angle
(transverse momentum) imposes that the normalization is not dominated by
hadronization effects, while the upper cut on transverse momentum reduces
the impact of threshold effects on normalization.
Fig. 3.6 shows results for the jet shape. The central region of the distribution

follows an (approximate) power law, where deviations from a simple 1/ϑ are
due to the resummation of logarithms of R/ϑ and the running of the coupling
constant. Plotting ϑZ(ϑ) rather than Z(ϑ) highlights these deviations. An-
alytic and MC predictions agree well in this region, and my predictions have
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Figure 3.6 Jet shape in e+e− collisions, as a function of the angle (left) and trans-
verse momentum (right), defined with the WTA jet axis, as predicted by Herwig
(black) and Pythia (blue) at hadron (solid) and parton (dashed) level, compared to
my analytic prediction (red). Here and in the following e+e− → 2 jets refers to
the MC setting before the parton shower, while our measurement is inclusive on the
number of jets.

the added benefit of a theory uncertainty estimate. The power-law behavior
extends to the edge of the jet for the angular distribution, but has a smooth
turnoff for the transverse momentum distribution (right panel) due to the effect
of the jet energy distribution on eq. (3.2). In particular, reliable predictions
near the endpoint require the resummation of threshold logarithms, discussed
in [2]. Moving on to the small kT region, one notes that the parton-level distri-
bution is peaked near kT = 0 because the WTA axis is always along a particle.
The adjacent “dead cone" is due to the shower cut off3, and is filled with ra-
diation by the hadronization model. This effect is not visible with standard
axes, whose position is smeared by soft radiation, suggesting that the WTA
axis is particularly useful for studying this non-perturbative physics. Note
that Herwig and Pythia differ before hadronization, but agree well after
including it. The purely perturbative calculation is not valid in this region;
extending the predictions there would require developing a non-perturbative
model to supplement the factorization ingredients with ΛQCD/kT corrections.
The plot suggests that non-perturbative effects already become important for
kT . 10 GeV. The reason for this is the denominator of eq. (3.1): a hadron
with zh ∼ 0.1 and kT = 10 GeV has a transverse momentum of phT = zhkT = 1
GeV.

3Event generators regulate the collinear singularity with a minimum angle for each emission,
analog to R0 in eq. (3.15). Since the WTA axis lies on a particle, nothing is found at ϑ < R0
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Figure 3.7 The jet shape at hadron level as function of angle for the e+e− anti-kT
(black), Cambridge/Aachen (blue dashed) and kT algorithm (red dot-dashed).

Next we investigate in fig. 3.7 the dependence of the jet shape on the specific
jet algorithm, comparing the (e+e− version of) anti-kT , Cambridge/Aachen
and kT algorithms, using the WTA recombination scheme. There are only
differences at the very edge of the jet, and they are rather small. Since the
WTA axis is robust, these differences are due to particles at the edge of the
jet being clustered into it or not. As expected, anti-kT has the sharpest edge
(since it clusters energetic particles first) while kT the softest edge. The NLO
analytic calculation yields identical predictions for the three cases, so the good
agreement gives some indirect evidence that higher-order corrections are under
control. The differences between algorithms would most likely become larger
when there are many jets in an event, e.g. when the cut on EJ is loosened or
pp collisions are considered.
In the left panel of fig. 3.8, I show MC results for the jet shape with anti-kT ,

for different radii R = 0.2, 0.4 and 1. Exclusive kT is also shown, which clusters
the whole event into two jets, and thus corresponds to R ∼ π/2. The WTA
axis is the same, independent of R, which is why the distributions overlap.
For larger values of ϑ the collinear approximation no longer holds, and the
distribution even rises due to a Jacobian factor. Specifically, one would expect
a constant energy density from soft radiation, i.e. dE/dΩ = dE/(dϕdϑ sinϑ) ∼
constant, implying that ϑdE/dϑ ∼ ϑ/(sinϑ) rises. This is not the case for the
jet shape using the standard jet axis, as shown in the right panel of fig. 3.8,
because the axis will reposition itself depending on all the radiation in the jet.
This figure also clearly shows that the jet shape with standard jet axis exhibits
Sudakov double logarithms instead of a power-law dependence on ϑ.
The jet shape distributions shown so far go down to angles smaller than the
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Figure 3.8 Left: the jet shape as function of the angle for different values of the jet
radius R, and for exclusive kT (two jets). The curves are normalized in θ = [0.1, 0.2].
Right: the jet shape for exclusive kT as function of angle with the WTA axis (red)
and standard jet axis (black dashed).

typical size of a calorimeter cell (ϑ ≈ 0.1 at the LHC). The left panel of fig. 3.9
demonstrates that limited angular resolution does not change the jet shape.
Specifically, the jets were reclustered into subjets of radius r < R, and the
jet shape recalculated using these subjets as input, instead of hadrons. The
distributions overlap as long as the angle is above the subjet radius scale, and
below the subjet radius the distribution drops off, except for the contribution
from ϑ = 0. These features are easily explained by the WTA axis always lying
on a particle (in this case, a subjet). Alternatively, a more granular angular
resolution can be achieved tracking specific particles. The right panel of fig. 3.9
shows that the jet shape is essentially unaltered when defined on all hadrons or
only on charged pions. As discussed in sec. 3.2.1, this distribution would benefit
by increased resolution but would be likely more sensitive to hadronization
effects, and requires a few non-perturbative parameters to implement in the
analytic calculation.
Next I consider the effect of a cut on transverse momentum on the fragmen-

tation spectrum of charged pions, see fig. 3.10. For zh > 0.5, the WTA axis is
along the hadron and the distribution is insensitive to the cut, which is why this
region is not shown. In fact, the effects of the cut are clearly visible at small zh
but already negligible for zh > 0.3, suggesting that hadrons with this energy
fraction almost always control the axis. The analytic curves exhibit a similar
qualitative behavior as those obtained using Herwig, as is particularly clear in
the subpanels which show the ratio to the most-inclusive cut on kT . The differ-
ence in absolute normalization indicates that the intrisically-nonperturbative
fragmentation spectrum used by Herwig differs from the DSS global fit.
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Figure 3.9 Left: the jet shape using subjets (instead of hadrons) as input. The
lowest bin gets its contribution from ϑ = 0. All the jet shapes were normalized by the
same factor, taken to be the area of the r = 0.01 curve in ϑ = [0.1, 0.4]. Right: the
jet shape using all particles (blue) and only charged pions (red dashed) as input. The
red-dashed pion distribution has been normalized to the blue curve for all particles
to emphasize the similarity in the shape.

3.3 Outlook

Before moving on to a second application of recoil-free jets, I will comment on
the findings presented in this chapter and discuss the natural extensions of this
work. The physical process that I considered was fragmentation of hadrons in-
side jets, whose transverse momentum dependence I mainly described through
the study of the jet shape, defined relative to the WTA axis.
As already noted, what makes the framework interesting from a theoretical

point of view is that it yields purely collinear observables. Despite the pres-
ence of multiple scales, the factorization picture is relatively simple, because it
does not involve rapidity divergences and non-global logarithms. This allowed
me to sensibly describe the jet shape across the whole perturbative range in
transverse momentum, by just combining two of the factorization regimes us-
ing a natural prescription. In view of future extensions, the observable being
purely collinear will also make it easier to calculate the perturbative ingredi-
ents to higher orders, although two-loop calculations involving jet algorithms
are largely unexplored territory.
Regarding phenomenological interest, the results I showed in sec. 3.2.3 high-

lighted two prominent features: the first one is the aforementioned power-law
behavior of the jet shape, resulting from the absence of Sudakov double loga-
rithms. Such a definite scaling is highly promising in view of precision physics
as it delivers a clear prediction to compare with experiments. The second one
is the stability of the axis: the WTA clustering procedure is highly robust,
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Figure 3.10 The fragmentation spectrum of charged pions with a cut on their
transverse momentum, from Monte Carlo (left) and through the analytic calculation
(right). The lower panels shows the ratio to the “most-inclusive” cut kcut = 80 GeV.

as single low-energy emissions barely affect the jet direction. As relevant ex-
amples, I showed with MC simulations that reclustering into subjets, varying
algorithm within the kT family, or summing over charged pions rather than
all hadrons cause only minor alterations to the jet shape. This stability would
help overcome common problems in a “real” collider, such as finite angular
resolution and limited tagging efficiency.
The first natural extension of the work would be pp collisions, in order

to obtain predictions for the LHC. The perturbative ingredients required by
the analysis are the same, with the factorization formula in eq. (3.5) supple-
mented by the convolutions with two collinear PDFs. An interesting question
is whether these convolutions could smear out the relevant features of the jet
shape. The MC simulation in fig. 3.11 shows this is not the case, presenting
results at the 13 TeV LHC. Now zh = pT,h/pT,J , is the transverse momentum
fraction and in place of ϑ we quantify the distance to the jet axis through
∆R =

√
(ϕh−ϕJ)2 + (yh−yJ)2, where ϕ and y are the azimuthal angle and

rapidity. Specifically, the plot shows the pp version of the jet shape Z(∆R),
normalized to 1 in the region [0.1, R]. The same (approximate) power-law be-
havior observed for the e+e− case is also evident for pp collisions. Also shown is
the jet shape after soft drop with zcut = 0.1 and β = 2. Due to the large β, this
grooming is rather mild, so only affects the region close to the jet boundary.
In the pp case, convolution with the PDFs would introduce a new source of

error, but since these are relatively well constrained, I expect the perturbative
uncertainty to still play a dominant role. Using the recoil-free jet shape to
precision QCD test would most likely require to extend the fixed-order accuracy
to NNLO, and investigate evolution beyond LL.
In addition to the intrinsic interest for the TMD community and the possible
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Figure 3.11 Jet shape at the LHC for jets with pT,J > 200 GeV at hadron (solid)
and parton level (dashed), using all particles (black) or after applying soft drop (red).
The shape shows the same main features as the analog e+e− observable.

precise QCD measurement, the observables presented here are promising for
studying the quark-gluon plasma, since the medium produces so much low-
energy radiation that it is essential to remove that source of contamination.
Another possible direction is to consider recoil-free axes for more complicated
observables, for instance those used to tag boosted heavy objects.



4
Transverse Momentum Distributions
from recoil-free jets

The structure of the proton has been a fundamental research topic for a long
time. Besides intrinsic interest in the complex interplay of gluons and quarks in
a bound state, an increasingly detailed description of the nucleon is demanded
to achieve high precision at hadron colliders such as the LHC, and therefore
important in the search for new short-distance physics. Since the early days of
the parton model, the main focus has been on the collinear PDFs that I dis-
cussed in sec. 2.2.1. However, the precision of the LHC and the advent of the
electron-ion collider (EIC) have raised attention on differential cross sections
that probe TMDs. In particular, the EIC will enable the extraction of TMDs
with unmatched precision, with SIDIS playing an important role [192–194]. In
the rest of the thesis, I will present applications of jets to the study of TMD-
PDFs, with DIS being the main focus. The analysis of the present chapter will
build again on the properties of the WTA axis. Similar to in-jet fragmentation,
I will show that the absence of recoil causes a major simplification in the fac-
torization structure, which in turn makes it possible to achieve a remarkable
level of theoretical precision.
Traditional processes involving a transverse momentum measurement are

dihadron production in e+e− collisions, γ∗/Z boson production in pp, and
SIDIS [123–126, 128–130]. Since a transverse momentum measurement can
also be thought of as the measurement of an angle, the factorization formulae
for these processes involve two TMDs. In the case of SIDIS, the factorization
in eq. (2.25) gets complicated by the presence of non-perturbative physics in
both the initial and final state of the process. Measuring a perturbatively
calculable jet instead of a hadron would in principle remove the main source
of final-state non-perturbative uncertainty, allowing for a cleaner extraction of
the TMDPDFs.1

1In practice, of course, when the transverse momentum is small the jet functions themselves
are affected by hadronization corrections. I will extensively comment on this in the outlook.
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With this motivation in mind, in [1] we investigated TMD factorization for
jet production. There we proved that a class of processes, including DIS+jet,
obeys the same factorization formulae valid for single hadrons, with the TMDFF
replaced by a TMD jet function. Not only do the formulae look similar, but
they involve the exact same ingredients except for the jet function. This is very
convenient, because as I discussed in sec. 2.2, these ingredients are known at
NNLO+N3LL. With the WTA axis, this applies independent of the jet radius,
providing a simple and comprehensive framework. In ref. [3] we supplemented
our analysis with numerical predictions for e+e− → dijet and DIS+jet. We
found that even for moderate values of the jet radius parameter (R & 0.5)
using the large-R limit of the jet function gives an excellent approximation of
the TMD cross section. We could then determine numerically the NNLO jet
function in this limit, achieving N3LL accuracy.
The rest of the chapter is based on the two works mentioned above. Sec. 4.1

presents the framework: building on the mode analysis, I discuss factoriza-
tion for the various hierarchies between the relevant angles and the jet radius,
compute the one-loop ingredients and describe the extraction of the two-loop
function. In sec. 4.2 I show numerical predictions for e+e− and ep collisions,
and comment on the results.

4.1 Theoretical framework

4.1.1 Kinematics and modes

In the following I will consider two different processes, e+e− → 2 jets and
DIS+jet. Although the main phenomenological focus is on the latter, the
former provides a useful testing ground of the theoretical framework: lepton
collisions allow for studying the jet functions without worrying about parton
distributions, and in sec. 4.2 I will show plots also for this process.
In the case of e+e− → dijet, the main physical quantity I consider is the

transverse momentum decorrelation. It is defined as

q =
p1

z1
+

p2

z2
, (e+e− → dijet) (4.1)

where pi are the jet transverse momenta measured with respect to a common
direction and zi = 2Ei/

√
s are their energy fractions,

√
s is the center-of-mass

energy of the collision. For factorization to be valid, I will always assume

qT ≡ |q| �
√
s

2
. (4.2)
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A related quantity is the angular decorrelation, shown in the right panel of
fig. 4.1,

ϑ = arctan
(2qT√

s

)
≈ 2qT√

s
� 1 , (e+e− → dijet) (4.3)

where the final expression exploits eq. (4.2). This makes it explicit that we con-
sider configurations where jets are almost back to back. The angular decorrela-
tion is similar to the azimuthal decorrelation in hadronic collisions, calculated
at NLL accuracy in refs. [195–198].
In principle, the definitions in eqs. (4.1) and (4.3) depend on the direction

with respect to which the jet transverse momenta are measured. However,
differences induced by this choice are suppressed by powers of q2

T /s, thus they
do not matter in the effective-theory description. Of course, the definition is
sensitive to the details of the jet algorithm: the default will be the WTA axis
with anti-kT , but I will also consider the standard jet axis and other clustering
algorithms of the kT family.

e�

p

jet

R

# ' 2qT /Q

jet

jet

e�e+

2qT /
p

s ' #

R

R

Figure 4.1 Sketch of the TMD processes I consider in this chapter: DIS+jet in the
Breit frame (left) and dijet production from e+e− collisions (right). The angle ϑ is
assumed small, but can compete with the jet radius R.

The kinematics for DIS+jet in the Breit Frame (fig. 4.1) is analogous to
the one discussed in sec. 2.2.2 for SIDIS, with the straightforward replacement
hadron → jet. Explicitly, the transverse momentum reads

q =
P J

z
+ qin , (DIS+jet) (4.4)

where P J is the transverse momentum of the jet with respect to the beam
axis, qin is the transverse momentum of the initial-state quark in the proton,
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and z = 2EJ/Q is the jet energy normalized to (minus) the virtuality of the
photon Q2. The choice of Breit frame is suggested by existing experimental
analyses at HERA, the only large electron-proton collider that operated so far:
in particular, measurements of DIS+jet [199–202] were preferentially carried
out in this frame. In analogy with eq. (4.3), I define a corresponding angle ϑ,

ϑ = arctan
(2qT
Q

)
' 2qT

Q
� 1 . (DIS+jet) (4.5)

I use the same symbols q and ϑ for similar quantities in DIS+jet and e+e− →
dijet. This should not generate confusion, since they play the very same role
in factorization formulae.
I now turn to presenting the modes that enter the SCET analysis. I will

describe dijet production for definiteness, but everything I will say also applies
to DIS+jet, where the incoming proton beam takes the place of one of the jets
in the anticollinear direction. While the angle ϑ is always assumed small, I will
consider in turn the three hierarchies R � ϑ, R ∼ ϑ and R � ϑ. In fact, the
case of small jets has rather limited practical utility, as there is no room for
reconstructing such narrow jets in a detector with limited angular resolution.
However, this is an interesting case to consider theoretically, as it will provide
a useful consistency check of the framework.
Let me discuss this starting from the simplest case R ∼ ϑ. As I already

described in sec. 1.3.2, in TMD dijet production the small angle ϑ plays the
role of power-counting parameter. The transverse momentum measurement
imposes the SCETII picture, with soft and collinear modes scaling as

pc ∼
√
s (ϑ2, 1, ϑ) , ps ∼

√
s (ϑ, ϑ, ϑ) , (4.6)

in the usual p = (p+, p−, p⊥) lightcone decomposition, with the anticollinear
mode obtained from the collinear one by exchanging p+ ↔ p−.
The situation is slightly more involved if R � ϑ � 1. The additional

hierarchy produces the new modes

pc2 ∼
√
s (R2, 1, R) , (4.7)

whose virtuality is suppressed by the small ratio R/ϑ with respect to eq. (4.6).
This regime will involve refactorizing the collinear functions, with R/ϑ correc-
tions expanded away. Intuitively, jet production decouples from the transverse
momentum dependence, because collinear splittings within the jet alter the
transverse momentum by a power-suppressed amount. One also expects the
fine details of the jet algorithm to become irrelevant, because the jet is essen-
tially shrunk to a pencil of radiation.
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The most interesting configuration is the opposite hierarchy, ϑ � R. Here
the jet definition is expected to be maximally relevant, and indeed the differ-
ence between recoil-free jets and standard jets shows up dramatically. Let me
start from standard algorithms, where the situation is much more involved.
The corresponding framework was formulated in [203,204] (see also [205,206]):
I will not explore the phenomenology of this case, but describe the picture to
point out its complexity.
Consider first radii of order unity, ϑ � R ∼ 1. Energetic emissions outside

the jets are not allowed, because these would lead to ϑ ∼ R. Because the
standard jet axis balances the momentum of soft and collinear radiation inside
the jet, momentum conservation implies that qT is determined by only the
transverse momentum of soft radiation outside the jets. In particular, the
angle of energetic emissions inside the jet is unrestricted. Since R ∼ 1, these
emissions are hard, thus the collinear mode is absent. Each hard emission
induces a soft Wilson line that can emit radiation outside the jet, and the
observable is dominated by non-global logarithms of

√
sR/qT .

When ϑ� R� 1, the transverse momentum is still determined by only the
soft radiation outside the jet, but the rightmost inequality induces collinear
modes whose angular size is set by R. In addition, there will be a mode with
scaling

pcs ∼ ϑ/R (1, R2, R) , (4.8)

fixed by the requirement that it resolves the jet boundary and contributes to the
qT measurement. This mode is referred to as collinear-soft, as its components
have the typical relative collinear scaling, but is less energetic than collinear
radiation. Because R � 1, no hard emissions are allowed, and soft radiation
does not resolve the jet. However, each collinear emission produces a collinear-
soft Wilson line, in direct analogy to the soft Wilson lines generated by hard
emissions for R ∼ 1.
The complications introduced by the above picture are manageable, but they

burden the theoretical description. In particular, getting precise predictions
would require resumming non-global logarithms. The problem has large prac-
tical relevance, since the large-R case could be the most useful for studying
the small intrinsic transverse momentum of quarks and gluons in the proton.
Fortunately, measuring transverse momenta relative to the WTA axis avoids
all the complications above. The key observation is that soft radiation does
resolve the jet boundary, but does not affect the direction of the WTA axis,
hence there is no distinction between soft emissions inside or outside of the
jet. In other words, without recoil, a broad jet containing a large amount of
soft radiation still describes purely collinear dynamics. Since R� ϑ, collinear
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Case\Mode coll coll2 csoft soft
ϑ ∼ R� 1 (1, ϑ2, ϑ) (ϑ, ϑ, ϑ)
R� ϑ� 1 (1, ϑ2, ϑ) (1, R2, R) (ϑ, ϑ, ϑ)

ϑ� R (WTA) (1, ϑ2, ϑ) (ϑ, ϑ, ϑ)
ϑ� R� 1 (Std) (ϑ, ϑ, ϑ)
ϑ� R ∼ 1 (Std) (1, R2, R) ϑ/R(1, R2, R) (ϑ, ϑ, ϑ)

Table 4.1 The parametric scaling of the momenta (p−, p+, p⊥)/
√
s corresponding

to the IR modes in SCET, for the various hierarchies between ϑ and R. For ϑ � R
the modes differ between the Winner-Take-All (WTA) and standard (Std) jet axes.

radiation does not resolve the jet boundary, thus the modes are still the ones
in eq. (4.6). One could expect the same collinear-soft modes in eq. (4.8), as for
standard jets. However, by the same reasoning as before, their only effect is a
total recoil on the system. Consequently, these additional modes do not need
to be considered, since they will simply be removed by the zero-bin subtraction
due to their overlap with the soft mode. Ultimately, in this case the jet radius
does not play any role in the mode analysis; in particular, whether R � 1
or R ∼ 1 does not matter, as long as the radius is larger than the angular
decorrelation.
In the next subsection I will discuss the factorization arising from these

modes, translating into equations what I described in words here. Since I
considered several different cases, a recap of the modes is perhaps useful, see
table 4.1.

