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Most General Algebraic Specifications

for an Abstract Datatype of Rational Numbers

Jan A. Bergstra1

Abstract

The notion of a most general algebraic specification of an arithmeti-
cal datatype of characteristic zero is introduced. Three examples of
such specifications are given. A preference is formulated for a specifica-
tion by means of infinitely many equations which can be presented via
a finite number of so-called schematic equations phrased in terms of an
infinite signature. On the basis of the latter specification three topics
are discussed: (i) fracterm decomposition operators and the numera-
tor paradox, (ii) foundational specifications of arithmetical datatypes,
and (iii) poly-infix operations.
Keywords: Algebraic specification, fracterm decomposition opera-
tions, arithmetic datatypes, poly-infex operations.

1 Introduction

In [16] a finite initial algebra specification is given for an abstract datatype
of rational numbers. The axioms are given with inversive notation (in-
verse rather than division) and inverse is made total by requiring that
0−1 = 0. I will write Q0 for the abstract datatype of rational numbers
with 0-totalized inverse.
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2 J.A. Bergstra

The specification given in [16] consists of the equations for a commu-
tative ring plus the equations x · (x−1 · x) = x and (x−1)−1 = x, together
constituting the axioms Md of meadows in the terminology of [9], plus the
equation (x2 + y2 + z2 + u2 + 1) · (x2 + y2 + z2 + u2 + 1)−1 = 1. Below I
will make use of divisive notation (division instead of inverse, see also [10]).
Using divisive notation the axioms for meadows are the axioms (1,. . .,11)
of Table 2. This set of 11 equations is referred to as Mdd (equations for
meadows in divisive notation).

In [10] it was shown that improving upon the result of [16] the simpler
equation (x2+y2+1)/(x2+y2+1) = 1 can be used in combination with Mdd

for giving an initial algebra specification of the abstract datatype Qd
0. In [4]

it is shown that replacing the latter equation by a finite set of equations of
the form (x2 + n + 1)/(x2 + n + 1) = 1 cannot provide a specification of
Qd

0 = 1. In [5] it is shown that the following equation, with a single variable x
only suffices:
(2 · (x2 − 3) · (x2 − 5) · (x2 − 15))/((2 · (x2 − 3) · (x2 − 5) · (x2 − 15)) = 1.

It is shown in [5] that for each finite sequence of equations e1, . . . , en
there is an equation e which, relative to Mdd is logically equivalent to
e1 ∧ · · · ∧ en, which implies that when looking for logically weak exten-
sions of Mdd as specifications of Qd

0 considering single additional equations
suffices. Following [7] a (divisive) cancellation meadow is an algebra which
comes about from a field K by enriching it with an inverse function (division
function) which is made total by choosing 0−1 = 0 (1/0 = 0). Trivially a
(divisive) cancellation meadow satisfies the axioms for (divisive) meadows.

Proposition 1 Suppose Md + e constitutes an initial algebra specification
of Q0. Then e is not valid in some cancellation meadow.

Proof: The completeness theorem of [9] states that equations valid in all
cancellation meadows are derivable from Md. Let e be such that Mdd + e
constitutes an initial algebra specification of Qd

0 and such that e is true in all
cancellation meadows. Then with the completeness theorem Md ` e so that
already Md constitutes an initial algebra specification of Q0, a conclusion
which contradicts the results of [17]. A contradiction is found and the
theorem follows. 2

Next I will consider the special case of characteristic 0, which allows
a strengthening of the above proposition. Following the notation of [5]
InvP = {n/n = 1|n a prime number}. Now according to [5] Mdd + InvP is
an initial algebra specification of Qd

0 and moreover it is a weakest possible
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specification because each such specification must imply InvP given that
Qd

0 |= InvP . The following observation is shown in [5].

Proposition 2 Suppose Mdd + e constitutes an initial algebra specification
of Q0. Then e is not valid in some cancellation meadow with characteris-
tic 0.

I will use module algebra notation (following the module algebra as
defined in [8]) for specification which may involve auxiliary functions: Σ2X
exports from the specification (module) only the sorts, constants and func-
tions of Σ. Further + is used for the combination (union) of signatures,
of collections of equations and of modules.

1.1 Most General (Conditional) Equational Specifications

The objective of this paper is to investigate initial algebra specifications
for Q0 which are general to the extent that the axioms of the specification
are compatible with each cancellation meadow of characteristic zero. This
idea motivates the following definition.

Definition 1 A specification ΣMd2(Σ,Mdd + E), with Σ = ΣMd ∪ Σ(E),
of Qd

0 is most general, if the following two conditions are met:

(i) its initial algebra is isomorphic to Qd
0 or (in case one or more auxiliary

constants or functions are used) to an expansion of Qd
0, and

(ii) each cancellation meadow of characteristic 0 is a model of E, or (in
case one or more auxiliary constants or functions are used) each can-
cellation meadow of characteristic 0 can be expanded to a model of E.

The following proposition provides a sufficient and necessary criterion for
the first condition that a most general specification of Qd

0 must meet.

Proposition 3 Given an equational (or conditional equational) specifica-
tion ΣMd2(Σ,Mdd + E) which satisfies these properties:

(i) Mdd + E implies all assertions in InvP ,

(ii) There is a Σ expansion Rd
0 of Qd

0 which satisfies E, and

(iii) Each closed Σ expression is provably equal in Mdd+E to a closed ΣMd

expression.
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Then ΣMd2(Σ,Mdd + E) is an initial algebra specification of Qd
0.

