
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Rapid and robust on-scene detection of cocaine in street samples using a
handheld near-infrared spectrometer and machine learning algorithms

Kranenburg, R.F.; Verduin, J.; Weesepoel, Y.; Alewijn, M.; Heerschop, M.; Koomen, G.;
Keizers, P.; Bakker, F.; Wallace, F.; van Esch, A.; Hulsbergen, A.; van Asten, A.C.
DOI
10.1002/dta.2895
Publication date
2020
Document Version
Final published version
Published in
Drug Testing and Analysis
License
CC BY

Link to publication

Citation for published version (APA):
Kranenburg, R. F., Verduin, J., Weesepoel, Y., Alewijn, M., Heerschop, M., Koomen, G.,
Keizers, P., Bakker, F., Wallace, F., van Esch, A., Hulsbergen, A., & van Asten, A. C. (2020).
Rapid and robust on-scene detection of cocaine in street samples using a handheld near-
infrared spectrometer and machine learning algorithms. Drug Testing and Analysis, 12(10),
1404-1418. https://doi.org/10.1002/dta.2895

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://doi.org/10.1002/dta.2895
https://dare.uva.nl/personal/pure/en/publications/rapid-and-robust-onscene-detection-of-cocaine-in-street-samples-using-a-handheld-nearinfrared-spectrometer-and-machine-learning-algorithms(8e4af816-7266-43d7-937c-2e97bc88e8b5).html
https://doi.org/10.1002/dta.2895


R E S E A R CH A R T I C L E

Rapid and robust on-scene detection of cocaine in street
samples using a handheld near-infrared spectrometer and
machine learning algorithms

Ruben F. Kranenburg1,2 | Joshka Verduin1,2 | Yannick Weesepoel3 |

Martin Alewijn3 | Marcel Heerschop4 | Ger Koomen4 | Peter Keizers5 |

Frank Bakker5 | Fionn Wallace6 | Annette van Esch6 | Annemieke Hulsbergen6 |

Arian C. van Asten2,7

1Dutch National Police, Unit Amsterdam,

Forensic Laboratory, Amsterdam, the

Netherlands

2Van't Hoff Institute for Molecular Sciences,

University of Amsterdam, Amsterdam, the

Netherlands

3Wageningen Food Safety Research part of

Wageningen University and Research,

Wageningen, the Netherlands

4Dutch Customs Laboratory, Amsterdam, the

Netherlands

5National Institute of Public Health and the

Environment (RIVM), Bilthoven, the

Netherlands

6Netherlands Forensic Institute (NFI), Den

Haag, the Netherlands

7Co van Ledden Hulsebosch Center (CLHC),

Amsterdam Center for Forensic Science and

Medicine, Amsterdam, the Netherlands

Correspondence

Ruben F. Kranenburg, Van't Hoff Institute for

Molecular Sciences, University of Amsterdam,

Postbus 94157, Amsterdam 1090 GD, the

Netherlands.

Email: ruben.kranenburg@politie.nl

Abstract

On-scene drug detection is an increasingly significant challenge due to the fast-

changing drug market as well as the risk of exposure to potent drug substances. Con-

ventional colorimetric cocaine tests involve handling of the unknown material and

are prone to false-positive reactions on common pharmaceuticals used as cutting

agents. This study demonstrates the novel application of 740–1070 nm small-wave-

length-range near-infrared (NIR) spectroscopy to confidently detect cocaine in case

samples. Multistage machine learning algorithms are used to exploit the limited spec-

tral features and predict not only the presence of cocaine but also the concentration

and sample composition. A model based on more than 10,000 spectra from case sam-

ples yielded 97% true-positive and 98% true-negative results. The practical applica-

bility is shown in more than 100 case samples not included in the model design. One

of the most exciting aspects of this on-scene approach is that the model can almost

instantly adapt to changes in the illicit-drug market by updating metadata with results

from subsequent confirmatory laboratory analyses. These results demonstrate that

advanced machine learning strategies applied on limited-range NIR spectra from eco-

nomic handheld sensors can be a valuable procedure for rapid on-site detection of

illicit substances by investigating officers. In addition to forensics, this interesting

approach could be beneficial for screening and classification applications in the phar-

maceutical, food-safety, and environmental domains.
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1 | INTRODUCTION

Cocaine is one of the most abundant drugs of abuse worldwide, with

an estimated global annual production of �2000 metric tons of pure

cocaine.1 Even though the recreative use of this drug has been

banned for years, cocaine abuse is still increasing. In 2020, the annual

report of the Drugs Information and Monitoring System in the Neth-

erlands revealed that around 6.5% of the Dutch population has used

cocaine at least once.2 In 2018, more than 40 metric tons of cocaine

was confiscated in the Netherlands alone. Cocaine street samples are

becoming increasingly more potent, with cocaine contents in the

Netherlands increasing from an average of 48.7 wt% in 2011 to

65.5 wt% in 2018.2 These percentages are consistent with cocaine

contents reported throughout Europe, with averages of 51–73 wt%

between countries with an interquartile range of 40–84 wt%.3

In addition to cocaine, the global illicit-drug market consists of many

other substances such as the conventional synthetic drugs amphetamine,

methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA)

as well as many new psychoactive substances (NPSs) and precursor

chemicals that can be controlled depending on national legislation. The

great variety of substances is not the only challenge when developing

suitable indicative tests for drug-suspected seizures; street samples are

often not pure, because they are regularly adulterated with cutting

agents. These cutting agents occur in great variety, and common adulter-

ants for cocaine include sugars (eg, mannitol, inositol), caffeine, phenace-

tin, lidocaine, procaine, paracetamol, and levamisole.2,4–6 The ever-

changing and complex illegal market makes it a difficult task for law

enforcement to control these substances. Therefore, there is a need for

reliable, affordable, and fast detection techniques to identify the

suspected compounds.

Conventionally, simple colorimetric tests are used to obtain a

first indication of whether a substance contains a frequently occur-

ring illicit compound.4,7 The most commonly used indicative test for

cocaine in seized material is the Scott or Ruybal test that produces

a blue color from a cobalt(II)thiocyanate complex formed in the

presence of cocaine.8,9 In addition to test solutions prepared in the

forensic laboratory, a large variety of commercial test kits based on

this complex are manufactured in the form of pouches, ampules,

swabs, and wipes.10 A well-known limitation of these cobalt(II)thio-

cyanate-based tests is their false-positive (FP) response to several

common adulterants such as levamisole and lidocaine.11 This is a

major drawback as levamisole is one of the most frequently used

cutting agents, present in more than 40% of seized cocaine sam-

ples.12 It is therefore not unlikely to encounter pure levamisole, or

another legal yet FP substance, in a drug-related setting, either as a

pure cutting agent or packed in wrappers to be sold as cocaine in a

scam. Another limitation of colorimetric tests is their limited speci-

ficity. These tests are available only for a limited number of tradi-

tional illicit substances, and each specific test formulation has its

own profile of FP reactions and thus needs a dedicated validation

study. In addition, colorimetric tests require touching and manipulat-

ing the sample and thus cause a potential safety risk for the investi-

gating officer when highly potent substances such as fentanyl and

its derivatives are encountered.13,14 In the forensic field, colorimet-

ric tests are accepted to provide a presumptive result suitable to

detain a suspect and to select samples for confirmatory laboratory

analysis. Only the laboratory results are subsequently used as evi-

dence in court by the prosecution.15 Therefore, confiscated samples

always require additional testing in a forensic laboratory to employ

more advanced analyses, including gas chromatography–mass spec-

trometry (GC–MS), liquid chromatography–MS, or Fourier-transform

infrared (FT-IR) spectroscopy.