4.1.2 Factorization and evolution

I now move on to the factorization analysis, starting with dijet production
in e+e− scattering, where ϑ ≈ 2qT /

√
s ∼ R � 1. This is the simplest case

since there are only two scales,
√
s and qT . The cross section differential in

the momentum decorrelation q and the jet energy fractions zi = 2EJ,i/
√
s

factorizes as

dσe+e−→JJX
dz1 dz2 dq

= σe
+e−

0 (s)He+e−(s, µ)

∫
db

(2π)2
e−ib·q

Jalg
q (z1, b,

√
s

2 R, µ, ζ) Jalg
q (z2, b,

√
s

2 R, µ, ζ)

[
1 +O

(q2
T

s

)]
, (4.9)

The hard functionHe+e− encodes the hard scattering process, in which a quark-
anti-quark pair is produced. It contains virtual corrections, but no real radi-
ation because that would result in qT ∼

√
s. The result up to two loop is
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shown in eq. (B.32); for convenience, I have extracted the tree-level cross sec-
tion σe+e−0 , which contains a sum over quark flavors. The jet functions describe
the fraction zi of energy of the initial (anti)-quark that goes into the jet, as
well as their transverse momentum through its Fourier conjugate, the impact
parameter b. They depend on the jet algorithm, as indicated by the super-
script, but this does not affect their anomalous dimension, as required by RGE
consistency. Here I introduced the modified jet radius parameter

R = 2 tan(R/2) (4.10)

that reduces to R for small radii. By simple geometrical considerations, it
follows that R (rather than R) in the preferential quantity that enter the
expressions for transverse momenta.
The corresponding factorization formula for the cross section of DIS+jet is

given by

dσep→eJX
dQ2 dx dz dq

=
∑

q

σDIS
0,q (x,Q2)HDIS(Q2, µ)

∫
db

(2π)2
e−ib·q

Fq(x, b, µ, ζ) Jalg
q

(
z, b,

QR
2
, µ, ζ

)[
1 +O

( q2
T

Q2

)]
. (4.11)

which is differential in the di-lepton invariant mass Q2, Bjorken x, the energy
fraction z of the jet, and the jet transverse momentum q. It is the same as
the formula for SIDIS, eq. (2.35), with just the replacement Dq→h → Jq. As
I discussed in sec. 4.1.1, this occurs because in absence of recoil the jet radius
does not interfere with the mode picture of SIDIS. By RGE consistency, they
have the same dependence on the UV and rapidity scales µ, ζ as the TMDFFs,
and similar to those I assume that a square root of the soft function has been
absorbed in the jet, yielding a quantity which is free of rapidity divergences.
The difference between eqs. (4.9) and (4.11) is fairly modest: the hard func-

tion is replaced by the one for DIS, but the two are related by crossing sym-
metry,

He+e−(Q2, µ) = |CV (Q2, µ)|2 , HDIS(Q2, µ) = |CV (−Q2, µ)|2 ; (4.12)

one of the jet functions is replaced by a TMDPDF, and the sum over quark
flavors must be explicitly included because both σDIS

0,q and Fq depend on flavor
(Jq does not, as long as we can treat quarks as massless). By universality of
collinear physics, the jet functions are the same for the two processes.
I now consider the case where the small size of the jet radius induces an

additional hierarchy, R � ϑ � 1. In the rest of this chapter, for the purpose
of generality, I will denote with E the energy of the parton producing the jet
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with (up to power corrections), E =
√
s/2 for dijet production and E = Q/2

for DIS+jet. The factorization in this case is an extension of eqs. (4.9) and
(4.11). The two scales ER � qT in the jet functions can be separated through
the refactorization

Jalg
i (z, q, ER, µ, ζ) =

∑

j

∫
dz′

z′
Ci→j(z

′, q, µ, ζ)Jj
( z
z′
,
2z

z′
ER, µ

)

×
[
1 +O(E2R2/q2

T )
]
. (4.13)

This is analogous to the matching of TMDFFs onto collinear FFs in eq. (2.36)
for large transverse momentum, and indeed the matching coefficients coincide.
Intuitively, only collinear radiation at angular scales ϑ, encoded in Ci→j , can
affect qT . However, subsequent splittings down to angles of order R will change
the parton j with momentum fraction z′ into a jet with momentum fraction
z. This is described by the semi-inclusive jet function Jj , which has been
calculated to O(αs) in refs. [163, 188] (my notation matches that of ref. [188],
and explicit expressions are collected in appx. B.2.2). The distinction between
WTA and standard jet axis is irrelevant, since ϑ� R, and indeed the Jj are the
same for the two schemes. The additional RG evolution between the natural
scales µJ ∼ qT and µJ ∼ ER sums single logarithms of µJ/µJ ∼ qT /(ER) ∼
ϑ/R, although the improvement granted by resummation is expected to be
irrelevant for phenomenologically relevant choices of R.
Finally, I describe the case of large radius, starting from WTA jets. From

the discussion summarized in table 4.1, the hierarchy R� ϑ leaves the SCET
modes unaltered: rather than a refactorization, the situation is described by
simply taking the analytical limit of the jet functions,

JWTA
i (z, q, ER, µ, ζ) = δ(1− z) Ji(q, µ, ζ)

[
1 +O

(
q2
T /(ER)2

)]
. (4.14)

All collinear radiation has been clustered into the jet, implying that there is
no dependence on the jet radius in this limit. For the same reason, one can
extract δ(1− z), as all the energy is enclosed by the jet. The form of eq. (4.14)
is remarkably simple. Furthermore, by dimensional analysis, the dependence of
J on ER is entirely determined by the dependence on the scales µ, ζ, which
in turn is known by RGE consistency. In practice, determining J reduces
to computing one constant: in sec. 4.1.5, I will use this fact to extract the
two-loop expression for J numerically.
For completeness, let me quote the factorization formulae for the standard

axis when R � ϑ. These are based on [203, 204], and I will show for brevity
only the e+e− → dijet case. When ϑ� R ∼ 1 there is only a soft mode, and
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dσstd
e+e−→JJX

dq
=
∞∑

m=2

trc

{
Hm({ni},

√
s,R)⊗Sm({ni}, q,R)

}[
1+O

( q2
T

Q2

)]
.

(4.15)

I have eliminated the measurement of the momentum fractions of the jets, since
zi = 1 in this limit. Hm denotes the hard function with m real emissions inside
the jets, along the light-like directions ni: as discussed in the previous section,
one needs considering an arbitrary number of such emissions. The soft function
Sm describes the transverse momentum qT of soft radiation outside the jets,
produced by the Wilson lines along the directions ni. The color indices identify
the representation of the hard emissions/Wilson lines connecting the hard and
soft function, and trc denotes the trace over these color indices. Finally, ⊗
denotes integrals over the light-like directions ni.
The last case is the hierarchy ϑ � R � 1 for standard jets. It features

additional collinear and collinear-soft modes (last row in table 4.1), whose
refactorization yields

dσstd
e+e−→JJX

dq
= σe

+e−
0 (s)He+e−(s, µ)

∫
db

(2π)2
e−ib·q S(b)

×
[ ∞∑

m=2

trc

{
Jm({ni},

√
s

2 R)⊗ Um({ni}, b,R)
}]2[

1 +O
( q2

T

Q2

)]
. (4.16)

The hard and soft function are the same as for ϑ ∼ R. The jet function Jm
describes m collinear emissions inside a jet along light-like directions ni, and
the collinear-soft function Um describes the resulting qT from collinear-soft
emissions of these Wilson lines.
In the case R ∼ ϑ, the RGE is identical to the one of TMDs. For DIS, this

is evident from the factorization formulae in eqs. (4.11) and (2.31), and we can
reuse the evolution equations (2.38) for the jet functions. Explicitly,

µ
d

dµ
Jalg
i (z, b, ER, µ, ζ) = +γi(µ, ζ)Jalg

i (z, b, ER, µ, ζ) , (4.17)

ζ
d

dζ
Jalg
i (z, b, ER, µ, ζ) = −Di(b, µ)Jalg

i (z, b, ER, µ, ζ) . (4.18)

Since the anomalous dimensions do not involve z, this results extends trivially
to the large-R limit (4.14) when using the WTA axis. As for the small-R
case described by eq. (4.13), the matching coefficients Ci→j are responsible for
the double scale evolution, while the semi-inclusive jet functions have DGLAP
evolution [188], in direct analogy with the matching to collinear FFs.
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4.1.3 One-loop calculation of the jet functions

The predictions presented in ch. 3 built on analytical expressions available in
the literature. As a consequence, I kept hidden one of the fundamental parts
of our research activity: computing perturbative ingredients in the effective
theory. To make amends, I will now show in detail the one-loop calculation
of the TMD jet functions that enter the factorization formulae presented in
sec. 4.1.2.
There are two natural ways to set up the calculation: either in momentum

space or in impact-parameter space. The level of complexity is similar: the
calculation in momentum space heavily relies on plus distributions involving
two variables, but has the advantage that the angular cut imposed by the
jet radius naturally translates to a cut in transverse momentum. Vice versa,
working in impact parameter space only requires handling regular functions,
but the angular cut generates integrals that are much harder to carry out. I
will perform the calculation in momentum space, while the impact parameter
calculation can be found in [3].
In the following I will focus on the quark jet function, since the processes

I consider involve at leading power only quarks. The starting point is the
matrix-element definition in terms of SCET operators,

Jalg
q (z, ER, q) =

z

2Nc
tr

{
/n

2
〈0|δ(2ER− n · P) δ(2)

(
zq − P⊥

)
χn(0)|JX〉

× 〈JX|χn(0)|0〉
}
. (4.19)

The delta functions fix the large and perpendicular momentum component of
the measured quantities, the final state J carries the details of the jet algorithm,
and the normalization is such that at tree level

J [0]
q (z, ER, q) = δ(1− z)δ(2)(q) . (4.20)

The one-loop jet function requires computing the four SCET diagrams in
eq. (2.6), where all the lines are collinear, summing over phase-space cuts.
This can be done either with SCET Feynman rules, or by computing the ma-
trix element (4.19) on QCD fields. Letting ` = (`+, `−, 0) be the incoming
quark momentum and labeling k the loop momentum, one gets for the first
diagram

z

2Nc
tr

[
/n

2

]
=− g2

sµ
2εCF

4`4

∫
ddk

(2π)d
(2π)δ+

(
(`− k)2

)
(2π)δ+

(
k2
)

× tr
[
/n/̀γµ(/̀− /k)γµ/̀

]
δmeas(z, q, ER)
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= + 2g2
sµ

2εCF

∫
ddk

(2π)d−2
δ+
(
(`− k)2

)
δ+
(
k2
)

×
[
(1− ε)`+ − k+

`2+

]
δmeas(z, qER) , (4.21)

where the cut through the loop imposes the two on-shell conditions δ+, while
δmeas enforces the measurement, including the effects of the jet algorithm.
The other diagrams in eq. (2.6) involve gluon insertions on Wilson lines: the
definition eq. (1.159) yields the eikonalized Feyman rule

= gs
nµ

n · (k − i∆)
ta , (4.22)

where k is the outgoing gluon momentum, n is the reference direction, and ∆
is the rapidity regulator, which in the spirit of [207] is implemented on Wilson
lines. This fixes the rapidity divergences in the soft and collinear functions,
while their product must be regular in the ∆ → 0 limit. Repeating the steps
in eq. (4.21) for the other diagrams, summing over diagrams and cuts yields

J [1]
q (z, q, ER) = 4CF

(µ2eγE

4π

)ε∫ ∞

0

d`+
2π`+

∫
ddk

(2π)d
δ+(k2)δ+

(
(`− k)2

)

[
`−−k−
k−−i∆−

+ h.c. + (1−ε)
(

1− k+

`+

)]
δmeas(z, q, ER) , (4.23)

where the hermitian conjugate refers to the previous term, µ is the MS scale
defined in eq. (1.20), and as a reminder, the superscript [1] denotes the first
coefficient in the αs/(4π) expansion.
To proceed, I identify `− = 2E, rewrite the phase space measure as

ddk = 1
2dk+ dk−dd−2k⊥ = E dk+ dx dd−2k⊥ , (4.24)

where x = 1−k−/`− represents the energy fraction of the quark after splitting,
and fix the two + components with the on-shell conditions,

J [1]
q (z, q, ER) = 16πCF

(µ2eγE

4π

)ε ∫ 1

0
dx

∫
d2−2εk⊥

(2π)2−2εk2
⊥
δmeas(z, q, ER)

×
[

(1 + x2)(1− x)

(1− x)2 + δ2
− (1− x)ε

]
. (4.25)

Here I introduced the dimensionless rapidity regulator δ = ∆−/E. The mea-
surement function expands as

δmeas(z, q, ER) =
∑

case

δ
(
z − EJcase

E

)
δ(2)(q − qcase) Θcase(ER) , (4.26)

where at one loop I need to consider the three cases
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case algorithm Θcase EJcase q2
T case

(a) q,g in Std
θ
(
x(1− x)ER− k⊥

)
E

0

WTA
k2
⊥

max2(x, 1− x)

(b) g out Std/WTA θ
(
k⊥ − x(1− x)ER

)
Ex

k2
⊥
x2

(c) q out Std/WTA θ
(
k⊥ − x(1− x)ER

)
E(1− x)

k2
⊥

(1− x)2

Table 4.2 Constraints imposed by the jet algorithm and energy/transverse
momentum measurements, for different schemes (standard, WTA) and cases.

(a) both partons are inside the jet;

(b) the gluon is outside the jet;

(c) the quark is outside the jet.

The explicit expressions for EJcase and qcase depend on the jet algorithm,
and easily follow from the recombination prescriptions of eq. (2.3) (standard
axis) and eq. (2.10) (WTA axis), while the phase-space cut imposed by the
jet was given in eq. (2.7), with ω = 2E. These constraints are summarized in
table 4.2. At one loop, the scheme dependence is very modest: the clustering
order does not matter (so all the algorithms of the kT family yield the same
result) and the difference between standard and WTA schemes shows up only
in the transverse momentum measurement, when both particles are clustered
in the jet. In particular, this implies that the semi-inclusive jet functions J
in eq. (4.13) are the same for the two schemes, because they do not involve a
transverse momentum measurement.
I will now solve in turn the remaining integrations for the different cases. In

fact, it is evident from table 4.2 that the constraints for the quark/gluon case
are symmetric for x ↔ 1 − x, and so is the integrand (4.25)2, thus one can
always combine (b) and (c).
Starting from the configuration of both particles inside the jet, standard jet

axis, the dependence on the transverse momentum trivially factors out and
the calculation reduces to the one performed in ref. [188] for the semi-inclusive
quark jet function. After integration over the transverse momentum,

J
std,[1]
q(a) (z, q2

T , ER) =− 2CF
π

( µ2

E2R2

)ε eεγE

εΓ(1− ε) δ(1− z) δ(q
2
T )

2This is a consequence of q → qg being the only vertex describing one-loop quark splitting,
and fails at higher loops.
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×
∫ 1

0
dxx−2ε(1− x)1−2ε

[ 1 + x2

(1− x)2
− ε
]
. (4.27)

Here I could set the rapidity regulator δ = 0 because convergence issues at the
endpoint x = 1 are already fixed by dimensional regularization, and I switched
to distribution space in the norm q2

T using azimuthal symmetry,
∫ 2π

0
dϕ δ(2)(q) = πδ(q2

T ) . (4.28)

After this clarification, I will drop the arguments of the jet function for brevity.
The remaining integral over the energy fraction is a combination of Euler’s Beta
functions, whose ε-expansion yields

J
std,[1]
q(a) =

2CF
π

δ(1− z) δ(q2
T )

[
1

ε2
+

1

ε

(
LR +

3

2

)
+

1

2
L

2
R +

3

2
LR +

13

2
− 3π2

4

]
,

(4.29)

where

LR = ln
( µ2

E2R2

)
. (4.30)

Next, I consider the cases where only one particle is inside the jet, that are
independent of the jet algorithm. One can use x→ 1− x to combine the case
where the gluon is outside the jet with the case where the quark is outside.
Both the integrals over transverse momentum and energy fraction are fixed by
the δ functions enforcing the measurement, resulting in

J
[1]
q(b)+(c) =

2CF
π

µ2ε

(q2
T )1+ε

z−2ε eεγE

Γ(1− ε) θ
(
z − 1 +

qT
ER

)[ 2

1− z + δ
− 3 +

2

z
− ε
]
.

(4.31)

Here the rapidity regulator is needed, but I simplified the expression using

1− z
(1− z)2 + δ2

=
1

(1− z) + δ
+O(δ) . (4.32)

This is valid in the sense of distributions, meaning that (up toO(δ) corrections)
they both yield the same result when integrated on [y, 1], with y generic. Now
in view of (UV and rapidity) renormalization, eq. (4.31) needs to be expanded
in ε and δ. One would like to perform separate expansions in terms of plus
distributions, using

µ2ε

(q2
T )1+ε

= −1

ε
δ(q2

T ) + L0(qT , µ)− εL1(qT , µ) +O(ε2) ,
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1

1− z + δ
= −δ(1− z) ln δ + L0(1− z) +O(δ) (4.33)

(definitions and basic properties of plus distributions and collected in appx. A.2).
Unfortunately this is too naive, as the step function in eq. (4.31) connects the
z and qT dependence (in particular, it is undefined when both z → 1 and
qT → 0 limits are taken), signaling that the result has to be treated as a
genuine two-dimensional distribution. Instead, I find

µ2ε

q2+2ε
T

1− z
1− z + δ

θ
(
z − 1 +

qT
ER

)
= δ(q2

T )

{
LRL0(1− z)− 2L1(1− z)

+ δ(1− z)
[
− 1

2ε2
+

1

ε

(
ln δ − 1

2
LR

)
− 1

4
L

2
R

]}

− L0(qT , µ)
[
δ(1− z) ln δ − L0(1− z)

]
− Lcut

0

(
qT , ER(1− z)

)
L0(1− z) .

(4.34)

This identity was obtained by switching to cumulative distributions in both
variables, then expanding in δ, next3 expanding in ε, and finally identify-
ing term by term the differential distributions that reproduce the cumulative
counterpart. The last term is not simply a product of two one-dimensional
distributions, since its argument still involves both transverse momentum and
energy fraction. Note that eq. (4.34) has a double pole that an expansion like
eq. (4.33) could have never generated. With this trick, I obtain

J
[1]
q(b)+(c) =

2CF
π

{
δ(q2

T )δ(1− z)
[
− 1

ε2
+

1

ε

(
2 ln δ − LR

)
− 1

2
L

2
R +

π2

12

]

+
(
− 3 +

2

z
+ 2L0(1− z)

)[
L0(qT , µ)− Lcut

0

(
qT , ER(1− z)

)

+ LRδ(q
2
T )
]
− 2 ln δL0(qT , µ)δ(1− z)

− 2δ(q2
T )
[(
− 3 +

2

z

)
ln(1− z) + 2L1(1− z)

]}
. (4.35)

The last case I need to consider is when two particles are in the jet, but
using the WTA axis, where the transverse momentum dependence becomes
nontrivial. By symmetrizing the integrand in x↔ 1− x,

J
WTA[1]
q(a) =

2CF
π

eεγE

Γ(1− ε)
µ2ε

(q2
T )1+ε

δ(1− z)
∫ 1

1
2

dxx−2εθ
(
(1− x)ER− qT

)

3The expansion in δ should precede the one in ε since we want the former to only regulate
rapidity divergences. If the result is expanded in ε first, virtual diagrams do not vanish,
but provide a tower of logarithms of δ to cancel against real emissions.