Proof: From (ii) it follows that the initial algebra A of ΣMd2(Σ,Mdd+E)
does not identify n and m for different positive natural numbers n and m.
From (i) in the presence of Md it follows that the ΣMd reduct A|ΣMd

of A
has the rational numbers as a substructure. From (iii) it follows that all
elements of the domain of A a re in A|ΣMd

which is isomorphic to Qd
0, so

that A is an expansion of Qd
0 as desired. 2

2 Three Most General
Initial Algebra Specifications of Qd

0

That the specification of Qd
0 mentioned in the introduction is not most

general follows from the propositions mentioned above as well as from the
counter example one finds when working in the complex numbers with
x = i, y, z, u = 0. In this Section some most general specifications of Qd

0 are
discussed. The following fact is immediate.

Proposition 4 (ΣMd,Md+ InvP ) constitutes a most general initial algebra
specification of Qd

0.

Clearly in the light of Proposition 2 a most general specification of Qd
0

must be either infinite (such as Md + InvP ) or it must make use of one or
more auxiliary functions, or it must enjoy both of these features. Theorem 1
is concerned with the existence of a most general initial algebra specification
of Qd

0 s pecification with an auxiliary function. The resulting specification,
however, seems to be a mere curiosity without much explanatory value and
which hardly serves the practical purpose of specification. For that reason I
will mainly consider χ0-general specifications with infinitely many equations
in more detail, focussing on a particular framework for representing such
specifications as a finite collection of schemes.

I will consider divisive meadows extended with decimal constants, for
digits as well as for sequences of digits, which are understood as natural
numbers. The successor function on the decimal digits {0, . . . , 8} is specified
in Table 1 as a transformation on syntax.

Definition 2 CD denotes the collection of non-empty sequences of decimal
digits starting with a non-zero digit. Elements of CD are referred to as
(positive) decimal numbers.
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Table 1: DGS: enumeration and successor notation of decimal digits

0′ ≡ 1 3′ ≡ 4 6′ ≡ 7

1′ ≡ 2 4′ ≡ 5 7′ ≡ 8

2′ ≡ 3 5′ ≡ 6 8′ ≡ 9

I will make no distinction between say 87 as a number and 87 as a
constant. When adopting the latter convention the notions of number and
constant (more specifically natural number and decimal number constant)
are being associated according to terminology of [25]. I will make use of
schematic equations of the form, say e(u, v, w) ≡ t(u, v, w) = r(u, v, w),
which are supposed to be asserted for each instantiation with constants
σ1, σ2, σ3 for u, v, w. Thus the equation u/u = 1 stands for {1/1 = 1,
2/2 = 1, . . . , 9/9 = 1, 10/10 = 1, 11/11 = 1, . . . }.

Table 2 provides an infinite algebraic (initial algebra) specification of
the meadow rational numbers with decimal number constants Qd

0,CD
. The

specification may be restricted to the signature of meadows by hiding con-
stants in CD except 1. Module algebra as defined in [8] can be extended
with the infinite signature CD, and with mechanisms fo schematic equations
and schematic conditional equations taking metavariables in CD without any
problem. Using the module algebra notation for hiding a part of a signature
(and extended to infinite signatures) the specification can be denoted as a
module expression: ΣMd2MddCD

= (CD\{1})∆MddCD
.

Proposition 5 ΣMd2MddCD
constitutes a most general initial algebra spec-

ification of Qd
0.

Proof: With induction on n it is easily shown that for a natural number
n > 0 MddCD

` n/n = 1. In combination with Qd
0,CD

|= MddCD
, which is

immediate by inspection, this observation proves that the initial algebra
of MddCD

is Qd
0,CD

. In order to see that, upon viewing the constants in
CD\{1} as auxiliary constants (hidden constants), the specification is most
general for Qd

0, one may notice that the axioms of Qd
0,CD

after expansion
of the metavariables constitute a chain of explicit definitions. Thus each
cancellation meadow of characteristic 0 can be expanded to a model of
MddCD

. 2

Table 3 provides a specification module which may be combined with
MddCD

into a specification of an expansion with f :V →V of Qd
0.
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Table 2: MddCD
: initial algebra specification of the abstract datatype Qd

0,CD

(x+ y) + z = x+ (y + z) (1)

x+ y = y + x (2)

x+ 0 = x (3)

x+ (−x) = 0 (4)

(x · y) · z = x · (y · z) (5)

x · y = y · x (6)

1 · x = x (7)

x · (y + z) = (x · y) + (x · z) (8)

1/(1/x) = x (9)

(x · x)/x = x (10)

x/y = x · y−1 (11)

d′ = d+ 1

(for d ∈ {0, . . . , 8}) (12)

u0 = ((((((((u+ u) + u) + u) + u) + u) + u) + u) + u) + u

(foru ∈ CD) (13)

ud = u0 + d

(for d ∈ {1, . . . , 9}, u ∈ CD) (14)

u/u = 1

(foru ∈ CD) (15)

Theorem 1 ΣMdd2(ΣMdd + f :V → V,Mdd + Ef ) is a most general initial
algebra specification of Qd

0.

