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Abstract

The principle of predictive irrelevance states that when two competing mod-
els predict a data set equally well, that data set cannot be used to discrimi-
nate the models and –for that specific purpose– the data set is evidentially
irrelevant. To highlight the ramifications of the principle, we first show how
a single binomial observation can be irrelevant in the sense that it carries
no evidential value for discriminating the null hypothesis θ = 1/2 from a
broad class of alternative hypotheses that allow θ to be between 0 and 1. In
contrast, the Bayesian credible interval suggest that a single binomial ob-
servation does provide some evidence against the null hypothesis. We then
generalize this paradoxical result to infinitely long data sequences that are
predictively irrelevant throughout. Examples feature a test of a binomial
rate and a test of a normal mean. These maximally uninformative data
(MUD) sequences yield credible intervals and confidence intervals that are
certain to exclude the point of test as the sequence lengthens. The resolution
of this paradox requires the insight that interval estimation methods –and,
consequently, p values– may not be used for model comparison involving a
point null hypothesis.

Keywords: Prediction; NML; Bayes factor; Credible interval estimation;
Confidence interval estimation; maximally uninformative data sequences.
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...Bayesians cannot test precise hypotheses using confidence intervals. In classical statistics one
frequently sees testing done by forming a confidence region for the parameter, and then rejecting a
null value of the parameter if it does not lie in the confidence region. This is simply wrong if done
in a Bayesian formulation (and if the null value of the parameter is believable as a hypothesis).

Berger, 2006, p. 383

In the past few years, the status quo in statistical practice, often called “null hy-
pothesis significance testing” (NHST), has received increased scrutiny (e.g., Benjamin et
al., 2018; Johnson, 2013; Nuzzo, 2014; Wasserstein & Lazar, 2016; Wasserstein, Schirm,
& Lazar, 2019). As an alternative to NHST, the use of confidence intervals is now widely
recommended, both by individual researchers (e.g., Cumming, 2014; Grant, 1962; Loftus,
1996) and through the APA Manual, by the Society for Personality and Social Psychology
Task Force on Publication and Research Practices, by the guidelines for journals published
by the Psychonomic Society, and by Psychological Science. These recommendations can
be viewed as a reorientation toward parameter estimation, where the size of the effect is of
key interest, and away from hypothesis testing (alternatively called model selection or model
comparison), where the existence of the effect is of primary concern.

Although the confidence interval—and its Bayesian version, the credible interval—
are meant for estimation, not for testing, it is nevertheless tempting to use intervals for
model selection, for instance by rejecting H0 whenever a 95% interval does not include
the null value. Here we demonstrate with simple examples why this temptation should
be resisted. Because the interval-rejection scheme is formally equivalent to p-value null
hypothesis testing, our demonstration is also a critique of p-values. The key idea is that
intervals computed underH1 cast doubt on the value posited byH0, even whenH0 predicted
the observed data no worse than H1. To make this more precise, we first introduce the
principle of predictive irrelevance.

The Principle of Predictive Irrelevance

The principle of predictive irrelevance states that when two or more rival models Hr
turn out to have predicted the observed data y equally well, these data y do not change the
relative plausibility of the models, and the data are said to be inconsequential or irrelevant
(Jeffreys, 1973, p. 31; see also Keynes, 1921, pp. 59-60; Wrinch & Jeffreys, 1923, pp. 5-7;
Jeffreys, 1931, pp. 19-20; Carnap, 1950, Chapter 6; and Evans, 2015).

The concept of irrelevance can be given a sequential interpretation by invoking the
prequential principle (Dawid, 1984):

“Forecaster has to predict, sequentially, a string of uncertain quantities
(X1, X2, ...), whose values are determined and revealed, one by one, by Nature.
Various criteria may be proposed to assess Forecaster’s empirical performance.
The weak prequential principle requires that such a criterion should depend on

This work was supported by a Vici grant from the The Netherlands Organisation for Scientific Research
(NWO). Correspondence concerning this article may be addressed to Eric-Jan Wagenmakers, University
of Amsterdam, Department of Psychology, PO Box 15906, 1001 NK Amsterdam, the Netherlands. Email
address: EJ.Wagenmakers@gmail.com.
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Forecaster’s behaviour or strategy only through the actual forecasts issued.”
(Dawid & Vovk, 1999, p. 125)

In other words, when rival forecasters issue identical forecasts for the data that are ac-
tually observed, these data do not provide any information about the forecasters’ relative
forecasting ability.

