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ABSTRACT
We consider the prediction of a basic thermodynamic property—hydration free energies—across a large subset of the chemical space of
small organic molecules. Our in silico study is based on computer simulations at the atomistic level with implicit solvent. We report on
a kernel-based machine learning approach that is inspired by recent work in learning electronic properties but differs in key aspects: The
representation is averaged over several conformers to account for the statistical ensemble. We also include an atomic-decomposition ansatz,
which offers significant added transferability compared to molecular learning. Finally, we explore the existence of severe biases from databases
of experimental compounds. By performing a combination of dimensionality reduction and cross-learning models, we show that the rate of
learning depends significantly on the breadth and variety of the training dataset. Our study highlights the dangers of fitting machine-learning
models to databases of a narrow chemical range.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012230., s

I. INTRODUCTION

Applications of machine-learning (ML) models to atomic and
molecular systems have had tremendous impact in our ability
to tackle a more systematic exploration of chemical compound
space.1–4 Much of these developments stem from a combination
of apt representations that incorporate the relevant symmetries
together with flexible and expressive interpolation machines.5–12

Work in the last few years has been devoted to the learning of elec-
tronic properties of molecules: atomization energies,13,14 multipole
moments,15,16 the electron density,17 or the wave function.18

In contrast, applications of machine learning have not tran-
spired as much to biomolecular systems and soft matter, where
configurational averages can lead to significant entropic effects.19–22

Recent examples include developments in coarse-grained force
fields,23–26 optimizing collective variables,27–29 as well as compound
screening and optimization.30,31

Predicting thermodynamic properties across chemical space
is of high industrial and technological relevance. Strong interests

in drug design, for instance, predictions of water–octanol par-
titioning or protein-ligand binding, are illustrated by decades-
old contributions.32,33 Computationally efficient predictions of
protein-ligand binding traditionally entail the statistical scoring
of a docked ligand in a protein pocket.34 Virtual drug discovery
adopted early on a framework to correlate the molecular struc-
ture with physicochemical as well as biochemical properties.35 More
recent applications have leveraged the use of modern machine-
learning techniques to improve predictive capabilities.36 The field
remains plagued by limited and noisy reference experimental data,
despite efforts at improving transferability.37 This overall hinders
ML models in reaching satisfying generalization across chemical
space.

At the crux of ML generalization is the breadth and variety
of the chemical space spanned by the training set.38,39 Chemical
space is overwhelmingly large—supposedly up to 1060 drug-like
molecules—making any exhaustive treatment unconceivable.40,41

Any compound dataset, typically in the range 103–107 molecules,
thereby stands as a minuscule subsampling of chemical space. How
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uniform—or at least representative—can such a subsampling be?
Experimental datasets suffer from biases due to both practical inter-
ests in specific interactions (e.g., hydrogen bonds) and historic devel-
opments in synthetic chemistry.42 Recent successes in ML appli-
cations for electronic properties, on the other hand, have largely
stemmed from dense subsets of chemical space, incorporating a rich,
representative coverage over a small neighborhood. Databases such
as the GDB algorithmically enumerate molecules that ought to be
chemically stable,43 unlike experimentally available compounds that
are scarcely populated in chemical space.

In this work, we focus on a basic yet fundamental thermo-
dynamic property: hydration free energies (HFEs). HFEs quantify
the free energy required to transfer a solute molecule from vacuum
to bulk-liquid water. We point out the existence of several recent
deep ML models for hydration free energies, including AIMNet
based on a density-based solvation model,44 DeepChem,45 which
works on functional class fingerprints, and Delfos targeting different
solutes and solvents.46 The present report consists of a comparative
study of the performance of kernel-based ML models against three
databases:

● QM9 is based on the algorithmically grown GDB database.47

QM9 consists of 134k molecules with up to nine heavy
atoms, including chemical elements C, O, N, and F. For this
study, we removed all molecules containing fluorine. We
restrict our study to 4000 randomly selected compounds.

● eMolecules consists of more than 20 × 106 commercially
available compounds.48 We limit the set to up to nine heavy
atoms and elements C, O, and N. From the resulting 34 517
molecules, we randomly selected 4000.