Proof: Proposition 3 is used to show that the initial algebra is Qd
0. The

conditional equations Ec
f in Table 4 are consequences of the equations Ef

in Table 3. It follows with induction on n that for each n, Ec
f ` f(n) = 1

and thus Ec
f ` n/n = 1 and also Ef ` n/n = 1, whence Ef ` InvP . With

Proposition 4 it follows that the reduct of the initial algebra of the specifi-
cation (ΣMdd + f :V →V,Md+Ef ) to the signature ΣMdd is a homomorphic
image of Qd

0, or is an extension of a homomorphic image of Qd
0.

Further Qd
0 can be expanded with a function f to Qd

0,f of Ef by defin-
ing f as follows: f(p) = 1 for positive natural numbers p and f(p) = 0
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Table 3: Ef

f(0) = 0 (16)

f(1) = 1 (17)

f(x) · (1− x/x) = 0 (18)

f(x) · (1− f(x+ 1)) = 0 (19)

(1− f(x)) · f(x− 1) = 0 (20)

(f(x) · f(y) · f(x/(x+ y)) = 0 (21)

((f(x) · f(y)) · f(z)) · f(z + (x/(x+ y))) = 0 (22)

(f(x) · f(y)) · f(−(x/(x+ y))) = 0 (23)

Table 4: Ec
f

f(0) = 0 (24)

f(1) = 1 (25)

f(x) = 1→ x/x = 1 (26)

f(x) = 1→ f(x+ 1) = 1 (27)

f(x) = 0→ f(x− 1) = 0 (28)

f(x) = 1 ∧ f(y) = 1→ f(x/(x+ y)) = 0 (29)

f(x) = 1 ∧ f(y) = 1 ∧ f(z) = 1→ f(z + x/(x+ y)) = 0 (30)

f(x) = 1 ∧ f(y) = 1→ f(−(x/(x+ y))) = 0 (31)

on all other arguments. Inspection of the equations suffices to infer that
Qd

0,f |= Ef . Every cancellation meadow of characteristic 0 can be expanded
to a model of Ef in a corresponding manner. It follows that the reduct
of the initial algebra of the specification (ΣMdd + f :V → V,Md + Ef ) to
the signature ΣMdd is an extension of Qd

0. It remains to be shown that the
extension is in fact an expansion.

To demonstrate the latter it must be shown that closed terms involv-
ing f can be proven equal to closed terms not involving f . It suffices to
consider terms of the form t ≡ f(s) with a single occurrence of f at top
level only.

A case distinction on [[s]] the rational number denoted by s is required:
if s = 0, f(s) = 0, if s = 1, then f(s) = 1. If s is provably equal to n
for some positive natural number n then f(s) = 1, if s = −n for some
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positive natural number n then induction starting from n = 0 yields that
f(s) = 0. If [[s]] is not an integer and is between 0 and 1 then for some
positive n and m: Qd

0 |= s = n/(n+m) from which it can be inferred that
Md+Ec

f ` s = n/(n+m) and therefore that Md+Ec
f ` f(s) = 0. If s denotes

a non-integral positive rational number above 1 then besides n and m, a
positive integer k can be found so that s = k+n/(n+m) which allows to infer
that f(s) = 0. In case s denotes a negative rational number between −1
and 0 positive naturals n and m can be found so that s = −(n/(n + m))
which allows to infer f(s) = 0, and for smaller non-integer negative rational
values of s the conditional equation f(x) = 0 → f(x − 1) = 0 allows
an inductive proof that f(s) = 0 using the cases that [[s]] ∈ (−1, 0) as a
basis. 2

Viewed as a term rewrite system, MddCD
fails to have the decimal num-

bers as normal forms. However, I will not discuss the technically rather
involved topic of term rewriting for arithmetical datatypes in the presence
of schematic rules in this paper.

Most general specifications of the rational numbers do not have finite
models, whereas the equations for meadows allow for a wide diversity of
finite models, see [18].

The expressive power of equational schemes shows limitations in the
context of elementary arithmetic. In particular the use of addition in the
specification of Table 2 can hardly be avoided. This observation is detailed
in the following Paragraph.

2.1 Specifying Natural Numbers with Successor Function

The specification in Table 5 specifies a datatype of atural numbers with
successor function and with all constants in CD. It turns out that the use
of conditional equation(s) can not be avoided for this specification.

Table 5: Initial algebra specification of N0,CD
(S( )): natural numbers with

successor function and decimal number constants

d′ = S(d) (for d ∈ {0, . . . , 8}) (32)

10 = S(9) (33)

d′0 = S(d9) (for d ∈ {1, . . . , 8}) (34)

ud′ = S(ud) (foru ∈ CD, d ∈ {0, . . . , 8}) (35)

v = S(u)→ v0 = S(u9) (foru, v ∈ CD) (36)
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Theorem 2 N0,CD
(S( )) does not have an equational specification that con-

sists of finitely many schemes.

Proof: Let, for d ∈ D and k > 0, d[1] = d, d[k+1] = d[k]d. With
this notation: N0,CD

(S( )) |= 10[k] = S10k(0). Let Es constitute an ini-
tial algebra specification of N0,CD

(S( )) made up from a finite number of
equation schemes. It will be shown that for sufficiently large k the equa-
tion 10[k] = S10k(0) cannot be derived from Es. Now choose k larger than
the length of any constant of CD occurring in any equation in Es plus the
number of occurrences of digits occurring in all equations plus the num-
ber of occurrences of the successor function in all equations. Because an
expression σ for σ ∈ CD is a constant it has no proper subterms. In particu-
lar σ is not considered a subterm of its extension by postfixing the decimal
digit d: σd.

