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1

Introduction

Let’s play a game. Imagine a board filled with white squares, like the one you see in

Figure 1.1 (upper left panel). This board contains nine white cells, and each cell is con-

nected to its neighbouring cells. All cells are in this stage white, indicating that they are

dead cells. To start the game, I will randomly select a few cells and bring these to life

(denoted by black), as is shown in the upper right panel of Figure 1.1. The rules to the

game are pretty simple: (1) a living cell (black) that has less than two live neighbours will

die. (2), a living cell with two or three live neighbours will live. (3), a living cell that has

more than three living neighbours will die. Lastly (4), a dead cell that has exactly three

living neighbours will be brought to life (Gardner, 1970). The lower left and right panels

of Figure 1.1 display the first two time steps after initiation. This game is one where the

player has a passive role. With the four simple rules I explained earlier, the board may

continue to update indefinitely and is thus self-organising. I will leave it to the reader to

continue this game; I have placed some empty boards at the end of this dissertation that

can be used to play this game. The game can end up in one state where no cells will be

brought to life, or die. It is also possible that the board switches (oscillates) between two

patterns of living and dead cells (Rendell, 2011).

1



1. INTRODUCTION

Empty board t = 0

t = 1 t = 2

Figure 1.1: An illustration of Conway’s game of life (Gardner, 1970). White cells indicate

dead cells, and black cells indicate living cells. Top left = empty board with nine dead

cells. top right = board at t = 0, where four cells were brought to life. Bottom left = board

at t = 1 with five living cells. Bottom right = board at t = 2 with eight living cells.

2



1.1. Dynamical systems

1.1 Dynamical systems

The small game that I described here is an example of Conway’s game of life (Gardner,

1970). The game of life reflects real life processes, and their unpredictability. It is also

an example of a dynamical system: a system in which its components interact with one

another and that updates throughout time depending on its earlier states. A dynamical

system can best be explained by looking at the definitions of the words ‘dynamic’ and

‘system’. A system is the topic of interest, and comprises various components that can

interact with each other. Examples of systems that have been studied range from planetary

motions (Alligood et al., 1996), to ecosystems (Scheffer et al., 2001), to mental disorders

(Kossakowski & Cramer, 2019). A system does not necessarily have to be a topic that is

found in the real world. Conway’s game of life is also an example of a system, where the

cells are the components of the system that can interact with each other. The second word,

dynamic, is another word for ‘change’. This means that we are looking at something that

changes or evolves over time (Strogatz, 1994; Hasselblatt & Katok, 2003). The time

aspect of a dynamical system can be handled in two ways: continuous or discrete. In a

continuous dynamical system, time is indexed by a continuous variable than can take any

real value. Thus, a continuous dynamical system allows for different intervals between

measurements of the dynamical system (Voelkle et al., 2012). In contrast, a discrete

dynamical system is one where time is explicitly handled and is part of the mathematical

model (Holmgren, 1996). Most models that work with discrete time assume that the

intervals between the measurements of the dynamical system are equal (Bringmann et al.,

2013; Epskamp et al., 2018). In Chapters 3 and 4 I will show that this assumption does not

necessarily have to be met in order to accurately interpret the discrete dynamical system.

For the remainder of this dissertation, all dynamical systems that will be described are

discrete dynamical systems.

One interesting property of a dynamical system is that there are multiple stable states

that the system can be in. In such cases, the dynamical system will eventually be in a

stable state, or it will be attracted to such a state. In this dissertation we only consider

3



1. INTRODUCTION

●

●

●

Stress

Healthy

Non−Healthy

●

●

●

Stress

Figure 1.2: Visualisation of attractor points and unstable points. Solid dots = attractor

points. Open dot: unstable point. Grey line = path of the system at two different stress

values towards an attractor point.

dynamical systems that have two stable states. A visualisation of the attractor points to

which a system is drawn to is shown in Figure 1.2 (left panel), where the black solid

dots are so-called attractor points: these represent the two stable states that the system is

attracted to. The open dot in the middle denotes an unstable point that drives the system

away. To illustrate, say that we have two stable states (healthy and non-healthy) in a

dynamical system that represents major depressive disorder (MDD). No matter the level

of stress that we introduce to the system, it will always travel to one of either stable

states, even if we come really close to the unstable point. This is shown in the right panel

of Figure 1.2.