4.1. Theoretical framework 127

×
[

2

1− x − 3 +
2

x
− ε
]
. (4.36)

Again, I have dropped the rapidity regulator, because the upper integration
limit is regulated by ε. At this stage one would be tempted to expand x−2ε

under integral, and the x→ 1 endpoint seems regulated by the step function,
but the previous case taught us to have extra care. Indeed this operation would
be wrong, as it will miss a ε pole coming from the x → 1 and qT → 0 limits.
The correct way to proceed is using again eq. (4.34), which yields

J
WTA[1]
q(a) =

2CF
π

δ(1− z)
{
δ(q2

T )

[
1

ε2
+

1

ε

(
LR +

3

2

)
+

1

2
L

2
R +

3

2
LR +

7

2

− 2 ln2 2− 5π2

12

]
− Lcut

1

(
qT ,

ER
2

)
+
(

2 ln 2− 3

2

)
Lcut

0

(
qT ,

ER
2

)

+ θ
(ER

2
− qT

) 1

q2
T

[
3
qT
ER + 2 ln

(
1− qT

ER
)]}

. (4.37)

It is natural to compare this intermediate result with the standard-jet analog
in eq. (4.29). Contrary to that expression, the WTA axis makes the transverse
momentum dependence highly nontrivial, since the axis tracks the momentum
of the most energetic particle. However, the pole structure and logarithmic
dependence coincides for the two algorithms, as required by RGE consistency.
I can now sum over cases, combining the expressions in eqs. (4.29) and (4.37)

with (4.35), to obtain the bare quark jet function at one loop

J [1]
q =

2CF
π

{
δ(1− z)

[
δ(q2

T )
(2

ε
ln δ +

3

2ε
+

3

2
LR

)
− 2 ln δL0(qT , µ) + ∆axis

q (q2
T )
]

+
(2

z
− 3 + L0(1− z)

)[
δ(q2

T )LR + L0(qT , µ)− Lcut
0

(
qT , ER(1− z)

)]

− 2
[(
− 3 +

2

z

)
ln(1− z) + 2L1(1− z)

]
δ(q2

T )

}
. (4.38)

The dependence on the algorithm occurs via the functions ∆axis
q . Explicitly,

∆std
q (q2

T ) = δ(q2
T )
(13

2
− 2π2

3

)
,

∆WTA
q (q2

T ) = δ(q2
T )
(7

2
− 2 ln2 2− π2

3

)
+
(

2 ln 2− 3

2

)
Lcut

0

(
qT ,

ER
2

)

+ θ
(ER

2
− qT

) 1

q2
T

[
3qT
ER + 2 ln

(
1− qT

ER
)]
− Lcut

1

(
qT ,

ER
2

)
.

(4.39)
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The additional terms in the WTA result are power corrections in ER/qT ,

∆WTA
q (q2

T ) = ∆std
q (q2

T )

[
1 +O

(E2R2

q2
T

)]
. (4.40)

This implies that the dependence on the jet algorithm vanishes in the regime
R � ϑ, as predicted from the factorization formula in eq. (4.13): as I al-
ready commented on, the semi-inclusive jet function Jj that enter there are
independent of the jet axis.

4.1.4 Renormalization and refactorization

The jet functions I computed in the previous section are still affected by UV
and rapidity divergences. In this short section I will comment on the UV
renormalization, rapidity renormalization and expansion of the jet functions in
presence of additional hierarchies with the jet radius.
Because they enter in the same factorization formula as the usual TMDs,

cancellation of divergences follows an identical pattern. First, renormalization
in MS is performed by including the one-loop UV renormalization factor known
from the TMD case,

Z [1]
q = −2CF

1

ε

(1

ε
+ ln

ζ

µ2
+

3

2

)
, (4.41)

and relabeling µ→ µ in eq. (4.38).
Next, it is necessary to account for the overlap of soft and collinear modes. A

simple way to compute the zero bin Zb is taking the soft limit k− � `− at the
integrand level in eq. (4.23) (or x → 1 in eq. (4.25)): since these expressions
already embed the collinear limit, the result returns the overlap between the
two modes. The constraints in table 4.2 have to be expanded accordingly, which
implies that the dependence on R disappears, only the case of one particle in
the jet contributes, and the calculation reduces to the one performed for hadron
TMDs in [208]. We know from this case that the zero bin simply coincides with
the soft function itself, whose expansion up to O(α2

s) is

Zb,q(q
2
T , µ, ζ) = Sq(q

2
T , µ, ζ) =

1

π
δ(q2

T ) +
αsCF
π2

{
L1(qT , µ)

− L0(qT , µ) ln
(4E2δ δ

µ2

)
δ(q2

T )

[
− 1

ε2
+

1

ε
ln
(4E2δ δ

µ2

)
+
π2

12

]}
. (4.42)

Then, rapidity renormalization follows from absorbing a square root of the
soft function in the jet functions, as described for hadron TMDs in eq. (2.33).
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By combining the three steps, the renormalized TMD jet functions read

Jq(z, q, ER, µ, ζ) = Zq(µ)S
− 1

2
q (q, µ, ζ)⊗ Jq(z, q, ER) , (4.43)

where ⊗ denotes Laplace convolution over the transverse momentum. Explic-
itly, this yields the one-loop result

J [1]
q (z, q2

T , ER, µ, ζ) =

2CF
π

{
δ(1− z)

[3

2
LRδ(q

2
T )− lζ L0(qT , µ)− L1(qT , µ) + daxis

q (q2
T )
]

+
(2

z
− 3 + L0(1− z)

)[
LRδ(q

2
T ) + L0(qT , µ)− Lcut

0

(
qT , ER(1− z)

)]

− 2
[(2

z
− 3
)

ln(1− z) + 2L1(1− z)
]
δ(q2

T )

}
, (4.44)

where the logarithms are

LR = ln
( µ2

E2R2

)
lζ = ln

µ2

ζ
(4.45)

and daxis are simply related to the expressions in eq. (4.40) via

daxis
q (q2

T ) = ∆axis
q (q2

T )− π2

12
, (4.46)

the additional term π2/12 due to the soft function in eq. (4.42).
From the final expression (4.44), one can study the two cases R � ϑ and

R � ϑ. In the small-R limit, expanding the distributions simply requires
dropping the cut superscript, the dependence on the axis vanishes, and I get

J [1]
q (z, q2

T , ER, µ, ζ)→ 2CF
π

{
δ(1− z)

[
δ(q2

T )
(3

2
LR +

13

2
− 3π2

4

)
− lζL0(qT , µ)

− L1(qT , µ)
]

+
(2

z
− 3 + L0(1− z)

)[
LRδ(q

2
T ) + L0(qT , µ)

]

− 2δ(q2
T )
[(2

z
− 3
)

ln(1− z) + 2L1(1− z)
]}
. (4.47)

Comparison with eq. (B.28) and (B.30) shows this result to correctly reproduce
the right-hand side of eq. (4.13), thus providing a nontrivial one-loop check of
the factorization framework.
I now move on to the large-R limit and consider explicitly the WTA case,

where the factorization picture is unaltered and the function simplifies as in
eq. (4.14). Expanding distributions in this limit requires some extra care: when
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in doubt, it is safer to perform the expansion in cumulant space and map the
result back to distribution space. In particular,

L0(1− z)Lcut
0

(
qT , ER(1− z)

)
→
R�ϑ

−2L1(1− z)δ(q2
T )

+ L0(1− z)Lcut
0

(
qT ,

ER
2

)
− 1

2
δ(1− z)Lcut

1

(
qT ,

ER
2

)
, (4.48)

and the expansion yields the result

Jq(q
2
T , µ, ζ)=

2CF
π

[
δ(q2

T )
(7

2
− 5π2

12
− 3 ln 2

)
−L0(qT , µ)

(3

2
+ lζ

)
−L1(qT , µ)

]
.

(4.49)

This easily transforms to impact parameter space,

Jq(b, µ, ζ) =
2CF
π

[
7

2
− 5π2

12
− 3 ln 2− 1

2
L2
µ + Lµlζ +

3

2
Lµ

]
, (4.50)

where

Lµ = ln
( b2µ2

4e−2γE

)
. (4.51)

Eq. (4.50) confirms the large-R factorization at one loop, showing explicitly
that the dependence on z vanishes and the dependence on b (or q) is purely
logarithmic. In the next section I will confirm this fact at two loop.

4.1.5 Two-loop extraction of the large-radius jet function

As I showed in detail in sec. 4.1.3, calculations involving jet algorithms are
nontrivial. In particular, the cuts imposed by the recombination procedure
seriously increases the complexity of the integrals. For two particles the situa-
tion is manageable, but the general two-loop case gets highly complicated. On
the other hand, resumming logarithms at N3LL provides no real advantage if
this precision is not matched by a corresponding level of fixed-order accuracy.
If the analytic two-loop calculation seems out of reach, one can still aim at

a numerical extraction. In sec. 4.2, I will show the large-R limit captures the
dominant part of the perturbative corrections, which justifies focusing on this
limit. The large-R WTA jet function is completely determined at two loops
by known anomalous dimensions, except for a constant j[2]. Explicitly,

J [2]
q (b, µ, ζ) =

{
C2
F

[
L4
µ

2
− (3 + 2lζ)L3

µ +
(

2l2ζ + 6lζ −
5

2
+ 6 ln 2 +

5π2

6

)
L2
µ
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+

((
14− 12 ln 2− 5π2

3

)
lζ +

45

2
− 18 ln 2− 9π2

2
+ 24ζ3

)
Lµ

]

+ CFCA

[
− 22

9
L3
µ +

(11

3
lζ −

35

18
+
π2

3

)
L2
µ +

(404

27
− 14ζ3

)
lζ

+

((134

9
− 2π2

3

)
lζ +

57

2
− 22 ln 2− 11π2

9
− 12ζ3

)
Lµ

]

+ CFnfTF

[
8

9
L3
µ +

(2

9
− 4

3
lζ
)
L2
µ −

112

27
lζ

+
(
− 40

9
lζ − 10 + 8 ln 2 +

4π2

9

)
Lµ

]}
+ j[2] . (4.52)

This expression was obtained directly from the evolution equations: a solution
of eq. (4.18) is

Jq(b, µ, ζ) = exp
[
Dµ(µ, b)(lζ − Lµ)

]
Ĵq(b, µ) , (4.53)

where Ĵq does not depend on ζ, and expands as

Ĵq(b, µ) =

∞∑

n=0

(αs
2π

)n 2n∑

k=0

Ĵ [n,k]
q Lkµ . (4.54)

I can now insert this expansion in eq. (4.17) and recursively solve for the first
two perturbative orders, using the expressions for the anomalous dimensions
in appx. B.3.2. Finally, logarithms of ζ are included via eq. (4.53).
There is a shortcut to this procedure, which takes advantage of the cross

section being independent of the renormalization scale: by solving

d

dµ
He+e−(s, µ)Ĵ 2

q (b, µ) = 0 (4.55)

order by order in perturbation theory, I also reproduce eq. (4.52) from the
logarithmic structure of the two-loop hard function in eq. (B.32).
Knowing the logarithmic dependence, it is now possible to aim at extract-

ing the constant. The method to do so numerically is well known [209], and
exploits that event generators have factorization built in: as long as the as-
sumptions underpinning factorization are valid, the description they provide
should be exact in the limit of infinite number of events. Therefore, one simu-
lates a large number of collisions using the same two-loop hard function as in
eq. (4.9) and clustering parton jets with the WTA algorithm. Of course this is
better done from e+e− → dijet, since the TMDPDFs do not enter this process.
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Figure 4.2 The difference between the O(α2
s) contribution to e+e− cross sec-

tion with a cut on the angular decorrelation ϑ ≤ ϑcut, obtained from Event2
and from the factorization formula in eq. (4.9). The figure shows the (e+e−

version of) the anti-kT algorithm, and the curves correspond to the different
color structures, see eq. (4.57). The error bands indicate the statistical uncer-
tainty. The missing two-loop constant in the quark jet function is the value of
the plateau at small ϑcut.

The constant follows from the difference between the simulated two-loop cross
section and the analytic prediction for the singular cross section,

1

2
σ(2) − 1

2
(σ

(2)
sing − 2j[2]) , (4.56)

where σ(2)
sing is the factorized expression from eq. (4.9), and the factor 2 in

front of j[2] comes from having two jets. If factorization is valid and power
corrections are negligible, then σ(2) and σ(2)

sing cancel, leaving out j[2].
Fig. 4.2 shows the difference (4.56) for the anti-kT jet algorithm. In [3] we

extracted this using the Event2 generator, run with nf = 5 and an infrared
cutoff ρ = 10−12, generating 1012 events. The quantity is plotted as a func-
tion of a cut on the angular decorrelation, ϑ ≤ ϑcut. A sharper cut delivers
a more accurate description, since the factorization formula is valid up to ϑ
corrections, but lowers the precision, as fewer events will pass the cut. The
different curves correspond to the C2

F , CFCA and CFTF color structures, with
the bands indicating the statistical uncertainty. From varying the infrared cut-
off we concluded that the cross section obtained from Event2 can be trusted
for log10 ϑ

cut > −3, corresponding to the plotted range.
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The clear plateau at small values for ϑcut confirms the factorization formula
to predict the singular part of the cross section correctly, and the value of the
plateau corresponds to the missing two-loop constant j[2]. The decomposition
of j[2] in terms of the three color structures is given by

j[2] = j
[2]
CF

+ j
[2]
CA

+
nf
5
j

[2]
TF
, (4.57)

i.e. the group theory factors are included in the constants. The result was
extracted by fitting the plateau to a constant, assuming nf = 5, and the gen-
eralization to arbitrary number of flavors only involves rescaling j[2]

TF
. The best

range for this fit is not a priori clear, since one has no control over the power
corrections at large ϑcut, not included in the factorization picture. We chose to
consider the fit range −3 ≤ log10 ϑ

cut ≤ log10 ϑ
cut
max, varying log10 ϑ

cut
max between

−2.9 and −2 in steps of 0.02 (this corresponds to the size of the binning). We
performed a different fit in each window, including the uncertainty from the
Event2 integration. Finally, we took the lowest and highest value obtained
in this way as the error, and their average as the central value, leading to

anti-kT : j
[2]
CF

= 25.3± 0.6 , j
[2]
CA

= −6.3± 0.2 , j
[2]
TF

= −12.5± 0.3 ,

C/A : j
[2]
CF

= 24.5± 0.6 , j
[2]
CA

= −6.7± 0.2 , j
[2]
TF

= −12.5± 0.2 ,

kT : j
[2]
CF

= 12.2± 1.1 , j
[2]
CA

= −9.3± 0.2 , j
[2]
TF

= −13.0± 0.3 . (4.58)

While these constants are remarkably similar for anti-kT and C/A, they differ
substantially for kT .

4.2 Phenomenological study

4.2.1 Numerical implementation and non-perturbative model

In the following, I will use the framework that I set up in the previous sections
to obtain numerical predictions for the cross section differential in transverse
momentum. The region of interest for TMDs is small qT , for which the regimes
ϑ ∼ R and ϑ� R are most relevant. For this reason I exclusively focus on the
WTA axis, which is well behaved in the large-R limit. The case of e+e− →
dijet will be a testing ground for the perturbative convergence, and allow me to
explore the dependence on the jet radius R and cut on the jet energy fraction
z. In the case of DIS+jet, I will provide numerical predictions for HERA and
the EIC, and investigate the sensitivity of the cross section to non-perturbative
effects.
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In [3], we built on Artemide4 to obtain resummed predictions for these
processes. Artemide is a Fortran code to compute factorized TMD cross
sections, performing resummation through the double-scale evolution of TMDs
described in sec. 2.2.3 and based on the framework of [147,148].
In brief, the main logical steps are the following: first, TMDs are built in

b space at the initial scales (µi, ζi). In the example of SIDIS, the program
interfaces to user-provided existing sets of collinear PDFs/FFs, and performs
the matching to TMDs described by eq. (2.36). Independently, the evolution
kernels in eq. (2.45) are computed from the anomalous dimensions (also in b
space). The TMDs evolved to the scale (µf , ζf ) are then assembled by com-
bining these two ingredients, which provides the integrand of eq. (2.35); next,
the result is Fourier transformed to qT space. Finally, a high-level, process-
dependent module includes the hard function and possibly performs the inte-
gration or binning over the kinematic variables (in the case of SIDIS, these are
virtuality Q2, hadron fraction z, Bjorken x and transverse momentum qT ).
The current version of Artemide provides cross sections for Drell-Yan and

SIDIS. However, its modular structure allowed me to extend it to processes
involving jets, with a limited amount of modification. Specifically, I added
e+e− → dijet and jet-SIDIS high-level modules, and a jet-TMD low-level mod-
ule that provides our perturbative input for the quark jet functions in b-space.
The initial scales for TMD evolution are set as

(µi, ζi) =
(2e−γE

b
+ 2 GeV , ζ(µi)

)
, (4.59)

where ζ(µi) is given by the ζ-prescription(2.46), and µi corresponds to the
saddle point eq. (2.43), while the shift at 2 GeV avoids hitting the Landau
pole at large b. The final scales are

(µf , ζf ) =

{
(
√
s, s) e+e−

(Q,Q2) DIS+jet
(4.60)

An additional, important ingredient is the non-perturbative model used for
TMDs, which I now describe. The matching of TMDs to collinear distribu-
tions is strictly valid only at large qT , while at small transverse momentum
(large b) non-perturbative effects become important. Rather than using a full
parametrization for the TMDs, at first approximation one can still use the
factorized expression, but correct the PDFs with a function fNP,

Fp→i(x, b, µ, ζ) =
∑

j

Ci←j(x, b, µ, ζ)fNP(x, b)fp→j(x, µ) . (4.61)

4Web-page: http://avladimirov.net/index.php/projects/artemide
Repository: https://github.com/VladimirovAlexey/artemide-public
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In particular, I use the non-perturbative model from [210], that was specifically
formulated for the optimal TMDs considered here. Their ansatz is

fNP(x, b;λi) = exp

(
− λ1(1− x) + λ2x+ λ3x(1− x)b2√

1 + λ4xλ5b2

)
, (4.62)

which in particular assumes flavor independence.
The TMD evolution kernel also receives non-perturbative corrections, which

are modeled by modifying the rapidity anomalous dimension Dq as

Dq(µ, b) = Dres
q

(
µ, b∗(b)

)
+ g(b). (4.63)

Here Dres
q resums logarithms present in the anomalous dimension itself, see

e.g. [148] for details, and

b∗(b) =

√
b2B2

NP

b2 +B2
NP

, g(b) = c0 b b
∗(b) , (4.64)

where c0 and BNP are parameters of the model, whose main effect is preventing
the anomalous dimension from blowing up in proximity of the Landau pole.
The same work [210] carried out a simultaneous fit of the coefficients λi, c0

and BNP, extracted form Drell-Yan scattering and Z boson production. Their
fit was performed at N3LL accuracy, and to be consistent, I will always run
the evolution at this order of accuracy, even though the jet function for generic
R is only calculated at one-loop order (an exception is given by plots showing
the perturbative convergence, that use by definition lower-order ingredients).
Having described the setup, I finally turn to showing predictions.

4.2.2 Momentum decorrelation in e+e− collisions

Even if the most promising application of the framework is the extraction of
TMDs via DIS+jet at the future EIC, there are different reasons to study
e+e− → dijet. First, the transverse momentum/angular decorrelation is an
interesting observable by its own. Although the contamination by soft radia-
tion has a reduced impact in lepton collision, using the WTA axis grants an
advantage, as it provides precise predictions over the whole range of jet radii.
Second, the absence of PDFs makes e+e− collision a useful testing ground, al-
lowing one to study the framework in a clean environment. In this spirit, I will
investigate how varying the parameters of the analysis impacts on the cross
section. Finally, there is a third, interesting reason that makes the e+e− case
relevant. The jet functions I computed are perturbative objects, but of course,
for small transverse momenta qT ∼ ΛQCD, non-perturbative effects can cause



136 Chapter 4. Transverse Momentum Distributions from recoil-free jets

Figure 4.3 Dependence of the cross section differential in the transverse momentum
decorrelation on the jet radius parameter R, for cuts on jet energy fraction z > 0.25
(left) and z > 0.75 (right). Results employ the NLO jet function computed in the
regime R ∼ ϑ, and the large-R result (red solid) is shown for comparison.

large corrections. However, this can be addressed by exploiting the universal-
ity of non-perturbative physics: specifically, data from e+e− collisions could
be used to fit a model for non-perturbative corrections to the jet function to
be later applied to DIS.
With this motivation in mind, I consider the following setup and experi-

ments:

• Belle II:
√
s = 10.52 GeV, 4 quark flavors.

