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• Emissions of microplastic fibres from
residential dryers into air investigated.

• Mechanical drying of polyester emits
microplastic fibres into the surrounding
air.

• Over 20 mins operation, MP emissions
for a 660 g blanket were ~ 1.6–1.8 fi-
bres/m3.

• Lint of 77 ± 22.4 mg ≈ 1.1 × 106 ±
3.2 × 105 fibres captured by inbuilt fil-
tration.

• Lint emissions were approximately
0.012% of the blanket mass/wash.
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An emission source of microplastics into the environment is laundering synthetic textiles and clothing. Mechan-
ical drying as a pathway for emitting microplastics, however, is poorly understood. In this study, emissions of
microplastic fibreswere sampled froma domestic vented dryer to assesswhethermechanical drying of synthetic
textiles releasesmicroplasticfibres into the surrounding air or are captured by the inbuilt filtration system. A blue
polyesterfleece blanketwas repeatedlywashed and dried using the ‘NormalDry’ programof a commondomestic
dryer operated at temperatures between 56 and 59 °C for 20 min. Microfibres in the ambient air and during op-
eration of the dryerwere sampled and analysed usingmicroscopy for particle quantification and characterisation
followed by Fourier-Transform Infrared Spectroscopy (FTIR) and Pyrolysis Gas Chromatography-Mass Spectrom-
etry (Pyr-GC/MS) for chemical characterisation. Blue fibres averaged 6.4 ± 9.2 fibres in the room blank (0.17 ±
0.27 fibres/m3), 8.8 ± 8.5 fibres (0.05 ± 0.05 fibres/m3) in the procedural blank and 58 ± 60 (1.6 ± 1.8 fibres/
m3) in the sample. This is the first study to measure airborne emissions of microplastic fibres from mechanical
drying, confirming that it is an emission source of microplastic fibres into air – particularly indoor air.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Microplastics are small pieces of synthetic polymers with their size
commonly defined as being between 1 μmand 5mm (Dris et al., 2016a,
2016b; Henry et al., 2019). While typically defined by the length of
their longest dimension, microplastics have also been defined
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according to their diameter (Napper and Thompson, 2016) or ratio of
dimensions (Obbard et al., 2014) for characterisation. Microplastic
fibres have been reported as prevalent in all environmental compart-
ments including atmospheric air and deposition (Cai et al., 2017; Dris
et al., 2015; Dris et al., 2016a, 2016b), on beaches (Claessens et al.,
2013), surface sea water (Cózar et al., 2014), the water column (Dai
et al., 2018), marine sediments (Cole et al., 2011; Van Cauwenberghe
et al., 2013), sea ice (Obbard et al., 2014), freshwater lakes (Eerkes-
Medrano et al., n.d.; Eriksen et al., 2013; Gasperi et al., 2014), freshwa-
ter sediments (Horton et al., 2016; Klein et al., 2015) and soils (Hurley
and Nizzetto, 2018; Nizzetto et al., 2016). Microplastic fibres have been
detected in both urban (Dehghani et al., 2017; Dris et al., 2015; Dris
et al., 2016a, 2016b) and remote regions (Allen et al., 2019; Free
et al., 2014), including the Arctic (Lusher et al., 2015) and Antarctic
(Cincinelli et al., 2017) and at high altitudes (Ambrosini et al., 2019)
suggesting the capacity for long range atmospheric transport (Allen
et al., 2019). Fibres are the most commonly identified microplastic
shape reported in the gastrointestinal tracts of biota at all trophic
levels; present within food (Barboza et al., 2018) and deposited onto
food destined for human consumption (Catarino et al., 2018).
Microplastic fibres have also been identified within the human lung
(Pauly et al., 1998) and examined in simulated respiration models
operated within indoor environments (Vianello et al., 2019), therefore,
potentially posing a risk to human health through inhalation and
ingestion exposure (Gasperi et al., 2018; Prata, 2018; Wright and
Kelly, 2017).