To illustrate the above principles, consider the hypothetical scenario of two rival
meteorologists, A and B, who issue one-day-ahead probabilistic forecasts about the weather
on three consecutive days. As shown in Table 1, for the first day the meteorologists issue
identical forecasts: a 5% chance of rain, a 25% chance of overcast skies, a 40% chance
of partly cloudy skies, and a 30% chance of sunny weather. Consequently, before seeing
the weather on the first day, we already know that this information will be irrelevant for
assessing which meteorologist is more reliable. The first day arrives and the skies are
overcast. Both meteorologists update their knowledge in light of this information and issue
a forecast for the second day. As can be seen from Table 1, A and B now issue different
probabilistic forecasts, potentially allowing the information provided by the weather on
the second day to differentiate between the meteorologists. The second day arrives and
the skies are partly cloudy – an outcome that both meteorologist predicted has a 40%
chance of occurring. Thus, the observed weather on day two is predictively irrelevant. Both
meteorologists again update their knowledge in light of the new information and issue a
forecast for the third day. Their predictions differ except for the eventuality of rain, which
both assign a probability of 5%. Day three arrives and it rains. As before, these data are
predictively irrelevant.

� � � �

Weather on Day I: �

Predictions of meteorologist A 5% 25% 40% 30%
Predictions of meteorologist B 5% 25% 40% 30%

Weather on Day II: �

Predictions of meteorologist A 10% 40% 40% 10%
Predictions of meteorologist B 5% 35% 40% 20%

Weather on Day III: �

Predictions of meteorologist A 5% 25% 50% 20%
Predictions of meteorologist B 5% 10% 60% 25%

Table 1: Predictive irrelevance for the hypothetical case of two rival meteorologists who issue one-
day ahead probabilistic forecasts, taking into account the knowledge of the weather on the preceding
days. See text for details.

Note that for the second and third day, any other weather would have been predic-
tively relevant. However, the weather sequence that is actually observed (i.e., “overcast”→
“partly cloudy”→ “rain”) is deemed equally likely by the rival meteorologists, and therefore
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offers no clue as to who is better at their job. Below we will use the principle of predictive
irrelevance to to highlight why intervals may not be used to test a point null hypothesis.
The first two examples involve a single binomial observation; we then generalize the idea to
a series of observations of arbitrary length.

The Magician’s Coin

Suppose a coin is either perfectly fair, with a probability of landing tails equal to 1/2,
or maximally unfair, in the sense that it was created to have heads on both sides or tails
on both sides, and with either option equally likely a priori. The coin is tossed once, and
lands tails. This observation is irrelevant for discriminating between the rival accounts, as
both predict that the observation tails will occur with probability 1/2. Note that although
this datum is irrelevant for discriminating the fair coin from the unfair coin, it does carry
information: conditional on the coin being unfair, we now know with certainty that it will
have tails on both sides. Thus, for the next toss the unfair coin hypothesis has been updated
to an tails-only hypothesis. Consequently, the next toss is certain to be predictively relevant
– if the second toss lands heads, the tails-only hypothesis is irredeemably disconfirmed; if
it lands tails, the tails-only hypothesis would receive modest support, as it would have
outpredicted the fair coin hypothesis by a factor of 2.

The intuition provided by the magician’s coin is this: particular data (e.g., a single
coin toss) can be utterly irrelevant for discriminating rival hypotheses (i.e., the perfectly fair
hypothesis versus the maximally unfair hypothesis). The exact same data can, however, be
highly relevant within the context of a single model – for the maximally unfair hypothesis,
the first coin toss landing tails irrevocably refutes the possibility that the coin is double-
heads. Thus, the extent to which the data are informative or diagnostic depends crucially on
the hypotheses under scrutiny. When interpreting data and assessing evidence, it is therefore
of great importance to keep firmly in mind what hypotheses are in play. Specifically, it would
be a grave mistake to assume that the coin is unfair, use the data to update to a tails-only
hypothesis, and then argue that the data somehow undercut the hypothesis that the coin
is fair.

The Bent Coin

We now turn to a more detailed treatment of a continuous version of the coin. Specif-
ically, consider the case of testing two hypotheses for a binomial probability parameter θ:
under the null hypothesis H0 the value of θ is fixed at 1/2, whereas under the alternative
hypothesis H1 the value of θ is allowed to vary from 0 to 1. For instance, the efficacy of an
two experimental drugs D1 and D2 may be assessed by testing patients in pairs, such that
one member receives drug D1, and the other receives drug D2. In the ith pair, if the patient
receiving drug D1 shows more improvement than the patient receiving drug D2, the data
are scored as yi = 1; when drug D2 outperforms drug D1, the data are scored as yi = 0.
Hence, H0 reflects the hypothesis that the ingredients that differ between D1 and D2 are
biologically inactive and do not impinge on the relevant physiological mechanism.

Suppose a single observation is obtained, y1 = 1 (i.e., in the first pair, the patient
receiving drug D1 improves more than the patient receiving drug D2). Based on this single
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observation, what can we say about the extent to which hypothesis H0 and H1 can be
discriminated? To address this question we consider two methods of model comparison.