• LEP:
√
s = 91.1876 GeV, 5 quark flavors.

The Belle analysis omits b-jets: my calculation of the jet function does not in-
clude quark mass effects, that will be dominant at such center-of-mass energy.
Experimentally, these will be relatively easy to distinguish from light-quark
jets and remove from the analysis. I account for both the photon and Z-
boson contribution, describing the Z resonance via the effective replacement
in eq. (1.50): of course, this causes a minor correction for Belle, but is funda-
mental to obtain the correct size of the cross section at LEP. In both cases, I
will restrict the plotted qT range to the region where the power corrections to
the factorization theorem are reasonably under control. By default, I set the
non-perturbative parameters of the evolution kernel to

BNP = 2.5 GeV−1 , c0 = 0.037 , (4.65)

but will study their variation at the end of this section.
I start the analysis by studying the dependence on the jet radius parameter

R in fig. 4.3 for LEP. The cross section is shown for various jet radii, ranging
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Figure 4.4 Perturbative convergence of the cross section differential in transverse
momentum decorrelation, for Belle II (left) and LEP (right), for jet radius R = 0.5
and jet energy fraction z > 0.25. The N3LL result is obtained with the prescription in
eq. (4.66). The bands encode the perturbative uncertainty, as described in the text.

from R = 0.1 to 0.7, using the factorization formulae for ϑ ∼ R in sec. 4.1.2. I
consider two representative cuts on the jet energy fraction: z > 0.25 (left panel)
and z > 0.75 (right panel). For comparison, the large-R limit is also shown,
using the one-loop jet functions in eq. (4.50). The hard function is always
included at two-loop order, and resummation performed at N3LL accuracy.
As expected, as R increases the results approach the R →∞ limit. Surpris-

ingly, however, the convergence to this limit occurs very fast. In both cases,
the cross section for R = 0.7 is indistinguishable from the large-R result, and
for z > 0.25 the difference is even minimal for R = 0.5. This means that in the
factorization in eq. (4.14) the power corrections O(ϑ/R) ∼ O(q2

T /(ER)2) have
a limited impact even for ϑ . R. This observation will be used in the rest of
the analysis, to justify including the two-loop jet function in the large-R limit,
as this will capture the dominant two-loop fixed-order contribution. Explicitly,
results are combined according to

(
dσ

dqT

)N3LL

=

(
dσ

dqT

)NLO

+

(
dσ

dqT

)NNLO

R→∞
−
(

dσ

dqT

)NLO

R→∞
, (4.66)

where NLO and NNLO indicate the order of the jet function. Each term uses
the NNLO hard function, and resummation is included at N3LL accuracy.
The above approximation contains all large logarithms of ϑ (or equivalently,
qT /(ER)) at N3LL accuracy. It reduces to NNLL accuracy for ϑ ∼ R � 1,
since it misses some O(ϑ/R) corrections. However, fig. 4.3 showed that their
effect is small, except in the tail region where the cross section will be also
affected by O(qT /

√
s) corrections.

Next, I study the perturbative convergence of the TMD cross section in
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Figure 4.5 Dependence of the transverse momentum decorrelation distribu-
tion on the cut on jet energy fraction z, for Belle II with R = 0.7 (left panel)
and LEP with R = 0.3 (right panel). The dependence on this cut is larger for
smaller R, as discussed in the text. In both cases, the results for z > 0.5 (solid
red curve) exactly coincide with the large-R limit, see footnote.

fig. 4.4. I take R = 0.5, z > 0.25 and show results for the cross section for
Belle II (left panel) and LEP (right panel) at NLL, NNLL and N3LL. The
perturbative uncertainty is estimated by varying the scales µi in eqs. (4.59)
and (4.60) up and down by a factor 2 around their central value and taking
the envelope. The band obtained by this procedure at NLL is artificially small
and not shown. As expected, the N3LL correction is small compared to the
NNLL one, and the uncertainty bands overlap and are reduced at higher order.
To provide a complementary picture with respect to fig. 4.3, fig. 4.5 investi-

gates the dependence of the cross section on the cut on the jet energy fraction
z > zcut for a fixed value of the jet radius. I show results for Belle II with
R = 0.7 (left panel) and LEP with R = 0.3 (right panel), imposing z > zcut

and varying zcut = 0.01 to zcut = 0.75. As in fig. 4.3, we use NLO jet functions.
For R = 0.7 the dependence on the cut on z is relatively mild, which reflects
the fact that in the large-R limit the jet function is proportional to δ(1 − z),
and thus independent of this cut. For R = 0.3 there is a stronger dependence,
and at very small (large) values of z the cross section shows unphysical fea-
tures. This is not surprising, since the cross section diverges as zcut → 0 (every
single low-energy particle originates a different jet) and has large logarithms
of 1 − zcut for zcut → 1. Regardless of the jet radius, for zcut = 0.5 the cross
section coincides with the large-R result. This is due to a one-loop accident.5

5At one loop, the initial quark undergoes a single splitting. When integrating over 0.5 <
z < 1, each phase-space configuration contributes to the cross section with exactly one jet:
either a jet containing two particles, or a jet containing the most energetic particle. In
addition, due to the WTA recombination prescription, the resulting jet axis is the same in
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Figure 4.6 Estimate of the sensitivity of the TMD to nonperturbative effects
in the rapidity resummation at Belle II (left) and LEP (right). We vary the pa-
rameter c0 in the range of its statistical uncertainty, testing both the fixed and
variable BNP schemes of ref. [210]. Results are obtained with the prescription
in eq. (4.66).

As a final plot, fig. 4.6 shows the sensitivity of the cross sections to BNP and
c0, that parametrize the non-perturbative contribution to the rapidity evo-
lution, see eqs. (4.63) and (4.64). We considered both the “fixed BNP” and
“variable BNP” schemes used in [210], and varied the parameters within the
statistical errors listed in their table 4. In practice, we found that the BNP

variation is subdominant, so we simply plot variations of c0. As one would
expect, the sensitivity to nonperturbative effects is much larger at Belle, com-
mensurate with its smaller center-of-mass energy, and increases at low trans-
verse momenta. The conclusions obtained from the two schemes are compatible
with each other. The situation is similar for LEP, though the relative variation
is substantially lower (below 1% for most of the range in qT ).
Finally, I investigated the impact of the choice of jet algorithm, specifically,

the impact of the different two-loop constants in eq. (4.58). The difference
with respect to anti-kT is negligible for C/A (< 0.1%) and very small for the
kT algorithm (< 1%).

4.2.3 Predictions for DIS+jet

In this section I will show representative results for TMD measurements with
jets in DIS. I consider the two configurations

either case, independent of R. Thus it must in particular coincide with the large-R limit.
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Figure 4.7 TMD cross section for SIDIS with jets at the EIC (left) and at
HERA (right), with 10 < Q < 25 GeV and different intervals in elasticity
within the range 0.01 < y < 0.95. Results are obtained with the prescription
in eq. (4.66).

• HERA:
√
s = 318 GeV,

• EIC:
√
s = 100 GeV.

The above value for the center-of-mass energy of EIC is an assumption6. I
take 10 ≤ Q ≤ 25 GeV and study the transverse momentum distribution for
qT ≤ 3 GeV, ensuring that power corrections of order q2

T /Q
2 to the factorization

formula can be neglected. In this kinematic range, quark mass effects are
expected to be negligible, so they are ignored in the analysis. Working in the
Breit frame, I impose a cut on the jet energy fraction z > 0.25 and set the jet
radius to R = 0.5. The e+e− study in the left panel of fig. 4.3 shows that in
this case the large-R approximation works extremely well, so I include again
the two-loop, large-R jet function extracted in sec. 4.1.5, using eq. (4.66).
The TMDPDFs were built starting from the NNPDF 3.1 PDFs [113] with
αs(MZ) = 0.118, using the matching in eq. (4.61).
The results are shown in fig. 4.7, for different intervals in the elasticity y

in the range 0.01 < y < 0.95. In each case, as for the convergence plots in
fig. 4.4, the uncertainty band is obtained by independently varying the scales
µi and µf up and down by a factor of 2 around their central values, and taking
the envelope. Roughly half of the contribution to the cross section comes from
low elasticity (y < 0.2). The variation in shape between the different elasticity
intervals is modest; at high elasticity, the peak of the distribution is slightly
shifted towards larger transverse momenta.

6At the time of the publication [3], the technical details of the EIC were still largely under
discussion. Electrons with energy 20 GeV scattering on protons with 100 GeV actually
results in

√
s = 89 GeV, and all the following considerations remain true for such a value.
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Figure 4.8 Sensitivity of the cross section to nonperturbative effects at the
EIC (left) and HERA (right). This is estimated by varying the parameter c0,
that controls the nonperturbative contribution to the evolution kernel, within
its current statistical uncertainty [210]. Results are obtained with the prescrip-
tion in eq. (4.66).

I now investigate the sensitivity of our jet observable to non-perturbative
initial-state hadronic physics. Assessing this aspect is particularly important,
as a large sensitivity denotes a high discrimination power in the extraction
of TMDPDFs. A first impression can be obtained by varying the parame-
ters BNP, c0 and λi (see eqs. (4.63), (4.64) and (4.62)) that enter the non-
perturbative model. In principle, these parameters are highly correlated, and
a full error estimate would require taking data with a large number of replicas,
along the lines of the original analysis in ref. [210]. In practice, the non-
perturbative uncertainty is dominated by the variation of the single parameter
c0, describing non-perturbative corrections to the rapidity anomalous dimen-
sion. Therefore, a realistic estimate of the size of NP effects can be obtained by
simply varying c0 within its statistical uncertainty, which we show in fig. 4.8.
The effect of such a variation is not large (below 5% at the EIC and 3% at
HERA), but not negligible, and increases at small qT . This plot suggests
that such a measurement can likely be used to improve our knowledge of the
non-perturbative part of the evolution kernel, parametrized by c0, which is
particularly relevant because it is universal.
Finally, I explored the dependence of NP effects on the choices of R, zcut

and the range in Q and y, finding that their size is not affected by different
choices of kinematical cuts.
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4.3 Outlook

In this chapter, I showed how the study of the transverse momentum distribu-
tion of the proton can benefit from using jets (instead of hadrons) as final state.
A clear advantage is that the jet momentum can be calculated in perturbation
theory, while the fragmentation of hadrons is an intrinsically non-perturbative
process.
The main theoretical result is that the cross section for dijet production in

e+e− collisions and DIS with a jet in the final state admits the same factoriza-
tion as for hadronic TMD measurements, simply replacing a TMDFF by our
TMD jet function. In general, this factorization depends on the jet radius R
and recombination scheme. The cross section for the standard jet axis does not
satisfy the usual TMD factorization at large jet radii. Critically, instead, this
happens for all values of R when the WTA scheme is used: once more, recoil-
free jets induce a major simplification of the factorization picture through a
better separation of soft and collinear physics.
This theoretical simplification translated into a practical advantage, as it

allowed me to rely on existing results for hadrons at almost every stage of
the analysis: I could reuse most of the perturbative ingredients; run the same
evolution; build on the Artemide code. The evidence that the large-R limit
of the jet functions well approximates the full predictions finally allowed me to
achieve N3LL accuracy in this limit, the same as for the hadronic TMD cases.7

Using e+e− → dijet as testing ground, I verified the perturbative conver-
gence of our numerical predictions, achieving perturbative uncertainties of or-
der 5% in the peak of the distribution at N3LL. In DIS, I showed that our cross
sections have similar sensitivity to non-perturbative effects as the correspond-
ing hadronic case, without the burden of additional non-perturbative effects
from fragmentation. Our predictions are particularly interesting for the EIC,
where measurements involving jets have been recently considered from both a
theoretical and experimental perspective [213–216].
The main question still to be answered is whether the smaller non-perturbative

uncertainty compensates for new sources of error introduced by the jet mea-
surement. For instance, the position of the jet axis is less precisely measured
than a single charged hadron, where the angular resolution of the tracker is
superior. Defining the jets on only charged hadrons would mitigate this issue,
and it was recently shown that the shape of the distribution is essentially unal-
tered [217]. In addition, the results depend on the considered range of energy
fraction, z > zcut, which also enter the definition of transverse momentum

7Similar result were also obtained in [211,212] for the transverse energy-energy correlation,
setting up a framework to reuse the known TMD ingredients in the back-to-back limit.
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q = P J/z. This should be marginal since we showed the large-R limit, where
all the energy goes into the jet, to be a solid approximation for the finite-R
case. In order to assess the impact of these effects on our predictions, it would
be useful to perform a dedicated Monte Carlo study.
Finally, in the limit of small transverse momenta qT ∼ ΛQCD, the jets them-

selves receive non-perturbative corrections. Such effects could be modeled with
an analysis similar to the one of sec. 4.2.1 for hadron TMDs, or systematically
described from QFT principles. Developing such a model for TMD recoil-
free jets would be a necessary step in view of extraction of TMDPDFs. The
non-perturbative parameters required by the model could then be fitted from
e+e− → dijet collisions and applied to the DIS+jet, exploiting universality of
non-perturbative physics. Interestingly, jet measurements at HERA showed
that for inclusive jet spectra at large radii, hadronization corrections are very
small (∼ 1%) [199]. This, and the fact that our framework is highly accurate
at large-R, would make it very interesting to compare our predictions against
existing HERA data.





5
Transverse Momentum Distributions
from groomed jets

In the previous two chapters I explored the potential of the Winner-Take-
All recombination scheme to study the transverse momentum distributions of
hadrons and jets. I emphasized how the resulting jet axis is only sensitive
to collinear physics, simplifying factorization. When describing hadrons frag-
menting in jets, the cross section exhibits characteristic features which are
stable under perturbations of the jet constituents; when studying the TMD of
jets themselves, it allows for extracting TMDs with remarkable precision.
As I discussed in sec. 2.1.3, recoil-free jets have a famous competitor when

it comes to eliminating sources of contamination inside the jets: grooming
techniques have proven themselves highly successful, drastically reducing the
effects of pileup and the underlying event in a variety of contexts. For the
specific example of soft drop, factorization analyses were carried out in [218–
222], and resummation predictions obtained for different groomed observables,
see [223–227].
Fragmentation inside groomed jets was studied in refs. [176, 177]. These

works showed that applying soft drop to the spectra of fragmenting hadrons
grants some of the benefits already observed in ch. 3 with the WTA scheme:
it removes the smearing caused by Sudakov double logarithms and makes the
observable insensitive to non-global logarithms (but an important difference
is that their framework involves rapidity divergences). This shows that soft
drop can also simplify the theoretical description, although it often introduces
additional hierarchies of scales that may require restricting the analysis to a
certain kinematical range.
In the present chapter, I will consider the application of grooming to the ex-

traction of TMDPDFs, based on my paper [4]. There we performed an analysis
along the same lines of ch. 4, considering dijet production in e+e− collisions
and jet measurements in DIS experiments, but using soft drop instead of recoil-
free jets. The original motivation is similar, as using jets instead of hadrons
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reduces the final-state non-perturbative uncertainty. In this regard, soft drop
promises a further advantage, since, as I showed in fig. 2.3, it dramatically
decreases hadronization effects within the jet. The price one pays is that the
mode picture is complicated by the presence of the grooming parameter zcut,
and in general factorization is more involved than for hadron TMDs. However,
in the limit of large jet radius relevant to EIC phenomenology, one can retrieve
the familiar factorization structure by selecting collimated jets, which is done
by imposing an upper cut on the groomed jet mass.
As in ch. 4, my main focus will be on cross sections differential in transverse

momentum (decorrelation) qT . The following analysis will show this quantity
to exhibit very promising features: the main effect of grooming on the shape of
the distribution is shifting the peak towards lower values of transverse momen-
tum, where power corrections to factorization, ∼ qT /Q, are smaller; although
the framework requires a small cut in jet mass, the predictions are stable
under different choices of cut; finally, the NNLL predictions are in excellent
agreement with Monte Carlo simulations. The sensitivity to hadronization
corrections is similar to the case of recoil-free jets, but not surprisingly (given
the convergence plot 4.4), the error on this observable is dominated by the
perturbative uncertainty, estimated through scale variation. Reducing this
uncertainty would require calculating (or extracting numerically) the missing
two-loop ingredients.
This chapter follows the usual separation in three sections: in sec. 5.1 I

will present the theoretical framework, discussing modes, factorization and
evolution; in sec. 5.2 I will show predictions for e+e− → dijet and DIS+jet,
with the former process playing again the role of testing ground, and in sec. 5.3
I will conclude, commenting on possible next steps. Many of the relevant
ingredients have been already discussed in the previous chapter, and I will
emphasize similarities and differences with respect to the recoil-free case.

5.1 Theoretical framework

5.1.1 Kinematics and modes

The processes I will focus on are again dijet production and DIS+jet, but
crucially, the jets are now defined using the soft drop grooming procedure,
discussed in sec. 2.1.3. Specifically, I consider the case β = 0 in eq. (2.16),
where the grooming condition tests only the energy fraction of the splittings.
Explicitly, in the e+e− case, grooming stops as soon as an emission passes the
condition

min(Ei, Ej)

Ei + Ej
> zcut . (5.1)
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In general, experimental analyses use typical values zcut ∼ 0.1, and this is the
size that I will have in mind when discussing hierarchies and modes. To the
purpose of factorization, this value allows one to safely assume zcut � 1.
In view of applications to the EIC, in the case of DIS, I consider again the

Breit frame described in sec. 2.2. The definitions of transverse momentum
decorrelation in e+e− → dijet, and jet transverse momentum in DIS+jet, are
formally identical to eqs. (4.1) and (4.4),

q =
p1

z1
+

p2

z2
(e+e− → dijet), q =

P J

z
+ qin (DIS+jet), (5.2)

but the jet transverse momenta p1,p2 and P J are defined after grooming,
so they result by construction from the sum of the transverse momenta of
only the jet constituents that survive soft drop. Similarly, zi and z are the
energy fractions of the groomed jets. Since these are in general smaller than
the ungroomed counterpart, the resulting q is intrinsically larger than the
analogous quantities defined for standard (or recoil-free) jets. I define the
normalized groomed jet mass as

e =
(mJ

2E

)2
, (5.3)

where E =
√
s/2 (dijet) or E = Q/2 (DIS) and the jet mass is the norm of the

jet four-momentum, see eq. (2.4), but defined again on only the particles that
pass grooming. As already discussed, imposing an upper cut on jet masses,
mJ < 2E

√
ecut, selects collimated jet configurations. This is opposite to the

cut on thrust considered in sec. 1.2.2, where T < Tc discarded collimated
events. In the following I will always consider ecut � 1: since the IR limit
coincides with e → 0, most of the events occur at small jet mass, so even a
stringent cut on the mass retains a significant fraction of the total cross section.
At the same time, I will restrict the analysis to large jet radii, R ∼ 1, so that
the jet radius does not interfere with factorization. As I already commented
on, large radii are preferred in electron-proton colliders.
The multiple scales in the problem lead to a rich spectrum of possible hi-

erarchies of momenta, which are all consistent with maintaining qT /E, ecut,
zcut � 1. The modes induced by different hierarchies in the EFT fall in three
classes: energetic modes that always pass soft drop; wide-angle, soft modes
that explicitly fail soft drop; and those modes which live at the border, whose
emissions can either pass or fail the grooming condition. I will now describe
these modes and discuss the resulting factorization picture, considering dijet
production for definiteness. A key point of the following discussion is that
the jet axis aligns to the total transverse momentum inside the groomed jet.
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Therefore, the measured transverse momentum is the total transverse momen-
tum outside the groomed jets. Since the jets radius is large (ideally, infinite)
this coincides with the total transverse momentum of the dropped radiation.
If the three small scales are roughly of the same size, qTE ∼

√
ecut ∼ zcut , we

get the standard SCETII modes

pc ∼ E(λ2, 1, λ) , ps ∼ E(λ, λ, λ) , λ =
qT
E
. (5.4)