Despite the environmental prevalence and research importance of
microplastic fibres (Henry et al., 2019), little is known about their emis-
sion sources. Point source laundry emissions of wet lint from simulated
industrial (Cocca et al., 2018; De Falco et al., 2018) and residential laun-
dry effluent have been examined using laboratory based (Carney
Almroth et al., 2018; Cocca et al., 2018; De Falco et al., 2018;
Hernandez et al., 2017; Jönsson et al., 2018) and commercially available
(Browne et al., 2011; Folko, 2015; Hartline et al., 2016; Karlsson, 2014;
McIlwraith et al., 2019; Bruce et al., 2016; Pirc et al., 2016; Sillanpää
and Sainio, 2017) laundering equipment. Early studies found that
N1900 fibres are emitted per wash of a single blanket/fleece or shirt
garment, equating to N100 fibres/L of captured laundry effluent
(Browne et al., 2011). Subsequent research has calculated that each
blanket releases approximately 1.1 × 105 fibres per wash (Carney
Almroth et al., 2018). Total laundry emissions could release anywhere
from 7 × 105 fibres per 6 kg load (Napper and Thompson, 2016)
(1.16 × 105 fibres/kg) to between 6 and 17.7 × 106 fibres
(1.2–3.5 × 106 fibres/kg) based on 0.43 to 1.27 g lint weight from a
5 kg load (De Falco et al., 2018). Variability could be attributed to
mesh sizes used in different studies, material composition, weave and
fibre structure (De Falco et al., 2018), or the use or absence of chemical
confirmation methods.

Despite previous studies identifying that laundering clothing is a sig-
nificant point source for emissions of microplastics (Carney Almroth
et al., 2018; De Falco et al., 2018; Hernandez et al., 2017; McIlwraith
et al., 2019; Pirc et al., 2016; Salvador Cesa et al., 2017; Sillanpää and
Sainio, 2017; Zambrano et al., 2019), as far as we are aware, only two
studies have examined the process of mechanical drying of clothing
and textiles. Limited to microfibre emissions captured within the inter-
nal filtration mechanisms (Pirc et al., 2016), one study established that
mechanical drying resulted in greater microplastic emissions captured
in emitted microfibres than fibres released into laundry effluent (Pirc
et al., 2016). The second study examined laundering of clothing with
wash and dry cycles, however dryer emissions were unreported
(Zambrano et al., 2019). The hypothesis was that residential dryers con-
tribute microplastic fibres into the surrounding atmospheric environ-
ment. The aim of the current study was to determine whether
microplastic fibres are captured in inbuilt filtration or are emitted into
the surrounding indoor/outdoor atmospheric environment during the
mechanical drying of synthetic textiles.
2. Materials and methods

2.1. Sampling details

A blue coloured fleece blanket, labelled by themanufacturer as 100%
polyester (fleece) and suitable for mechanical drying, was purchased
from a prominent Australian retail outlet. The blanket, measuring
152 cm× 203 cm in size, was repeatedly laundered alone consecutively
for five individual wash and dry cycles. Gravimetric analysis was con-
ducted both prior to and post laundering cycles using a laboratory bal-
ance (Metter Toledo, New Classic MS Balance). The average (±
standard deviation) of the dry blanket mass prior to and during consec-
utive laundry processing was 665 ± 6.73 g.

Laundering was performed within an 8 kg sensor washing machine
(Bosch Australia, Clayton, VIC) using a standard 45-min-cycle at 40 °C
and 1400 RPM. Samples were mechanically dried for 20 min using a
6.5 kg sensor dryer (Electrolux, Alexandria, NSW) representative of
the Australian market. The dryer was operated using the ‘Normal Dry’
program described by the manufacturer as “suitable for everyday fab-
rics”. Technical details of the drying program are unable to be provided
by the manufacturer as the internal program varies the RPM and tem-
perature automatically based on a combination of exhaust and ambient
air temperature. However, internal maximum temperaturesweremon-
itored by using a temperature button (iTemperature, Instrument
Choice) during operation both with and without a blanket, with tem-
peratures ranging between 56 and 59 °C, achieved at approximately
10 min of dryer operation. The dryer was installed within a room ap-
proximately 21 m3 in size, with no active ventilation. Access to the
room during the sampling program was prevented to minimise air
flow and potential contamination. The only air exchange occurred
when opening and closing the door immediately prior to and post
sampling.