Normalized Maximum Likelihood Solution

The first model comparison method is Normalized Maximum Likelihood (NML),
an implementation of the Minimum Description Length principle (e.g., Grünwald, 2007;
Myung, Navarro, & Pitt, 2006; Rissanen, 1978, 2001). NML computes the degree to which
models are useful for compressing data; concretely, NML equals the maximum likelihood
for the observed data y, divided or normalized by the sum of maximum likelihoods over all
data sets x that could possibly be observed. For our example we easily obtain the following
NML scores:

NML(H0) =
p(y1 = 1 | θ̂y1 = 1/2)

p(x1 = 0 | θ̂x1 = 1/2) + p(x1 = 1 | θ̂x1 = 1/2)
=

1

2
(1)

NML(H1) =
p(y1 = 1 | θ̂y1 = 1)

p(x1 = 0 | θ̂x1 = 0) + p(x1 = 1 | θ̂x1 = 1)
=

1

2
(2)

Thus, from the perspective of data compression as instantiated by NML, the observa-
tion y1 = 1 does not provide any information about the relative adequacy of H0 versus H1.
The same result holds for y1 = 0, such that the general rule is that, according to NML, the
first binomial observation, whatever its value, is completely uninformative for comparing
H0 to H1.

Bayes Factor Solution

The second model comparison method is the Bayes factor (e.g., Jeffreys, 1939; Kass
& Raftery, 1995; Wrinch & Jeffreys, 1921). Because the Bayes factor BF01 quantifies the
extent to which a rational agent should change its prior model odds to posterior model
odds, BF01 is said to grade the strength of the evidence that the data provide for H0 versus
H1. The Bayes factor equals the probability of the observed data under H0 versus H1. For
our example:

BF01 =
p(y1 = 1 | H0)

p(y1 = 1 | H1)
=

1/2∫ 1
0 p(y1 = 1 | θ)p(θ) dθ

, (3)

where p(θ) is the prior distribution that quantifies one’s uncertainty about θ before the data
are observed, assuming H1 is true and an effect exists. As the reader can easily confirm,
for any prior distribution symmetric around θ = 1/2, it is the case that p(y1 = 1 | H1) =
p(y1 = 0 | H1) = 1/2 and, therefore, BF01 = 1.1

Thus, from the perspective of belief revision as quantified by the Bayes factor, the ob-
servation y1 = 1 does not provide any information about the relative adequacy of H0 versus
H1. The same result holds for y1 = 0, such that the general rule is that, according to the
Bayes factor, the first binomial observation, whatever its value, is completely uninformative
for comparing H0 to H1 (see also Jeffreys, 1961, p. 257).

1In the remainder of this article we assume that p(θ) is symmetric around θ = 1/2.
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In sum, both NML and the Bayes factor arrive at the same conclusion: the value
of the first binomial observation is perfectly ambiguous and does not provide any reason
to prefer H1 over H0. The agreement between NML and Bayes factors is not coincidental:
both have a predictive interpretation in the sense of accumulating one-step ahead prediction
errors (Wagenmakers, Grünwald, & Steyvers, 2006). The predictive interpretation is most
apparent in the Bayes factor formulation, where H0 and H1 both predict that the observed
y1 = 1 occurs with probability 1/2. As dictated by the principle of predictive irrelevance,
when competing models make identical predictions about to-be-observed data, the actual
observation of such data cannot be used to discriminate the models.

Credible Interval Solution

Having established the perfect non-informativeness of the first binomial observation
for comparing H0 to H1, we now turn to an analysis using Bayesian credible intervals, a
procedure commonly used to contrast H0 and H1, even though credible intervals were not
developed for that purpose.

The credible interval is based on the posterior distribution; here we determine the
bounds such that x% of posterior probability falls in the smallest possible range (i.e., the
highest posterior density or HPD interval). The HPD interval depends on the prior distri-
bution p(θ). For instance, if p(θ) ∼ beta(.5, .5) (i.e., the Jeffreys’ prior, shown in Figure 1),
observing y1 = 1 results in a 95% credible interval for θ that ranges from .23 to 1; the 66%
credible interval ranges from .70 to 1. Under the Jeffreys’ prior, 82% of posterior mass for
θ is larger than 1/2.2

Another HPD interval can be constructed using a prior that puts most mass near
extreme values of θ = 0 and θ = 1, as is appropriate when it is remains possible that the
potentially binary event always happens or never happens, such as a drug always thinning
the blood, or the addition of a chemical never turning a solution green (Jaynes, 2003, pp.
382–385). For instance, if p(θ) ∼ beta(.05, .05), observing y1 = 1 results in a 95% credible
interval for θ that ranges from .66 to 1; the 66% credible interval ranges from .9998 to 1.
Under the beta(.05, .05) prior, 97% of posterior mass for θ is larger than 1/2.3

From a Bayesian perspective, the case of a single binomial observation demonstrates
how data that are irrelevant for distinguishing H0 from H1 can, when analyzed exclusively
under H1, yield an interval estimate that excludes the value stipulated under H0. Indeed,
Howie (2002, p. 211) claimed that “[...] for a naive Bayesian, the hypothesis of bias will be
reinforced after a single toss whatever its results.” As pointed out earlier by Wrinch and
Jeffreys (1921), the näıveté is to ignore altogether the null hypothesis of zero bias.