Alternative rapid and portable techniques that can overcome the

limitations of colorimetric tests are being explored. Technical innova-

tions in attenuated total reflectance (ATR)-FT-IR spectroscopy led to

the development of portable ATR-FT-IR devices to provide on-scene

analysis of samples.16 Also, electrochemical tests that can overcome

the specificity issues of the Scott test have been developed.11,17

However, both electrochemical tests and ATR-FT-IR spectroscopy still

require touching and handling of sample material. Raman spectros-

copy and near-infrared (NIR) spectroscopy are two techniques that

can analyze through the packaging material without handling the sam-

ple and can be operated by minimally trained staff. These techniques

therefore provide an intrinsic safer procedure for the operator.16,18,19

Although commercial Raman-handheld spectrometers are already

being used by law enforcement officers, this technique still faces limi-

tations. One of the major problems is that fluorescent compounds

interfere and obscure Raman signals, leading to limits of detection

that are dependent on the specific adulterants present in the sam-

ple.20 In addition, because commercial Raman devices possess built-in

library-based techniques, they cannot always detect low concentra-

tions of controlled substances in mixtures nor can they detect com-

pounds that are not included in the library.

In contrast, NIR analyzers are not affected by fluorescence and

are much cheaper and smaller than Raman devices. NIR analyzers

therefore have the potential to be implemented as cost-effective

standard equipment for the general police or customs officers,

whereas the more-expensive Raman instruments more likely remain

a tool for more-specialistic forensic investigators for economic rea-

sons and the expertise required to interpret the measurements cor-

rectly. An example of a commercial NIR spectrometer is the SCiO

from Consumer Physics (Herzliya, Israel). The SCiO operates in a

narrow-wavelength range (740–1070 nm or 13,500–9350 cm−1)

unlike many other NIR spectrometers operating in higher-

wavelength ranges up to 2500 nm (4000 cm−1). The SCiO scanner

is however one of the cheapest devices that are currently commer-

cially available. NIR spectra are based on vibrational overtones and

combination bands, yielding raw spectra that are initially non-

informative.21 Therefore, extensive data preprocessing followed by

chemometric data modeling is needed to extract useful information

from the data. Several studies have already shown that chemometric

analysis of the data is of great use to apply NIR devices operating

at longer-wavelength ranges in forensic casework.22–24 Liu et al22

successfully demonstrated the benefits of a multimodel approach on

forensic drug samples. They used soft independent modeling of

class analogy (SIMCA) for the classification of spectra with a
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methamphetamine, ketamine, heroin, or cocaine class followed by

individual partial least square (PLS) regression models for quantifica-

tion. Hespanhol et al23 were the first to apply different models on

NIR spectra to answer a set of forensic-relevant questions, including

SIMCA for cocaine HCl and cocaine base classification, PLS for

quantitative information, and multivariate curve resolution for esta-

blishing the degree of adulteration. Both earlier studies used NIR

devices with relatively extensive wavelength ranges, that is,

1000–2500 nm22 and 900–1700 nm depending on the choice of

the NIR equipment.23 NIR spectrometers operating at wavelength

ranges above 1000 nm require more advanced light sources, active

cooling in some cases, and more expert application knowledge and

are thus less economically attractive when considering the large-

scale use in the field by law enforcement officers. To our knowl-

edge, no forensic studies have been published on the applicability

of low-cost NIR spectrometers operating in the relatively limited

spectral region of 740–1070 nm.

Chemometric data analysis approaches are widely used in

analytical chemistry and forensic science in disciplines dealing with

large amounts of data of high complexity or with limited spectral

features.25,26 The frequently used classification schemes include

SIMCA, principal component analysis (PCA), linear discriminant

analysis (LDA), and partial least squares-discriminant analysis (PLS-

DA), whereas partial least squares-regression (PLS-R) is commonly

used to fit a linear correlation between the multidimensional

spectral data and the concentration of a compound of interest.27,28

In addition, approaches such as support vector machines (SVM),

k-nearest neighbors (kNN), random forest, and artificial neural

networks (ANNs) already proved their value for NIR spectral data

modeling outside of the forensic field.29 Classification algorithms

based on spectroscopic data are operational in the fields of food

and medicine authentication. Teye et al30 demonstrated the correct

classification of the origin and quality of rice by both kNN and

SVM machine learning models applied on short-range

(740–1070 nm) NIR spectra after multiplicative scatter correction

as preprocessing and PCA for data dimensionality reduction.

Another example is the detection of counterfeit tablets among

genuine pharmaceutical products for several active pharmaceutical

ingredients.31 In this study, both a short-wavelength SCiO and a

longer-wavelength NIR device were used. A machine learning

approach using SVM showed better performance on their SCiO

data than a conventional LDA approach.31 Jiménez-Romero et al

demonstrated the classification potential of both PLS-DA and kNN

on 1000–2500 nm NIR spectra to compare the production batches

of pharmaceuticals.32 ANNs are another machine learning approach

that has successfully been applied on spectral data for classification

purposes.33,34 ANN often proved superior compared to SVM and

PLS-DA approaches.29,33 An example of ANNs applied on NIR data

includes cellulose pulp dryness determination in industrial

processing.29 A limitation of ANN lies within the nature of the

self-learning algorithms causing small but inevitable variations

between iterations of model development, which results in some

variation in model performance. Strategies to overcome this

limitation and further enhance the classification power are repeti-

tive or multistage models, called ensembles.

This study demonstrated the applicability of the low-cost, small-

wavelength NIR spectrometer on a large set of cocaine-containing

street samples as well as negative samples containing (mixtures of)

adulterants and other illicit drugs frequently encountered in forensic

casework. The samples were analyzed by 15 individual (SCiO) NIR

scanners to explore the robustness of the device and the potential of

large-scale scanner use in combination with a central model for data

interpretation. This resulted in a data set of more than 10,000 individ-

ual measurements. All street samples were representative of the

Dutch cocaine market, as they originated from seized material pro-

vided by the Netherlands Forensic Institute (NFI), the Dutch Customs,

and the Dutch National Police. Multiple successive chemometric

models and machine learning algorithms were used to (a) characterize

and (b) determine the composition of these samples. The model

includes an adjustable weight percent-cocaine threshold that can be

used to optimize the FP versus false-negative (FN) classification rates

for specific forensic and security situations. Because the average

purity of cocaine in street samples usually exceeds 40 wt%,2,3,5 a

threshold below this level can safely be set for optimal accuracy

(in this study 20 wt%). Thus, the developed NIR approach resulted in

a reliable, adjustable, rapid, and affordable presumptive test for

cocaine in seized powder samples with 98.2% correct classification of

cocaine-negative spectra and 97.2% correct classification of cocaine-

positive spectra.