The way a dynamical system travels from one stable state to another can be either

continuously or discontinuously. When changes take place continuously, the dynamical

system follows a continuous trend to arrive at the stable state. To illustrate, we again

look at the dynamical system of MDD that we saw earlier. This exemplary dynamical

system has two stable states: healthy and non-healthy. The continuous evolution of the

dynamical system is depicted in the left panel of Figure 1.3. In this illustration, an in-

dividual whose development of MDD can be represented with such a dynamical system

may slowly develop the disorder as time progresses. Some may argue that the develop-

ment of MDD follows this continuous trend. However, I believe that this is not the case.

4



1.1. Dynamical systems

Healthy

Non-Healthy

Time Time

Figure 1.3: An example of a continuous (linear) dynamical system (left panel) and a

discontinuous (non-linear) dynamical system (right panel).

I think that it is hard, if not impossible, to find a real-world example in which its devel-

opment follows a continuous trend. I believe that mental disorders such as MDD develop

in a more discontinuous manner. In a discontinuous setting, the system travels from one

stable state to the other by means of a sudden jump, which we call a critical transition

(Kuznetsov, 2013). An example of this is shown in the right panel of Figure 1.3. In this

illustration, an individual whose development of MDD can be represented with such a

dynamical system may at first not experience many MDD symptoms. However, as time

progresses, some external event may occur (e.g., the loss of a spouse or getting fired from

one’s job), and the dynamical system jumps from the healthy to the non-healthy state. It

is much easier to find real-world examples of dynamical systems that develop according

to this discontinuous trend (also termed a non-linear dynamical system). Real-world ex-

amples include MDD (Cramer et al., 2016), development (Emde & Harmon, 1984), but

also ecosystems (Scheffer et al., 2001), earthquakes (Sornette, 2002) and even arrhythmia

(Owis et al., 2002). These non-linear dynamical systems do not only exist in physics or

ecology, but also in psychology. Chapter 4 will describe a non-linear dynamical system

for psychopathology in more detail.

When a dynamical system is more likely to experience a transition, it approaches

a tipping point. The closer a system is to a tipping point, the more likely it is that a

transition from one stable state to another takes place. A metaphor that is often used to

5



1. INTRODUCTION

Figure 1.4: Visualisation of the landscape when a dynamical system is in one stable sys-

tem (upper panel), when a dynamical system approaches a tipping point (middle panel),

and when a dynamical system experienced a transition into the other stable state (lower

panel).

6



1.2. Causality

explain tipping points is the “ball-in-a-cup” metaphor (van de Leemput et al., 2014). An

illustration of the idea behind tipping points is shown in Figure 1.4. Here we have three

situations. In the first (upper panel), the system - visualised by the black ball - is in a

stable state (“healthy”), and a large push is needed to bring the system to the other stable

state (“non-healthy”), as exemplified by the depths of the cups. In the second situation

(middle panel), the system is approaching a tipping point. The cup that analogous to

the healthy stable state is more shallow, and thus it is easier to push the ball from this

state to the non-healthy stable state. In the third situation (lower panel), we see a similar

landscape as in the first situation, but here the system has reached the tipping point and

transitioned from the healthy stable state to the non-healthy stable state. It is shown here

that a large push, larger than in the first situation, is needed to push the system out of this

stable state.

1.2 Causality

Systems consist of various components that interact with one another. While these inter-

actions are often reciprocal (i.e., X influences Y and Y influences X in a similar manner),

There are also cases in which these interactions work as a one-way traffic street. Here,

X influences Y , but not the other way around. This is an example of a causal relation

between two variables. Causality can be seen in many different lights, and therefore it is

difficult to set a definition of a causal relation that everyone agrees with. It is beyond the

scope of this dissertation to summarise the discussion, but I do want to provide the reader

with some background knowledge on causality.

A causal relation from one variable to another indicates that this relation is not recip-

rocal (Simon, 1952). The one-way traffic street is a good metaphor for this assumption:

causal influence can only flow in one direction. A causal relation also contains a time

aspect (Granger, 1980): the past and present may influence the future, but the future can-

not influence the present and past. A causal relation can be deterministic or probabilistic.

With the former, when we use the example X −→ Y , when X occurs, Y must occur as

7
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1

2

3

Chain

1

2

3

Chain

1

2

3

Common cause

1

2

3

Collider

Figure 1.5: The different causal structures that can be detected with (conditional) depen-

dencies and independencies. The chain structures and the common cause structure are

statistically equivalent, whereas the collider structure is statistically unique.

well, and when Y is observed, we know that X occurred as well (Granger, 1980). In a

probabilistic causal relation, these two cases do not apply. In Chapter 5, I provide an

example of probabilistic causality. There, I define a causal relation as one where, when

we manipulate the cause, a change must occur in its effect (given all other variables). The

change here is probabilistic, as the amount of change may vary. Due to the asymmetry

of causality, this definition also implies that, when no change is observed in the effect,

no manipulation has taken place on its cause. Pearl (2009), amongst others, calls this a

counterfactual definition of causality.