● FreeSolv consisting of around 500 molecules with experi-
mentally available HFEs.49 Further limiting this set to up to
nine heavy elements C, O, and N reduces to 259 compounds.

Various methods exist to predict HFEs in silico, the main
workhorse being molecular dynamics (MD) together with physics-
based force fields, coupled with rigorous free-energy calculation
techniques (e.g., alchemical transformations).50 Although explicit-
solvent MD simulations remain the best compromise in terms of
accuracy and transferability, they remain computationally expen-
sive, preventing us from easily generating large databases. Further-
more, setting up a protocol for accurate explicit-solvent simulations
requires extreme care at odds with a screening study.51 Instead,
we turn to implicit-solvent MD simulations to generate our ref-
erence free energies. Implicit-solvent simulations run in the gas
phase and add a Poisson–Boltzmann solvation term to the Hamilto-
nian.52 They display larger errors compared to explicit-solvent sim-
ulations (2.6 kcal/mol vs 1.3 kcal/mol53) but at a significantly lower
computational cost.

To enhance the generalization of the ML model, we explore two
aspects. First, rather than feeding the representation of a single con-
former, our representation averages over several snapshots—a proxy
for the underlying configurational average. Physically, any arbitrary
configuration is devoid of any statistical weight, and it is only the
configurational average that ought to link to the free energy. Second,
we probe the ability to learn atomic contributions of the free energy
via an additive decomposition ansatz. Despite the absence of physi-
cal justification, we propose it in an effort to reduce the underlying

interpolation space and will empirically test its ability to improve
transferability.

We first describe the theoretical setting, in particular, the
kernel-based ML modeling. We describe the formalism behind
the atomic-decomposition ansatz and test its transferability. Atom-
decomposed ML models will be compared to simple linear regres-
sion as a baseline to better grasp the requirements on the training set.
Finally, we compare the learning performance in the three databases,
operate cross-learning between databases to probe their transferabil-
ity, and study the breadth and variety of the spanned chemical space
through dimensionality reduction.

II. METHODS
A. Linear model

To later assess the quality of our ML models, we first propose
the use of linear regression as a baseline. We express the molecular
free energy of hydration (HFE), G, as a linear combination of atomic
contributions, weighted by the number of corresponding atoms in
the compound. For molecule i, this would correspond to

Gi = ∑
j
N j

ig
j, (1)

where N j
i is the number of atoms of type j in molecule i and g j is

the contribution of atom type j to the molecular free energy. We can
then write the linear system as a matrix equation G = Ng, where N
is the matrix of atomic contributions and g is the unknown vector of
atomic contributions.

We consider two models with different numbers of atomic
parameters: (i) four chemical elements (C, O, N, and H) and (ii) 39
atom types of the GAFF force field, as assigned by the force-field
generating ANTECHAMBER program.54

B. Kernel-ridge regression
We use kernel-ridge regression (KRR) to learn the mapping

Q ↦ G, where Q denotes an input molecular representation and
G its corresponding HFE. The two quantities can be linked via a
kernel, K̂ij = K̂(Qi,Qj) = Cov(Gi,Gj), that encodes the similarity
between inputs Qi and Qj. Training a kernel model is equivalent to
solving the set of linear equations G = K̂α, where α is the vector
of weight coefficients. This vector is optimized by inversion of the
Tikhonov-regularized problem

α = (K̂ + λ𝟙)−1G, (2)

with hyperparameter λ and the identity matrix 𝟙. Prediction for the
compound Q∗ is subsequently obtained through an expansion of the
kernel evaluated on the training set

G(Q∗) =
N

∑
i=1

αiK̂(Qi,Q
∗), (3)

where index i runs over all N training points.
We use a Gaussian kernel with the Euclidean norm

K(Qi,Qj) = exp
⎛
⎝−
∥Qi −Qj∥2

2

2σ2

⎞
⎠, (4)
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where hyperparameter σ defines the width of the kernel distribution.
The molecular representation, Q, used in this work is the Spectrum
of London and Axilrod-Teller-Muto (ATM) potential (SLATM).55,56