2 | MATERIALS AND METHODS

2.1 | Chemicals and reagents

Four sets of samples were incorporated in this study. Three sets were

used for model design and cross-validation: 90 cocaine case samples,

including both cocaine HCl and cocaine base (Set A), 40 negative sam-

ples (Set B), and 50 cocaine reference samples at various concentra-

tions (Set REF). One set consisting of 76 case samples and

33 standards was used only for external validation.

All 90 cocaine-containing case samples in Set A were provided by

the NFI and originated from material seized by the Dutch National

Police in 2017. The 40 samples consisting of cutting agents,

adulterants, and other drug samples in Set B were obtained from the

following providers: USP-grade acetaminophen (paracetamol),

benzocaine (98%), diltiazem (99%), reagent-grade glucose, myo-

inositol (99%), and levamisole (99%) were from Sigma-Aldrich

(St. Louis, MO, USA). Acetylsalicylic acid (Ph.Eur.), boric acid (p.a.), and

procaine (Ph.Eur.) were obtained from Merck (Darmstadt, Germany).

Ascorbic acid (vitamin C, >99.5%) was obtained from Fluka (Seelze,

Germany). Research-grade phenacetin was obtained from Brunschwig

(Amsterdam, the Netherlands); caffeine (Ph.Eur.) from Brocacef

B.V. (Maarssen, the Netherlands); lidocaine (Ph.Eur.) from Applichem

(Darmstadt); and promethazine HCl from Acros Organics (Geel,

Belgium). Lactose, mannitol, nondairy creamer, saccharose

1406 KRANENBURG ET AL.



(confectioner's sugar), and wheat flour were purchased at local gro-

cery stores. Smartshop blend mix of caffeine:lactose:mannitol was a

seized case sample by the Amsterdam police. The non-cocaine drugs-

of-abuse samples—MDMA powder, 4-fluoroamphetaminetablets,

amphetamine, diazepam 10 mg tablets, flunitrazepam 2 mg tablets,

ketamine, mephedrone, methamphetamine crystals, methylphenidate

HCl 10 mg tablets, oxazepam 50 mg tablets, and sildenafil citrate

100 mg tablets—were seized case samples provided by the Amster-

dam police.

Non-drug-containing mixtures of acetaminophen:caffeine, acet-

aminophen:phenacetin, levamisole:acetaminophen:lidocaine, levami-

sole:lidocaine, levamisole:phenacetin, levamisole:phenacetin:procaine,

phenacetin:lidocaine, and phenacetin:procaine were prepared by

grinding and mixing equal-weight aliquots of the aforementioned

compounds in a mortar.

The 50 diluted reference samples (Set REF) with known cocaine

HCl content were provided by the Dutch Customs Laboratory. This

set consisted of cocaine HCl (cocaini hydrochloridum Ph. Eur, obtained

from Duchefa Farma, Haarlem, the Netherlands) and mixtures of this

sample at the given percentages. Note that these percentages reflect

the cocaine HCl content as weight percentage and not the corrected

cocaine base levels. Set REF contents: 100% cocaine HCl; 81%, 76%,

44%, 33%, 17%, 9%, and 0% cocaine HCl in lactose; 73%, 50%, 35%,

21%, 13%, 5%, and 0% cocaine HCl in phenacetin; 70%, 50%, 35%,

25%, 20%, 15%, 11%, 5%, and 0% cocaine HCl in glutamine; 50%,

26%, 17%, and 0% cocaine HCl in procaine; 70%, 50%, 35%, 21%,

10%, 5%, and 0% cocaine HCl in ascorbic acid (vitamin C); 48%, 26%,

17%, 10%, 6%, and 0% cocaine HCl in acetaminophen; 42%, 34%,

30%, 25%, 20%, 19%, 10%, 5%, and 0% cocaine HCl in caffeine.

The 76 external validation samples were case materials seized by

the Amsterdam police between October 2019 and March 2020. The

33 validation standards were inositol, levamisole, and caffeine, each

mixed with cocaine HCl from 0% to100% in 10% intervals.

The nature of the case samples was established using the

accredited GC–MS analysis at the NFI, the Dutch Customs Labora-

tory, or the Amsterdam Police Laboratory. Cocaine concentration

and type (HCl or base) for the samples of Set A were available

from GC-Flame Ionization Detection and precipitation test results.

Both these qualitative and quantitative analyses were performed

using the routine procedures and validated methods embedded in

the ISO 17025 accredited quality frameworks maintained by these

three institutes. The characteristics of the Set A cocaine case sam-

ples were as follows: 58× cocaine HCl (ranging from 85.5%

to19.1%, average 64.4%) and 32× cocaine base (ranging from

99.4% to 31.5%, average 75.4%).

Non-cocaine samples in tablet, rock, or crystal form were gro-

und in a mortar to obtain a powder. Coarse powdered case sam-

ples were not ground further. All individual samples were

transferred to clear borosilicate glass vials (4 mL, 15 mm diame-

ter × 48 mm height) from VWR (Amsterdam, the Netherlands). All

vials used for model development were filled with at least 5 mm

of powder to ensure a sufficient sample layer for diffuse reflec-

tance spectroscopy.

2.2 | Instruments and settings

NIR spectra were recorded using a pocket size (54 × 36 × 15 mm,

35 g) SCiO handheld NIR spectrometer from Consumer Physics, hard-

ware version 1.2. All SCiO sensors were operated via the SCiO “The

Lab” mobile application on the operator's iOS or Android smartphone

or tablet using a Bluetooth connection. Before use, each sensor was

calibrated using the built-in calibration device in the sensor cover. The

sample scanning procedure is shown in Figure 1: the sensor was posi-

tioned with the detector side facing upward; the sample-containing

vial was placed directly on top of the sensor in such a way that both

the NIR light source and the detector window are obscured; the scan

was started from the connected mobile device. Typical scanning and

processing times took several seconds. The standard spectral range of

the sensor was 740–1070 nm, and no additional settings (ie, exposure

time, spectrum averaging) could be optimized. Data were stored in

The Lab cloud environment, and raw spectral data were exported for

further data analysis. The exported NIR spectra contained 331 individ-

ual variables. No information regarding the spectral resolution of the

device was provided by the manufacturer. However, associated pat-

ents suggest a wavelength-dependent resolution between 5 and

20 nm in combination with data splicing to obtain a data set at 1 nm

resolution. A total of 15 individual SCiO devices were used: 13 for the

Set A and Set B experiments and 6 for the Set REF experiments, with

4 pocket scanners used within all sets. For each SCiO, at least five

replicate scans were recorded per sample. For the 180 samples, this

resulted in a total data set of 10,059 individual NIR spectra used for

the model. The 109 external validation samples were scanned fivefold

on a single device, thus leading to a set of 545 scans. Results for these

scans were predicted by the model, but these scans were not involved

in model design and optimization.