Figure 1 provides an overview of the problem. It appears paradoxical4 that data can
be perfectly uninformative for comparing H0 to H1 (cf. Figure 1, middle panels), and at

2This can be confirmed in R by executing library(binom); binom.bayes(1, 1, conf.level=.95,

type="h", prior.shape1=.5, prior.shape2=.5); binom.bayes(1, 1, conf.level=.66, type="h",

prior.shape1=.5, prior.shape2=.5).
3This can be confirmed in R by executing library(binom); binom.bayes(1, 1, conf.level=.95,

type="h", prior.shape1=.05, prior.shape2=.05); binom.bayes(1, 1, conf.level=.66, type="h",

prior.shape1=.05, prior.shape2=.05).
4We use the word paradox in the sense implied by Lindley (1957), that is, “a statement or proposition

that seems self-contradictory or absurd but in reality expresses a possible truth.” (http://dictionary
.reference.com/browse/paradox; see also Cousins, 2017).
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the same time provide reason to believe that θ > 1/2 rather than θ < 1/2 (cf. Figure 1,
bottom left panel). The practical relevance is that when misused for model comparison, the
Bayesian credible interval can easily mislead researchers into believing that uninformative
data cast doubt on H0. Similarly, our example demonstrates that the Bayesian credible
interval cannot be used to assess the degree to which the data are uninformative in terms
of their support for H1 versus H0.

In the above examples we considered only a single observation. Below we extend
this idea to data sequences of arbitrary length, and demonstrate the inevitable nature of
the conflict between the principle of predictive irrelevance and interval-based methods of
rejecting a point null hypothesis.

Generalization: Maximally Uninformative Data Sequences

The principle of predictive irrelevance from a single binomial observation may be
generalized to a sequence of observations in a straightforward manner. Specifically, given
two rival models, say H0 and H1, there exists a sequence of observations that is maximally
uninformative. In the case of the competing meteorologists, for example, Table 1 shows a
maximally uninformative data (MUD) sequence: ‘overcast’ → ‘partly cloudy’ → ‘rain’. By
construction, at no point in the data sequence is there meaningful evidence for or against
the rival models. Below we will demonstrate that as a MUD sequence grows large, the
interval computed under H1 will exclude the value stipulated under H0, and the p-value
will tend to zero. Hence, the practitioner who uses interval methods or p-values to ‘reject
the null hypothesis’ may do so for data that are predictively irrelevant. Below we describe
the main results; relevant mathematical proofs can be found in Appendix A.

Test of a Binomial Rate Parameter

As before, we consider binomial data y. The null hypothesis H0 holds that θ = 1/2.
The alternative hypothesis H1 assigns θ a symmetric beta prior, such that p(θ |H1) ∼
beta(a, a). When a is large, the prior distribution is increasingly peaked around the value
of 1/2. A researcher is free to choose a value of a ∈ (0,m) at will, where m may be very large
but not infinity, for else H1 morphs into H0. Denote the chosen value of a by a?. Then there
exists an associated sequence of successes and failures that keeps the Bayes factor as close
to 1 as possible throughout; this sequence is constructed by generating, on every trial, the
binomial outcome that keeps the log of the Bayes factor closest to zero. This procedure yields
a sequence of almost irrelevant observations of length n, or in short, a MUDn

a? sequence.
Because of the discrete nature of the data, MUD sequences for the binomial rate are only
approximately irrelevant. The top panel of Figure 2 shows an example of the Bayes factor
for a MUDn=1000

a?=1 sequence, confirming that it remains close to 1 throughout.

