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ABSTRACT
Cooperation for public goods poses a dilemma, where individuals are
tempted to free ride on others’ contributions. Classic solutions involve
monitoring, reputation maintenance and costly incentives, but there are
important collective actions based on simple and cheap cues only, for
example, unplanned protests and revolts. This can be explained by an
Ising model with the assumption that individuals in uncertain situations
tend to conform to the local majority in their network. Among initial
defectors, noise such as rumors or opponents’ provocations causes some
of them to cooperate accidentally. At a critical level of noise, these coop-
erators trigger a cascade of cooperation. We find an analytic relationship
between the phase transition and the asymmetry of the Ising model, which
in turn reflects the asymmetry of cooperation and defection. This study
thereby shows that in principle, the dilemma of cooperation can be solved
by nothing more than a portion of random noise, without rational decision-
making.
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People may want to realize or preserve public goods, for example, democracy and clean air, but
because contributors are disadvantaged in the face of free riders, there is a dilemma (Gavrilets, 2015;
Hardin, 1968; Olson, 1965; Ostrom, 2009). Solutions typically require efforts of the participants to
monitor one another (Rustagi, Engel, & Kosfeld, 2010) and spread information (gossip) (Nowak &
Sigmund, 2005) through their network reliably that establishes reputations (Panchanathan & Boyd,
2004), upon which some of them have to deliver individual rewards or (threats of) punishments
(Fehr & Fischbacher, 2003), under pro-social norms to preclude arbitrariness. These provisions are
not always (sufficiently) available, though, whereas in certain situations, participants still manage to
self-organize cooperation, even without leaders. Cases in point are impromptu help at disasters, non-
organized revolts against political regimes (Lohmann, 1994; Tilly, 2002; Tufekci, 2017) and sponta-
neous street fights between groups of young men.

These examples have in common a high uncertainty of outcomes, and unknown benefits and
costs. Rational decision-making is therefore not feasible. Participants who identify with their group
or its goal (Van Stekelenburg & Klandermans, 2013), and thereby feel group solidarity (Durkheim,
1912), use the heuristic of conformism to the majority of their network neighbors (Wu, Li, Zhang,
Cressman, & Tao, 2014), which can be based on no more than visual information. Human ancestors
lived in groups for millions of years (Shultz, Opie, & Atkinson, 2011) and in all likelihood, solidarity
and conformism are both cultural and genetic (Boyd, 2018). On an evolutionary timescale, con-
formism must have been beneficial on average when future benefits and costs were unknown (Van
den Berg & Wenseleers, 2018). To explain cooperation under conformism, we use an Ising model
(Weidlich, 1971; Galam, Gefen, & Shapir, 1982; Jones, 1985; Stauff, 2008; Castellano, Fortunato, &
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Loreto, 2009). This model recovers the critical mass that makes cooperation self-reinforcing but
without the rationality assumptions of critical mass theory (Marwell & Oliver, 1993). Other applica-
tions of the Ising model to a range of social science problems are reviewed by Castellano cum suis
(2009).

1. Model

A group g of individuals who share an interest in a public good is modeled as a network with
weighted and usually asymmetric ties Aij denoting i paying attention to j. There is no assumption
that i and j know each other before they meet at the site where collective action might take place.
Consistent with other models of social influence (Friedkin & Johnsen, 2011), the adjacency matrix is
row-normalized, yielding cell values aij ¼ Aij=

P
j Aij, hence

P
j aij = 1.

Individuals have two behavioral options, defect (D) and cooperate (C), C >D > 0, and all defect at
the start. The average degree of cooperation among n individuals is described by an order parameter
M ¼ 1=n

Pn
i¼1 Si, where the behavioral variable Si can take the value Si ¼ C or Si ¼ �D, for example

S ¼ f1;�1=2g. Everybody gets an equal share of the public good but cooperators incur a cost.
A widely used definition of payoffs for cooperators �g

C and defectors �g
D in a group g is the following

(Perc et al., 2017),

�
g
C ¼ rðNC þ 1Þ=n� 1;

�
g
D ¼ rNC=n; (1)

with r > 1 an enhancement, or synergy, factor of cooperation, and NC the number of cooperators
when the focal player decides. In our case,

Pg
C ¼ rðM þ C=nÞ � C;