First notice that for syntactic reasons an expression t may contain
at most a single meta-variable u ranging over CD. Secondly an equation
t(u) = r(v) (with by assumption u and v different variables) cannot be
valid in N0,CD

(S( )), a counter example is found by taking u = 0 and v larger
than [[t(0)]]. Therefore an equation involving u has the form t(u) = r(u),
and in more detail: Sa(ud1 . . . dm) = Sb(ue1 . . . en), for natural numbers
a, b,m, n. Each equation of Es involves at most one metavariable for CD and
therefore it may be assumed that all schematic equations involve the same
metavariable u. Equational logic is understood as term rewriting where
all equations may be used in both directions. It is to be shown that for
sufficiently large k the 10[k] cannot be rewritten into the expression S10k(0).
The proof uses induction on the number of equational schemes in Es so
it is assumed that this number is minimal. It cannot be zero because say
1 = s(0) must be derivable from Es.

For a rewrite rule t(u) = r(u) to match with S(10[k]) it is needed
that t results by substituting some σ ∈ CD for u in t because otherwise the
constant 10[k] is too long to match with any subterm of any lefthand side of
an equation in Es. So there is an equation t(u) = r(u) in Es (i.e. t(u) = r(u)
is in Es or r(u) = t(u) is in Es) such that for some σ ∈ CD t(σ) = r(σ)
is a rewrite rule, say of the form Sa(σd1 . . . dm) = Sb(σe1 . . . en), which
applies to 10[k]. It follows that a = 0 and that σd1 . . . dm = 10[k], whence
σ = 10[k−m]. Thus 10[k] = Sb(10[k−m]e1 . . . en). For b > 0 his equation
cannot be valid in N0,CD

(S( )), however, because k has been chosen so large
that it exceeds b+m+n with the effect that the Sb(10[k−m]e1 . . . en) cannot
be a power of 2. Therefore b = 0 so that 10[k] = Sb(10[k−m]e1 . . . en) with
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as a consequence that n = m and e1 = . . . = en = 0. It follows that the
equation t(u) = r(u) is (syntactically) equal to σ0 . . . 0 = σ0 . . . 0 where both
sequences of zeros at the tail have equal length. It follows that t(u) ≡ r(u)
for each substitution σ for u so that the equation scheme is redundant and
can be deleted, which contradicts the minimality of Es. 2

3 Fracterm Decomposition Functions

For meadows the so-called fracterms plays a central role. Fracterms are
discussed in much detail in [3] and appear in [14]. It is tempting to refer
to a fracterm as fraction, as was done in [11] but I will refrain from the
identification of fracterms with fractions. Fractions have been defined in
the literature in disparate ways and there is no indication that defining
fractions as fracterms amounts to a common understanding of fractions.
For instance in [28] a fraction is understood as a value, rather than as
an expression. In [21] is it suggested that unlike rational number fraction
is not a mathematical notion. In [23] a variety of different perspectives on
fractions are discussed, [24] suggests that fractions are expressions, while [29]
indicates that fractions are pairs of integers.

3.1 Fracterms, Fracsigns, and Fracmarks

I prefer to remain uncommitted to any specific notion or definition of frac-
tions and this neutral position can be maintained by introducing different
names for similar but potentially different notions, starting with fracterm.
Besides fracterm, fracsign and fracmark are useful related notions. A frac-
sign is a physical sign which refers to a fracterm, which itself may but need
not refer to a number. A fracmark is a mark on a number line which denotes
a rational number relative to the line. Below I will focus on fracterms only.
Technically a fracterm can be defined as follows:

Definition 3 A fracterm is a term t for the signature ΣMd, or for any
larger signature, which has division as its leading function symbol, i.e. a
fracterm has the form r/s.

A fracterm may be open or closed. The class of open fracterms in-
cludes the closed ones but not conversely. When needed, the presence of a
variable must be positively asserted e.g. with t is not closed, or x occurs
in t. The components r and s of a fracterm are referred to as the numerator
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and the denominator of the fracterm respectively. In this Section I will con-
sider options for extending the specification MddCD

with another module that
introduces selector functions for numerator and denominator on fracterms.

A first attempt for the design of such a module is given Table 6. It is
immediate, however, that this extension is inconsistent: 1 = Num(1/2) =
Num(2/4) = 2. I propose to name this argument (and similar arguments)
the numerator paradox. This paradox results if a numerator selector op-
eration is introduced without due care. The paradox demonstrates that
extending MddCD

to MddCD
(Num,Denom) is not a valid approach and is, for

that reason, in need of modification. Working in an arithmetical datatype
such as Qd

0,CD
, and restricting attention to closed terms only, a suitable im-

provement of the datatype expansion with fracterm decomposition functions
can be obtained.

Table 6: MddCD
(Num,Denom): naive equational specification of fracterm

decomposition operations

include MddCD

Num(x/y) = x (37)

Denom(x/y) = y (38)

3.2 The Numerator Paradox and Its Informal Solution

The contradiction that comes with adopting Table 6 is obvious, but at the
same time it is equally “obvious” that human informal reasoning allows to
ignore the reasoning pattern leading to 1 = 2 and to work with numerators
and denominators as if these satisfy the equations in Table 7 while avoiding
to draw wrong conclusions. For instance: it may be asserted that “the de-
nominator of the fraction 31/(−7) is negative”. This assertion is potentially
problematic because 31/(−7) = (−31)/7 so that said denominator may also
be considered positive. However, the human mind seems able to avoid mak-
ing consequential mistakes about such matters by (implicitly) viewing each
argument of Num and Denom as a fracterm rather than as a quotient, and
by dismissing texts which discourage such reading.