We now analyze the MUDn=1000
a?=1 sequence by computing the lower bound of a 95%

exact confidence interval on θ under H1. The middle panel of Figure 2 shows that, as the
MUDn=1000

a?=1 sequence lengthens, the lower bound of the 95% confidence interval will exceed
the value θ = 1/2. Appendix A proves that this happens for any MUD sequence. When the
sample information dwarfs the information in the prior, the Bayesian credible interval for
this particular scenario will be numerically close to that of the exact confidence interval.
Hence, the lower bound of the 95% credible interval will also exceed the value θ = 1/2.
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p(θ)

H1
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θ
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Figure 1. Interval estimation methods cannot be used for model comparison. The top left panel
shows the alternative hypothesis implemented through Jeffreys’s prior, H1 : p(θ) ∼ beta(.5, .5); the
top right panel shows the null hypothesis, H0 : θ = 1/2. The middle two panels show that for the
first observation, y1, both H1 and H0 make identical predictions. Consequently, y1 is irrelevant
for discriminating H1 from H0. The bottom left panel shows that under H1, the posterior mass is
skewed towards 1 and away from 1/2, giving the false impression that the first observation does carry
evidential value that θ does not equal 1/2, and that H1 may be favored over H0.
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Figure 2. Inference for a binomial MUDn=1000
a?=1 sequence. Top panel: Throughout the sequence,

the predictive adequacy of H0 : θ = 1/2 closely matches that of H1 : θ ∼ beta(a? = 1, a? = 1), and
consequently the Bayes factor remains close to 1. Middle panel: As the MUD sequence grows, the
lower bound of the 95% exact confidence interval will exceed the value θ = 1/2. Bottom panel: As
the MUD sequence grows, the p-value decreases toward zero and indicates that H0 can be rejected.
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Moreover, the one-to-one relation between confidence intervals and p-values implies
that, as the MUD sequence grows, the p-value for a test of H0 will be smaller than .05.
Appendix A shows that as the sequence lengthens, the p-values tends to zero, for all MUD se-
quences. The bottom panel of Figure 2 confirms that this holds for the binomial MUDn=1000

a?=1

sequence.

In sum, for any symmetric prior beta distribution on θ under H1 a data set can be
constructed for which H0 and H1 show almost the same predictive performance. When
these MUD sequences are analyzed using intervals or p-values, the results falsely suggest
that the data provide grounds to reject H0.

Test of a Normal Mean

To demonstrate the generality of the conflict between the principle of predictive irrel-
evance and interval methods we now consider the z test, where data y come from a normal
distribution with unknown mean µ and known standard deviation σ, that is, y ∼ N(µ, σ2).
Here we arbitrarily set σ = 1; thus, y ∼ N(µ, 1). The null hypothesis holds that the mean
µ is zero: H0 : µ = 0, whereas the alternative hypothesis assigns µ a normal prior centered
on 0: H1 : µ ∼ N(0, τ2). The researcher can choose any value of τ > 0, denoted τ?. When
τ? is small, the prior distribution is increasingly peaked around the value of 0. Associated
with a particular choice for τ? is a MUD sequence for which the predictive adequacy of
H0 : µ = 0 equals that of H1 : µ ∼ N(0, τ?). The top panel of Figure 3 confirms this for
the example of a MUDn=1000

τ?=1 sequence.

As the MUD sequence lengthens, the lower bound of the 95% confidence interval for
µ will exceed the value posited under H0. The middle panel of Figure 3 demonstrates
this for the case of a MUDn=1000

τ?=1 sequence. The mathematical proof is in Appendix A. As
mentioned above, the numerical closeness between confidence and credible interval means
that the lower bound of the 95% Bayesian credible interval will also exceed the value posited
under H0.

As for the binomial scenario, when the MUD sequence increases the p-value goes to
zero. The bottom panel of Figure 3 shows this for the case of a MUDn=1000

τ?=1 sequence. Note
that for this relatively popular prior and its associated MUD sequence, the p-value decreases
steeply with n, and dips below .05 when n = 42.

Before proceeding, we address two points of critique on MUD sequences. The first
is that, in the case of the z test example, a positive MUD sequence is a monotonically
decreasing series – a dramatic case of model misspecification. The second critique is that
a frequentist analysis of real data demands a sequential treatment. Both points are valid
if the MUD sequence was meant as an illustration of a sequential analysis for real data;
however, MUD sequences are meant to demonstrate the inferences that are drawn for a
specific combination of summary statistic and sample size. For instance, the bottom panel
of Figure 3 shows that for all sets of 42 observations and test statistic t = 1.96, the p-value
is just smaller than .05 whereas, with τ? = 1, the data are predictively irrelevant.

In sum, binomial and normal MUD sequences are constructed to be predictively
irrelevant throughout. Nevertheless, interval methods and p-values suggest that the data
undercut the value postulated by H0.
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Figure 3. Inference for a normal MUDn=1000
τ?=1 sequence. Top panel: Throughout the sequence, the

predictive adequacy of H0 : µ = 0 equals that of H1 : µ ∼ N(0, τ? = 1), and consequently the Bayes
factor remains at 1. Middle panel: As the MUD sequence grows, the lower bound of the 95% exact
confidence interval will exceed the value µ = 0. Bottom panel: As the MUD sequence grows, the
p-value decreases toward zero and indicates that H0 can be rejected.
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The Conflict Explained

When used to show that the data undermine H0, both standard interval methods and
p-values violate the principle of predictive irrelevance. To understand the reason for this,
we discuss the case of credible intervals, confidence intervals, and p-values separately.