F IGURE 1 Scanning procedure for SCiO near-infrared sensor
with the glass sample vial placed directly on top of the light source
and detection window [Colour figure can be viewed at
wileyonlinelibrary.com]
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2.3 | Data analysis

Raw spectral data were imported in Unscrambler 11 (Camo Analytics, Oslo,

Norway) for data preprocessing optimization and exploratory analysis using

PCA, SIMCA, and PLS-R. Preliminary models based on SIMCA–PLS-R were

found to produce reasonable results although some disruptive FP results

were obtained for a few common cutting agents. Subsequent model build-

ing was performed in R version 3.6.3 (R Foundation for Statistical Comput-

ing, Vienna, Austria)35 using RStudio version 1.2.5033. R-packages,

prospectr_0.2.0,36 signal_0.7-6,37 and caret_6.0-86,38 were used.

The following two data preprocessing methods were found suit-

able based on visual inspection of the data: standard normal variate

(SNV)36 preprocessing followed by either a first- or second-order

derivative with Savitzky–Golay37 smoothing using a 19-datapoint

window. This window size was optimal for noise removal, as shown in

Figure S1 (supporting information). When indicated that data are

processed with focus on a specific region of interest (ROI), the follow-

ing ROIs were used: for first-order derivative data: the 839–939 nm

part of the spectrum; for second-order derivative data: the

839–914 nm part of the spectrum.

3 | RESULTS AND DISCUSSION

3.1 | Spectral reproducibility and selectivity

For every individual sample within Set A and Set B, 65 replicate scans

collected using 13 different scanners were available. In general, the

five scans collected as replicates on a single scanner were visually sim-

ilar; however, major intensity differences were observed among dif-

ferent scanners. The spectra marked as “raw” in Figure 2A show the

unprocessed raw data from multiple scanners for an 86.6% cocaine

HCl case sample. Each colored line indicates five replicate spectra

from a single scanner, and each color indicates a single scanner. Addi-

tive baseline shifts could be clearly observed, with most scanners pro-

viding a near-similar intensity, whereas three individual scanners

returned a notably less-intense signal. From observations of different

samples, it was evident that this additive effect could not be attrib-

uted to individual poorly performing sensors, as sensors producing a

low-intensity signal for one sample did produce a high-intensity signal

for other samples. Two possible explanations for these additive

effects are variation in sample vial positioning and signal scatter. As

the glass vial containing the sample needs to be placed on top of the

sensor before scanning (Figure 1), the variation in signal intensity

might be due to the alignment of the sample. Operators were

instructed to simply put the sample vial on top of the sensor such that

both the NIR light source and the detector cell were covered by the

vial. No special attention was given to the perfect alignment of the

samples as this will also not be the case in the actual on-scene analysis

by police officers. However, with a vial diameter of 15 mm and a NIR

light source and detector diameter 13 mm wide, there is limited toler-

ance. It is therefore possible that a vial placed more toward the detec-

tor surface will lose more light emitted from the sensor through the

glass wall of the vial, thereby reflecting less signal. The other explana-

tion given for the signal variation is the scattering effect of the

F IGURE 2 Effect of preprocessing on near-infrared spectral data. A, Top-row spectra are replicate scans of the same 86.6% cocaine HCl sample
on 13 different scanners (5 spectra each). B, Bottom-row spectra are scans from 4 cocaine HCl (green), 4 cocaine base (red), and 10 other common
adulterants and other drugs (5 spectra each) measured using the same scanner. Spectra are shown in columns as raw spectral data (raw), after
standard normal variate preprocessing (SNV) and SNV followed by Savitzky–Golay smoothing (19 datapoints) with a first-order derivative (1st DER)
[Colour figure can be viewed at wileyonlinelibrary.com]
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material. Sample vials were necessarily touched and moved between

analyses, and the powder in the vials was consequently shaken and

redistributed. As the particle size of the powders might not be con-

stant in actual case samples, more or less scattering resulting in vary-

ing signal intensities can occur. Sample scattering and the consequent

signal variation is a regular phenomenon in diffuse reflectance NIR

spectroscopy.24 Common strategies to correct for signal intensity and

scattering effects are by means of data preprocessing. In our study,

SNV processing proved to be a suitable technique for baseline correc-

tion (Figure 2A(ii)), in line with other studies.22,24,30 As NIR spectra, in

general, and these small-range spectra, in particular, are relatively

information poor, a subsequent derivative preprocessing step is often

suggested to put emphasis on the spectral differences. Consistent

with an earlier NIR study on narcotics from Liu et al,22 a first-order

derivative following SNV was found sufficient for our data. A second-

order derivative, as suggested for cocaine analysis by Hespanhol

et al,23 logically revealed even more spectral features on our data. For

the differentiation of relatively pure substances, this preprocessing

method could be the first choice due to the more-prominent differ-

ences between compound spectra. However, the aim of this study

was to correctly detect cocaine, even in complex mixtures of multiple

compounds, and a second derivative could result in complex data sets

in which the cocaine-related signals are obscured, leading to poor

model performance. Also, in cases of low NIR signal (ie, flat line reflec-

tion spectra), second derivative spectra can exhibit excessive noise.

Figure 2 illustrates the effect of the preprocessing steps on our data,

clearly showing reduced scanner-to-scanner variation and the additive

baseline shift between scanners (A) and producing a reproducible and

selective spectral signal for both cocaine HCl and cocaine base in

comparison to other relevant substances (B). Cocaine HCl (snorting

cocaine) and cocaine base (crack cocaine) produced a notably

different NIR spectra in the 740–1070 nm range. This is consistent

with an earlier work reporting different cocaine HCl and cocaine base

NIR spectra in the 1000–1700 nm range, which can be easily

explained by differences in IR vibrations between protonated cocaine

in the salt form and the neutral cocaine molecule in the base form.23

Figure 3 shows the 740–1070 nm NIR spectra of protonated cocaine

(cocaine HCl) and neutral cocaine (cocaine base), with a focus on spec-

tral selectivity and emphasis on the individual spectra of the 10 most

important other compounds encountered in casework. The same

spectral information for the SNV-second derivative spectra is shown

in Figure S2 (supporting information). An overlay of the cocaine case

samples with all other samples to visualize the selectivity in the

839–939 nm ROI area is shown in Figure S3 (supporting information).

Because of these spectral differences, cocaine base and cocaine HCl

are treated as different compounds in the detection model.

3.2 | Model development

A multistage model was developed with the aim of providing a robust

and reliable NIR-based solution for on-scene detection of cocaine in

powdered samples. The goal of this solution was to provide a reason-

able suspicion to undertake judicial steps such as the subsequent sei-

zure of materials and confirmatory analysis in a laboratory. Therefore,

this method was targeted to provide minimal FP and FN results in rep-

resentative actual case samples. In addition to the main model result

being “positive” or “negative” for cocaine, prediction of the cocaine

quantity and overall sample identity were produced by the model. A

schematic representation of the developed model is given in Figure 4.