As in the hadron TMD case, the scaling of soft radiation is determined by the
transverse momentum measurement, the two modes have the same virtuality,
and the framework is affected by rapidity divergences. In this case, in prin-
ciple, soft emissions may or may not fail soft drop, while collinear emissions
always pass. However, by selecting the collinearity via ecut, we restrict to those
configurations that are unaffected by recoil: soft emissions with transverse mo-
mentum ∼ qT inside the groomed jet would result in too large a jet mass, thus
they must always be groomed away, then the groomed jet is free of soft ra-
diation. Therefore, the dijet transverse momentum is still determined by the
global soft radiation. This reasoning argues for the jet function to be the same
as for hadron production.
To examine further hierarchies between the three small scales, it is use-

ful to introduce the Lund plane, a powerful graphical and conceptual tool to
visualize modes and get physical intuition for the factorization/resummation
picture. The Lund plane describes IR radiation in terms of its energy fraction
z and angle ϑ relative to the energetic particle that emitted it, in logarithmic
coordinates ln 1

z , ln
1
θ . At leading logarithmic accuracy, we can think of the

emissions as strongly ordered in energy and angle, thus a measurement is set
by the leading emission. Imposing a cumulant measurement draws a line in the
plane, vetoing emissions on one side of the line. What makes this representa-
tion particularly convenient is that at LL the phase space for a single emission
is simply dz/z dϑ/ϑ, as already noted in eq. (1.83). As a consequence, the al-
lowed area in the Lund plane is interpreted as the probability of one emission.1

This procedure allows for determining Sudakov form factors at LL by simply
computing the vetoed areas; however, rather than exploiting this feature, I
will focus here on the utility of the Lund plane in identifying the modes in the
EFT.
The intuition is that modes live at the boundary between the vetoed and

allowed regions. Specifically, new modes appear at the intersection of either a
line parametrizing the measurement and the axes, or two lines describing the

1The paradox of a formally infinite area is resolved by noting that the total cross section
is devoid of large logarithms, so the vetoed and allowed regions must complement to zero.
This corresponds to the cancellation of IR poles between real and virtual diagrams.
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Figure 5.1 Left: representation of the modes in the Lund plane ln 1
z , ln

1
ϑ for the

hierarchy 1 � zcut � qT /E ∼
√
ecut. Emissions in the red-shaded area are vetoed

by the event kinematics, while the ones in the gray-shaded area are soft dropped. A
graphical representation of the jet is given on the right, with lower-energy emissions
drawn as wavier lines.

measurement. Such emissions are special in that they give the largest possible
contribution to one or more of the measured quantities. In the spirit of the
EFT, one identifies points in the Lund plane up to power corrections, so any
separation represents in fact hierarchical separation.
To see the picture at work, let me examine the relevant hierarchy

1� zcut � qT /E ∼
√
ecut, (5.5)

where the angular decorrelation qT /E is now much smaller than the soft drop
parameter. For definiteness, we can imagine the jet mass eE to be of the
same size as the transverse momentum, although in view of factorization it
only matters that e is much smaller than the soft-drop cut. The corresponding
Lund-plane picture is given on the left of fig. 5.1, on which I now comment
extensively: the soft drop condition z = zcut draws a horizontal line, while
transverse momentum and jet mass measurements have slope dictated by re-
spectively qT /E ∼ zϑ and e ∼ zϑ2. The area corresponding to groomed
emissions is shaded in grey. Note that because soft drop reclusters jets with
the C/A algorithm (based on purely angular distance measure) no emission
will be dropped whose angle is smaller than the groomed jet radius set by
the emission passing the test (hence the vertical line). The vetoed region is
shaded in red: emissions are vetoed if they set too large a jet mass, unless they
are groomed away (grey shaded area); or, they are prohibited if they result
in a transverse momentum larger than measured. As already stressed, only
particles external to the groomed jet contribute to the transverse momentum
measurement, so only groomed radiation is subjected to the veto (segments
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that do not play a role in enforcing vetoes are denoted by dotted lines). The
four vertices delimiting the resulting polygon give the modes of the analysis:
soft and collinear modes have respectively the largest angle and largest energy
fractions, and live therefore on the axes; other two modes arise from the in-
terplay of the two measurements and the grooming condition, and they are
referred to as collinear-soft (CS) and soft collinear (SC).
The Lund plane makes it evident which measurement each mode knows

about. In particular, no mode determines the jet mass and transverse momen-
tum at the same time, meaning that the dependence on the two variables will
be completely factorized (even if eq. (5.5) assumed them to be of the same
size!). Finally, their virtuality µ ∼ Eϑz is easily computed by solving for the
intersection of each pair of lines. This yields the scaling

soft : pµs ∼ qT (1, 1, 1);

collinear : pµc ∼ E(λ2
c , 1, λc), λc =

√
e;

soft− collinear : pµsc ∼ Ezcut(λ
2
sc, 1, λsc), λsc = qT /(Ezcut);

collinear− soft : pµcs ∼ Ezcut(λ
2
cs, 1, λcs), λcs =

√
e/zcut . (5.6)

To briefly recap the role of each mode (see also fig. 5.1, right): collinear radi-
ation (blue) form the energetic core of the jet. It contributes to the mass and
always passes grooming; collinear-soft emissions (yellow) may or may not pass
grooming. If they do, they contribute to the mass measurement despite the
lower energy, because of the larger angle; soft-collinear radiation (green) sat-
urates the grooming condition, and contributes to the transverse momentum
measurement; so does soft radiation (red), that also fails soft drop.
The four modes in fig. 5.1 are largely separated, either in virtuality (C,CS,SC)

or in rapidity (S,SC). Relaxing some of the hierarchies in eq. (5.5) results in
pairs of modes to collapse into a single one: this corresponds to a refactoriza-
tion of the theory, as power corrections in the ratio of characteristic scales can
no longer be neglected. To elucidate this, I will briefly consider two possible
situations,

1� zcut ∼
√
ecut � qT /E ∼

√
zcutecut, (5.7a)

1� zcut ∼ qT /E �
√
ecut . (5.7b)

In the first case, the separation in virtuality between the CS and SC modes
vanishes, and the two merge into a single collinear-soft mode that knows about
both transverse momentum and jet mass (fig. 5.2 left). Physically, relaxing the
cut on jet mass allows soft-collinear emissions that set the transverse momen-
tum decorrelation to enter the groomed jet without necessarily spoiling its
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mass. In the second case, asking zcut ∼ qT /E removes the separation in en-
ergy and angle between S and SC modes, which then collapse into a single kind
of emission. This means that no radiation will automatically fail soft drop.
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Figure 5.2 Mode picture in the Lund plane for 1 � zcut ∼
√
ecut � qT /E ∼√

zcutecut (left) and 1 � zcut ∼ qT /E �
√
ecut (right). In these two scenarios, the

SC mode in fig. 5.1 coalesces with respectively the CS mode and the S mode, causing
a refactorization of the theory.

One can imagine several more hierarchies, but most of them will have limited
practical relevance. For instance, the simple situation in eq. (5.4) corresponds
to the SC, CS, C modes merging into a single kind of collinear radiation. Which
regimes are worth considering is driven by phenomenological interest: some of
the hierarchies may never occur for sensible values of the parameters (such as
large zcut) or might describe a corner of phase space where very few events
occur (such as large e). In fact, Monte Carlo simulations (Pythia 8) predict
most of the events to fall in the kinematic regime in eq. (5.5), which will be
the focus of sec. 5.2.

5.1.2 Factorization and evolution

I now move on to the factorization analysis. The factorization theorem for
small groomed jet mass was formulated in [218, 219], and the refactorization
will naturally follow by assuming the validity of the mode picture presented
above.
In presence of the modes (5.4), the factorization formula for e+e− → dijet is

dσe+e−→JJX
de1 de2 dq

= σe
+e−

0 (s)He+e−(s, µ)

∫
db

(2π)2
e−ib·q

J ⊥q (e1,
√
s, zcut, b, µ, ζ)J ⊥q (e2,

√
s, zcut, b, µ, ζ)

[
1 +O

(q2
T

s

)]
. (5.8)
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This is similar to eq. (4.9), but exhibits some important differences. It features
the same hard and soft function as the ungroomed case, with the latter reab-
sorbed in the jet functions following the usual pattern of eq. (2.33). The cross
section is differential in the jet masses ei, and not in the energy fraction of the
jets (whose dependence is trivial, since I consider the large-R limit). Besides
this quantity, the jet functions depend on the grooming parameter and the
transverse momentum (via the impact parameter b). The same considerations
valid in dijet production yield the analogous formula for SIDIS,

dσep→eJX
dQ2 dx dedq

=
∑

q

σDIS
0,q (x,Q2)HDIS(Q2, µ)

∫
db

(2π)2
e−ib·q

Fq(x, b, µ, ζ)J ⊥q (e,Q, zcut, b, µ, ζ)

[
1 +O

( q2
T

Q2

)]
. (5.9)

Again, this is very similar to eq. (4.11). Instead of a regular jet function we
now have a groomed jet function, and the hypothesis of small jet mass enforces
the same factorization formula as for the hadronic case, at the price that its
validity is restricted to large jet radii.
I now proceed to the hierarchy in eq. (5.5), that constitutes the most relevant

case in view of the analysis below. Following the mode picture in fig. 5.1, one
predicts the jet function J ⊥i in eqs. (5.8) and (5.9) to refactorize into three
terms,

J ⊥i (e,Q, zcut, b, µ, ζ) =

∫
de′ Scs,i(e− e′, Qzcut, µ) Ji(e

′, Q, µ)

S⊥sc,i(Q, zcut, b, µ, ζ)

[
1 +O

( e

z2
cut

,
q2
T

Q2z2
cut

)]
, (5.10)

where the e+e− case requires only relabeling Q → √s. The two functions
carrying jet mass dependence appear in Laplace convolution, since this variable
is additive, and reduce to a simple product in Laplace space. The collinear-
soft function also knows about grooming, while the jet function2 J depends on
only the mass. This is a consequence of the collinear modes always surviving
grooming. The collinear-soft function inherits (up to power corrections) all
the transverse momentum dependence of the jet function on the left-hand side,
and in particular it will obey the same double-scale evolution typical of TMDs.
Being independent of the groomed jet mass, it does not enter the convolution
(although in momentum space it would enter the factorization formula (5.9) in
convolution with the TMDPDF). Operator definitions and one-loop results for

2Not to be confused with the jet functions in ch. 4 for ungroomed jets.



5.1. Theoretical framework 153

the three ingredients figuring here are collected in appx. B.1 and appx. B.2.3
respectively.
Finally, I can consider the two hierarchies in eq. (5.7), represented in fig. 5.2.

In these situations the expansion in eq. (5.10) is too radical, as power correc-
tions in respectively jet mass and transverse momentum need to be retained.
In the case of larger jet mass, eq. (5.7a), one has instead

J ⊥i (e,Q, zcut, b, µζ) =

∫
de′ S⊥cs,i(e− e′, Qzcut, b, µ, ζ) Ji(e

′, Q, µ)

×
[
1 +O(qT /(Qzcut)

]
,

with a single collinear-soft function describing the transverse momentum de-
pendence and carrying jet mass dependence, which now captures power cor-
rections in the ratio

√
e/zcut. Consistency of factorization implies the (multi-

plicative) relation

S⊥cs,i(e− e′, Qzcut, b, µ, ζ) = Scs,i(e− e′, Qzcut, µ)S⊥sc,i(Q, zcut, b, µ, ζ)

×
[
1 +O(

√
e/zcut)

]
, (5.11)

describing the refactorization of the modes that merge when passing from
fig. 5.1 to the left panel of fig. 5.2.
Last, in the case described by eq. (5.7a) (or fig. 5.2, right panel), the fac-

torization still looks like (5.10), but the soft-collinear function is now replaced
by a groomed soft function which depends on both the transverse momentum
and the soft drop parameter. This regime does not require the double-scale
evolution discussed in sec. 2.2.3, since the two modes with large separation in
rapidity coalesced to a single point.
In the rest of this section, I will discuss the RGE of the ingredients that enter

the refactorization formula in eq. (5.10). The TMD jet functions on the left-
hand side of the equation must satisfy the double-scale evolution of TMDFFs,
since their evolution must match the one of the TMDPDF in eq. (5.9). As I
already noted, on the right-hand side the transverse momentum dependence is
described by only the soft-collinear function; thus, for RGE consistency, also
S⊥sc,q has identical evolution. Explicitly,

µ
d

dµ
S⊥sc,i(Q, zcut, b, µ, ζ) = +γi(µ, ζ)S⊥sc,i(Q, zcut, b, µ, ζ) ,

ζ
d

dζ
S⊥sc,i(Q, zcut, b, µ, ζ) = −Di(b, µ)S⊥sc,i(Q, zcut, b, µ, ζ) . (5.12)

Because of the refactorization of the jet function, the resummation in eq. (5.12)
does not capture large logarithms of

√
e and

√
ezcut, which can still spoil the
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convergence of the perturbative series. This is achieved with the evolution
(only in virtuality) of the other ingredients in eq. (5.10), which I now present.
Such evolution is conveniently described in Laplace space. Taking s to be the
Laplace conjugate of the normalized groomed jet mass, then

G̃i(s) =

∫ ∞

0
de exp(−e s)Gi(e) , (5.13)

where Gi generally denotes either Ssc,i or Ji. In this space, factorization is just
multiplicative, and evolution simply reads

µ
d

dµ
G̃i(µ) = γGi (µ) G̃(µ) =

[
ΓGi
(
αs(µ)

)
ln

µ2

m̃2
G

+ ∆γGi (αs(µ))
]
G̃(µ), (5.14)

where the anomalous dimensions differ between the two functions (and from
the UV anomalous dimension of TMDs, γi in eq. (5.12)). The second equality
explicitly shows the cusp/non-cusp decomposition of the anomalous dimension,
originating from the double-logarithmic dependence of the functions on µ. This
is similar to the TMD case, eq. (2.40), but with the important difference that
the anomalous dimensions do not depend on the rapidity scale ζ. Finally, m̃G

are the natural scales in Laplace space, formally obtained by conjugation from
the natural scales in distribution space,3

mJ = Q
√
e → m̃J = Q/

√
s e−γE , (5.15)

mScs = Q
√
zcute → m̃Scs = Q

√
zcut/

√
s e−γE . (5.16)

Consistent with the factorization structure, and the groomed jet mass being
additive (rather than multiplicative), RGE does not mix different flavors. This
allows eq. (5.14) to be solved analytically, as I now show explicitly. Using that
in MS scheme the anomalous dimensions depend on µ only through the strong
coupling, one finds

G̃i(µ) = exp
(
KG
i (µ, µ0)

)( µ0

m̃G

)2ωGi (µ,µ0)

G̃i(µ0) , (5.17)

where the kernels

KG
i (µ, µ0) = 2

∫ αs(µ)

αs(µ0)

dαs
β(αs)

ΓGi (αs)

∫ αs

αs(µ0)

dα′s
β(α′s)

+

∫ αs(µ)

αs(µ0)

dαs
β(αs)

∆γGi (αs),

ωGi (µ, µ0) =

∫ αs(µ)

αs(µ0)

dαs
β(αs)

ΓGi (αs) , (5.18)

3It is customary to include factors eγE , arising when Laplace transforming plus distribu-
tions, in the argument of logarithms in Laplace space.



5.1. Theoretical framework 155

are determined order by order in perturbation theory from the cusp/non-cusp
anomalous dimensions, as well as the beta function in eq. (1.33). The evolution
in eq. (5.14) combines trivially for the two function I need, yielding

S̃cs,i(s, µ) J̃i(s, µ) = exp
{
KJ
i (µ, µJ)+KScs

i (µ, µcs)+ω
J
i (µ, µJ)

[
γE+LJ(µJ , s)

]

+ ωScs
i (µ, µcs)

[
γE + Lcs(µcs, s)

]}
S̃cs,i(µcs, s) J̃i(µJ , s) . (5.19)

Here I omitted non-relevant arguments, and defined

LJ = ln
µ2
J

m̃2
J

, Lcs = ln
µ2

cs

m̃2
Scs

, (5.20)

that depend on the Laplace parameter s through the natural scales (5.15).
The expression of the kernels for these ingredients up to NLL for can be found
in [4]. Expressing the result in terms of the groomed jet mass requires taking
the inverse Laplace transform of eq. (5.19), which in general is challenging.
It becomes easy if the dependence of the fixed-order functions on the mass is
purely logarithmic, since the logarithms (5.20) are obtained from eq. (5.19)
by formally differentiating with respect to the kernels ωG. In this case, after
solving the inverse Laplace transform,

Ji(e,Q, zcut, µ) = exp
[
KScs
i (µ, µcs) +KJ

i (µ, µJ)
]
S̃cs,i(Lcs→∂ωcs)J̃i(LJ→∂ωJ )

( µ2
cs

Q2zcute

)ωScsi (µ,µcs)( µ2
J

Q2e

)ωJi (µ,µJ ) exp
{
γE
[
ωScs
i (µ, µcs) + ωJi (µ, µJ)

]}

Γ
(
1− ωScs

i (µ, µcs)− ωJi (µ, µJ)
) .

(5.21)

Here I denote with J the evolved product of the jet and collienar-soft functions,
and S̃cs,i, J̃i should now be thought of as differential operators, derived from
the Laplace-space ingredients using the replacement rule in brackets.
Performing the evolution of the jet quantity defined in eq. (5.11) in the

scenario described by fig. 5.1 amounts therefore to: 1) computing the jet in
eq. (5.21), evolved from the natural scales (µcs, µJ) to the hard scale µ, and
2) performing the double-scale evolution of the soft-collinear function from
(µcs, ζcs) to the hard scale. The two evolutions do not mix; this means in
particular that the jet function in eq. (5.21) will not alter the shape of the
transverse momentum distribution (although it is of course fundamental to
get the correct normalization).

5.1.3 Hadronization effects

The main goal of the framework described above is the extraction of TMD-
PDFs in electron-proton collisions. As already remarked in sec. 4.3, measuring
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jets instead of hadrons removes one of the sources of final-state uncertainty
(the poor knowledge of TMDFF entering SIDIS), but at small transverse mo-
mentum the jet functions themselves are not immune to hadronization effects.
Although soft drop reduces the impact of hadronization on jets, further im-
provement could be obtained from a model that parametrizes the impact of
non-perturbative physics on the jet. In sec. 4.2.1, I briefly described the non-
perturbative model used for the TMDPDF, based on the ansatz (4.62). For
perturbative ingredients, it is often possible to act more systematically, and
set up a QFT-based description to incorporate non-perturbative corrections to
leading power in an expansion in ΛQCD, see e.g. [228–231]. This approach has
the advantage of describing hadronization corrections from first principles, up
to few parameters that are fixed by universality of non-perturbative physics.
Hadronization corrections to TMDs have been extensively studied from a

field theory perspective, see [14,232–235], while a hadronization model for cross
sections differential in groomed jet mass was recently introduced in ref. [236].
A quantitative description of hadronization effects was beyond the scope of [4],
but in the following I will summarize the qualitative analysis that was proposed
there. The focus is on those corrections that may alter the shape of the qT
distribution, rather than impacting only the normalization.
Let me start from the hierarchy in fig. 5.1. In principle, any of the functions

that appear in eq. (5.10) (as well as the soft function reabsorbed in Scs) receives
hadronization corrections, although their magnitude will be larger for those
ingredients whose virtuality is closer to ΛQCD. In the case of the soft function,
hadronization effects are described through an expansion (in impact parameter
space)

S(b) = 〈0|T [YnY
†
n (b)]T [YnY

†
n (0)]|0〉

= Spert(b)
[
1 + b2

∑
aC

(s)
a (b)〈0|Oa|0〉+O(b4Λ4

QCD)
]
, (5.22)

where the sum runs over a complete set of local operators that have the same
quantum numbers as the soft function Spert computed in perturbation theory.
In practice, this can be described by introducing a single parameter Ωs,

S(b) = Spert(b) + b2 Ωs +O(b4Λ4
QCD) , (5.23)

which is universal and can be fitted from experiment. This sort of contribution
is referred to as shift hadronization correction, since in transverse momentum
space it can be reabsorbed in a shift of the argument of the perturbative
function, Spert(qT )→ Spert(qT − Ωs).
In the SCETII picture of interest here, the soft-collinear function has the

same virtuality as the soft function and will therefore carry non-perturbative
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corrections of roughly the same size. As discussed in sec. 5.1.1, soft-collinear
emissions contribute to the cross section only if they fail soft drop (otherwise,
their large plus momentum component would drive the jet mass out of the
measurement region). Given the angular scaling of this mode, which is much
larger than the collinear-soft and collinear modes forming the groomed jet, the
phase-space region available is effectively unconstrained. Hence, the correction
in this case also causes a simple shift, and is implemented in the same manner
as in the case of the global soft function, yielding

SS⊥sc(b) =
[
1 + b2(Ωs + Ωsc)

]
S⊥,pertS⊥,pert

sc (b) +O(b4Λ4
QCD) . (5.24)

Note that in this regime hadronization effects in the collinear-soft sector are
the largest source of non-perturbative corrections, since this mode carries the
lowest virtuality, µcs ∼ Q

√
ezcut. However, this radiation does not contribute

to the transverse momentum measurement, so such effects do not modify the
shape of the qT spectrum.
The situation becomes more interesting in the regime of eq. (5.7a). Here a

single collinear-soft mode with same virtuality as the soft one determines the
jet mass and transverse momentum at the same time, and may or may not
pass soft drop. In this situation the analysis follows the lines of [236]. There,
hadronization effects were described through non-perturbative gluon emissions.
Concerning the shift correction, one has to distinguish two possible scenarios
(fig. 5.3):

1. Collinear-soft (cs) particles pass soft drop
If cs particles pass soft drop they do not contribute to qT , as the groomed
jet axis (just like the standard axis) balances the transverse momentum
of all the emissions inside the jet. Non-perturbative emissions with cs
scaling contribute to qT when they lie outside the groomed jet. In this
case, one needs to calculate the catchment area of the groomed jet that
is determined by the angular distance of the cs subjet that passed soft
drop. Ref. [236] did this at NLL using a coherent branching formal-
ism, factorizing a purely non-perturbative function from the calculable
perturbative effects.