Credible intervals. Bayesian credible intervals and Bayes factors sometimes provide
the same information. For example, consider inference about a binomial parameter θ. With
a prior distribution symmetric around θ = 1/2, the posterior mass larger than 1/2 corresponds
to a Bayes factor that compares H2 : θ < 1/2 versus H3 : θ > 1/2 (see Appendix B for a
proof). For a test between these directional hypotheses, it is clear that the value of the
first observation does carry evidential value. However, directional hypotheses are relatively
easy to distinguish, because their parameter values do not overlap and they make opposite
predictions. In contrast, the null hypothesis H0 : θ = 1/2 is a special case of the alternative
hypothesis H1 : θ ∼ beta(a, a), making these hypotheses more similar and therefore more
difficult to distinguish. In other words, the same data may provide compelling evidence for
H3 over H2 (i.e., that θ is higher instead of lower than 1/2), yet no evidence at all for H1

over H0 (i.e., that θ is equal to 1/2 instead of unequal to 1/2).
The credible interval under H1 ignores H0 as a separate hypothesis whose predictive

performance merits special attention. In many situations it is perfectly appropriate to
ignore the null hypothesis – the null hypothesis may not be of any interest, or it may not
be plausible even as a rough approximation. The problem arises when a credible interval is
computed with the express purpose to demonstrate that the data undermine H0. But the
data undermine H0 only when they reduce its plausibility, that is, when p(H0 | y) < p(H0)
(e.g., Evans, 2015). This is not what the credible interval computes.

Confidence intervals. When the information in the sample overwhelms the informa-
tion in the prior, the Bayesian credible is often numerically similar to the frequentist con-
fidence interval. Nevertheless, the explanation for why the confidence interval violates the
principle of predictive irrelevance is different from the explanation for the credible interval
above.

First note that the frequentist confidence can be conceptualized as the inversion of a
test (e.g., Natrella, 1960; Stuart, Ord, & Arnold, 1999, p. 175); in other words, a param-
eter value falls outside a 95% confidence interval if it would have been rejected by a null
hypothesis significance test with an α-level of .05. In other words, in order to explain why
the confidence interval excluded the null value for data that are predictively irrelevant, we
need to explain why the p-value for these data is lower than .05. This brings us to the next
section.

P -values. The reason that the p-value is lower than .05 (‘reject the null hypothesis’)
for predictively irrelevant data is that the null hypothesis significance test considers only
data expected under H0, but ignores the data expected under H1 (e.g., Rouder, Morey,
Verhagen, Province, & Wagenmakers, 2016; Rouder, Morey, & Wagenmakers, 2016). It
may happen, therefore, that data that are surprising under H0 are just as surprising under
H1, on balance providing no evidence against H0.

The paradoxical conflict between p-values and the principle of predictive irrelevance
is closely related to the famous Jeffreys-Lindley paradox (e.g., Cousins, 2017; Jeffreys, 1939;
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Lindley, 1957; Wagenmakers & Grünwald, 2006). In the Lindley setup, data are constructed
to have the same p-value, say p = .01; as sample size increases, effect size needs to decrease
to keep the p-value constant at .01. As a result, with a large enough sample, the data
are certain to provide strong evidence in favor of the null hypothesis. The result for the
MUD sequences is conceptually identical, but here we have kept the evidence constant (i.e.,
predictive irrelevance) and observed the corresponding decrease in the p-value. Because
evidential irrelevance is easier to achieve than strong evidence in favor of H0, the conflict
now appears with relatively small sample sizes and reasonable priors. For instance, in the
z test example the p-value was significant at the .05 level when n = 42 — for predictively
irrelevant data. This is a result that cannot be discarded as practically inconsequential.

We should stress that the qualitative form of the conflict is not due to the form of the
prior distribution. In our examples, the researcher was free to specify a prior distribution
with great flexibility. But for every prior distribution there exists a MUD sequence for
which the conflict will inevitably arise. In sum, the Bayesian credible interval violates the
principle of predictive irrelevance because it ignores H0, whereas the frequentist confidence
interval and the p-value violate the principle because they ignore H1.