Understanding the mechanism of this remarkable ability to make mod-
erate and safe use of terminology requires further attention. It may be the
case that reasoning about numerators and denominators is mainly used to
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describe and justify which rewrite rules may be applied, and in addition that
Num(−) and Denom(−) are understood as operating on syntax rightaway.
Formalising that idea is possible by introducing the convention that under-
lined operations work on syntax (terms) rather than on semantics, which is
formalized in Table 7 from which a numerator paradox cannot be inferred.
If it is preferred that Num and Denom are total operations, 0 may be chosen
as the result for all non-fracterm arguments.

Table 7: MddCD
(Num,Denom): equational specification of an arithmetical

abstract datatype Qd
0,CD

(Num,Denom) expanded with syntactic operations
Num and Denom

include MddCD

Num(x/y) ≡ x (39)

Denom(x/y) ≡ y (40)

Num(u) ≡ 0 (41)

Num(−x) ≡ 0 (42)

Num(x+ y) ≡ 0 (43)

Num(x · y) ≡ 0 (44)

Denom(u) ≡ 0 (45)

Denom(−x) ≡ 0 (46)

Denom(x+ y) ≡ 0 (47)

Denom(x · y) ≡ 0 (48)

3.3 Equational/Equivalence Logic

The combination of mathematical functions and syntactic functions suggests
a different logic, which I call equational/equivalence logic, and which applies
in the context of arithmetical datatypes.

Consider an arithmetical abstract datatype A which is a canonical term
algebra for its signature. For instance A = Qd

0,CD
. Now, given syntactic

equivalence assertions for closed expressions as syntactic equality, A admits
an interpretation of open syntactic equivalence assertions as well.

Let σ be a valuation of variables x, y, z, . . . into the domain of A. Now
consider for instance the equivalence (assertion of equivalence) t(x1, . . . , xn)
≡ r(x1, . . . , xn). Validity of the assertion in A is defined by:
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A |= t(x1, . . . , xn) ≡ r(x1, . . . , xn) if and only if for all sequences of
closed terms t1, . . . , tn over Σ(A) it is the case that t(t1, . . . , tn)
≡ r(t1, . . . , tn).

The equational/equivalence logic involving syntactic (underlined func-
tions, for instance a two place syntactic function f(−,−)) allows for syn-
tactic equivalence assertions. It is not required that

x1 = x2 ∧ y1 = y2 → f(x1, y1) = f(x2, y2)

while it is required to be the case that:

x1 ≡ x2 ∧ y1 ≡ y2 → f(x1, y1) ≡ f(x2, y2)

for all pairs of terms t, r it is the case that A |= t ≡ r → t = r.

Now Num(−) and Denom(−) are defined by: Num(t/r) ≡ t for all
closed fracterms t/r and Num(s) ≡ 0 for all closed terms which are not
fracterms s. Similarly Denom(t/r) ≡ r for all closed fracterms t/r and
Denom(s) ≡ 0 for all closed non-fracterms s. Now various familiar as well
as unfamiliar assertions on fracterms allow formalization. Some examples,
making use of inequality u 6= 0 and u 6= v (for different constants u, v ∈ CD)
both of which hold in Qd

0,CD
(Num,Denom):

0 6= Denom(x) ∧ Denom(x) ≡ Denom(y)

→ x+ y = (Num(x) + Num(y))/Denom(x)

Num(x) = Denom(x) ∧ Num(x) 6= 0→ x = 1

0 6= Num(x)→ x = Num(x)/Denom(x)

Num((5 + 11)/(19− 3)) = Denom((5 + 11)/(19− 3))

Num(1/2) 6≡ Num(2/4)

1 = Num(1/2) 6= Num(2/4) = 2

1 + 1 ≡ Num((1 + 1)/4) 6≡ Num(2/4) ≡ 2

Denom(Num((1/2)/4)) = 2 + Num(Denom((1/2)/4))

It can be shown that Num(−) is a new operator for Qd
0,CD

. In particular
Num(−) cannot be eliminated from at least one kind of open expression:
expressions consisting of a single free variable.
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Proposition 6 There is no open or closed expression t over Σurd,⊥,CD
,

(that is without Num and without Denom), such that Qd
0,CD

(Num,Denom) |=
Num(x) = t.

Proof: If t is closed then Num(x) = t implies, by substituting (1 + t)/1
for x, that 1 + t ≡ Num((1 + t)/1) = t which implies that t = ⊥. Then
substituting 1/1 for x yields 1 = ⊥ which is not the case. So we are left with
the option that Num(x) = t with t an open term. If say t ≡ t(x, y, z) then
Num(x) = t(x, 0, 0). So it may be assumed that t has only one variable and
Num(x) = t(x). As Num(u) = 0 for all u ∈ CD it follows that t(u) = 0 for
all u. Suppose that t(x) is a polynomial with integer coefficients then if it
vanishes (in Qd