2. Collinear-soft particles fail soft drop
In this case, collinear modes are the only ones that pass soft drop, so non-
perturbative radiation with cs scaling has unconstrained phase space,
by the same logic as for the soft and the soft-collinear functions. This
generates again a simple shift correction. Interesting corrections come
from the collinear non-perturbative emissions lying outside the catchment
region, that is now determined by the collinear modes alone. However,
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the size of these collinear effects is suppressed by the large virtuality of
the collinear radiation.

py/p0

CC

px/p0

py/p0

px/p0

CSCS

Figure 5.3 Catchment area (in transverse momentum) for collinear-soft non-
perturbative emissions. If perturbative cs emissions pass soft drop (left), non-
perturbative cs emission must lie out of the collinear and cs subjets. If they fail
soft drop (right), then the vetoed area coincides with the collinear subjet, and the
catchment area is effectively unconstrained (the angular size of collinear emissions is
negligible).

In this regime another kind of hadronization effect arises, due not to non-
perturbative emissions directly changing qT , but rather to modifications of the
soft-drop condition. Specifically, a non-perturbative emission from a cs subjet
might reverse the outcome of the soft-drop test on that branch. In presence
of a non-perturbative cs emission with momentum k and a perturbative cs
emission with momentum p, the complete measurement function writes

Θp±k = Θ
(p0 + k0

EJ
− zcut

)
δ(2)(q − p± k) . (5.25)

The ± sign indicates whether the perturbative cs subject gains or loses a
non-perturbative momentum after hadronization. At leading power, the mea-
surements expand as

Θp+k ≈ Θp
SDδ

(2)(q − p) +
k−
EJ

Θb.c.(ϑk, ϑp,∆φ)δpSDδ
(2)(k − p) ,

Θp−k ≈ Θp
SDδ

(2)(q − p)− k−
EJ

Θ
b.c.

(ϑk, ϑp,∆φ)δpSDδ
(2)(k − p) , (5.26)

with

Θp
SD = Θ

( p−
2EJ

− zcut

)
, δpSD = δ

( p−
2EJ

− zcut

)
, (5.27)
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while Θb.c. gives the phase space for the non-perturbative emission to get clus-
tered with the cs subjet, see fig. 5.4, and Θ

b.c. is its complement. The leading

py/p0

CC

px/p0

py/p0

px/p0

CSCS

Figure 5.4 Phase space (in transverse momentum) for loss (left) or gain (right) of
a collinear-soft non perturbative emission. Such an emission may revert the outcome
of the soft-drop test, causing boundary corrections.

power correction scales as q−/EJ ∼ qT zcut/E, which for typical values of
zcut ∼ 0.1 is comparable to the q2

T /E
2 correction that one gets from the shift

terms.

5.2 Phenomenological study

5.2.1 Implementation

I will now comment on some of the details of the implementation of the frame-
work above. Similar to the recoil-free analysis of ch. 4, numerical predictions
are based on Artemide, which takes care of the double-scale evolution and the
integration over the kinematics. For this application, I supplemented the code
with a module for groomed jets, which includes the perturbative jet functions
and evolves them in virtuality.
The distribution in transverse momentum is obtained by integrating the

cross section in eq. (5.8) over the jet mass,

dσ

dq
(ecut) =

∫ ecut

0
de1

∫ ecut

0
de2

dσ

dq de1 de2
, (5.28)

with the default value ecut = 0.01. In the regime zcut � qT /E ∼ ecut that is
the focus of the analysis, switching to the cumulant simply amounts to using
the integrated jet functions

Jj(ecut, Q, zcut, q, µ, ζ) =

∫ ecut

0
deJj(e,Q, zcut, q, µ, ζ) , (5.29)
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rather than the differential counterpart shown in eq. (5.21). The one-loop jet
function and collinear-soft function were computed in [218]. As discussed in
sec. 5.1.2, the evolution in virtuality is performed analytically, from the initial
scales

µJ = 2E
√
ecut , µcs = 2E

√
ecut zcut (5.30)

up to the final hard scale 2E (
√
s for e+e−, Q for DIS+jet). When using cumu-

lant scale setting (namely choosing the scales as a function of ecut, rather than
e) all the manipulations that lead to eq. (5.21) from the unevolved, differential
jet function are still valid for the integrated function.
When replacing the default values zcut = 0.2, ecut = 0.01, the scale of lowest

virtuality evaluates to µcs ' 4.1 GeV for e+e− collisions at the Z-boson mass,
and to µcs ' 1.8 GeV for DIS, at the lower value Q = 40 GeV I consider.
Especially in the second case, a significant part of the evolution occurs below
the bottom quark mass, so that setting nf = 5 is unjustified. Instead, I use a
scheme with variable number of flavors, namely I run four-flavor evolution of
the jet functions up to mb = 4.75 GeV and switch to nf = 5 at the bottom
threshold. A subtlety to take into account is that the kernels ωG that appear
in eq. (5.18) compose additively, but the KG do not,

ωGi (µ1, µ3) = ωGi (µ1, µ2) + ωGi (µ2, µ3) ,

KG
i (µ1, µ3) = KG

i (µ1, µ2) +KG
i (µ2, µ3) + 2ωGi ln

µ2

µ3
. (5.31)

This effect can impact up to ∼ 20% on the normalization of the cross section,
thus it must be included when getting predictions with absolute normalization.
The other fundamental ingredient in eq. (5.10) is the soft-collinear function

S⊥sc, that was computed at one-loop accuracy in [4]. Equivalently to the case
of recoil-free jets, the double-scale evolution in eq. (5.12) is performed adopt-
ing the ζ-prescription discussed in sec. 2.2.3. In particular, the initial scales
coincide with eq. (4.59), and are chosen so as to cancel the dependence on µ.
However, an important difference is that the final scale for groomed jets is now

(µf , ζf ) =

{
(
√
s, z2

cuts) e+e−

(Q, z2
cutQ

2) DIS+jet
(5.32)

The need for the additional factors zcut in the final rapidity scale is easily
understood from the Lund plane picture in fig. 5.1: the separation in rapidity
between the S and SC modes interrupts at z = zcut (in the case of TMDs, it
extends all the way to z = 1). Of course, in the case of DIS+jet, the evolution
of the TMDPDF is unaltered, as grooming only applies to jets.
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Finally, I used again the non-perturbative model of [210] for the TMD-
PDF and its evolution. Including corrections due to hadronization inside the
groomed jets, as described in sec. 5.1.3, would guarantee a further improve-
ment. However, as the next section will show, the theory uncertainty due to
scale variation is rather large for this observable, suggesting that improving
the perturbative accuracy should be prioritized.

5.2.2 Numerical predictions

I now move on to showing numerical predictions for TMDs involving groomed
jets. As in the analysis using recoil-free jets, I will use the case of e+e− →
dijet as a way to assess the validity of our framework in an environment which
is cleaner because the initial-state TMDPDF is absent. To this aim, besides
numerical predictions, I will show Monte Carlo simulations obtained using
Pythia 8 [25] and FastJet 3 [79].
According the factorization formula eq. (5.10), as long as one remains within

the hierarchy in eq. (5.5), then the exact cutoff on the groomed jet mass will
only influence the overall normalization and not the shape of the TMD distri-
bution. Fig. 5.5 (left) test this prediction against simulations, by comparing
the normalized TMD distributions for various values of ecut. Here and in the
following labels, I use the shortcut notation dσ = dσ/dqT . The shape is fairly
stable under variations of the cut on jet mass: the relative difference on each
bin in transverse momentum is of order 5% when varying the cut by two orders
of magnitude.
In addition, fig. 5.5 (right) investigates the validity of the large-radius ap-

proximation, by simulating events at
√
s = 50 GeV for different values of

R ' 1. As long as the radius is sufficiently large, the shape and normalization
of the cross section around the peak region are independent of the specific
value. Note that the plot preserves the relative normalization of the curves.
Significant deviations occur in the tail, where the assumption qT �

√
s, and

in particular qT /
√
s � zcut, also gradually lose validity. These tests validate

the factorization framework in sec. 5.1.2 and justify focusing on the regime in
fig. 5.1.
In fig. 5.6, I show analytic results for the NLL cross section (normalized)

against Pythia simulations, for
√
s = 50 and 100 GeV. For the purpose of

comparison, hadronization effects in the simulation are turned off, and the
parameter c0 of the non-perturbative model is set to 0 (BNP is not, such
that the soft scale, scaling as 1/b, does not hit the Landau pole). Rather
than the ζ-prescription that I use elsewhere, these predictions are obtained
with the Rapidity Renormalization Group evolution of [129]. Although, as I
am about to discuss, the theoretical uncertainty of the cross section for these
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Figure 5.5 Left: the normalized cross sections for different values of the jet mass
cutoff parameter ecut. We also include the corresponding ratios with respect to the
case ecut = 0.01. Right: The cross section for fixed ecut = 0.01 and for different values
of the jet radius R, normalized with respect to R = 1.
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Figure 5.6 Comparison between NLL predictions (here obtained with the rapidity
RG approach) and Monte Carlo parton-level simulations, for e+e− collisions at the
two center-of-mass energies

√
s = 50 GeV (left) and

√
s = 100 GeV (right).

energies at NLL is quite large, agreement with the simulations is very good for
the canonical choice of scales (i.e., central line in fig. 5.6). As expected, the
agreement gets even better at the larger center-of-mass energy, since the scale
separation is wider and power corrections to factorization smaller.
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Figure 5.7 Transverse momentum decorrelation for e+e− → dijet with center of
mass energy at the Z mass.

In fig. 5.7 I give the NNLL predictions including a theoretical uncertainty
band. Numerical results are obtained with the ζ prescription, using the set-
tings discussed in sec. 5.2.1, and the NLL prediction is shown for comparison.
To estimate the theoretical uncertainty I first vary all the factorization scales
of a factor 2 (0.5) around their canonical value, then separately take the en-
velope of the variations involved in rapidity evolution, µ, µsc, and of the ones
involved only in the virtuality evolution of the jet function, µcs, µJ . The final
error bands are the quadrature of the two contributions: the reason for this
prescription is that rapidity and virtuality evolutions are in principle uncor-
related. It is reassuring that the theory error decreases by approximately a
factor of two when moving from NLL to NNLL. The uncertainty is somewhat
larger than one might expect for a NNLL calculation, and is practically domi-
nated by the scale variations in the jet function. This is ascribed to the small
values of the collinear-soft scale, µcs ∼ Q

√
ecutzcut, which approaches the non-

perturbative regime even for values of
√
s ∼MZ . One might attempt to reduce

the uncertainty by increasing either ecut or zcut, but caution is needed not to
invalidate the corresponding hierarchy. I will show in a moment that in DIS,
when only the mass of one jet is measured, the error band decreases.
I now turn to describing numerical results for the TMD spectrum of groomed

jets in DIS, using the factorization theorem in eq. (5.9). As for recoil-free jets
in sec. 4.2.3, the analysis is performed for two center-of-mass energies, EIC:√
s = 100 GeV and HERA: 318 GeV. For both energies, y = Q2/(xs) and

Q =
√
−q2 are integrated over in the regions 0.01 < y < 0.95 and 40 < Q < 50

GeV. For the TMDPDFs, I use again the fits obtained from Drell-Yan data
in [210] with the use of the ζ-prescription.



164 Chapter 5. Transverse Momentum Distributions from groomed jets

0.00 0.05 0.10 0.15 0.20
0.0

0.5

1.0

1.5

2.0

0.00 0.05 0.10 0.15 0.20
0

2

4

6

8

10

12

BNP = 2.5 GeV�1, c0 = 0.037

Figure 5.8 Transverse momentum spectrum for DIS+jet, at the two center-of-mass
energies of HERA and EIC.

In fig. 5.8 I show the results for NLL and NNLL accuracies for the two
center of mass choices, including theoretical uncertainties. Theoretical scale
variations are estimated as for the electron-positron case, with the important
difference that the TMDPDF does not have additional evolution in virtuality
(besides the double-scale evolution of TMDs). The groomed jet parameters
are also the same as in the di-lepton case: β = 0, zcut = 0.2, and ecut = 0.01.
As before, there is good perturbative convergence between the NLL and NNLL
results. In the presence of a single groomed jet, the size of the NLL error band
is lower (∼ 30% at peak, compared to ∼ 50% of the e+e− case). The NNLL
band is still large, and in particular very asymmetric: this is a consequence of
the upper curve being dominated by the lower variation of µcs ∼ 0.9 GeV, that
touches the non-perturbative region. The absolute value of theoretical scale
variation is improvable with higher logarithmic accuracy (ideally, N3LL), which
however needs the explicit calculation of several jet and soft matrix elements
at two loops, including their anomalous dimensions.
Finally, I investigate the size of the uncertainty due to the hadronic initial

state and the non-perturbative effects induced by TMD evolution. Identical
to the analysis for recoil-free jets, I do so by varying the parameters of the
non-perturbative model in our NNLL result. The effects are shown in fig. 5.9,
considering both variable and fixed BNP schemes (for details on the differ-
ence, see [210]). The variation for this kinematics is small, order ∼ 5%: the
sensitivity to initial-state physics is similar to using recoil-free jets, but much
smaller than the theoretical uncertainties highlighted in fig. 5.8. This implies
that in order to constrain TMD distributions using groomed jets in DIS, we
need a better control over the theoretical uncertainties. However, it confirms
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Figure 5.9 The NNLL cross-section including modeling of the initial hadronic state
effects fitted from Drell-Yan processes using two different scenes: fixed and variable
BNP.

the potential of the framework as an alternative to hadrons or recoil-free jets
to study TMDPDFs.

5.3 Outlook

In this chapter, I have presented a framework to compute the transverse mo-
mentum (decorrelation) spectrum in e+e− → dijet and DIS+jet, where the fat
jets are groomed using the soft-drop algorithm. As I showed in ch. 4, recoil-free
jets lead to the same factorization formula as for hadrons over the whole kine-
matic range; achieving a similar result with groomed jets needed additional
assumptions on the kinematics. Specifically, one requires that the jets are
large, and – at the same time – selects collimated jets with a jet mass cut. On
the one hand, these assumption reduce the theoretical scope of the framework.
On the other hand, they do not pose serious limits to its applicability at the
EIC, since experimental analyses at e-p colliders prefer large jets, and most of
the events fall in the low-mass region.
Having specified the caveats above, soft-drop jets have two of the main theo-

retical simplifications accomplished by their recoil-free equivalent: insensitivity
to non-global logarithms and identical rapidity evolution as for hadrons. The
price of grooming, compared to the WTA scheme, is the larger theoretical er-
ror: the uncertainty shown through scale variation (10% ∼ 20%) surpasses the
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sensitivity to initial-state non-perturbative physics (∼ 5%). This additional
error originates from the lower perturbative accuracy (NNLL vs N3LL) and
the richer mode structure in the effective theory. Therefore, uncertainty can
be mitigated either by pushing the calculation to higher logarithmic accuracy,
or by extending the EFT description to other regimes. Since most of the scale
uncertainty ultimately comes from the small value of ecut, loosening the cut on
jet mass is an interesting option. This is still compatible with factorization,
but requires one to treat the regime shown on the right panel of fig. 5.1.
At the same time, grooming provides an additional advantage of cutting

off sources of contamination inside the jets. Simulations using Pythia, see
again fig. 2.3, show that soft drop greatly reduces the impact of the underlying
event, as well as final-state hadronization effects. In particular, hadronization
corrections at low qT are significantly smaller than for the case of a standard
jet axis. Moreover, soft drop is a well-established technique that can build on
solid experimental and theoretical grounds: for instance, as I briefly described
in sec. 5.1.3, a model exists to account for hadronization effects within the jet,
which at present is still lacking for the recoil-free counterpart.
Ultimately, in chapters 4 and 5 I presented two alternatives to deepen the

study of TMDs that elaborate on the same idea: jets are in principle better
probes than final-state hadrons, since they are calculable objects in perturba-
tion theory. Under what conditions this statement holds true, and what is the
best jet definition to achieve the goal, remain interesting open questions.