Concluding Comments

The principle of predictive irrelevance holds that when two models predict the ob-
served data equally well, these data cannot be used to distinguish between them. This prin-
ciple is naturally accommodated by model comparison methods such as NML and Bayes
factors, methods that specifically compare the predictive performance of the competing
models. In contrast, parameter estimation methods such as confidence and credible inter-
vals usually commit to a single model and shun a head-to-head comparison between rival
hypotheses.5 As a result, interval methods are biased against the value posited under the
point null hypothesis, and predictively irrelevant data may be judged to provide support
against the point null hypothesis.6

Interval methods are beguiling, in the sense that they are widely recommended, rel-
atively convenient to compute, and seemingly easy to interpret (but see Morey, Hoekstra,
Rouder, Lee, & Wagenmakers, 2016). When a 95% interval does not include the value stipu-
lated under H0, it is tempting to conclude that the data speak against that value. Although
this will in practice often be the case, the work reported here demonstrates that such a con-
clusion is not principled, and may be misleading in practice. In general, when interpreted
as hypothesis tests, interval methods display a bias against H0 that can fool researchers
into reporting results that have a relatively low probability of being reproducible.

As stated by Berger (2006, p. 383) in the epigraph: “[...] Bayesians cannot test
precise hypotheses using confidence intervals. In classical statistics one frequently sees
testing done by forming a confidence region for the parameter, and then rejecting a null
value of the parameter if it does not lie in the confidence region. This is simply wrong if
done in a Bayesian formulation (and if the null value of the parameter is believable as a

5Estimation methods can be made consistent with model comparison methods if they assign point mass
to the value specified under the simpler model. However, modern-day advocates of estimation methods
argue explicitly against this possibility.

6Interval methods are biased against simpler models more generally; the point null hypothesis is just the
most common, mathematically convenient representation of a skeptic’s position.
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hypothesis).” The principle of predictive irrelevance provides another demonstration of this
point. Figure 4 captures Berger’s warning in cartoon form. Despite their superficial appeal,
researchers do well to stay clear of the use of interval methods to test null hypotheses.
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Figure 4. Researchers should resist the Siren song of interval methods to test null hypotheses.
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Appendix A
Maximally Uninformative Data (MUD) Sequences

This appendix contains the proof that, for any MUD sequence, the p value will de-
crease to zero. Specifically, we examine the case of testing a binomial rate parameter and
testing a normal mean with known variance.

MUD Sequence for the Test of a Binomial Rate Parameter

Let binary data y be binomially distributed: y ∼ bin(n, θ). We wish to compare
H0 : θ = 1/2 versus H1 : θ ∼ beta(a, a). Before the data are observed, a researcher is free to
choose any value of a ∈ (0,m), where m can be very large but not infinity (in the latter case,
H1 is identical toH0). Let the chosen value of a be denoted a?. Then there exists a sequence
of successes and failures that keeps the Bayes factor as close to 1 as possible throughout;
this sequence is constructed by generating, on every trial, the binomial outcome that keeps
the log of the Bayes factor closest to zero. This procedure yields a sequence of almost
irrelevant observations of length n, or in short, a MUDn

a? sequence. For the binomial case,
this sequence is not unique; first, there is label-switching, and second, with an equal number
of successes and failures the next datum is irrelevant (such scenarios may be relevant with
a very high value of a?). Because of the discrete nature of the data, MUD sequences for the
binomial rate are only approximately irrelevant.

Proof of Conflict. We wish to prove that as n→∞, for all binomial MUD sequences,
p → 0 (“reject H0”), or, equivalently, the lower bound on the confidence interval will
exclude zero. Jeffreys (1961, pp. 256-257, p. 333) provides the approximate BF01 for

the case where a = 1 (i.e., the uniform prior) as BF01 =
√

2n
π exp {−1

2χ
2}. Recall that

the Savage-Dickey density ratio holds that BF01 = Posterior height of θ at 1/2
Prior height of θ at 1/2 (Dickey & Lientz,

1970; Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010). When a = 1, the prior
height equals 1, and hence Jeffreys’ Bayes factor equals the posterior height of θ at 1/2.
Further, note that when n→∞, the posterior distribution will converge to the same shape,
regardless of the shape of the prior distribution.

Suppose now that BF01 = 1. Hence, the posterior height of θ at 1/2 equals the
prior height of θ at 1/2. Denote the prior height by the constant c. The posterior height

is asymptotically independent of the prior, and hence
√

2n
π exp {−1

2χ
2} = c. This then

yields the identity c
√
π exp {12χ

2} =
√

2n. Thus, when n → ∞, χ2 → ∞; for completely
uninformative data, as n increases without bound, so should the χ2 value.

In contrast, the p value for a classical χ2 test of a binomial proportion depends only
on the obtained χ2 value and its comparison to a χ2 distribution with one degree of freedom.
Thus, as χ2 →∞, p→ 0. This completes the proof.