It encodes each atom i of a molecule via a histogram of one-, two-,
and three-body terms in the neighborhood of atom i, stored in one
vector. Each level of interaction encodes, respectively, (i) the nuclear
charge Zi, (ii) the spectrum of radial distribution of the London
potential ρiji (r), and (iii) the spectrum of angular distribution of
the ATM potential ρijki (θ), where r is the distance, θ is the angle,
and i ≠ j ≠ k. The representation is invariant to translation, rota-
tion, and permutation. A molecular representation is thereby built
through the concatenation of each atom vector. Both molecular
and atomic variants of this representation exist and are used here.
SLATM describes a single molecular configuration, while free ener-
gies inherently result from a configurational average. Therefore, we
adapt the representation used to be not just the SLATM vector of
one conformation but also the average of the SLATM vectors over
30 Boltzmann-weighted snapshots sampled every 100 ps from the
gas-phase simulations used to calculate the HFEs (see Sec. II D).
Working with the average, rather than a concatenation, allows us to
bypass any ordering issue of the conformations in the representation
vector.

C. Atomic-decomposition ansatz
The above-mentioned KRR scheme aims at the prediction of

HFEs for an entire molecule at once—one pair of molecules per
entry in the kernel matrix K̂. As an alternative, we explore the pos-
sibility to learn atomic contributions to the HFE. We generalize our
linear models (Sec. II A) such that each atomic contribution may not
be strictly limited in resolution to a chemical element alone but more
broadly its local environment, which we refer to here as an atom-
in-molecule contribution. This approach will benefit from a smaller
interpolation space, thereby facilitating learning.57,58 Expressing the
HFE of a molecule from atomic contributions de facto assumes a
decomposition,

G(Q) =
natoms

∑
l=1

g(ql), (5)

where ql is the atom-in-molecule representation of atom l and
g(ql) is its contribution to the molecular HFE, G. We will refer to
Eq. (5) as the atomic-decomposition ansatz. Effectively, the aSLATM
representation of ql generalizes the concept of atom types in
Eq. (1).

We aim at establishing a second mapping q ↦ g via a local
kernel k̂. Equation (5) links the two kernels, K̂ and k̂. The target
properties available for the global kernel will allow us to infer an
ML model for the local kernel, despite the lack of atomic target
properties. We rewrite Eq. (5) as a set of N molecules with a corre-
sponding set of M atomic contributions by introducing the mapping
matrix L̂

G = L̂g. (6)

The coefficient L̂ij is 1 if molecule i contains atomic contribution j,
and 0 otherwise. In case that molecule i contains n identical atomic
contributions j, this would lead to a coefficient L̂ij = n, reducing the
size of the matrix. This bookkeeping matrix allows us to link the

global and local kernels K̂ = L̂k̂L̂⊺.58 Training an ML model takes
advantage of both this relationship between kernels and the linear
system of equation G = K̂α,

α = (L̂k̂L̂⊺ + λ𝟙)−1
G. (7)

Once trained, predictions of both atomic contributions and molec-
ular free energies are, respectively, given by

g∗ = (L̂k̂∗)⊺α, (8)

G∗ = L̂∗(L̂k̂∗)⊺α, (9)

where k̂∗ and K̂∗ refer to the local and global kernels between the
training and test data, respectively.

In the following, k̂ takes the same form as K̂ [see Eq. (4)]. For
the atomic representation, we use the atomic variant of SLATM,
denoted herein aSLATM.

The hyperparameters that need optimization consist of the reg-
ularization term λ in Eq. (2) as well as the length-scale normalization
σ of the Gaussian kernel [Eq. (4)]. A systematic grid search led to the
values σ = 100 and λ = 10−8. We found the latter being very much
insensitive to the accuracy of the kernel over a wide range of values.
For all KRRs, the results shown are averaged over five independent
runs using random train-test splits.