As described in Section 3.1, the preprocessing step consisted of SNV

followed by a first derivative. For model performance evaluation

F IGURE 3 Near-infrared
spectra after standard normal
variate–first derivative
preprocessing of cocaine HCl (dark
green) and cocaine base (red) in
comparison with A, five common
cutting agents and B, five common
drugs, for both the full-wavelength
range and the 839–939 nm region
of interest (ROI). Cutting agents
(A): levamisole (blue), phenacetin
(light green), lidocaine (pink),
inositol (yellow), and mannitol
(orange). Drugs (B): amphetamine

(blue);
methylenedioxymethamphetamine
(light green), ketamine (pink),
acetaminophen (yellow), and
caffeine (orange) [Colour figure can
be viewed at wileyonlinelibrary.
com]
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(Section 3.3), a second derivative and/or ROI selection were also

applied. The k-nearest neighbors models were cross-validated on a

“leave-one-sample-out” basis—up to 65 scans of one sample were

removed from the training set. For the ANN and bagged tree models,

the data set was divided into 10 cross-validation segments such that

all individual replicate spectra from a single sample were left out in

the same segment. This prevented the model from producing very

optimistic results due to obvious similarities among replicates.39 After

data-preprocessing and cross-validation segment creation, two sepa-

rate models were used on the data.

3.2.1 | kNN submodels

The first submodel (depicted as A in Figure 4) is a dual-stage kNN

model. Its first step involves a PCA outlier removal, where individual

scans were marked as outliers when the average Euclidean distance

of a scan versus all other scans for the same sample is larger than the

99% quantile for that sample, based on the principal component

(PC) scores 1–3 of a PCA on the total data set. In this way, 431 of

10,059 spectra were marked as outliers after SNV and first derivative

preprocessing. As a next step, Euclidean distances and Pearson corre-

lations were calculated for all combinations of individual spectra in

the training sets (leave-one-sample-out cross-validation). For each

individual spectrum, nine spectra with the smallest Euclidean distance

(ie, NNs) and nine spectra with the highest correlation value (ie,

nearest correlations) to the respective spectrum were considered. To

reduce the possibility of an incorrect identification of an unknown

spectrum (ie, a novel compound or mixture not yet included in the

model), threshold values were applied. Thresholds of a maximal 0.1

distance and minimal 0.98 correlation proved satisfactory. Figure 5A

shows an example of the Euclidean distances of all spectra toward a

single cocaine base spectrum. It can be observed that only cocaine

base class spectra exhibit clear similarities with the reference spec-

trum as indicated by a small distance or high correlation score. Also, a

diagonal trend is visible within the cocaine base spectral group which

is related to the cocaine content in the samples, which decreases from

left to right as the samples are ordered as a function of concentration.

In a similar fashion, a “match” with the relatively high-concentration

cocaine HCl spectra can be observed from the kNN Pearson correla-

tions in the example in Figure 5B. For this figure the diagonal trend is

absent because the cocaine HCl samples in the set typically are quite

pure. Additional examples of kNN distances for both high-, medium-,

and low-percentage cocaine HCl and base spectra are shown in

Figures S4 and S5 (supporting information). Examples of kNN correla-

tion plots for the same spectra are given in Figures S6 and S7

(supporting information). kNN distances plots for the common cutting

agents—levamisole, lidocaine, and acetaminophen—as well as the

common drugs with a white powdery appearance—ketamine, amphet-

amine, mephedrone, MDMA, and methamphetamine—are shown in

Figures S8 and S9 (supporting information). The red line in all kNN

plots shows the threshold value of 0.1 for the Euclidean distance, and

the dots in the green area are “matching” spectra that were further

assessed in the next step. For all non-cocaine spectra in Figures S8

and S9 (supporting information), it is evident that all spectra clearly

exceed this threshold value. In Figure S8-C (supporting information),

some scans, originating from acetaminophen samples with low

(6%–17%) cocaine content from the reference set, yield Euclidean dis-

tances between 0.1 and 0.2 close to the threshold of 0.1, which can

be explained by the high acetaminophen content in these samples.

For each spectrum an identity (ID) was predicted from a major-

ity voting of the known identities of the (at maximum) 18 NNs from

both kNN models within the threshold values chosen. Next to the

ID, a cocaine percentage was predicted for every individual

F IGURE 4 Schematic overview of the multistage cocaine identification model [Colour figure can be viewed at wileyonlinelibrary.com]
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spectrum out of the known cocaine concentrations of the NNs

(Model A concentration in Figure 4-A). This predicted concentration

was the average of all selected NNs. In the situation where no NNs

were present due to threshold limits, this model did not return a

result. From both the kNN distances model and the kNN correlation

model, the average predicted concentration plotted against the

known concentration for all spectra (Figure 6) showed a clear linear

trend with R2 of 0.947 (kNN distances) and 0.967 (kNN correla-

tions) and root-mean-square error (RMSE) values 7.58 and 5.84,

respectively. It should be noted that for 9% of the cocaine case

sample spectra and 62% of the spectra from the negative set, no

result was available from this kNN submodel due to the threshold

constraints. The latter high percentage for the negative samples is

explainable as all 65 replicate spectra from the same compound

were excluded during cross-validation and near neighbors were iden-

tified only for some closely correlated mixtures or sample composi-

tions that were included in both the reference and negative sets.

This number of 'not available' (NA) results will decrease after matu-

ration of the model and addition of more spectra to the database,

as can already be observed from the results of the unknown case

samples under Section 3.4.

3.2.2 | ANN—dual bagged tree regression submodels

The second model (depicted as B in Figure 4) is an ANN model with

PCA pre-scaling for classification between cocaine HCl and cocaine

base classes followed by two separate bagged tree ensembles for

predicting a concentration for spectra within each class. The ANN

model is applied on the PCs following PCA data reduction of the spec-

tral data such that 99% of the variation is included in the PCs. In this

data set 19 PCs were used to satisfy this criterion. As a result, the

ANN model predicts the salt form (HCl or base) in the form of a prob-

ability value for all spectra in the database. Spectra with probabilities

within the 0–0.05 and 0.95–1 ranges are, respectively, assigned to

the “HCl” or “base” class, whereas all spectra with probabilities outside

these ranges are not assigned to a class. As a next step, two separate

treebag regression models are trained for both cocaine types. A

F IGURE 5 A, k-nearest
neighbor Euclidean distances plot
of a cocaine base sample and B,
Pearson correlation plot of a
cocaine HCl sample, both plotted
against all 10,059 model spectra.
Spectra 1–1503 are from the
diluted cocaine HCl reference set;
spectra 1504–5465 are cocaine

HCl case samples; spectra
5466–7639 are cocaine base
case samples; spectra
7640–10,059 are various cutting
agents, adulterants, and other
drugs. All spectra are sorted by
cocaine concentration within
each group. The respective
spectrum itself is marked in red.
Model results were determined
without this and all replicate
spectra [Colour figure can be
viewed at wileyonlinelibrary.com]
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treebag, bagged tree, or bagging classification and regression trees is

an ensemble of decision trees using a bootstrap aggregating (bagging)

algorithm for regression or classification.38 These submodels were

trained on all known cocaine HCl and cocaine base spectra, excluding

outliers and performing cross-validation in a similar fashion as the first

model. Cocaine percentages are subsequently predicted for all individ-

ual spectra in the database.