MUD Sequence for the Test of a Normal Mean

Consider the z test, where data y come from a normal distribution with unknown mean
µ and known standard deviation σ, that is, y ∼ N(µ, σ2). Here we arbitrarily set σ = 1;
thus, y ∼ N(µ, 1). The null hypothesis holds that the mean µ is zero: H0 : µ = 0, whereas
the alternative hypothesis assigns µ a normal prior centered on 0: H1 : µ ∼ N(0, τ2).
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We derive the MUD sequence for the z test with the help of the Savage-Dickey density
ratio (Dickey & Lientz, 1970; Wagenmakers et al., 2010). A MUD sequence has a Bayes
factor of 1 throughout, meaning that the height of the normal posterior at µ = 0 always
has to equal the height of the normal prior at µ = 0. After observing a datum yi, the
prior standard deviation s is updated to a posterior standard deviation s′ through s′ ←√
s2/(1 + s2) and the prior mean m is updated to a posterior mean m′ through m′ ←

(m+ s2yi)/(1 + s2). The Savage-Dickey identity says that when BF01 = 1 the prior and the

posterior normal distribution have to be of equal height at µ = 0; hence, 1
s
√
2π

exp {−[m
2

2s2
]} =

1
s′
√
2π

exp {−[m
′2

2s′2 ]}. Consequently, s′

s = exp {−1
2 [m

′2

s′2 −
m2

s2
]}. Substituting the values for s′

and m′ and solving for yi yields two solutions that differ in sign only: yi = − 1
s2

[m ±√
1 + s2

√
s2 log (1 + s2) +m2]. Each of the two MUD sequences consist of values that all

have the same sign. This allows us to generate a MUD sequence for the z test.

Proof of Conflict. We wish to prove that as n→∞, for all Gaussian MUD sequences,
p→ 0 (“rejectH0”), or, equivalently, the lower bound on the confidence interval will exclude
zero.

The Bayes factor for the z test is given by BF01 =
√

1 + ρ−2 exp {−1
2 [ t2

1+ρ2
]}, where

t = ȳ
√
n and ρ = 1/(τ

√
n) (Berger & Delampady, 1987). Hence, when BF01 = 1 we

obtain 1/(
√

1 + ρ−2) = exp {−1
2 [ t2

1+ρ2
]}. That is, 1/

√
1 + τ2n = exp {−1

2 [ t2

1+(τ2n)−1 ]}, and

consequently
√

1 + τ2n = exp {12 [ t2

1+(τ2n)−1 ]}. Now if n → ∞, the left part of the equation

increases without bound. The right part of the equation, however, approaches exp {12 [t2]}.
Hence, when n → ∞, and under the condition that BF01 = 1, t has to increase without
bound. However, the p value is given by p = 2[1 − Φ(|t|)], and it is a function only of t.
Consequently, for MUD sequences that become very long, t increases without bound, and
p decreases without bound. This completes the proof.

Appendix B
Correspondence between Posterior Distributions and Bayes Factors

for Directional Hypotheses

Consider a Bayes factor between two directional hypotheses for a binomial rate pa-
rameter: H2 : θ < 1/2 versus H3 : θ > 1/2. Let H1 be the encompassing hypothesis where θ
is unrestricted; hence, H2 and H3 are nested under H1. Specifically, if H1 : θ ∼ beta(a, a),
then H2 : θ ∼ beta−(a, a) and H3 : θ ∼ beta+(a, a), where beta−(a, a) indicates a folded
beta distribution with mass lower than 1/2and beta+(a, a) indicates a folded beta distribu-
tion with mass higher than 1/2.

As shown by Klugkist, Laudy, and Hoijtink (2005), the Bayes factor in favor of each of
the directional hypotheses against the encompassing hypothesis can be obtained by assessing
the change from prior to posterior probability consistent with the specified restriction. That
is:

B21 =
p(θ < 1/2 | y,H1)

p(θ < 1/2 | H1)
, (4)

and

B31 =
p(θ > 1/2 | y,H1)

p(θ > 1/2 | H1)
. (5)
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From the definition of the Bayes factor we have B23 = B21/B31. Consequently,

B23 =
p(θ < 1/2 | y,H1)

p(θ > 1/2 | y,H1)
× p(θ > 1/2 | H1)

p(θ < 1/2 | H1)
. (6)

With a symmetric prior, the second term cancels, yielding:

B23 =
p(θ < 1/2 | y,H1)

p(θ > 1/2 | y,H1)
. (7)

Hence, with a symmetric prior the Bayes factor for comparing two directional hypotheses
simplifies to a comparison of encompassing posterior mass consistent with the restriction.
For example, consider Jeffreys’ prior and y1 = 1. As mentioned in the main text, 82% of
posterior mass for θ is larger than 1/2, and 18% is lower. Applying Equation 7 we obtain
B23 = .18/.82 = 0.22; hence, B32 = 1/0.22 = 4.55, indicating that the datum is about 4.55
times more likely under H3 than it is under H2.