D. Computer simulations
Computer simulations were carried out in GROMACS 2016.4.59

We generated initial molecular configurations using rdkit starting
from their simplified molecular-input line-entry system (SMILES)
string.60 The force field was generated from the ANTECHAMBER pro-
gram package with AM1-BCC atomic charges.54,61 We ran gas-
phase molecular dynamics simulations using Langevin dynamics
at T = 300 K for 3 ns, of which we omit the first 100 ps for
equilibration. We average over 29 evenly spaced snapshots of the
trajectory and compute the HFE from the molecular mechanics
Poisson–Boltzmann surface area (MM-PBSA), as implemented in
g_mm/pbsa.62,63 The polar contribution was obtained using the
Poisson–Boltzmann solver with the vacuum, solute, and solvent
dielectric constants set to ε = 1, 2, and 80, respectively. The non-
polar solvation energy was calculated using the solvent accessible
surface area method using a probe radius r = 1.4 Å3, surface-
tension parameter γ = 0.022 677 8 kJ mol−1 Å−2, and an offset
ΔGcorr = 3.849 82 kJ mol−1.

III. RESULTS
A. Reference free energies

We first benchmark our implicit-solvent calculations against
experimental HFEs. We focus on a subset of 355 molecules from
the FreeSolv database, consisting solely of chemical elements C, H,
O, and N (herein denoted CHON). Figure 1 shows a correlation of
the HFEs from both simulations and experiments. The mean abso-
lute error (MAE) of the implicit solvation HFEs of these molecules
is 1.29 ± 1.24 kcal/mol. The standard deviation is heavily impacted
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FIG. 1. Correlation of experimental, Gexp, and implicit-solvent, Gcalc, hydration free
energies (HFEs) for 355 CHON molecules from the FreeSolv database. The subset
of points in green focuses on compounds up to nine heavy atoms. The dotted line
indicates perfect agreement.

by outliers of large molecular weight. However, the databases we
work with in this study contain mostly compounds up to nine heavy
atoms, which feature a lower standard deviation (highlighted in
Fig. 1)—MAE of 1.24 ± 0.86 kcal/mol.

We further compare the consistency of the calculated implicit-
solvent and experimental free-energy datasets by comparing learn-
ing curves of ML models. KRR was applied to learn reference free
energies obtained by each dataset. We use the FreeSolv dataset with
up to nine heavy atoms. For both learning procedures, we rely on
the same averaged aSLATM vectors obtained from the conforma-
tional ensemble of the simulations. The results for both sets of HFEs
are shown in Fig. 2. The implicit-solvation free energies yield bet-
ter learning performance than the experimental values. Despite a

FIG. 2. Learning curves for the HFE of the FreeSolv dataset using both the experi-
mental and the calculated implicit-solvent free energies. Both curves are averaged
over five independent simulations.

virtually identical slope, the experimental predictions are shifted up
by roughly 0.3 kcal/mol. We point at two possible reasons: (i) This
shift can be affected by the conformational sampling being identi-
cal for both curves, leading to more consistency for the calculated
implicit-solvent free energies, as conformational sampling and free
energies were obtained from the same set of simulations. (ii) How-
ever, it could also be caused by the experimental free energies being
more heterogeneous. All in all, the results show that implicit-solvent
calculations offer a reasonable proxy for the experimental values,
which we rely on in the rest of this work.

In the supplementary material, we provide CSV files containing
all reference free energies calculated as the basis of this work.

B. Atomic-decomposition ansatz
We set out to compare the learning performance of HFEs

from the molecular representation and the atomic-decomposition
ansatz exposed in Sec. II C. As a challenging test, we specifically
focus on learning both types of transferability simultaneously: across
databases and compound size. We first picked 663 molecules out of
QM9, with 86 and 577 compounds featuring 7 and 8 heavy atoms,
respectively. Using this training set, we optimized both a global and
a local ML model to predict implicit-solvent HFEs. We apply the
two ML models to predict the implicit-solvent HFEs of a different
set of 351 molecules taken out of the FreeSolv database, which fea-
ture a broad range of molecular weights. Figure 3 displays the mean
absolute error of the two ML models as a function of the number of
heavy atoms in the predicted (test) compounds. Overall, we find that
the global ML model K̂ leads to significantly larger errors—up to a
factor of 5 in error compared to the atomic kernel for the smallest
and largest compounds. The atomic-decomposed ML model, on the
other hand, features a slight improvement around seven and eight
heavy atoms—used for the training set. Furthermore, it displays a
remarkably flat behavior (shown on a logarithmic scale), indicat-
ing robust transferability across molecular weight. We do observe
an increase in the error for molecules toward 15 heavy atoms, likely
hinting at a lack of coverage of sufficient chemical environments in
the training. The effect may be compounded with significant errors