6
Conclusions

The present thesis investigated the use of alternative jets to study transverse
momentum dependent distributions. Both quantities, discussed in ch. 2, are
intrinsic QCD objects, whose definition acquires precise meaning only in the
context of factorization. For this reason, I devoted ch. 1 to review the soft
and collinear limit of the theory. The main protagonist in the applications I
presented is the Winner-Take-All recombination scheme, the most widely used
instance of a recoil-free jet. In ch. 3, I applied this sequential jet algorithm to
describing the transverse momentum dependence of hadrons fragmenting inside
jets. Measuring the transverse momentum with respect to the recoil-free jet
axis (rather than a standard axis) resulted in a purely collinear observable,
whose characteristic features are stable under perturbations in the final state.
Extending the analysis to hadrons will allow for applications at the LHC, in
both proton-proton and heavy-ion collisions. In ch. 4, the same WTA scheme
was used to develop a framework for DIS+jet valid to N3LL, a remarkable level
of precision. Such a framework offers a promising channel in view of extraction
of TMDPDFs at the future EIC. Finally, in ch. 5 I studied again DIS with
soft-drop jets, which allowed for a direct comparison of grooming and recoil-
free techniques. While groomed jets minimize the impact of contamination
within an established framework, they suffer from a more involved factorization
picture.
Standing the comparison with jet grooming is in fact one of the biggest

challenges faced by recoil-free jets. Similar to grooming, recoil-free algorithms
aim at limiting the effects of contamination inside the jet, especially originating
from the underlying event. In theory, this mitigation is guaranteed by the
direction of the recoil-free axis being insensitive to soft emissions. Besides
the aforementioned ref. [85], the reduction of contamination was quantified
and compared to grooming techniques in [237] (see also [238] for a study of
the relative angle between the two). On this front, especially in the case of
DIS+jet, progress remains to be done to quantify the effectiveness of the WTA
scheme in removing soft contamination. A specific Monte Carlo analysis would
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help in this direction.
However, the absence of recoil has a clear and striking advantage in the large

simplification of factorization formulae. This property is achieved through an
improved separation of collinear from soft physics, since soft emissions do not
perceive the jet boundary as a sharp cut. In TMD fragmentation inside jets,
this fact makes the observable completely insensitive to the soft sector; in
DIS+jet and dijet production, it leads to the same soft physics as in hadron
production; in both cases, it eliminates non-global logarithms. The resulting
simplified framework is not only desirable theoretically, but has also important
consequences in phenomenology, see the respective outlooks in sec. 3.3 and
sec. 4.3. Around the time of writing this thesis, a further application of the
WTA recombination scheme to vector boson-jet production [217] confirmed
the high potential of this alternative jet definition. In presence of several
dedicated phenomenological analyses (see also [239]), WTA jets appear to be
mature enough to stand the test of experiment.
Transverse momentum dependent processes are the natural place where the

absence of recoil can play a significant advantage, since soft radiation has a
much larger impact on the small transverse momenta than on their large longi-
tudinal component. This immediately requires handling multi-scale processes
and multi-differential cross sections. The analyses presented here largely ben-
efited by the Soft Collinear Effective Theory formulation, which makes it im-
mediate to translate the (sometimes intricate) mode picture into factorization
formulae and Renormalization Group Equations. Multi-differential quantities
also call for precision physics: in the past decade, QCD experienced the NNLO
revolution, an outburst of breakthrough perturbative calculations at two-loop
order and beyond. At this frontier, jet observables still lag behind, since man-
aging the phase-space constraints imposed by jet algorithms quickly becomes
complicated beyond one loop. In ch. 4, I showed how we extracted a two-
loop jet function in the large radius limit using standard numerical techniques,
which was a fundamental step to achieve N3LL precision. In the cases of in-
jet fragmentation (ch. 3) and groomed jets (ch. 5), the level of perturbative
accuracy is indeed what currently limits the theoretical precision.
Finally, much interesting physics hides in the region of small transverse mo-

mentum, where non-perturbative corrections may be large. Therefore, WTA
jets would largely benefit from the formulation of a hadronization model, along
the lines sketched in sec. 5.1.3 for the case of groomed jets. As I discussed in
sec. 4.3, one important question is whether non-perturbative corrections to
recoil-free jets could flaw the increased precision they promise in the study of
TMDs. Further studies in this direction, and the presence of a hadronization
model, would significantly improve the robustness of the framework.
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Conventions and formulae

A.1 Lightcone coordinates

Given two lightlike, linearly independent vectors n, n such that

n2 = 0 , n2 = 0 , n · n = 2 , (A.1)

and two orthogonal, spacelike vectors ni⊥, the ordered set (n, n, ni⊥) forms a
basis of Minkowsky space. A generic vector v decomposes as

vµ =
v · n

2
nµ +

v · n
2
nµ + vµ⊥ , (A.2)

where vµ⊥ = v · n1
⊥ n

1,µ
⊥ + v · n2

⊥ n
2,µ
⊥ . In components, one represents

v = (v+, v−, ~v⊥) (A.3)

where v+ = v · n and v− = v · n. The Lorentz metric in lightcone coordinates
is

gµν =
nµnν + nνnµ

2
+ gµν⊥ , (A.4)

so a dot product yields

v · w =
1

2
v+w− +

1

2
v−v+ − ~v⊥ · ~w⊥ . (A.5)

A convenient choice is

n = (1, 0, 0, 1) , n = (1, 0, 0,−1) . (A.6)

For given n, the choice for n is clearly not the unique solution of eq. (A.1), and
in fact reparametrization invariance in SCET deals exactly with this freedom.
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In the case of a collinear scaling, I use the convention that the minus lightcone
component is the large component, so a collinear momentum will scale

p = (p+, p−, ~p⊥) ∼ Q(λ2, 1, λ) . (A.7)

This convention (although common in SCET literature) is by far not universal,
and so is the choice of normalization in the third expressions of eq. (A.1), thus
care is required when comparing different sources.

A.2 Plus distributions

Dimensional regularization is a brilliant way to fix UV and IR divergences
without destroying the symmetries of gauge theories, but it still complicates
intermediate stages of the calculations. Most often, the full ε dependence of
observables is superfluous, and it is sufficient to retain only finite terms in the
power expansion. For practical purpose, it is usually convenient to perform
this expansion at the level of integrands: this is where plus distributions arise.
For illustration purpose, consider the integral

∫ x0

0

dx

x1+ε
= −x

−ε
0

ε
= −1

ε

∞∑

k=0

(−ε lnx0)k

k!
. (A.8)

Clearly, we cannot reproduce the power expansion on the right-hand side by
naively expand x−1−ε under integral around ε = 0, as the first term in the
expansion, dx/x, would diverge. If an expansion in terms of regular functions
is doomed to fail, we can still expand in terms of distributions. Similar to the
Dirac delta, one can define plus distributions, L(x), by specifying their action
on a generic smooth function f(x) with support [0, 1],

Ln(x) ≡
[ lnn x

x

]
+

:

∫ 1

0
dx f(x)Ln(x) =

∫ 1

0
dx

lnn(x)

x

[
f(x)− f(0)

]
. (A.9)

Practically, subtracting the value of the smooth function at x = 0 regularizes
the singularity at the endpoint. This definition generalizes to an arbitrary
integration range by requiring compatibility with basic integration rules,
∫ x0

0
dx f(x)Ln(x) =

∫ x0

0
dx

lnn(x)

x

[
f(x)− f(0)

]
− f(0)

∫ 1

x0

dx
lnn(x)

x
, (A.10)

and plus distributions reduce to the regular counterpart when integrated over
intervals that do not contain the singular point x = 0. Given this definition,
expanding under integral sign

1

x1+ε
= −1

ε
δ(x) +

∞∑

k=0

(−ε)kLk(x) (A.11)



A.3. Transforms 171

correctly reproduces the right-hand side of eq. (A.8). Of course this strategy
is of little use when the integral is easily solved at all orders, but becomes
valuable when integrating against a complicated smooth function f(x), where
an all-order analytic solution could be out of reach. Furthermore, differential
distributions correspond to integrands by definition: in this case, an expansion
in terms of plus distributions is the only way to get a result at finite order in ε.
For this reason, plus distributions are essentially unavoidable when handling
differential cross sections that receive contributions from the IR region.
When considering transverse momentum measurements, I derive plus distri-

butions in the transverse momentum qT from eq. (A.9),

Ln(qT , q0) =
1

q2
0

Ln
(q2

T

q2
0

)
, (A.12)

such that
∫ p2T

0
dq2
T f(q2

T )Ln(qT , q0) =

∫ p2T /q
2
0

0
dx f(q2

0x)Ln(x) . (A.13)

Related “cut” distributions are defined as

Lcut
n (qT , q0) = Ln(qT , q0)θ(q0 − qT ) . (A.14)

A.3 Transforms

When measuring some some final-state physical quantities, the resulting differ-
ential cross sections often factorize as a convolution of functions, rather than
a simple product. In this case, it is often convenient to perform a transform
to a space where factorization (and evolution) are multiplicative. Usually, this
largely simplifies the manipulations at intermediate steps, and the complexity
is confined to taking a final antitransform.
When an energy fraction is measured, the factorization ingredients usually

enter the cross section in a Mellin convolution

[f ⊗ g](x) =

∫ 1

x

dx′

x′
f
( x
x′

)
g(x′) . (A.15)

This is the case of integrated PDFs and FFs, as well as many of the ingredients
that appear in ch. 3. It is immediate to show that the Mellin convolution is
symmetric and associative. The Mellin transform is defined as

f(N) =

∫ 1

0
dxxN f(x) , (A.16)
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and the f for integer N take the name of Mellin moments. Under Mellin
transform,

f ⊗ g(N) = f(N) g(N) . (A.17)

Transforming back to momentum space requires solving

f(x) =
1

2πi

∫ c+i∞

c−i∞
dN x−N−1f̄(N) , (A.18)

where c determines a vertical path in the complex plane that does not cross sin-
gularities. Efficiently solving the transform is a nontrivial numerical problem,
which requires a smart choice of path.
Additive vector quantities, like transverse momenta, usually enter factoriza-

tion formulae though Laplace convolutions,

dσ

dq
=

∫
dpF (q)G(p− q). (A.19)

This is the case for all TMD cross sections studied in sec. 2.2 and 4.1.2. Like
Mellin convolutions, Laplace convolutions are symmetric and associative. I
define the Fourier transform as

F (b) =

∫
dq F (q) e+ib·q , (A.20)

where b is the impact parameter, thus the inverse transform reads

F (q) =

∫
db

(2π)2
F (b) e−ib·q . (A.21)

In presence of angular symmetry, the Fourier transform reduces to

F (b) = π

∫ ∞

0
dq2
T J0(bqT )F (qT ) , (A.22)

where J0 is the Bessel function. In particular, the Fourier transform of the
plus distributions in eq. (A.12) yields

∫
dqLn(qT , µ) e+ib·q =

π

n!
lnn
( b2µ2

4e−2γE

)
. (A.23)

Finally, in case of jet mass measurements, the cross section factorizes as a
one-dimensional Laplace convolution. If e = m2

J/(4E
2) is the normalized jet

mass, I define the Laplace transform as

F̃ (s) =

∫ ∞

0
de exp(−s e)F (e) , (A.24)
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so that the corresponding inverse transform reads

F (e) =
1

2πi

∫ γ+i∞

γ−i∞
de exp(+s e)F̃ (s) . (A.25)

Laplace transforms of the first plus distributions yield
∫ ∞

0
de exp(−s e)L0(e) = − ln(s eγE ) ,

∫ ∞

0
de exp(−s e)L1(e) =

1

2
ln2(s eγE ) +

π2

12
. (A.26)

A.4 Electroweak parameters

This section gathers expressions for the constants that enter eq. (1.50), used
to include the Z-boson contribution to the cross section for e+e− → hadrons.
Basic trigonometric functions of the electroweak mixing angle ϑW are

sinϑW = 0.23119, cosϑW = 0.87681 . (A.27)

The mass of the EW bosons is

MZ = 91.1876 GeV , MW = MZ cosϑW = 80.379 GeV (A.28)

and the decay width of the Z

ΓZ = 2.4952 GeV . (A.29)

Finally, the vector and axial couplings for the particle species κ are a function
of the electric charge Q and isospin T 3,

vκ =
T 3
κ + 2Qκ sin2 ϑW
2 sinϑW cosϑW

, aκ = − T 3
κ

2 sinϑW cosϑW
. (A.30)





B
Perturbative Ingredients

This appendix collects the perturbative expressions presented in the main text,
and the complementary factorization and evolution ingredients needed to ob-
tain numerical results. To make the thesis self-contained, I include the defini-
tions of the collinear/soft functions in terms of SCET operators.

B.1 Function definitions

This section collects expressions for the soft and collinear functions, defined as
matrix elements of SCET operators. In the following |X〉 denotes an inclusive
state, and is therefore implicitly summed over. I will focus on the operator
definitions relevant to the two applications discussed in ch. 4 and ch. 5, that
were relevant to computing the missing perturbative ingredients in [3, 4]. For
the definitions relevant to the in-jet fragmentation process discussed in ch. 3,
see [83].
The definitions of integrated quark PDFs and FFs in position space are

respectively

fp→i(x) =

∫
dξ

2π
e−ixp

+ξ− tr

{
〈p|n

2
χn,i

(ξ−
2

)
|X〉〈X|χn,i

(
− ξ−

2

)
|p〉
}
, (B.1)

di→h(z) =
1

2Nc

∫
dξ

2π
e−izp

+ξ− tr

{
〈0|n

2
χn,i

(ξ−
2

)
|hX〉〈hX|χn,i

(
− ξ−

2

)
|0〉
}
.

(B.2)

Their transverse momentum dependent counterpart in impact parameter
space yields

Fp→i(x, b) =

∫
dξ

2π
e−ixp

+ξ− tr

{
〈p|n

2
χn,i

(ξ
2

)
|X〉〈X|χn,i

(
− ξ

2

)
|p〉
}
, (B.3)

Di→h(z, b) =
1

2Nc

∫
dξ

2π
e−izp

+ξ− tr

{
〈0|n

2
χn,i

(ξ
2

)
|hX〉〈hX|χn,i

(
− ξ

2

)
|0〉
}
.

(B.4)
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The difference between the definition of integrated and TMD distributions is
that in the latter the fields are evaluated at the position ±ξ/2, which involves
a space separation b in the transverse direction.
The soft function for SIDIS is given (in position space) by the following

vacuum matrix element of soft Wilson lines,

Sq(b) =
1

Nc
trc〈0|T

[
Ỹ †n̄Yn

]
(0+, 0−, b)T

[
Y †n Ỹn

]
(0)|0〉, (B.5)

where the coordinates in brackets indicate the position of both Wilson lines,
T (T ) denotes (anti-)time ordering, and the Wilson lines are defined as

Yn(x) = P exp

[
+ igs

∫ 0

−∞
ds n ·A(x+ s n)

]
, (B.6)

Ỹn(x) = P exp

[
− igs

∫ ∞

0
ds n ·A(x+ s n)

]
.

As amply discussed in the main text, the same soft function enters for processes
involving jets (instead of hadrons) in the final state. In the case of TMD
dijet/dihadron production, eq. (B.5) simply involves two outgoing Wilson lines
rather than one incoming and one outgoing line.
The matrix element definition of the TMD recoil-free jet function was given

in eq. (4.19) in the main text. Moving on to groomed jets, the definitions
for the ingredients entering the refactorization eq. (5.10), describing the most
hierarchical regime of interest, are given in the following: first, the jet function
reads

Jq(e,Q) =
(2π)3

Nc
tr
{
〈 /̄n
2
χn(0)δ(2E − n · P)δ(2)(P⊥)δ(e− E)χ̄n〉

}
, (B.7)

where the action of the operator E on a state returns its jet mass. Second, the
collinear soft function is defined as

Scs(e,Qzcut) =
1

NR
tr
{
〈T
(
U †nWt

)
MSD

e T̄
(
W †t Un

)
〉
}
. (B.8)

Here Wt is a collinear-soft Wilson line, whose reference direction t differs in
general from collinear analogous n, and Un arises from the BPS field redefi-
nitions. These are needed to decouple collinear from collinear-soft physics, in
the same manner as discussed in sec. 1.3.4 for the standard ultrasoft-collinear
decoupling. The invariant measurement function is

MSD
e = δ

(
e− (1−ΘSD) E

)
, (B.9)
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which imposes only the radiation that passes soft drop to contribute to the
measured groomed jet mass. Finally, the soft-collinear function is defined by
the matrix element

S⊥sc(q, Qzcut) =
1

NR
tr
{
〈T
(
U †nWt

)
MSD
⊥ T̄

(
W †t Un

)
〉
}
, (B.10)

and the groomed jet measurement function,MSD
⊥ is given in terms of the label

momentum operator, P,

MSD
⊥ = ΘSD × δ2

(
q −ΘSDP⊥

)
. (B.11)

Soft-collinear emissions only contribute to the transverse momentum measure-
ment if they fail soft-drop, as is enforced by the ΘSD term.

B.2 Fixed-order ingredients

I expand the fixed-order ingredients in powers of αs/(4π), defining

F =
∞∑

k=0

(αs
4π

)k
F [k] . (B.12)

B.2.1 Ingredients for in-jet fragmentation

In the following, I collect the one-loop factorization ingredients needed to ob-
tain the numerical result for in-jet fragmentation presented in ch. 3. All these
ingredients were first calculated in [83] with proton-proton collisions in mind,
and here I show the e+e− equivalent used in the analysis above.
The TMD matching coefficients that enter in eq. (3.6) are given by

C
[0]
ij (kT , z, µ) =

1

π
δij δ(k

2
T ) δ(1− z) , (B.13)

C(1)
qq (kT , z, µ) =

2CF
π

θ
(1

2
− z
){
L0(kT , µ)

1 + z2

1− z

+ δ(k2
T )

[
2(1 + z2)

1− z ln
(
z(1− z)

)
+ 1− z

]}
, (B.14)

C [1]
qg (kT , z, µ) =

2CF
π

θ
(1

2
− z
){
L0(kT , µ)

1 + (1− z)2

z

+ δ(k2
T )
[2(1 + (1− z)2)

z
ln
(
z(1− z)

)
+ z
]}

, (B.15)

C [1]
gg (kT , z, µ) =

CA
π
θ
(1

2
− z
){
L0(kT , µ)

2(1− z + z2)2

z(1− z)



178 Appendix B. Perturbative Ingredients

+ δ(k2
T )

4(1− z + z2)2

z(1− z) ln
(
z(1− z)

)}
, (B.16)

C [1]
gq (kT , z, µ) =

2TF
π

θ
(1

2
− z
){
L0(kT , µ)

(
z2 + (1− z)2

)

+ δ(k2
T )
[
2
(
z2 + (1− z)2

)
ln
(
z(1− z)

)
+ 2z(1− z)

]}
,

(B.17)

Here E is the jet energy and R = 2 tan(R/2). The boundary coefficients that
enter the same equation are

B
[0]
ij (x,ER, y, µ) = δij δ(1− x)δ(1− y) , (B.18)

B[1]
qq (x,ER, y, µ)

=
2CF
π

(
− δ(1− y)

{
2(1 + x2)

[
L0(1− x) ln

(ER
µ

)
+ L1(1− x)

]
+ 1− x

}

+ δ(1− x)θ
(
y− 1

2

){
2(1+y2)

[
L0(1−x) ln

(ERy
µ

)
+L1(1−y)

]
+ 1−y

})
,

B[1]
qg (x,ER, y, µ)

=
2CF
π

(
− δ(1− y)

{
2

1 + (1− x)2

x
ln
(ER(1− x)

µ

)
+ x

}

+ δ(1− x)

{
θ
(
y − 1

2

)[
2

1 + (1− y)2

y
ln
(ERy(1− y)

µ

)
+ y
]})

, (B.19)

B[1]
gg (x,ER, y, µ)

=
2CA
π

(
− δ(1− y)

4(1− x+ x2)2

x

{
L0(1− x) ln

ER
µ

+ L1(1− x)

}

+ δ(1− x)θ
(
y − 1

2

) 4(1− y + y2)2

y

[
L0(1− y) ln

ERy
µ

+ L1(1− y)

])
,

(B.20)

B[1]
gq (x,ER, y, µ)

=
4TF
π

(
− δ(1− y)

{(
x2 + (1− x)2

)
ln
ER(1− x)

µ
+ x(1− x)

}

+ δ(1− x)θ
(
y − 1

2

)[(
y2+(1−y)2

)
ln
ERy(1− y)

µ
+ y(1−y)

])
. (B.21)

The matching coefficients in eq. (3.8), describing the regime kT ∼ EJR,

J
[0]
ij (x,ER, kT , z, µ) =

1

π
δij δ(k

2
T )δ(1− x)δ(1− z) , (B.22)
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J [1]
qq (x,ER, kT , z, µ)

=
2CF
π

(
L0(kT , µ)δ(1− x) θ

(1

2
− z
)
θ
(
ER− kT

) 1 + z2

1− z

− δ(k2
T )δ(1− z)

{
2(1 + x2)

[
L0(1− x) ln

(ER
µ

)
+ L1(1− x)

]
+ 1− x

}

+ δ(k2
T )δ(1− x)

{
θ
(
z − 1

2

)[
2(1 + z2)

[
L0(1− z) ln

(ERz
µ

)
+ L1(1− z)

]

+ 1− z
]

+ θ
(1

2
− z
)[

2
1 + z2

1− z ln
(
z(1− z)

)
+ (1− z)

]})
(B.23)

J [1]
qg (x,ER, kT , z, µ)

=
2CF
π

(
L0(kT , µ)δ(1− x) θ

(1

2
− z
)
θ
(
ER− kT

) 1 + (1− z)2

z

− δ(k2
T )δ(1− z)

{
2

1 + (1− x)2

x
ln
(ER(1− x)

µ

)
+ x

}

+ δ(k2
T )δ(1− x)

{
θ
(
z − 1

2

)[
2

1 + (1− z)2

z
ln
(ERz(1− z)

µ

)
+ z
]

+ θ
(1

2
− z
)[

2
1 + (1− z)2

z
ln
(
z(1− z)

)
+ z
]})

, (B.24)

J [1]
gg (x,ER, kT , z, µ)

=
2CA
π

(
L0(µ, kT )δ(1− x) θ

(1

2
− z
)
θ
(
ER− kT

) 2(1− z + z2)2

z(1− z)

− δ(k2
T )δ(1− z) 4(1− x+ x2)2

x

{
L0(1− x) ln

ER
µ

+ L1(1− x)

}

+ δ(kT )δ(1− x)

{
θ
(
z − 1

2

) 4(1− z + z2)2

z

[
L0(1− z) ln

ERz
µ

+ L1(1− z)
]

+ θ
(1

2
− z
) 4(1− z + z2)2

z(1− z) ln
(
z(1− z)

)})
, (B.25)

J [1]
gq (x,ER, kT , z, µ)

=
2TF
π

(
L0(kT , µ)δ(1− x) θ

(1

2
− z
)
θ
(
ER− kT

) (
z2 + (1− z)2

)

− 2δ(k2
T )δ(1− z)

{(
x2 + (1− x)2

)
ln
ER(1− x)

µ
+ x(1− x)

}

+ 2δ(k2
T )δ(1− x)

{
θ
(
z − 1

2

)[(
z2 + (1− z)2

)
ln
ERz(1− z)

µ
+ z(1− z)

]
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+ θ
(1

2
− z
)[(

z2 + (1− z)2
)

ln
(
z(1− z)

)
+ z(1− z)

]})
. (B.26)

When ER � kT , by dropping power corrections in the ratio kT /ER, one
immediately checks the refactorization in terms of matching coefficients and
boundary functions, as predicted by eq. (3.9).