3.2.3 | Final model decision on spectral and sample
levels

For each spectrum the final model result is calculated as shown in

Figure 7: when the average predicted cocaine concentration from the

kNN submodel is above 20%, the final result is labeled positive, whereas

when the predicted cocaine concentration is below 20%, the final result

F IGURE 7 Model decision flowchart
on the individual spectral level and sample
level [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 6 Known versus predicted cocaine concentrations from the A, k-nearest neighbor (kNN) distances submodel and B, the kNN
correlation submodel after SNV-first derivative preprocessing of the 740–1050 nm spectral data [Colour figure can be viewed at
wileyonlinelibrary.com]
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is negative. In both these cases, the result from the second submodel is

ignored. When the kNN submodel was inconclusive, the result was

determined by the second ANN–dual bagged tree submodel. In this

case, the final result was positive when the predicted class for a spec-

trum was either “HCl” or “base” and the predicted concentration was

above 20%. In all other cases, the result was negative. The reason for

this submodel hierarchy is the better overall performance of the kNN

submodel over the ANN–dual bagged tree submodel, as discussed in

detail in Section 3.3. On the sample level, the final decision is made by

majority voting of the results from all replicate spectra. Next to a final

cocaine positive/negative decision, a sample ID is predicted based on

the most similar spectra in the training data set.

3.3 | Model performance evaluation

Table 1A and B presents the performance of the model, both on the

individual spectrum level and on the sample level. The best perfor-

mance for cocaine detection is achieved after SNV followed by sec-

ond derivative preprocessing on the cocaine-selective ROI part of the

NIR spectrum. In this way, only 1.4% FP and FN results are encoun-

tered in individual spectra. On the sample level (thus applying a major-

ity voting for replicate spectra), no FP results and 3.9% FN results are

obtained, the latter originating from case samples with an actual

cocaine content between 19% and 25%. When applying the NIR-

based model on samples with the only goal to detect or exclude

cocaine, this is the suggested method of choice. However, in many

forensic fields, additional information such as the identity of a

“cocaine-negative” sample is beneficial for on-scene intelligence when

no other indicative tests are available. Using only the cocaine-

selective part of the spectrum and thus excluding other spectral

ranges, the potential to suggest an identity for a non-cocaine

unknown, such as another drug compound by the kNN models, is min-

imized. For predicting unknown samples on the model, the use of the

full 740–1070 nm spectrum after SNV-first derivative is therefore

suggested. The most critical parameter in a forensic test often is the

FP rate, as a FP result might lead to wrong judicial action. On the sam-

ple level, the only FP observed was for the cutting agent diltiazem

after SNV-first derivative-ROI preprocessing. For this compound

36 spectra were predicted as cocaine positive, whereas 30 spectra

were predicted as cocaine negative. Most FP matches for diltiazem

corresponded with kNN-model matches with a 45% cocaine HCl:

paracetamol sample exploiting similar spectral features in the ROI as

diltiazem. This indicates the selectivity limits of the ROI-based

approach. When looking at the false negatives, a majority originated

from sub-30% cocaine references from Set REF, no actual case sam-

ples (Set A) gave a FN result for the SNV-second derivative data, and

only one 53.5% cocaine base sample was labeled as negative after

SNV-first derivative data preprocessing. Individual FN spectra for case

samples were in all other cases overruled by true-positive (TP) results

in the majority voting process. A general trend observed was that the

ROI-based approaches appeared to be more sensitive. This phenome-

non can be explained by the increased focus on the major spectral

features of cocaine, which increases the sensitivity with respect to

cocaine detection but can also result in reduced selectivity and thus

increased FP rates.

Table 2 presents the performance of the submodels that when

combined provide the final model results. Additional details are pres-

ented in Table S1 (supporting information). In general, the kNN sub-

model gives the best performance with greater than 99% average

TABLE 1 Performance characteristics of the model decision flowchart as indicated in Figure 4 for the various forms of preprocessing

Preprocessing True positives False negatives True negatives False positives

A Model performance on individual scans (9459 scans)

SNV-first derivative 97.2% (6632) 2.8% (189) 98.2% (2591) 1.8% (47)

SNV-second derivative 97.1% (6625) 2.9% (196) 98.3% (2594) 1.7% (44)

SNV-first derivative-ROI 97.8% (6668) 2.2% (153) 97.5% (2571) 2.5% (67)

SNV-second derivative-ROI 98.6% (6727) 1.4% (94) 98.6% (2600) 1.4% (38)

B Model performance on sample level (316 samples)

SNV-first derivative 92.6% (214) 7.4% (17) 100% (85) 0% (0)

SNV-second derivative 87.9% (203) 12.1% (28) 100% (85) 0% (0)

SNV-first derivative-ROI 96.5% (223) 3.5% (8) 98.8% (84) 1.2% (1)

SNV-second derivative-ROI 96.1% (222) 3.9% (9) 100% (85) 0% (0)

C External validation by unknown case material (625 scans)

SNV-first derivative 90.6% (281) 9.4% (29) 95.6% (301) 4.4% (14)

SNV-second derivative 92.3% (286) 7.7% (24) 94.6% (298) 5.4% (17)

SNV-first derivative-ROI 93.5% (290) 6.5% (20) 91.7% (289) 8.3% (26)

SNV-second derivative-ROI 96.5% (299) 3.5% (11) 95.2% (300) 4.8% (15)

Notes. A and B are cross-validation results based on all case samples, negative samples, and all cocaine reference samples above 20%. C shows results from

external validation samples not used in model development.

Abbreviations: ROI, region of interest; SNV, standard normal variate.
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accuracy. The limitation of this model is the number of inconclusive

results when no near neighbors are identified within the thresholds.

For the case samples, this is true for only 9% of the entire sample set,

whereas more than half of the negatives do not give a match. As

described earlier, the latter is an expected result due to the “leave all

from the same sample out” cross-validation. This problem will likely

disappear when more negative samples are included in the model;

however, novel substances will most probably yield an inconclusive

result for this submodel. The second submodel, the ANN–dual tree

bagging model, yields an average overall correct assessment in 95% of

all samples considered, but contrary to the first submodel, a classifica-

tion is obtained for all spectra. As the final model conclusion gives pri-

ority to the result from the more-reliable kNN submodel, the result

from the second submodel must be considered only for those spectra

for which no result from the first submodel was obtained. These

values are given in the bottom part of Table 2. A notable result is the

0% TP after SNV-first derivative-ROI preprocessing. This can be

explained by the high performance of the first kNN submodel, already

predicting 6743 of 6821 spectra for positive samples, thus leaving

only the 78 most difficult samples for the next model. For the other

preprocessing variants, the number of spectra assessed by the ANN

model was six to eight times higher.