FIG. 3. Atomic and Molecular SLATM representations using a KRR model learned
on 1000 QM9 compounds with seven and eight heavy atoms. Predictions on the
FreeSolv database.
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of the implicit-solvent method for large compounds, suggesting a
lack of coherence across the molecular weight.

The results empirically justify the atomic-decomposition
ansatz: the ML model using the aSLATM atom-in-molecule rep-
resentation reaches better performance across molecular weights,
despite the lack of formal justification for Eq. (5). Indeed, the free
energy is an ensemble property of the entire system. A decomposi-
tion of G into finer components may be considered, for instance, via
the thermodynamic integration (TI) formula.64 TI couples the two
Hamiltonians of the solute without and with the solvent

G = ∫
1

0
dλ⟨∂U

∂λ
⟩
λ
, (10)

whereU is the potential energy of the system, λ is a coupling parame-
ter between the two Hamiltonians, and ⟨⋅⟩λ denotes an average over
the canonical ensemble at the coupling parameter λ. For the most
explicit-solvent atomistic force fields, the non-bonded interactions
of U are pairwise decomposable. In our case, the use of MM-PBSA
clouds a simple decomposition due to the solvation term. However,
establishing links between TI and an atom-decomposed ML model
may help to shed light on key contributions of the free energy.

The present results indicate that any error due to the decompo-
sition ansatz must be smaller than the accuracy of learning reached
from this small dataset. The behavior of the atomic-decomposed ML
model as a function of the training-set size is probed next.

C. Atomic decomposition: Rate of learning
In order to test the performance of our atomic-decomposed ML

model, we take as a training set 4000 random molecules sampled
from the QM9 database, for which we have calculated the HFE using
MM/PBSA.

As a baseline model, we predict the HFEs using linear regres-
sion, with both the four-element CHON model and the 39 GAFF
atom types. Both models were trained on the HFEs of 2000 randomly
selected molecules. We report the mean absolute errors for the held-
out 2000 compounds in Table I. The four-element CHON model
has an MAE of 1.80 ± 1.98 kcal/mol, while the refined 39-atom-type
GAFF model yields 1.06 ± 0.02 kcal/mol. As such, splitting chemi-
cal environments in the 39 atom types defined by GAFF almost yield
chemical accuracy (1 kcal/mol).

These linear models offer us a way to better assess the perfor-
mance of the atomic-decomposed ML model. Figure 4 compares
the different regressions in terms of their out-of-sample predic-
tions, displaying the MAE as a function of the training-set size. The
atom-decomposed ML model needs 40 and 300 molecules to out-
perform the CHON and GAFF linear models, respectively. With
2500 molecules in the training set, the atom-decomposed ML model

TABLE I. Mean absolute error for both CHON and GAFF linear regression models.
Both models were trained and tested on a 50% hold-out split of 4000 QM9 molecules.

Model name Parameters MAE (kcal/mol)

CHON elements 4 1.80 ± 1.98
GAFF atom types 39 1.06 ± 0.02

FIG. 4. Learning curve of the hydration free energies for 4000 randomly chosen
molecules of the QM9 database. The two lines show the prediction error for the
CHON and GAFF linear models. KRR is the atomic-decomposed ML model.

yields an MAE of only 0.7 kcal/mol. It illustrates how offering
a richer description consistently improves the performance: from
chemical elements (CHON) to a select list of force-field-based atom
types (GAFF) and to the atom-in-molecule aSLATM representa-
tion. The latter can be seen as a continuous generalization of the
others, offering a more accurate mapping between local chemical
environment and free-energy contribution.