Pg
D ¼ rðM � D=nÞ; (2)

which is identical to Eq. 1 in standard game theory when C ¼ 1 and D ¼ 0. Our payoffs can be
negative but that does not matter because they are used only comparatively. Other, for example non-
linear, payoff functions (Marwell & Oliver, 1993) may also be used. The key point, however, is that
under high uncertainty, participants do not maximize their payoff (directly) but align with others
instead, thereby forming a collective lever that can increase their payoff while avoiding exploitation.
Behavior and network ties are expressed in the conventional, but here asymmetric, Ising model

H ¼ �
Xn
i�j

aijSiSj: (3)

Solving the model boils down to minimizing H, where H=n can be interpreted as average dissa-
tisfaction. Minimizing can be done computationally with a Metropolis algorithm (Barrat,
Barthelemy, & Vespignani, 2008), where individuals decide sequentially as in many network models,
or through a mean-field analysis, elaborated below.

High-uncertainty situations to which the model applies are characterized by turmoil, T or
temperature in the original model. It causes arousal, measurable as heart rates (Konvalinka et al.,
2011) and produces noise (Lewenstein, Nowak, & Latané, 1992) in individuals’ information about
the situation, which in turn becomes partly false, ambiguous, exaggerated or objectively irrelevant.
Turmoil and its noise may consist of rumors, fire, provocations and violence. Some social move-
ments produce turmoil by themselves, for instance an increasingly frequent posting of online
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messages (Johnson et al., 2016). Arousal and noise entail “trembling hands” (Dion & Axelrod, 1988)
as game theorists say, which means a chance that some individuals accidentally change their
behavior. The model is to show that few accidental cooperators entail a cascade of cooperation.
An example of turmoil and its ramifications is the self-immolation of a street vendor in
December 2010, which, in the given circumstances, set off the Tunisian revolution. Other examples
are the revolts in East Germany (Lohmann, 1994) and Romania in 1989 and in Egypt and Syria in
2011 (Hussain & Howard, 2013), where protesters were agitated by rumors about the events in
neighboring countries. Autocratic rulers try to prevent revolts by suppressing turmoil, for instance
by tightening media control.

Noise is different from a stable bias, for instance the ideology of an autocratic regime, which
entails revolts against it less often than a weakened regime or stumbling opponents in street fights.
Opponents’ weakness gives off noisy signals that they might be overcome, which readily entail
collective actions against them (Collins, 2008; Goldstone, 2001; Skocpol, 1979). Whereas responses to
noise are typically spontaneous, collective responses to stable signals, biased or not, tend to be
mounted by organized groups with norms, incentives and all that (Goldstone, 2001; Tilly, 2002;
Tufekci, 2017). Combinations of signal and noise also occur, of course, which can result in, for
example, an organized peaceful demonstration to suddenly turn violent. Our focus is on spontaneous
cooperation.

2. Results

Our general result is that within finite time and at low turmoil, cooperation does not get off the
ground, but it does emerge at a critical level Tc. This pattern is illustrated by the red line in Figure 1(b)
along the direction of the arrows. The figure was obtained with a mean-field approach, but numerical
simulations with the Metropolis algorithm show up the same pattern, with lower Tc for small networks
(Figure 2). Other topological variations, of density, clustering and degree distribution, are elaborated
elsewhere (Bruggeman & Sprik, 2020). Moreover, if a certain cluster is exposed to locally higher
turmoil, cooperation emerges there. The model thus shows that at a critical level of turmoil, few
accidental cooperators can trigger a cascade of cooperation. If T keeps increasing way beyond Tc,
cooperators co-exist with increasing numbers of defectors, until the two behaviors become equally
frequent. If in actuality cooperation then collapses completely is an issue for further study. Otherwise,
cooperation ends when the public good is achieved, the participants run out of steam, or others
intervene.

Alternatively, if participants get to understand an enduring situation, their uncertainty will reduce
and they may start acting strategically, which requires pro-social norms to prevent. If the partici-
pants then develop such norms prescribing rewards and punishments, these norms can be easily
modeled as field(s) by adding term(s) � h

P
Si to the Hamiltonian (Eq.3). Consequently, coopera-

tion emerges without a phase transition. The actual maintenance of these norms, however, will entail
additional costs over and above the contributions, whereas spontaneous cooperation is relatively
cheap.