2.1.1. Airborne particulate matter and inbuilt dryer filter sampling of poly-
ester microfibres

Airborne particulate matter was sampled using a high volume total
suspended particle air sampler (Komoto, Japan) with a sampling vol-
ume of 55 m3/h to collect all airborne particles indiscriminate of size.
Sampleswere collected onto aWhatmanGF/A glass filter (1.6 μm),muf-
fle furnaced at 450 °C for 4 h prior to use. Based on the extraction effi-
ciency of the air sampler and room volume, sampling was limited to
the first 20 min of dryer operation to avoid over sampling the air. Air
samples were collected prior to the experiment as an ambient air
room blank, during operation of the empty dryer as a procedural
blank andwhilstmechanically drying a blanket asfive replicate samples
(n = 5). Microfibres were collected by manually wiping the inbuilt
dryer filter after procedural blanks and samples with paper towel,
then stored wrapped in aluminium foil. At least ten minutes between
each sample collection of air and lint was provided to allow time for de-
position of resuspended particles (Cheng et al., 2016).

2.2. Microscopy

Analysis of the blanket, total particle count (fibres and fragments)
and characterisation (colour, morphology and size) was undertaken
using an Olympus SZ-CTV microscope coupled with a Motic Images
Plus (Software Version 3.0) camera. To facilitate representative sub
sampling, the samples (filters) from two room blanks, one procedural
blank and one sample were divided into quarters and microscopically
analysed separately to test homogeneity within the sample. Applying
an ANOVA test to the null hypothesis that there was no variance be-
tween quarters for blue fibre count resulted in an f statistic of 0.173,
with a significance of p=.913. A Brown-Forsyth test assessing homoge-
neity within the sample indicated a significance of p= .912 for blue fi-
bres inferring moderate homogeneity between the quarters – both
confirming the null hypothesis. Quartile analysis of the entire filter
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was acceptable, consistent with the recommendation of Koelmans et al.
(Koelmans et al., 2019). Quarter 3 (respective to sampler orientation)
was selected for sub sampling as it demonstrated the least variability
between sample types and replicates.
2.3. Chemical composition

2.3.1. Fourier-transform infrared spectroscopy (FTIR)
The blanket, both prior to and post laundering, and inbuilt dryer fil-

ter contents were characterised using Fourier-Transform Infrared Spec-
troscopy (FTIR) (Spectrum 2, Perkin Elmer) against a plastic specific
spectral library (ATR Polymer Introductory Library, Perkin Elmer).
After obtaining background spectra, samples were analysed in absor-
bance mode from 4000 cm−1 to 400 cm−1 at 300 scans/min, data inter-
val of 0.2 cm−1 and resolution of 16 cm−1. A random sub sample of
larger visible blue fibres were manually extracted from the filter papers
to examine for fibre composition analysis purposes to match to the
blanket source. Identification was based on the library spectra with
the highest percentage match to the sample. Only matches above 80%
were used for positive identification.

2.3.2. Pyrolysis- gas chromatography -mass spectrometry (Pyr-GC/MS)
Pyrolysis gas chromatographymass spectrometry (Pyr-GC/MS) was

used for chemical characterisation to verify the blanket material and as-
sist in determining the composition of collected fibres.

Pyrolysis was undertaken using a multi-shot micro-furnace
pyrolyser (EGA/PY-3030D) equipped with an auto sampler (AS-
1020E) (Frontier Lab Ltd., Fukushima, Japan) coupled to a GC/MS –
QP2010-Plus (Shimadzu Corporation, Japan). Being for identification
and confirmation purposes only against the reference material of the
blanket and PET analytical standard, the pyrolyser was operated in sin-
gle shot mode. Based on the optimisation parameters in Okoffo et al.
(Okoffo et al., 2020), the furnacewas programmed to 650 °Cwith pyrol-
ysis occurring for 12 s. The pyrolyser interface and GC injection port
temperature was set at 300 °C with the samples injected at a split of
1:5 onto an Ultra Alloy® 5 capillary column (30 m, 0.25 mm I.D.,
0.25 μm film thickness) (Frontier Lab). The GC oven temperature was
held at 40 °C for 2 min, increased to 320 °C at 20 °C min −1, then held
for 14 min. Helium was used as a carrier gas at 1.0 mL/min with a con-
stant linear velocity. The mass spectrometer was operated in full scan
mode, acquiring data from 40 to 600 m/z, and the pyrogram was re-
corded from 2 to 30 min.
2.4. Statistical analysis