An approach that is often used to estimate causal relations is the one developed by

Pearl (2009) and Spirtes et al. (2000). Here, we use the notion of (conditional) depen-

dence and independence between sets of variables to estimate a causal relation. By calcu-

lating raw and partial correlations, we can draw four different causal structures, depicted

in Figure 1.5. The first three structures, the two chain structures and the common cause

structure, are statistically equivalent. In these structures, variables 1 and 3 have a nonzero

raw correlation, but when we condition on variable 2, the partial correlation becomes zero.

As this applies to all three structures the same way, we cannot distinguish them statisti-

cally. The raw/partial correlation combination is reverse for the fourth causal structure,

the collider. In this structure, the raw correlation between variables 1 and 3 is zero, but

the partial correlation when conditioning on variable 2 becomes nonzero. In the approach

8



1.3. Networks

by Pearl (2009) and Spirtes et al. (2000), the collider structures are first identified, as they

are statistically unique. The “blanks” are filled in with the information from the other

three structures.

1.3 Networks

Since we mostly deal with a set of variables, we are also interested in the interactions

among these variables. Network theory gives the opportunity to study these interactions.

In recent years, the notion has been put forward that mental disorders (such as MDD)

can be presented as a system of mutually interacting variables. Work by van der Maas

et al. (2006), Borsboom (2008; 2011; 2017), Cramer (2010; 2012), Epskamp (2012),

Bringmann (2013) and many others have paved the way for researchers to take a differ-

ent perspective not only on mental disorders, but also personality (Cramer et al., 2012,

Costantini et al., 2015), attitudes (Dalege et al., 2016), sleep disorder (Blanken et al.,

2019), health-related quality of life (Kossakowski et al., 2016) and even diagnostic man-

uals (Tio et al., 2016).

The left panel of Figure 1.6 depicts a basic example of a network. A network consists

of two elements: nodes (circles; observed variables) and edges (lines; relations between

variables; Newman, 2010). In this example, the nodes represent people, and the edges an

existing connection between two people, indicating that they know each other. This type

of network is also known as a social network. Here, the edges are unweighted, meaning

that the extent to which two people know each other is not operationalised, and undi-

rected, meaning that a connection between two people is reciprocal. The network on the

right is adapted from Kossakowski et al. (2016) and visualises the pairwise interactions

between items of the Short Form Health Survey (SF-36; Ware Jr & Sherbourne, 1992).

This network is also undirected, but it is no longer unweighted. The colour and thickness

of the edges represent the strength of the connection between two items, controlling for

all other items in the network. Another striking difference is related to the source of the

edges. In the network in the left panel of Figure 1.6, the edges are known and observable:
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Figure 1.6: Illustration of a social network (left panel) and a network of Health-Related

Quality of Life as measured by the Short Form Health Survey (SF-36) in a combined

sample of cancer patients and healthy controls (right panel). Blue edges denote positive

connections, and red edges negative connections. The strength of a pairwise connection

between two items is represented with the colour and thickness of an edge. Node colours

correspond to the eight domains (see Kossakowski et al., 2016 for more details).

we can draw up a social network by simply asking people if they know one another. In

the network in the right panel of Figure 1.6, one cannot observe the connection between

two items; we have to estimate these. There are many different approaches that one can

take in estimating a network. A few of these techniques are discussed in Chapter 2.

The networks that we saw earlier were both undirected: the edge between two nodes

denotes a reciprocal relation. The edges in a network can also have an arrow, creating

directed or causal networks. Directed networks are often used to visualise a set of causal

relations. Depending on the model that is used, a causal relation in a directed network

may mean something different. Examples of causal networks include citation networks

(Newman, 2010), where an arrow shows that one paper cited another. A more abstract

example is a cross-lagged panel model (Hamaker et al., 2015) or a structural equation

model (Bagozzi & Yi, 1988; Edwards & Bagozzi, 2000), where the arrows indicate how

10
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two variables are related to one another. Chapters 5 and 6 will focus on directed networks

and how to estimate them.