D. Database bias
If learning HFEs across a subset of QM9 requires ∼102 train-

ing compounds, how transferable is this result to other databases?
We set the stage for this question by comparing atom-decomposed
learning in three different databases, which differently try to span
chemical space: QM9, eMolecules, and FreeSolv. We will more
directly address the question further down in Sec. III E.

Figure 5 shows independent learning curves for the three
databases. While QM9 and eMolecules show similar learn-
ing performance—the latter being slightly more performant—we

FIG. 5. Learning curves for the HFE ML models for the three databases QM9,
eMolecules, and FreeSolv. All curves are averaged over five independent runs.
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observe surprisingly different behavior for FreeSolv: the learning
curve reaches chemical accuracy after less than 10 compounds and
only 0.3 kcal/mol after 200 training molecules. The three ML models
feature identical architectures and representations; the results sug-
gest a significant bias in the nature of the subsets of chemical space
they span.

To probe the difference in the spanned chemistries of the three
databases, we performed dimensionality reduction. We used the
UMAP algorithm.65 UMAP builds a fuzzy topological representa-
tion in the original high-dimensional space and identifies a low-
dimensional embedding by means of a cross-entropy measure. The
UMAP parameters consisted of the number of neighbors (15), the
minimum distance (0.1), the dimensionality of the embedding (1 or
2), and the metric (Euclidean).

To compare the three databases, we need to project them onto
the same reduced subspace. A one-dimensional (1D) projection was
first trained from the atomic SLATM representation on QM9 as

FIG. 6. (a) Probability distribution, p(φ1), of the 1D UMAP projection of the three
databases. (b) Probability distribution, p(φ1, φ2), and one-dimensional cuts of the
2D UMAP projection of the three databases QM9 (QM), eMolecules (EM), and
FreeSolv (FS).

we assumed QM9 to cover chemical space more broadly than the
other two since it represents a subset of the GDB. After training,
we map all three databases onto this 1D projection, subsequently
called φ1. Figure 6(a) shows the probability distribution, p(φ1), as
a measure of coverage in that subspace. The results are striking:
While QM9 shows a remarkably flat distribution across the range
of φ1, eMolecules displays larger fluctuations, while FreeSolv yields
high peaks, indicating significant localization within the subspace.
This localization translates into significant bias in the chemical
space spanned by the database—most atomic environments clus-
ter at few points within the φ1 subspace. This behavior explains
the exceptional learning behavior shown in Fig. 5. The intermediate
regime of eMolecules (between broad and spiked) indicates slight
but noticeable localizations in chemical space, translating in learn-
ing performance that is slightly more favorable than QM9. As such,
the commercially available database shows less diversity than the
algorithmically generated database.

The same trend applies when mapping to a two-dimensional
(2D) mapping of the chemical space spanned by these databases. A
similar training procedure is applied as for the 1D case. Figure 6(b)
shows the 2D probability distribution, p(φ1, φ2), as well as 1D cuts
thereof. The sharp peaks of FreeSolv subsist in both dimensions.
The 2D space more explicitly illustrates the presence of “islands”
in chemical space—most strongly pronounced for FreeSolv—but we
also find significant differences between QM9 and eMolecules.

E. Cross-learning
To further probe the overlap between subsets of chemical space

spanned by the three datasets, we performed cross-learning experi-
ments, in which we train on one dataset and predict on another. For
FreeSolv, all 259 molecules were used for the training and test sets,
while for QM9 and eMolecules, we considered all 4000 molecules
for training and up to 3000 randomly selected compounds for test-
ing. Figure 7 and Table II report the cross-learning results for our
ML models, which we analyze in the following.