0,CD
) on al natural numbers u it must be the zero polynomial

so that in fact Num(x) = 0 for all x which is wrong as Num(1/1) = 1. In the
general case the main result of [6] can be used from which it follows that
t(x) = p(x)+q(x)/r(x) with polynomials p, q, and r with integer coefficients.
Suppose that r(u) = 0 for infinitely many u then r(x) vanishes for all x and
t(x) = p(x), which has been shown to be impossible already. Thus assume
that for all but finitely many u r(u) 6= 0 and thus 0 = t(u) = p(u) +
q(u)/r(u) = (p(u) · r(u))/r(u) + q(u)/r(u) = ((p(u) · r(u)) + q(u))/r(u) and
thus for these u, (p(u)·r(u))+q(u) = 0. It follows that (p(x)·r(x))+q(x) = 0
for all x so that t(x) = p(x) · (1− r(x)/r(x)) while for all x and for almost
all u, r(u) 6= 0. So let u 6= 0 be such that r(u) 6= 0. Then consider
x ≡ u/1. A contradiction arises: u = Num(u/1) = p(u) · (1− r(u)/r(u)) =
p(u) · 0 = 0. 2

4 Foundational Specification of an
Arithmetical Datatype

I will now assume that K is a class of agents. A class of agents K is
considered to be endowed with a subclass Ka of authoritative members,
who share essential opinions and beliefs. The application which I have
in mind for this notion is that K includes all (or at least many) teachers
of elementary mathematics as well as their students, and persons in close
contact with these students. In this application a class of senior teachers
would play the role of authoritative members.

Definition 4 A conditional equational arithmetical datatype specification
with signature Σ ⊇ ΣMddCD

will be called foundational for a class K of agents

(with authoritative members Ka) if:
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(i) for each pair of closed Σ terms t and r either E ` t = r or
E ∪ {t = r} ` 0 = 1,

(ii) there is no known (to any agent in Ka) proof of 0 = 1, and

(iii) the specification has a dogmatic status for the agents in K in the
following sense: (iiia) only if E ` t = r, and if such a proof is known
to one or more agents in Ka, the belief that t = r is justified for some
agent in K, and (iiib) only if E ∪{t = r} ` 0 = 1, and if such a proof
is known to one or more agents in Ka, the belief that t 6= r is justified
for some agent in K.

According to [15], allowing the use of auxiliary functions, an equational
specification with the property that for closed terms t and r, E ∪ {t = r} `
0 = 1 unless E ` t = r can be obtained for a large class of datatypes,
in fact for all co-semicomputable datatypes. It should be noticed that
Md∪{0 = 2} 6` 0 = 1 so that Md fails to have said property, but MddCD

does.

4.1 MddCD
as a Foundational Specification of Q̃d

0,CD

Now let K be the class of teachers of elementary arithmetic, and their
students and friends, relatives and care takers of these students, with Ka the
subclass of senior teachers. Admittedly the description of K is imprecise,
and working towards precise descriptions of actual classes of agents lies
outside the scope of this paper. So K is merely introduced as a thought
experiment which is not meant to be turned into a point of departure for a
rigorous empirical investigation.

Now, by way of a thought experiment MddCD
, is said to have the status

of a foundational specification of Q̃d
0,CD

relative to the class of agents K.

4.2 Doing Away with the Numerator Paradox

Viewing MddCD
as a foundational specification its extension with Table 6

becomes unproblematic. The idea is that agents in Ka know how to avoid
making wrong inferences from MddCD

(Num,Denom) and teach other members
of K how to avoid making such errors. There is no confusion about these
matters possible: an inference is wrong if it leads to conflicts with the
conclusions drawn from the specification MddCD

. Indeed on the basis of its

foundational status reasoning within MddCD
takes priority over reasoning in

MddCD
(Num,Denom) which in part lies outside the reasoning in MddCD

.
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Not only the numerator paradox may be dealt with in this manner.
Adopting a version of naive set theory which includes the Russel paradox
may be allowed in a similar manner, if it comes to a crunch, which won’t
happen with competent reasoning, when unexpected results are derived the
foundational specification is used as criterion of truth, and reasoning pat-
terns are designed which allow, or even guarantee, the avoidance of reasoning
patterns that are known to lead to problems.

4.3 Immunization of Elementary Arithmetic
Against (Potential) Conceptual Inconsistency

The thought experiment as detailed above can be used as an explanation
of why the agents in class Ka may not be bothered to develop a watertight
theory of fractions (or fracterms). They know that it is fairly easy to avoid
reasoning errors when working with MddCD

(Num,Denom) by suggesting no-
tions of syntax which are not made explicit and claiming that it is a sign of
maturity and comprehension if students are able to avoid errors in the use
of fracterm (fraction) decomposition operators.

Supposing that the numerator paradox is taken seriously at least three
responses are possible, (i) to develop a consistent logic of fractions which
resolves the paradox while allowing much of the fraction talk, (ii) to ignore
the matter and to assume that no serious problems will result, while bas-
ing the principles of arithmetic on a foundational interpretation of one’s
favoured specification, and (iii) to combine both approaches: to develop a
useful but limited logic of fractions on top of one’s favourite specification of
arithmetic and to claim a foundational status for the theory thus obtained.

In the practice of fractions, (i) is not so easy unless one agrees either
that a fraction is fracterm or that a fraction is a quotient (or more generally:
unless a definition of fractions that can be given in terms of fracterms is
adopted), (ii) is quite feasible and seems to be an adequate rationalization
of mainstream views on fractions, although that approach it has not been
made explicit in any paper to the best of my knowledge, and (iii) is a matter
of speculation, for which I have not yet seen any examples or preceding work.