B.2.2 Ingredients for TMD recoil-free jets

I use the following shortcut notation for logarithms,

Lµ = ln
( b2µ2

4e−2γE

)
, LR = ln

( µ2

E2R2

)
, lX = ln

(µ2

X

)
, (B.27)

where X ∈ {ζ, s,Q2}.
I computed the TMD quark jet functions that enter in dijet production

and DIS+jet in sec. 4.1.3, with the final result presented in eq. (4.44). Their
large-radius limit is given in eq. (4.49) in the main text. To check one-loop
refactorization in the small-R limit, one needs the one-loop TMD matching
coefficients to FFs,

C[0]
i→j(z, b, µ) = δijδ(1− z),

C[1]
q→q(z, b, µ) = 2CF

[
(1 + z2)L0(1− z)

(
2 ln z − Lµ

)
(B.28)

+ δ(1− z)
(
− 1

2
L2
µ + Lµlζ −

π2

12

)
+ 1− z

]
,

C[1]
q→g(z, b, µ) = 2CF

[1 + (1− z)2

z

(
2 ln z − Lµ

)
+ z
]
, (B.29)

which I defined here with an extra z2 factor with respect to common choices in
the literature [103,135,136], consistent with the matching equation eq. (2.36).
The second ingredient of refactorization is the semi-inclusive quark jet function
computed at NLO in [188],

J [0]
q (z, 2zER, µ) = δ(1− z) ,
J [1]
q (z, 2zER, µ) = (B.30)

2CF

[
δ(1− z)

(13

2
− 2π2

3
+

3

2
LR

)
+ (LR − 2 ln z)

(
(1 + z2)L0(1− z)

+
1 + (1− z)2

z

)
− 2

1+(1−z)2

z
ln(1−z)− 2(1+z2)L1(1− z)− 1

]
. (B.31)

The hard function for electron-positron annihilation up to two loop is [240,241]

H
[0]
e+e−(s, µ) = 1 ,
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H
[1]
e+e−(s, µ) = 2CF

(
− l2s − 3l2s − 8 +

7π2

6

)
,

H
[2]
e+e−(s, µ) = 2CF

{
CF

[
l4s + 6l3s +

(
25− 7π2

3

)
l2s +

(93

2
− 5π2 − 24ζ3

)
ls

+
511

8
− 83π2

6
− 30ζ3 +

67π4

60

]
+CA

[
− 11

9
l3s +

(
− 233

18
+
π2

3

)
l2s

+
(
− 2545

54
+

22π2

9
+ 26ζ3

)
ls −

51157

648
+

1061π2

108
+

313

9
ζ3−

4π4

45

]

+ nfTF

[
4

9
l3s +

38

9
l2s +

(418

27
− 8π2

9

)
ls +

4085

162
− 91π2

27
+

4

9
ζ3

]}
,

(B.32)

while the DIS counterpart is related to e+e− at the level of the amplitude by
s→ −Q2, leading to

HDIS(Q2, µ) = He+e−(Q2, µ)− αsπCF
2

+
α2
sCF
8

[
CF

(
2l2Q2 + 6lQ2 + 16− 4

3
π2
)

+ CA

(
− 11

3
lQ2 − 233

18
+
π2

3

)
+ nfTF

(4

3
lQ2 +

38

9

)]
(B.33)

up to O(α3
s) corrections.

B.2.3 Additional ingredients for TMD groomed jets

Besides eq. (B.27), the shortcut notation for the logarithms that enter the
expressions for groomed jets is

LJ = ln
(µ2s̃

Q2

)
, Lcs = ln

( µ2s̃

Q2zcut

)
, (B.34)

where s denotes here the Laplace variable conjugate to the normalized groomed
jet mass, and s̃ = s eγE .
As remarked in ch. 5, requiring small groomed jet mass and large jet radius

results in the same hard and soft functions as for hadrons (or recoil-free jets).
The additional ingredients needed to describe the jet function in eq. (5.10) were
either known from the literature or computed in [4]. Here I will limit myself to
presenting the results; see that reference for a calculation of the soft-collinear
and collinear-soft functions.
At LO, all the ingredients presented here are normalized to 1. The one-loop

quark jet function was computed in [219]. In Laplace space,

J̃ [1]
q (s,Q;µ) = 2CF

(
L2
J +

3

2
LJ −

π2

3
+

7

2

)
, (B.35)
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while the collinear-soft function simply reads

S[1]
cs q(s,Qzcut, µ) = −2CFL

2
cs . (B.36)

The soft-collinear function does not depend on the groomed jet mass, but does
depend on the transverse momentum. In impact parameter space,

S̃⊥ [1]
sc,q (b, Qzcut, µ, ζ) = 2CF

(
Lµlζ −

1

2
L2
µ −

π2

12

)
. (B.37)

Note that when defining TMDs according to the ζ prescription of [146, 147]
there is no explicit dependence on the scale Qzcut, although this is the natural
final scale for the rapidity evolution.

B.3 Anomalous dimensions

In this section I collect the results for the ingredients necessary to Renormal-
ization Group Evolution. I will focus on the applications of recoil-free jets
presented in ch. 3 and 4, while the complementary evolution ingredients for
groomed jets can be found in [4, 219].

B.3.1 (Modified) splitting kernels

The QCD splitting kernels expand as

Pij(z, µ) =

∞∑

k=1

(αs
π

)k
P

(k−1)
ij (z) . (B.38)

The lowest-order results are

P (0)
qq (z) = CF

[ 1 + z2

(1− z)+
+

3

2
δ(1− z)

]
,

P (0)
qg (z) = CF

1 + (1− z)2

z
,

P (0)
gq (z) = nfTF

[
z2 + (1− z)2

]
,

P (0)
gg (z) = 2CA

[ z

(1− z)+
+

1− z
z

+ z(1− z)
]

+
β0

2
δ(1− z) . (B.39)

DGLAP evolution is conveniently performed in Mellin space. To this aim, the
Mellin moments of the splitting functions are

P
(0)
qq (N) = CF

[
− 2H(N)− 1

N + 1
− 1

N + 2
+

3

2

]
,
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P
(0)
qg (N) = CF

[ 2

N
− 2

N + 1
+

1

N + 2

]
,

P
(0)
gg (N) = CA

[
− 2H(N + 1) +

2

N
− 4

N + 1
+

2

N + 2
− 2

N + 3

]
+
β0

2
,

P
(0)
gq (N) = nfTF

[ 1

N + 1
− 2

N + 2
+

2

N + 3

]
. (B.40)

The TMD functions Dij introduced in eq. (3.6) obey modified evolution, as
discussed in sec. 3.1.3,

P ′ij(z, µ) = Pij(z, µ) θ
(
z − 1

2) . (B.41)

In Mellin space, the one-loop modified splitting kernels as derived in [83] are

P
′(0)
qq (N) = P

(0)
qq (N)− CF

[
−H1/2(N)−H1/2(N + 2) + 2 ln 2

]
,

P
′(0)
qg (N) = P

(0)
qg (N)− CF 2−N−2 5N2 + 17N + 16

N(N + 1)(N + 2)
,

P
′(0)
gg (N) = P

(0)
gg (N)− CA

[
− 2H1/2(N + 1) + 2 ln 2

+ 2−N−2 5N3 + 33N2 + 68N + 48

N(N + 1)(N + 2)(N + 3)

]
,

P
′(0)
gq (N) = P

(0)
gq (N)− nfTF 2−N−2 N2 + 5N + 8

(N + 1)(N + 2)(N + 3)
, (B.42)

where the harmonic numbers are defined for integer N as

H(N) =
N∑

i=1

1

i
, H1/2(N) =

N∑

i=1

1

i 2i
, (B.43)

and elsewhere by analytic continuation.

B.3.2 TMD anomalous dimensions

In the following I collect the cusp, non-cusp, and rapidity anomalous dimen-
sions defined in eq. (2.40) and eq. (2.41), up to the order needed to reach N3LL
accuracy. Refs. [108,149–153] provided the cusp part,
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and the non-cusp,
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as well as the rapidity anomalous dimension,
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The first two coefficients of the QCD beta function, that enter here, are given
by
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3
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and the constants read
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Finally, the zeta-prescription within the “optimal TMD” method [147, 148]
is determined up to two loop by the implicit equation
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Setting ζ(µ) = ζµ cancels the logarithmic dependence of TMDs at the initial
scale.





Transverse Momentum Distributions
with Recoil-Free Jets – Summary

As is customary, the present summary aims at making the content of this thesis
accessible to a broader audience. Therefore, I will present my results from a
more general viewpoint than necessary.

Fundamental physics

Fundamental physics investigates some of the most astounding features of the
Universe, and addresses some of the questions about Nature that have triggered
human imagination for millennia. What is the origin of the Universe? How did
celestial objects form? What is the essence of space and time? What is matter
made of? And more generally, is it possible to reduce the vast spectrum of
observed phenomena to a few, fundamental laws?
Although science does not deliver ultimate answers, it undeniably achieved

tremendous progress in understanding Nature. To present knowledge, the Uni-
verse was born as an unimaginably hot and dense aggregate of matter and ra-
diation. The progressive cooling and expansion of this original core produced
all the astronomical structures that exist today. As a result, almost all the
matter we observe, from atoms to galaxies, is made of just three ingredients:
electrons, protons and neutrons. As far as we know, the electron is an irre-
ducible point-like entity – a fundamental particle – while protons and neutrons
have a rich internal structure in terms of quarks and gluons.
Although driven by empirical observation, this advancement was made pos-

sible by the parallel development of theoretical models. The existence of the
Big Bang or an expanding universe is simply absurd according to the classical
laws of gravity. However, these ideas were theorized soon after the formulation
of General Relativity, that ties gravitation to the fabric of space and time.
Similarly, the modern description of atoms in terms of electrons orbiting a nu-
cleus explicitly violates the classical theory of electromagnetism, but suddenly
acquires meaning if the latter is combined with the somewhat bizarre principles
of quantum mechanics.
Despite our progress in understanding the Universe, and spectacular exper-

imental verifications of striking theoretical predictions (the discovery of the
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Higgs boson and the detection of gravitational waves, just to mention two re-
cent results) there are of course aspects of Nature that we do not comprehend.
For instance, the rate at which the Universe accelerates, or the speed at which
galaxies rotate, are not compatible with the amount of matter we observe in
the sky. This makes us postulate the existence of dark matter, whose origin
we do not yet understand, and which has escaped so far any attempt of direct
detection.

Particle physics

The topics explored in this thesis belong to the broad realm of particle physics.
The status of the field is encompassed in the Standard Model (SM), a com-
prehensive theory of the fundamental particles and their mutual interactions.
The SM is a triumph of fundamental physics, as it describes every physical
phenomenon whose origin we know (with the important exception of gravity).
Besides the electron, ordinary matter includes two kind of quarks (named up
and down) and a neutrino. These four particles form a generation; they are
accompanied by two other generations, which are essentially more exotic and
heavier copies of the first one. What classical physics portrayed as forces, is
explained in the SM as an exchange of other particles: for instance, the electro-
static repulsion between two electrons is in fact due to the exchange of photons.
The SM introduces two additional interactions: weak, mediated by the Z and
W bosons, and strong, mediated by gluons; the two adjectives refer to their
strength in nuclear phenomena, relative to electromagnetism. How particles
interact follows precise laws: for example, neutrinos communicate with elec-
trons only through the exchange of weak bosons; besides gluons themselves,
only quarks sense the strong interaction. These seemingly arbitrary rules fol-
low in reality a precise pattern of symmetries, which make the SM much more
than a catalog of particles. A spectacular example is the unification of the
electromagnetic and weak interactions, that are in fact two manifestations of
one symmetry of nature.
Despite a long history of theoretical and experimental successes, the Stan-

dard Model has also a number of open problems. For instance, it does not
explain why the Universe is full of matter but contains essentially no anti-
matter, or what the nature of dark matter is. This motivates the search for
physics beyond the Standard Model. A preferential tool to extend the frontiers
of fundamental physics are particle accelerators: by means of intense electro-
magnetic fields, beams of particles are brought to exceptionally high energies
and are made to collide; sophisticated detectors examine the products to infer
the nature of the collisions. Einstein’s equation E = mc2 allows for converting
energy into mass, and larger energies make it possible to create heavier parti-
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cles: the search for new particles might not have succeeded yet simply because
we have not reached a sufficiently high energy to produce them. This logic lead
the scientific community to invest in increasingly big and powerful particle ac-
celerators, such as the Large Hadron Collider (LHC) at CERN, that are in
themselves impressive technical achievements. The last three chapters of this
thesis show predictions for physical processes that occur in particle accelera-
tors. To simplify, we calculate what fraction of collision events show specific
features, such as the presence of a certain particle within a selected energy
range. By comparing predictions to experiment – how many of these events
were actually counted by particle detectors – we hope to find a discrepancy
that would falsify the current theory and leave room to new hypotheses.
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ATLAS collaboration, 2012 data

Figure 1 Simplified graph based on the data from the ATLAS collaboration that
lead to the discovery of the Higgs boson in 2012. After subtracting the background,
the measured number of events (black data points) is compatible with the theoretical
prediction including a new particle (red). If claiming the existence of a fundamental
particle on this basis seems too bold, consider that the probability that the bump is
due to a random statistical fluctuation is less than one in three million.

Quantum Chromodynamics

The branch of the Standard Model investigated by this thesis is Quantum
Chromodynamics (QCD), the theory of the strong interaction between quarks
and gluons. The somewhat pompous name is inherited from Quantum Electro-
dynamics, the current theory of electromagnetism. The prefix Chromo- refers
to the existence of three kinds of charge, whimsically named colors. Specif-
ically, one has red, blue and green quarks, although the distinction has no
practical relevance, since Nature only allows for “color-neutral” combinations.
Color confinement is in fact the most striking feature of QCD: we cannot sin-
gle out and observe quarks and gluons, but only study them indirectly, inside
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aggregates named hadrons, of which protons and neutrons are examples.
Because of the nature of QCD, hadrons are very complicated objects. A

proton can be roughly depicted as a bound system of two up quarks and a
down quark. However, this description is largely incomplete, since these three
quarks continuously exchange a multitude of gluons, and short-lived quark-
antiquark pairs unceasingly create and annihilate inside the hadron. Clarifying
this complex interplay is an interesting problem by its own. However, there is
a second fundamental reason to deepen our knowledge of the proton structure:
the LHC collides protons, and understanding their composition is mandatory
in order to describe what comes out of the collisions.

Transverse momentum

Longitudinal momentum

Direction of motion

Blue quark
Red antiquark

Gluon

Figure 2 Left: an impression of the internal structure of the proton, resulting from
the incessant interaction of a large number of quarks, antiquarks, and gluons. Right:
the main focus of this thesis is the transverse momentum of the hadron constituents,
which describes their dynamics in the plane perpendicular to the direction of motion.

The main theoretical result that the thesis builds upon is factorization. In
general, we can imagine a high-energy collision in QCD to occur in different
steps: first, a small number of energetic quarks and gluons is produced in a
hard scattering; next, these particles propagate in different directions, emit-
ting a large amount of colored radiation; finally, because of color confinement,
this radiation converts into the hadrons that we observe in the detectors. The
emitted radiation is preferentially collinear, namely propagating in the direc-
tion of the initial particle, or soft, meaning it carries low energy. Factorization
theorems give this picture a rigorous meaning, such that to determine the rate
of collision events we can take the product of hard, soft, and collinear functions
which describe the various type of particles in the event. This separation is
essential, because the hard function can be calculated for each collision, while
soft and collinear functions can be reused for many different processes.
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Transverse momentum distributions with recoil-free jets

This thesis proposes new ways to probe the internal structure of hadrons. His-
torically, the main focus has been on the longitudinal momentum, namely on
the dynamics of quarks and gluons in the direction of motion of the hadron.
Describing the transverse momentum (fig. 2) is a relevant generalization: it col-
lects more information about the hadron, moving towards a three-dimensional
representation.
Because of color confinement, we cannot directly measure the transverse

momentum of quarks and gluons inside the hadron: what we do instead is
inferring it from the transverse momentum of some of the collision products.
The main proposal of this doctoral work is using to this goal the transverse
momentum of jets. Jets are collimated sprays of particles that populate the
final state of collision events, and arise from the several collinear splittings
undergone by energetic quarks and gluons. By collectively describing such a
spray as one entity, we attempt at reconstructing the energetic particle that
originated it, and extract precious information about the first moments after
the collision. Practically, this collective description is achieved by sequentially
recombining particles that lie close to each other. Since there is no unique way
to do so, there are many possible definitions of jets: in particular, one needs
to specify a direction for the final object, the jet axis.

Particle tracks Jet

Detectors

Soft radiation

Collinear radiation

Standard axis

Recoil-free axis

Jet

Figure 3 Left: sketch of the final state of a collision event, where sprays of collimated
hadrons are described as jets. Right: the direction (axis) of standard jets is affected
by soft radiation, which is a source of contamination from the rest of the event.
Recoil-free jets track instead the energetic core of collinear radiation.

Traditional jet definitions are sensitive to recoil, a shift of the axis induced
by soft radiation. The problem with recoil is that soft radiation communicates
between different parts of the event: a jet may end up capturing soft emissions
originated from other jets or from the proton beams, which expose it to every
sort of contamination. Recoil occurs principally in the transverse direction, so
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this effect is particularly relevant for the transverse momentum studied here.
An interesting solution is using recoil-free jets, whose axis is by definition
insensitive to soft radiation. An alternative is jet grooming, a technique to
identify and remove soft radiation from within the jet. While the latter is
an already well-established method, the thesis focuses on investigating the
potential of recoil-free jets.

Results

To this end, the present work extensively discusses two applications of recoil-
free jets to collider processes, and an application of groomed jets for compar-
ison. The first one is the study of hadrons produced inside jets: in this case,
one can extract the transverse momentum from the angle between the hadron
and the jet. The angular distribution shows a characteristic power-law shape,
a peculiar feature that could be tested at the LHC. For this purpose, it is
promising that the numerical predictions are robust when accounting for some
common experimental issues, such as the limited resolution of particle detec-
tors. The absence of recoil plays a fundamental role, because soft radiation
would otherwise smear out the salient features of the distribution.
The second application aims at the future Electron-Ion Collider. By smash-

ing protons with beams of electrons, this facility will provide an excellent way
to probe the internal structure of the hadron. Traditionally, in this process,
the transverse momentum of the proton constituents has been inferred from
that of a single final-state particle. This thesis proposes measuring instead the
transverse momentum of a whole jet. The idea is appealing because jets are
under better theoretical control than single particles, enabling a more precise
study of the proton structure. However, our favorite theoretical tool, factor-
ization, does not work well for standard jets, or requires assumptions that are
hardly met in real experiments. Recoil-free jets provide a crucial advantage in
that they have a neat factorization picture without calling for further assump-
tions. The resulting predictions reach a level of theoretical accuracy which is
not often achieved in jet analyses.
Finally, the same process – electron-proton collisions with a measured jet –

is also studied using groomed jets. The goal is again inferring the transverse
momentum of the proton constituents from the transverse momentum of a jet.
Grooming is a drastic procedure, because it does not simply ignore soft radia-
tion: it eliminates most of it. As a consequence, the impact of contamination
is largely reduced, which constitutes a clear advantage. However, the method
introduces additional parameters (how aggressively we want to remove soft
particles) that complicate the theoretical description; this limits the current
precision.
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The transverse momentum distributions predicted for these processes are in
themselves interesting results in view of comparison with experimental data.
In addition, the work presented in this thesis gives a substantial contribution to
establishing recoil-free jets as a valuable alternative to standard and groomed
jets. Their main advantage is a drastic simplification of the theoretical frame-
work, because they clearly separate soft and collinear physics, often entangled
with traditional jets. This theoretical simplification grants in turn improved
precision to our predictions.
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