Figure 7(a) reports cross-learning trained on the FreeSolv
database. The FreeSolv → FreeSolv is identical to what was shown
in Fig. 5, and cross-learning to the other databases shows a signif-
icant deterioration of the accuracy: QM9 and eMolecules saturate
to roughly 1.9 kcal/mol and 1.3 kcal/mol, respectively. We recall
the results from Fig. 4: the CHON and GAFF linear models reach
an accuracy of 1.80 kcal/mol and 1.06 kcal/mol, respectively. As
such, the FreeSolv cross-learning on QM9 is worse than a four-
parameter linear regression. Beyond the MAEs at the highest train-
ing size, what is striking is the apparent plateau behavior after the
first decade of training points: Learning improves negligibly from
10 to 102 data points. This aspect speaks for the lack of breadth of
chemical space—the dataset features few, over-represented chem-
ical environments. Furthermore, the small but noticeable offset
between eMolecules and QM9 suggests more difficulties in learn-
ing the latter, which further hints at its broader diversity of chemical
environments.

Figure 7(b) demonstrates the opposite effect: to what extent the
three databases can predict FreeSolv. All three databases eventually
lead to similar accuracy, albeit with different learning rates: Free-
Solv is more efficient at learning itself than the others, while QM9
and eMolecules show significant offsets. This is another hint at the
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FIG. 7. [(a)-(c)] Learning curves for the cross-learning experiments: training on one dataset and prediction on another. FS, EM, and QM stand for FreeSolv, eMolecules, and
QM9, respectively. The legends indicate the type of cross-learning: X → Y means training on X and prediction on Y.

TABLE II. Cross-learning machine learning models of the three databases considered
in this study. All energies given in kcal/mol.

Prediction

Training QM9 eMolecules FreeSolv

QM9 0.65 ± 0.02 1.00 ± 0.03 0.36 ± 0.02
eMolecules 1.26 ± 0.05 0.61 ± 0.01 0.35 ± 0.01
FreeSolv 2.04 ± 0.06 1.26 ± 0.05 0.24 ± 0.02

broader diversity of compounds from eMolecules and, to a larger
extent, QM9.

Finally, Fig. 7(c) focuses on the comparison between eMolecules
and QM9. All curves roughly start at the same offset at low train-
ing data. Both self-learning curves (QM9 → QM9 and eMolecules
→ eMolecules) reach the lowest MAE, thanks to a slightly more
favorable rate of learning. When it comes to cross-learning, QM9
shows a slight advantage at learning eMolecules than vice versa.
Based on the dimensionality reduction (Fig. 6), we argue that this
arises from the broader diversity of chemical environments present
in QM9.

IV. CONCLUSIONS
In the present work, we study the machine learning (ML) of

hydration free energies (HFEs) across a subset of small organic
molecules—those made of chemical elements C, H, O, and N. To
probe the effects of database biases on the learning of thermo-
dynamic properties, we generated reference HFEs using implicit-
solvent computer simulations at an atomistic resolution. We find
that an atomic-decomposition ansatz, in which we assume a linear
decomposition of the HFE in atomic contributions, offers remark-
able transferability, compared to the more straightforward learn-
ing of the molecular property. As a baseline, we compare two lin-
ear models based on atom types, as often used in force fields.
A 39-parameter model based on the GAFF atom types yields
1.06 kcal/mol. Training a better performing atom-decomposed ML

model requires a couple hundred molecules in the training set. The
atom-in-molecule environment encoded in the aSLATM represen-
tation offers de facto a generalization of the concept of force-field
atom types.

ML models trained on different databases show significantly
different performance. Using dimensionality reduction, we find
that FreeSolv and eMolecules, two databases of commercially avail-
able compounds, show strong localizations in the chemical space
spanned. We can very efficiently train an ML model out of the
FreeSolv database, but it fails to generalize to the other databases.
Furthermore, cross-learning across databases shows that training
a model on FreeSolv and deploying it on QM9 is worse than a
four-parameter linear model and shows a severe plateau behav-
ior, highlighting the lack of chemical diversity. The combination
of cross-learning and dimensionality reduction shows that super-
vised learning can help empirically establish which database probes
a broader chemical space. It also shows that deploying an ML model
on independent databases can help probe its generalization.

SUPPLEMENTARY MATERIAL

See the supplementary material for CSV data files for subsets
of the FreeSolv,49 eMolecules,48 and QM947 databases containing
SMILES strings and associated hydration free energies, as calcu-
lated from atomistic simulations with implicit solvent. The data
file for FreeSolv additionally contains reference experimental free
energies.49
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