All quantification figures are based on a confidence interval of 95%,
being ± two times the standard deviation of the mean calculated in
Microsoft Excel version 16. Microscopy quantification from one quarter
of the sample were extrapolated to the whole filter (number of fibres
detected/m3 based on Quarter 3 of the sample multiplied by 4) for
whole of sample quantifications.
2.5. Contamination controls, QA/QC

2.5.1. Room control QA/QC
Efforts to reduce contamination were undertaken during all proce-

dures. A restricted access room was utilised, cleaned thoroughly with
Ethanol 70%, wiping all surfaces with paper towel and vacuuming the
rubber floor twice two days prior to commencement. Access was
prohibited during sampling episodes. However, contamination was
possible through people entering the restricted room on days between
sampling episodes; one small open but not operational air vent and an
exposed section of 2.6 m × 0.15 m between the upper levels of the
building which could have contributed particles to the results.
2.5.2. Sampling and storage QA/QC
Sampling and laboratory contamination controls included placing

the sample blanket inside of a white cotton pillowcase when not in
use and samples stored within aluminium foil. The samples were ex-
tracted from a new mechanical dryer, wiped clean with paper towel
and Milli-Q water prior to each use (Napper and Thompson, 2016).
The dryer was operated empty between the room blank and sample.
The internal drumwas also wiped cleanwith paper towel between rep-
licates and the inbuilt dryer filter waswiped clean after each procedural
blank and sample to remove potential carry over. Workspace controls
included wiping all surrounding laboratory surfaces with Ethanol 70%
and paper towel prior to use and operating without gloves where possi-
ble. Particle free gloves were used where necessary. Green cotton labo-
ratory coats were worn and the clothing of attendees was noted during
each sampling process. Subtraction was undertaken for any coloured
fibre which was not blue, matching the blanket. The filter papers were
stored within aluminium foil and duringmicroscopy blank filter papers
were exposed to determine whether baseline subtraction of laboratory
contamination was required (Dris et al., 2016a, 2016b). Contamination
mitigation for pyrolysis analysis included using new sample cups for
each sample, collecting fibres using Ethanol 70% andMilliQ cleaned for-
ceps, wiped with paper towel.

2.5.3. Analysis QA/QC
BlankWhatman GF/D (2.7 μm) filters were exposed at all times dur-

ing microscopy. Although the samples themselves were covered while
not directly being examined, establishing baseline deposition contami-
nation during microscopy analysis was prudent.

Particles were collected immediately prior to pyrolysis analysis and
deposited into the pyrolysis sample cups undermicroscopy, confirming
particle discharge from the forceps into the cup and correct placement
for analysis. Samples were covered with aluminium foil during the
physical transfer to the automatic sampler and while loading the sam-
ples. The pyrolysis unit itself also features a plastic guardwhich protects
samples from atmospheric deposition during the duration of processing
time.

3. Results

3.1. QA/QC results

Contamination duringmicroscopy varied between 0 and 8 particles,
averaging across all room blanks, procedural blanks and samples to be
2.6± 2.5 (95% CI)fibres of various colours. No bluefibreswere detected
while analysing the room blank, 0.4 ± 1.1 blue fibres were detected
while analysing the procedural blank and 1.7± 2.2 blue fibres were de-
tected while analysing the sample. This is considered to be negligible
compared to the average number of blue fibres (8.8 ± 8.54 fibres) in
the procedural blank and in the sample (58 ± 60 fibres), and therefore
no baseline subtraction of contamination during analysis was under-
taken. Contamination during microscopy consisted of particles which
were 87% fibre shaped and 14% fragments, with themost dominant col-
our being black. Over 70% of the contamination particles were b 50 μm
in size. The size fractions and colour characteristics of the contamination
is detailed in Figs. S1 and S2 of the SI.

3.2. Air concentration

The number of blue particles on the analysed quarter of each sample
was 1.6±2.5fibres in the roomblank, 2.2±2.3 fibres in the procedural
blank and 14.6 ± 16.96 in the sample (Fig. 1).

Extrapolated to whole filter calculations, the room blank contained
6.4 ± 10.3 blue fibres, 8.8 ± 9.6 blue fibres in the procedural blank
and 58.4 ± 67.9 blue fibres in the sample.