2.1. Comparison with the symmetric Ising model

Rewriting the asymmetric Ising model in a symmetric form enables a direct comparison with results
in the literature for symmetric models and a generalization to arbitrary values of S ¼ fC;�Dg.
A model with asymmetric values can be reformulated as a symmetric model with an offset, or bias,
S0 ¼ ðC � DÞ=2 and an increment Δ ¼ ðC þ DÞ=2 by the mapping

S ¼ fC;�Dg ! fS0 þ Δ; S0 � Δg (4)
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Figure 1. Cooperation for public goods. (a) Mean dissatisfaction H=n and level of cooperation M. When all defect, H=n is at a local
minimum, on the left, but to proceed to the global minimum where all cooperate, on the right, participants are hindered by a hill.
(b) Mean-field analysis with S ¼ f1;�1=2g shows below Tc one stable state with mostly cooperators, at the top, and another
stable state in finite time with mostly defectors, at the bottom. A metastable state in between, indicated by the dotted line,
corresponds to the hilltop in Figure 1(a). Above Tc only one state remains, where with increasing T , cooperators are joined by
increasing numbers of defectors.
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Accordingly, the values chosen in Figure 1(b), S ¼ f1;�1=2g, imply Δ ¼ 0:75 and S0 ¼ 0:25. For
given Δ, increasing S0 means increasing interest in the public good, or, in line with the literature on
protests, increasing grievances (Van Stekelenburg & Klandermans, 2013).

Substitution of S0 and Ŝi chosen from fΔ;�Δg in H yields

H ¼ �
X
ij

aijðS0 þ ŜiÞðS0 þ ŜjÞ: (5)

Figure 2. Numerical simulation on a university e-mail network with n ¼ 1133 and clustering C ¼ 0:254; data from Guimerà (2003).
(a) the network at a near-critical turmoil level of T ¼ 0:101; S ¼ f1;�1=2g. Some nodes start cooperating (red) whereas most still
defect (blue). (b) Tc is smaller than in the mean-field approximation, but the overall pattern is qualitatively the same (compare to
Fig. 1 b).

Figure 3. Consequences of shifting S0 with the mean-field approach (MF), keeping Δ ¼ 0:75. (a) With increasing S0, less agitation
is necessary to turn defectors into cooperators. For comparison, numerical simulations on several random networks with
density = 0.8 are shown as well. (b) The proportion of defectors pc at Tc decreases with increasing S0.
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Expanding H in orders of S0 yields

�
X
ij

aijŜiŜj � S0
X
ij

aijŜi þ
X
ij

aijŜj

 !
� S20

X
ij

aij: (6)

The first term in the expansion Hsym ¼ �Pij aijŜiŜj is a symmetric model with the same adjacency
matrix as the original asymmetric model. The second term Hloc ¼ �S0ð

P
ij aijŜi þ

P
ij aijŜjÞ is

proportional to S0 and can be interpreted as a local field that modifies Hsym. The contribution of
this local field can be expressed in terms of row and column sums of aij as

Hloc ¼ �S0
X
i

X
j

aij þ
X
j

aji

 !
Ŝi: (7)

For row-normalized adjacency matrices, with
P

j aij ¼ 1 for all rows i, Hloc becomes

Hrow
loc ¼ �S0

X
i

X
j

aij

 !
Ŝi � S0

X
i

Ŝi; (8)

where the first term is a local field varying for each Ŝi, and the second term is a homogeneous
external field independent of aij. The third term in the expansion of H is independent of the values

of Ŝ and is a constant depending on aij only. Hence, it does not play a role in the minimization of H.
For a connected network with row-normalization, the last expression can be further simplified to

Hrow
loc ¼ �2S0

X
i

Ŝi: (9)

The asymmetry in S is then equivalent to a symmetric system with an external field 2S0. In another
paper, we simulate the effect of different S0 values in different network clusters on the tipping point
(Bruggeman & Sprik, 2020).