It is important to emphasize that the FP versus FN rate of the

model could be adjusted by varying the weight percentage–cocaine

threshold. In this way, the optimal model performance can be “tuned”

for specific forensic or security use. From a legal perspective, all

cocaine-containing samples regardless of concentration are consid-

ered controlled materials in the Netherlands. A negligible FN rate

could be selected by using a low weight percentage–cocaine thresh-

old, but this comes at the price of a higher FP rate. In this case, more

samples are (incorrectly) sent to the laboratory for confirmatory analy-

sis. This results in wasted laboratory capacity and possibly wrong

arrests and pre-detention. On the contrary, in situations where FNs

are manageable but FPs are unwanted (eg, situations where other

indicative on-site tests are also available but where no subsequent

legal action or laboratory analysis is performed), a higher weight per-

centage threshold could be selected. The performance of the overall

optimal first derivative model on the full spectra was evaluated by

determining the TP and FP rates of the model at various weight

percentage–cocaine thresholds. Figure 8 shows the FP versus TP

curve for a set of 9459 spectra, including all case sample and negative

TABLE 2 Performance characteristics of the separate submodels

Preprocessing True positives (%) False negatives (%) True negatives (%) False positives (%) # pos # neg

k-Nearest neighbors (submodel A) performance

SNV-first derivative 98.9 1.1 99.3 0.7 6184 1011

SNV-second derivative 98.2 1.8 100 0.0 6277 1197

SNV-first derivative–ROI 98.9 1.1 96.6 3.4 6743 1543

SNV-second derivative-ROI 99.4 0.6 99.7 0.3 6377 1188

ANN-dual tree bagging (submodel B) performance

SNV-first derivative 96.1 3.9 97.3 2.7 6821 2638

SNV-second derivative 88.9 11.1 98.0 2.0 6821 2638

SNV-first derivative–ROI 89.4 10.6 96.6 3.4 6821 2638

SNV- second derivative-ROI 95.1 4.9 98.6 1.4 6821 2638

ANN-dual tree bagging (submodel B) performance on submodel A inconclusive spectra

SNV-first derivative 81.0 19.0 97.5 2.5 637 1627

SNV-second derivative 85.3 14.7 96.9 3.1 544 1441

SNV-first derivative–ROI 0.0 100 98.6 1.4 78 1095

SNV-second derivative-ROI 87.6 12.4 97.7 2.3 444 1450

Notes. Percentages are based on all spectra from case samples, negative samples, and reference samples with concentration above 20%, being 9459 spec-

tra. The performance of submodel 2 is shown for comparison as this submodel is applied only on the inconclusive spectra following submodel 1.

Abbreviations: ANN, artificial neural network; ROI, region of interest; SNV, standard normal variate; # pos, number of positives; # neg, number of

negatives.

F IGURE 8 True-positive versus false-positive rate plot of the
near-infrared-based model on all Set A case samples, all Set B
negatives, and references between 18.8 and 100 wt% cocaine. A, The
0% false-positive threshold observed at 36 wt% cocaine; B, the
optimal accuracy at 18 wt% cocaine, and C, the <0.1% false-negative
threshold at 2 wt% cocaine [Colour figure can be viewed at
wileyonlinelibrary.com]
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spectra. From these data various optimal threshold values could be

derived depending on the specific forensic requirements. Point A in

Figure 8 marks the 36 wt% threshold level where no FPs were

observed, but this comes at a cost of 9.9% FNs. Point B in Figure 8

shows the optimal accuracy around an 18 wt% cocaine cutoff, and

point C in Figure 8 gives the optimum for minimal (<0.1%) FNs that

corresponds 28.8% FPs. This optimum was observed at a 2 wt%

cocaine-cutoff threshold. These characteristics clearly show that the

threshold could be used to optimize the model for specific forensic

settings in which certain FP or FN percentages could be acceptable. In

this study, a generic 20% threshold was applied. This was found suit-

able for the actual Dutch cocaine market where sub-20% cocaine con-

tent case samples are rarely encountered and the reported average

cocaine content is above 50 wt%.2–5 Although the observed FP and

TP rates were satisfactory for an indicative testing method, it must be

noted that applying such a threshold will deliberately introduce FN

results for samples with cocaine content below this threshold.

Although it is acceptable in specific situations such as indicative test-

ing, narcotic legislation in many countries does not contain concentra-

tion limits for controlled substances, and even low-concentrated

samples are thus illicit.

3.4 | External validation and unknown samples

As a first demonstration for the applicability of the developed model,

54 seized off-white case samples were randomly selected by the

Amsterdam Police Laboratory staff between October 2019 and March

2020. In addition, 22 seized case samples known to contain different

drug types, mainly NPSs, were selected. Furthermore, external valida-

tion samples were prepared by diluting a pure cocaine HCl sample with

levamisole, inositol, and caffeine from 0% to 100% with 10% intervals.

All these samples were scanned fivefold, and spectral data were

processed and predicted using the developed model. The original labo-

ratory results from GC–MS, FT-IR, and Raman analyses were used for

comparison. The results on the individual scan level, presented in

Table 1C, are consistent with the model performance from the cross-

validation. Of the 54 case samples, 34 were reported as “cocaine con-

taining” by the laboratory (based on GC–MS results). Within these,

31 were correctly predicted as cocaine positive using the NIR-based

model. The three FN samples contained an unusual low level of cocaine

(estimated between 5% and 17%) below the threshold as applied in the

model. A possible explanation of this relatively high number of low level

cocaine samples might be some selection bias from the forensic experts

selecting more “out-of-the-ordinary” case samples for this study. The

other 20 case samples were found to contain no illicit compound or

contain another drug from prior laboratory data.Within this group, only

one sample produced an FP result for cocaine on the NIR model. The

GC–MS data revealed that this specific specimen contained amphet-

amine adulterated with caffeine. As the first kNN submodel was incon-

clusive for this sample, the FP result originated from the ANN

submodel. The NPS and other drug-containing case samples produced

no FP results for cocaine, and both cocaine HCl and cocaine base

samples were correctly identified. In most cases, no identity was

predicted by the kNN submodel, which was correct as these novel sub-

stances were not included in the database. Euclidean distances and

Pearson correlations fell outside the threshold limits for all database

spectra as shown for a synthetic drug (2C-B) containing sample in

Figure S10.When themodel did predict an identity, it was in most cases

consistent with the GC–MS results. Some exceptions were two

ketamine-containing samples misidentified as a levamisole:phenacetin

mixture, and a 3-methylmethcathinone-containing sample was mis-

identified as containing 4-methylmethcathinone (mephedrone). The

complete results for all case samples are shown in Tables S2 and S3

(supporting information).