An ANOVA grouping the room blank and procedural blank against
the sample demonstrated an f statistic of 8.9 and a p value = .01,



Fig. 1. Counts of blue particles per sample type. *Box indicates 25th and 75th percentiles,
line is the median and whiskers represent minimum and maximum values. *Procedural
Blank is the operation of the empty dryer without the blanket sample.

Fig. 3. Blue fibre size comparison between sample types.
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indicating with statistical significance that the blanket emits
microplastic fibres into the airborne environment.

3.2.1. Particle concentration in the air
Normalised against the operation of the sampler, the number of blue

fibres in the air was calculated to be 0.17 ± 0.27 fibres/m3 in the room
blank, 0.5 ± 0.5 fibres/m3 in the procedural blank and 1.6 ± 1.8 fibres/
m3 in the sample. (Fig. 2).

3.3. Air Particle Characterisation

3.3.1. Size classification
All blue particles detected were fibre shaped. The length of the blue

fibres varied from 43 to 799 μm in the room blank (average 341 ±
273 μm), 47–2016 μm (average 844 ± 819 μm) in the procedural
blank and 19–3948 μm (average 764 ± 940 μm) in the sample (Fig. 3).

3.4. Particle counts and consecutive laundering

The number of blue fibres in the atmosphere increased over consec-
utive laundering. No stability of fibre release was reached over time
from five replicates. This is in contrast to Pirc et al. (Pirc et al., 2016),
who demonstrated that shedding of a PET blanket during laundering
and mechanical drying (captured lint in inbuilt filtration) decreased
over consecutive laundering, reducing substantially post wash 3 to ac-
count for new garment shedding and stabilising after wash 7. Carney
Fig. 2. A) Quantification of blue fibres per cubic metre (m3) based on sample type.
*Procedural Blank references the operation of the empty dryer without the blanket
sample.
Almroth et al. determined that aged garments shed more fibres than
new garments. However, overall shedding of fibres from PET fabric dur-
ing laundering decreased over time, reaching stability for one type of
PET weave after wash 5 whilst no stability was reached for a second
PET weave after 10 washes (Carney Almroth et al., 2018). Hernandez
et al. found that laundered PET fabric released decreasing amounts of
microplastic fibres, stabilising after wash cycle 3 to 4 depending on
laundry surfactant (Hernandez et al., 2017). It is unknown what attrib-
uted to the increased shedding of fibres into the atmospheric environ-
ment in these results. It is hypothesised that the increase of fibres into
the air could be a result of degradation of the fibre frommechanical dry-
ing, possibly from the physical abrasion of the fabric within the internal
drum of the dryer during rotation or the weakening of the fibres from
the heat generated internally whilst mechanically drying the blanket.
The cause remains unknown as does the impact of repeated laundering
past 5 replicates, which should be examined further in future research.
(Fig. 4).
3.5. FTIR analysis

FTIR characterised the blanket as poly (1,- cyclohexanedimethylene
terephthalate) with 80% and 78% accuracy (Fig. S3) prior to processing,
and poly (1,- cyclohexanedimethylene terephthalate) with 80% accu-
racy (Fig. S4) for the inbuilt dryer filter contents. Examination of ran-
domly selected visible individual blue fibres proved unsuccessful
based on difficulties ensuring correct placement of the particle for ex-
amination and library comparisons of very low accuracy.
Fig. 4. Blue fibre emissions from consecutive laundering. *Extrapolated whole of filter
calculations. Chemical and visual characterisation of material and fibre composition.
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3.6. Pyr-GC/MS analysis

Fibres from the blanket that were unlaundered; washed and oven
incubated at 60 °C for 20 min, along with pools of three to six individu-
ally picked blue coloured fibres from the samples to determine if they
originated from the blanket fibres. Pyrograms from the blankets dem-
onstrated consistent peaks in the chromatograms between replicates
in total ion chromatograms (TIC) and indicator compounds/ions regard-
less of laundering effects. The chemical composition of the blanket was
identified to be polyethylene terephthalate (PET) based on the presence
of benzene, vinyl benzoate and benzoic acid. Insufficient indicator com-
pounds were present for the positive identification of Poly (1,-
cyclohexanedimethylene terephthalate), identifying discrepancy be-
tween FTIR and Pyr-GC/MS. Pyrograms following oven exposure for
20min at 60 °Cwere consistent with PET. Pyrograms of pools of blue fi-
bres indicated a PET composition in two replicates. All pyrograms are
presented in the Supporting Information (Figs. SI 5–SI 7).