2.2. Mean-field analysis

The expected value of M as a function of T can be obtained by assuming that the network is very
large and by abstracting away from its topology; in the language of thermodynamics, by approx-
imating the interaction energy by the energy of one spin (here, behavior) in the mean-field of its
neighbors (Barrat et al., 2008), M ¼ hSi. The value of M can now be expressed in closed form in
terms of the probabilities given by the exponential of the Hamiltonian energy and T as

M ¼ ðS0 � ΔÞeðS0�ΔÞM
T þ ðS0 þ ΔÞeðS0þΔÞM

T

e
ðS0�ΔÞM

T þ e
ðS0þΔÞM

T

: (10)

This reduces to an implicit relation,

M
Δ

¼ S0
Δ
þ tanh

Δ2

T
M
Δ

� �
; (11)

where only dimensionless ratios of M, S0 and T with Δ remain in the expression. The mean degree
hki, defined for binary ties, does not occur in it because the adjacency matrix is row-normalized and
the mean weighted outdegree hkwi ¼ 1.

By analyzing the intersection of the line defined by M=Δ� S0=Δ and the tanh term on the right-
hand side of Eq. 11, the possible values for M at a given T can be found. For T >Tc there is one
stable high T solution and for T <Tc there is one stable solution of (nearly) full cooperation, another
solution that is stable in finite time with (nearly) full defection, and one unstable solution. At T ¼ Tc
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the two stable solutions merge and the intersecting line coincides with the tangent line touching the
tanh function; see Figure 1(b). At that point, a closed relation for Tc in terms of S0 and Δ can be
found,

S0
Δ

¼
ffiffiffiffiffiffi
γ�1
γþ1

q
ðγþ 1Þγ� cosh�1ðγÞ

γ2
; (12)

where γ ¼
ffiffiffiffi
Δ2

Tc

q
: Eq. 12 is used in Figure 3(a). It shows that if S0 increases while keeping Δ constant,

less agitation is required to motivate defectors to cooperate. When Δ decreases to Δ ¼ S0, defection
loses its appeal. The figure also shows that numerical simulations yield very similar results for large
networks but diverge for small ones. This also holds true for Tc in Figure 1, which is lower for
smaller networks (not shown).

From the mean-field approximation follows the proportion of defectors pc and cooperators 1� pc
at given S0 and pertaining Tc, after a time long enough for the system to settle down. The proportion
of cooperators 1� pc at Tc is the critical mass (Marwell & Oliver, 1993), and can be inferred from
the value of Mc at the phase transition,

Mc ¼ pcðS0 � ΔÞ þ ð1� pcÞðS0 þ ΔÞ: (13)

The mean-field analysis of Tc yields

Mc

Δ
¼ �cosh�1ðγÞ

γ2
: (14)

Note that the cosh�1 function in Eq. 14 only yields a result when γ> 1, and sets a limit to Tc for given
Δ. For the choice Δ ¼ 0:75, the maximum value of Tc ¼ Δ2 ¼ 0:565. Solving for pc yields

pc ¼ 1
2
� S0
2Δ

þ 1
2
cosh�1ðγÞ

γ2
; (15)

used for Figure 3(b). It shows that the proportion of defectors pc at Tc decreases with increasing S0.
In contrast to critical mass theory, however, the Ising model has no assumptions about initiative
takers or leaders who win over the rest, rational decision-making (Marwell & Oliver, 1993), or
learning that would require fairly stable feedback (Macy, 1991).

3. Discussion and conclusion

We have shown that under high uncertainty, the dilemma of collective action can be solved by
nothing more than a portion of random noise. The asymmetric Ising model does not require any
knowledge or accurate expectations of the participants, and only depends on conformism, which can
be empirically observed in synchronous motion, gestures or shouting (McNeill, 1995; Jones, 2013).
In particular, it has no assumptions about actors’ rationality, in contrast to critical mass theory,
whereas it supports that theory’s key findings of the critical mass and the tipping point. Simulations
add to our mean-field result that turmoil-driven cooperation is most likely in small groups, where
cooperation starts at relatively low levels of noise.

Shortly before we finished this manuscript, two other papers appeared where an Ising model
was used to solve this dilemma (Adami & Hintze, 2018; Sarkar & Benjamin, 2019), but their
symmetric model requires complex quantum physics to define payoffs, in contrast to our simple
definition. Along with empirical testing, perhaps also on other species, a future direction might be
to explicitly model noisy information transmission on the group’s network (Quax, Apolloni, &
Sloot, 2013), too.
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