5 Poly-Infix Operations

A vital advantage of the specification MddCD
over the specifications of the

arithmetical abstract datatype of rationals in [16] and subsequent improve-
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ments of it in [10] and in [5] comes from the presence of decimal numbers in
MddCD

which brings it closer to practice. The practice of arithmetic, however
incorporates at least four other features which lie outside the traditional
techniques and strengths of algebraic specification methods: (i) operator
precedence, (ii) poly-infix operations, (iii) synonyms of operator symbols,
and (iv) two-dimensional notation. Operator precedence is a relatively easy
matter: assuming the following precedence: division > multiplication >
subtraction (negation) > addition it can be explained that (2 · 5) + 3 and
2 · 5 + 3 are equivalent. One way to look at this is to say that whoever
writes 2 · 5 + 3 actually means to write (2 · 5) + 3 and that this decoration
with additional brackets is supposed to precede further analysis. Against
this perspective on operator precedence one may hold that in practice these
steps are exclusively performed in the mind of the reader, thereby raising
the question if such steps are at all applied. A different approach is to have
both expressions as part of the syntax and to have axioms which imply
2 · 5 + 3 = (2 · 5) + 3 or even 2 · 5 + 3 ≡ (2 · 5) + 3. I will not discuss
any of these details of operator precedence here. Two-dimensional nota-
tion (as in fractions written with a horizontal fraction bar) entirely escapes
the algebraic specification format and admits no further clarification from
that perspective. Design and analysis of two-dimensional notation inter-
feres with synonyms of operator symbols. Dealing with synonyms is easy to
the extent that different names for the same operator may be included in
a signature and equations can be used to express semantic correspondence.
However, one may insist that not only 1

2 = 1/2 but in fact 1
2 ≡ 1/2 thereby

turning syntactic sameness into a non-trivial notion. Working with syn-
onyms becomes more intricate when some operator symbols can be deleted,
which may happen with the multiplication symbol, say in 2(17 − 5). I
will not pay further attention to synonyms in this paper. An aspect which
can be brought firmly within the scope of algebraic specifications, however,
is the use of poly-infix operations. The phrase poly-infix operation was
coined in [13].

5.1 Infinite Families of Operations

Following [13] addition and multiplication may be understood as infinite
families of so-called poly infix operations. The idea is that say 0 + 8 + 17 is
an instance of the use of a 3-place addition function, which in the signature
comes on top of the 2-place version of addition together with all other n-ary
versions of addition for n > 3. The declaration + (π) : V → V introduces
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+ as an infinite family of operations for each arity, with the idea that infix
notation is generalized to mixfix notation. The 2-place function + (π) :
V → V . is called the kernel of the function family. The introduction of a
family of poly-infix operator symbols does not by itself include or assert any
requirement regarding associativity. Similarly · (π) : V → V introduces a
poly-infix family of multiplication operators with · as kernel.

An advantage of the use of poly-infix operations is the initial absence
of brackets. For instance the expression 1 + 2 + 3 + 4 need not be explained
by first introducing brackets as in ((1 + 2) + 3) + 4 and then making an
abstraction of syntax modulo equivalent bracketing patterns, or by intro-
ducing default brackets which are claimed to have been deleted in writing
for the sake of simplicity of notation. Instead one may say that 1+2+3+4
is an expression different from (i.e. not the same as) (1 + 2) + (3 + 4) and
different from ((1 + 2) + 3) + 4. A value of the value of 1 + 2 + 3 + 4 can be
found by means of rewriting in both ways followed by successive evaluations
of the binary addition operator.

5.2 Term Formation for Poly-Infix Operations

Term formation in the context of poly-infix functions requires some care. For
instance redundant brackets around constants are usually deleted under the
assumption that (1) = 1 while (1) 6≡ 1. Further for a variable x, ((x)) = (x).
The expression X ≡ 0+1+2+3+(2+2) is an instance of 4-place poly-infix
addition, with four arguments the last one of which results by an application
of two-place addition. Let Y ≡ (2 · 5) + (6 · 4 · 3) + 0 then Y is an instance
of 3-place poly-infix addition and X +Y is an instance of 8-place poly-infix
addition while (X) + Y is an instance of 4-place poly-infix addition.

The axioms stated in [13], as an infinite scheme, upon specialization
to the case of addition, can now be stated succinctly as in Table 8. These
axioms are meant to be used in combination with the axioms of Mdd.

As an application of these axioms one finds for instance: 1+2+3+4 =
[1] + [2] + [3 + 4] = ([1] + [2]) + [3 + 4] = (1 + 2) + 3 + 4. Here square
brackets are used to indicate the parts of an expression which are matched
with corresponding variables in a rewrite rule. In the above derivation
equation LAA (left association for addition, Table 8) is applied from left to
right and the matching is (x→ 1, y → 2, z → 3 + 4). Another derivation is
x+ y = [x] + [y] =eq:2 [y] + [x] = [y] + x =eq:3 [y+ 0] + x = y+ 0 + x =eq:LA

(y + 0) + x =eq:3 (y) + x =eq:2 x+ (y).
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Table 8: Equations for poly-infix addition

(0) = 0

(u) = u (for u ∈ CD)

((x)) = (x)

x+ y + z = (x+ y) + z (LAA)

x− y + z = (x− y) + z

x+ y + z = x+ (y + z)

x+ y − z = x+ (y − z)
x · y · z = (x · y) · z
x · y · z = x · (y · z)