For the external validation samples, all samples with an actual

cocaine content of 40% and above were predicted as cocaine positive

by the model, with the exception of one sample containing 40%

cocaine in levamisole. For this sample, 2 out of 5 spectra were

predicted to be positive and 3 out of 5 were negative , thus giving an

overall negative result in the majority voting. It must be emphasized

that all samples with a predicted cocaine content between 0% and

20% are deliberately labeled as negative in the model when the

default 20% cutoff threshold is applied. Many samples with an actual

concentration between 20% and 30% were predicted to contain less

than 20% cocaine, thus giving a negative model result. It should be

noted that the quantification of cocaine content is not the goal of this

approach, and predicted concentrations are used only for a check

against the threshold. However, the quantitative performance of the

technique was further assessed to provide insight into its robustness

and potential future applications. As shown in Figure 9A, a good cor-

relation is achieved with a notable exception for the 10%–30%

cocaine-content samples. This is explained by the priorities in the

model design where the kNN model is dominant over the other

model. For these 10%–30% samples, the kNN model was inconclu-

sive, and the concentration was thus predicted by the ANN-treebag

regression model. When the standard preprocessing was used on full

spectral data, this latter model was more conservative. Considering

ROI selection (Figure 9B), a better correlation at the lower concentra-

tions is observed due to the increased focus on the 839–914 nm

cocaine spectral signals. This is consistent with earlier results

(Section 3.3) but has the disadvantage of limited selectivity for the

other compounds.

3.5 | Discussion

This is the first study to demonstrate cocaine detection using NIR

spectral data covering a limited-wavelength range and using a low-

cost handheld device. Although the first results show impressive per-

formance, optimization of several aspects might even further increase

the performance of the model and reduce the risk of erroneous

results. In this study limited attention is given to the threshold and

cutoff values that determine the preferred routes within the model.

For example, stricter kNN thresholds will force more spectra to be

predicted by the ANN model, and the optimal number of NNs could
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be different for more uncommon spectra. For practical implementa-

tion, the reference database must be expanded with a large variety of

cocaine samples to create a more robust model. One limitation of the

machine learning model is that it does not exclusively focus on spec-

tral features originating from the illicit compound itself (ie, cocaine in

this case). This is contrary to traditional IR, Raman, or mass spectral

library search approaches where database spectra originate only from

(and could even be theoretically explained as belonging to) the refer-

ence compound. Cocaine samples can vary widely in composition,40

and a possible risk is that complex mixtures produce FP results as the

overall spectra exhibit random and unexpected similarities toTP refer-

ence samples. One way to reduce this risk is to train the model on

many different samples. As subsequent GC–MS analysis is used rou-

tinely in a forensic laboratory, new spectra could simply be added to

the model database by updating the metadata of the original spectra

with the GC–MS results. This way, the database could be updated

almost in real time, and the model performance would be automati-

cally adapted for changing compositions of street samples over time.

For example, when cocaine mixed with a novel cutting agent is

encountered for the first time, the model might produce a (false) nega-

tive result. However, after adding the spectra to the database, a new

sample having the same composition will “match” with the first one as

a near-neighbor. In this way, the model will rapidly adapt to changes

in the cocaine market.

Other possible improvements are the analysis through various

types of packaging materials. In this model, all spectra were collected

through glass vials, which in a practical setting still means that the offi-

cer conducting the NIR measurements needs to transfer the suspect

material from its original packaging to a suitable glass container. Ear-

lier studies report on the limited effect of plastic packaging on the

NIR signal.41,42 Future studies on the effect of packaging materials

might therefore be beneficial as this will even further reduce the risk

of the investigating officer being exposed to harmful substances. Also,

in this study only white- or off-white-colored powders were included

in the model as this is the most common appearance of cocaine sam-

ples. The applicability of the model on more intensely colored samples

is thus unknown. Additional experiments on the influence of colored

substances on the NIR spectrum could provide valuable insight into

the robustness of the model. Another interesting outlook is data

fusion with other types of spectral data from handheld equipment. In

this way, a combination of complementary techniques that are now

used only for indicative testing might for some sample types produce

sufficient evidence to eliminate the need of laboratory analysis for

final confirmation. In such an ideal situation, an on-scene analysis in

seconds would suffice to present the required evidence in court.

4 | CONCLUSION

Low-cost, handheld NIR scanners using a small 740–1070 nm wave-

length range provide sufficient spectral selectivity for robust cocaine

detection in illicit-drug suspected case samples. The confined spectral

features were exploited by SNV-first derivative preprocessing

followed by a multistage model consisting of various machine learning

algorithms. A model database was constructed using 10,059 NIR

spectra, recorded with 15 different handheld NIR devices using a set

of 180 samples. To achieve a robust and representative model, recent

case samples with known identity and concentration as well as a large

set of known bulking agents, adulterants, and other drugs were incor-

porated in the data set. The first and most accurate stage in the model

was a kNN Euclidean distances and Pearson correlation algorithm.

This model predicted cocaine concentration for unknown spectra by

finding the nearest neighbor spectra in the database. In this way,

98.9% true-positive and 99.3% true-negative (TN) accuracy was

achieved. By using model thresholds, novel spectra not yet recognized

by the model were labeled as inconclusive. In the next step, an ANN

predicted the cocaine type (ie, base or HCl), whereas bagging tree

regression models predicted the cocaine content for all resulting

F IGURE 9 Predicted versus actual concentrations of external validation samples consisting of binary 0%–100% cocaine HCl mixtures with
levamisole, caffeine, and inositol, each scanned fivefold. A, Results after standard normal variate (SNV)-first derivative-full spectrum
preprocessing; B, after SNV-second derivative-region of interest preprocessing. Diamond-shaped datapoints originate from the ANN-treebag
regression model; all other datapoints originate from the k-nearest neighbor model. The solid blue line shows perfect prediction; the dotted blue
line shows the curve derived from the actual data [Colour figure can be viewed at wileyonlinelibrary.com]
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spectra. In the final decision criteria, a cutoff threshold could be used

to reduce FP results at the cost of increased FN results for low level

cocaine samples. As the occurrence of this type of samples in actual

casework is very low, this is acceptable for an on-scene indicative test.

FP versus TP plots provide insight into the model performance and

could be used to determine a cutoff threshold suitable for the specific

situation. The overall model yielded TP and TN rates of 97.2% and

98.2%, respectively, at a 20 wt% cocaine cutoff threshold. The exter-

nal validation on 54 recent case samples and 33 diluted cocaine stan-

dards demonstrated practical applicability. This NIR-based approach

provides a robust, rapid, and intrinsically saver procedure as minimal

handling of potentially hazardous substances is required. For future

use of the model, unknown spectra could easily be added to the data-

base by updating the metadata with the confirmed identity from vali-

dated lab results. In this way, an intelligent model that can rapidly

adapt to the ever-changing cocaine market is established. Validated

laboratory data ensure optimal performance of the model at any given

time as police officers scan suspect samples using handheld NIR

devices. This model is accessed centrally as the NIR spectral data are

sent to a cloud environment using Bluetooth and WiFi/4G connection

of the smartphone of the officer. Thus, forensic drug analysis experts

can safeguard the quality of the on-scene analysis “from a distance”

and in “real time” as the model returns an analysis outcome to the

smartphone almost instantly.
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