3.7. Microfibre emissions from mechanical drying captured by inbuilt
filtration

Drying one 660 g polyester blanket generated 77 ± 22 mg of lint
which equates to ~1.1± 0.3× 106 fibres into the inbuilt filter. This is ap-
proximately 0.012% of the blanket mass. Additionally, 54 ± 60 fibres
would be released into the air. It is noted these calculations have
many associated uncertainties and assumptions, including that the per
fibre weight is the same as that used in the calculations by de Falco
et al. (De Falco et al., 2018) of 7 × 10−8 g/fibre: 6 × 106 to 17.7 × 106 fi-
bres corresponding to a lint weight of 0.43–1.27 g of lint = 1.27 g/
17.7 × 106 = 7 × 10−8 g/fibre. Inherent variability in dryer emissions
also exists regarding dryer characteristics such as different load capaci-
ties/venting options and different shedding propensities of the load
composition and fabrics based on manufacture differences and fibre
characteristics. As such, future estimates of microplastic emissions
from laundering of synthetic materials should include drying as an
emission source, however emission amounts require refinement and
further research.

4. Discussion

Airborne emissions of 58± 60 fibres per 660 g blanket sample were
higher than the amount of blue fibres present in the ambient air, being
6.4 ± 9.21 fibres. Subtracting the room blank and procedural blank
values,mechanical drying contributes ~2fibres/m3 into the surrounding
atmospheric environment.Working from the average of 58 fibres/660 g
blanket, drying 1 × 660 g blanket/once per week (consistent with
Australian dryer operation (Australian Bureau of Statistics, 2008b;
Australian Bureau of Statistics, 2011)) could emit 3 × 103 airborne fibres
into households and/or the atmospheric environment per household,
per annum. A whole 6.5 kg polyester blanket load (being 6.5 kg wet
weight capacity/average blanket wet weight of 830 g = 7.8 blanket ca-
pacity per drying load) could emit 406± 468 airborne fibres/load oper-
ated with exclusively polyester blankets. These figures do not consider
discretionary dryer usage, differences in fabric, variability in usage
both nationally and internationally or mechanical variations between
dryer types.

Asmany of these fibres escape inbuilt filtration or are releasedwhen
cleaning the filter (Cheng et al., 2016), human health implications
should also be considered and examined. When vented indoors, these
fibres are likely to accumulate in dust and contribute to microfibre
abundance being reported in dust, as well as exposure via dust. Dryer
placement within the household, clothing composition and frequency
of use are expected to vary between countries. In Australia, 56% of
households own a mechanical dryer and operate their dryer once per
week (Australian Bureau of Statistics, 2008b; Australian Bureau of Sta-
tistics, 2008a), however frequency of operation would vary nationally,
with differing climates. Dryer ownership and operation frequency also
varies internationally. For example, in 2018, 58% of UK households
owned a dryer and in 2017, 42% of households in Germany. In some
countries such as the UK, the dryer is located within or adjoining the
kitchen (Wendy Wills et al., 2013) which could potentially increase
human exposure to airborne particulates and/or result in deposition
onto food (Catarino et al., 2018) and food preparation surfaces, provid-
ing another avenue of human ingestion exposure as well as respiratory
exposure.

5. Conclusion, limitations and future work

The major limitations of this work are the small sample size, the ex-
amination of one type of polyester blanket and one type of domestic
dryer. Limitations also include the inability to calculate mass loss of
the blanket and mass of the airborne fibres/filters, making gravimetric
mass balance unachievable. Calculations of fibres per m3 are approxi-
mate, based on variability of the air volumes sampled. Drying time
was limited during treatments to the first 20min of the cycle in consid-
eration of room capacity to avoid over sampling the air. Retained water
could have impacted the mass based outcomes.

Future work is required to gain an understanding of airborne dryer
emissions, including the influence of technical specifications such as
dryer composition (condenser/vented), temperature, RPM variability,
textile materials or their length and weave composition impact on the
prevalence of emissions into the environment (De Falco et al., 2018),
as well as considering general laundry load composition or commercial
laundromat emissions. These specifications could be applied into life-
style or policy adaptations to reduce environmental and human expo-
sure to microplastic fibres.
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