6 Concluding remarks

The work in this paper provides progress in the direction of making ideas,
methods and techniques of the theory of datatypes and abstract datatypes
available to an audience with a focus on elementary mathematics. As ref-
erences to (abstract) datatypes and algebraic specification methods I men-
tion: [22] and [20]. Systematic work on the arithmetical datatype Q0, though
written in the tradition of mathematical logic, begins with [26]. Working
with 0 as the value of 1/0 has by now an extensive tradition in various parts
of logic and computer science, from a methodological point of view it is a
mere design decision for which alternatives exist. Working with 1/0 = ⊥,
where ⊥ is a symbolic number (see [27]), representing an absorptive ele-
ment of an arithmetical datatype is studied in detail in [12]. Working with
1/0 =∞, where ∞ constitutes an unsigned infinite object so that 1/∞ = 0
and −∞ =∞ and in the presence of ⊥ which satisfies 0 · ∞ =∞+∞ = ⊥
leads to the topic of wheels which was initiated in [30] and has been worked
out in full mathematical detail in [19]. Finally much work has been done in
the setting of transrational arithmetic and transreal arithmetic (see e.g. [1]),
where 1/0 = +∞ which is distinguished from −∞ so that the ordering of
numbers may be extended to the symbolic infinite values. A survey if these
options is given in [2].

I hold that for applications in elementary arithmetic, and in particular
for the formalization of school arithmetic, adopting 1/0 = ⊥ is more promis-
ing than adopting 1/0 = 0. However, theoretical matters are more easily
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studied in the simpler context with 1/0 = 0 which is closer to conventional
algebra due to the absence of symbolic values.

Under the assumption that 1/0 = 0, the specification MddCD
(Table 2)

is a plausible endpoint of a development that has started with the specifi-
cation given in [16]. MddCD

provides decimal notation and, upon hiding the
decimal constants outside the signature of unital rings, the specification is
most general, a notion which is introduced in this paper. The latter quality
can be achieved only when making use at least one mechanism in excess
of initial algebra specification with a finite set of conditional equations. It
has been shown in Theorem 1 that working with a single auxiliary func-
tion suffices, but the resulting specification is unattractive. A new mecha-
nism is proposed: schematic (conditional) equations where schemes involve
metavariables that range over an infinite name space. A singe (conditional)
equation scheme expands to an infinite collection of equations over an infi-
nite signature. Making use of schematic equations, a proposal which seems
to be new in the setting of algebraic specifications of arithmetical datatypes
also suffices for specifying an abstract datatype of rational numbers in a
most general way, thus leading to the specification MddCD

, a specification
which I consider to be quite satisfactory.

The notion of a specification being most general, the mechanism of
schematic equations specification, its use in MddCD

and Theorem 1 are defini-
tive in the sense that, viewed from the perspective of algebraic specification,
there is not much room, or need for improvement. There is, however, an in-
centive to investigate adaptations of these results to arithmetical datatypes
incorporating other values for 1/0 than 0. Moreover, two themes were dis-
cussed in the paper for which obtaining definitive results, if possible at all,
will require much more work: natural syntax for elementary arithmetic, and
fracterm decomposition mechanisms.

The rewrite system for rationals with decimal notation as briefly men-
tioned above opens up an area of rewrite system design where the best
options yet have to be found.

The development of “practical syntax”, that is an algebraic syntax
which closely resembles the notations which are used in the daily practice
of elementary arithmetic, leads to the notion of poly-infix operations, a topic
which admits further elaboration. This paper only touches the surface of
the subject of practical syntax for arithmetic.
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6.1 Open Questions Concerning Qd
0, Qd

0,CD
, and Q̃d

0,CD

Remarkably much is not known about the datatype Q̃d
0,CD

and its corre-

sponding abstract datatype Qd
0,CD

and the (more familiar) reduct Qd
0 thereof.

I conclude the paper with a listing of such open questions.

1. Is the conditional equational theory of Qd
0 decidable?

2. Is the equational theory of Qd
0 decidable?

(One may notice that due to the undecidability results of Matijasevich
validity of a schematic equation in Qd

0,CD
is undecidable.)

3. Is there a finite equational initial algebra specification for Qd
0 which,

viewed as a term rewrite system is both weakly terminating and con-
fluent?

4. Is there a finite schematic equational initial algebra specification for
Qd

0,CD
which, viewed as a term rewrite system is both weakly ground

terminating and ground confluent?

5. Is there an initial algebra specification of Q̃d
0,CD

which consists of
finitely many equational schemes and which, viewed as a TRS, is
weakly terminating and ground confluent (preferably with the ele-
ments of the domain of Q̃d

0,CD
as normal forms, or in fact with any

other normal forms)?

6. What is the computational complexity of the word problem (equality
between closed terms) of Qd

0,CD
?

7. Is there a finite first order extension Γ of the specification in Table 2,
perhaps with additional functions and sorts, which has the property
that for each closed equation t = r such that Qd

0,CD
|= t = r there is a

proof of t = r from Γ plus the equations of Table 2 with size linear in
the size (as a term) of t = r.

8. In [5] it is shown that upon expanding the signature ΣMd with con-
stants a1, . . . , an, for each algebraic extension Q(a1, . . . , an) its expan-
sion to a meadow Qd

0(a1, . . . , an) has a finite initial algebra specifica-
tion. The question is open if the converse is true: if Qd

0(a1, . . . , an)
has a finite initial algebra specification, must a1, . . . , an be algebraic
over Q?
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