1.4 Chapter Outline

The topics that I have discussed here will help the reader to understand the upcoming

chapters. I have focused on two subjects that are the subject of this dissertation: complex

(dynamical) systems and causal networks. Part one of this dissertation includes three

chapters that focus on complex systems in psychopathology. Chapter 2 describes various

techniques for estimating networks. It also elaborates on two models that can be used

to study complex systems, one of which is based on the work by Cramer et al. (2016).

The second model discussed here is the mean field model. With this model we reduce

a complex and multidimensional system to a single equation, after which we can study

its dynamics. This model is mathematically explained in Chapter 3. By means of a

simulation study, we show that reducing a complex system does not result in a reduction

in accuracy in terms of assessing the dynamics of the system. In Chapter 4 we show

how we can use maximum likelihood estimation, together with the mean field model, to

assess the expectancy that an individual may have in transitioning from one stable state to

another. This approach is evaluated numerically, after which it is applied to two empirical

examples.

Part two of this dissertation includes two chapters that discuss causal networks. Chap-

ter 5 discusses the advantage of combining observational and experimental data when es-

timating a causal network. Using observational data (where no perturbations have taken

place) will not give us the complete causal picture, as some causal patterns are indistin-

guishable. By adding experimental data (where perturbations did take place), one can

separate these causal patterns and thus give a complete overview of a causal system. Sev-

eral algorithms are discussed and illustrated, after which their performance is evaluated

in a simulation study. Two algorithms specifically show great promise when it comes to

estimating a causal network. In Chapter 6, we illustrate the potential of these algorithms

11
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by applying them to a dataset of patients who entered treatment for obsessive-compulsive

disorder.

This dissertation ends with a discussion on the topics that have been presented. Here,

I discuss to what extent the models, as they are presented here, are suitable to be used

by other researchers, and what steps we have to take to accomplish this. I elaborate on

possible extensions of the models, and what we as a field need to do to move forward.

12



Part I

Complex Systems in Psychopathology
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2

Complexity, Chaos and Catastrophe: Modeling
Psychopathology as a Dynamic System

This chapter is published as: Kossakowski, J. J., & Cramer, A. O. J. (2019). Complex-

ity, chaos and catastrophe: Modeling psychopathology as a dynamic system. In M. S.

Vitevitch (Eds.), Network Science in Cognitive Psychology (pp. 45-79). New York, USA:

Routledge.
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2. COMPLEXITY, CHAOS AND CATASTROPHE: MODELING PSYCHOPATHOLOGY AS
A DYNAMIC SYSTEM

Abstract

The network perspective is a young competitor in the field of psychopathology. It

postulates that psychological constructs, such as mental disorders, arise as a system of

mutually interacting variables. Its rise started in 2006 (van der Maas et al., 2006), and

has since then been applied to various topics. In this chapter we give an overview of

various approaches that can be taken to study psychological constructs as networks.

We start by describing three techniques with which networks can be estimated. These

techniques differ in the type of item responses (binary, continuous, or a mixture) they

can handle, and how they deal with possible spurious connections. Each network

estimation technique is illustrated using a freely available dataset (Kossakowski et

al., 2017). Two different models for modelling complex dynamical systems are then

explained: the Cramer model and the Empirical Mean Field Approximation. These

models are designed to model systems that can make a sudden transition between

two stable (mood) states. The usefulness of these models are shown with their own

empirical examples. Even though each model has its own challenges that need to be

overcome, both models show great potential for future use.

2.1 Introduction

In recent years, the notion that correlations between questionnaire items (e.g., insomnia

and fatigue; hereafter called: variables) are the result of direct interactions between these

variables (e.g., insomnia→ fatigue) has grown in popularity. The rise of this network per-

spective started in 2006, when van der Maas et al. (2006) demonstrated that the positive

manifold, the phenomenon that scores on cognitive tasks (e.g., verbal comprehension and

working memory) are positively correlated, can be explained by means of a network ap-

proach. In this groundbreaking study, van der Maas et al. argued that, instead of explain-

ing the positive manifold by means of a latent (i.e., unobserved) variable called g (i.e.,

general intelligence), the positive manifold can be explained by means of a mutualism

model, in which variables have mutual, reinforcing, relations (e.g., verbal comprehension

→ working memory). Figure 2.1 shows an example of both the latent variable and the
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Figure 2.1: A simplified example of a latent variable model (left) and the mutualism

model (right). x1 . . .x6 represent variables, and k1 . . .k6 environmental resources. Figure

is adapted from van der Maas et al. (2006).

mutualism model (data used for this example are freely available in the statistical software

program R; R Core Team, 2016). Here, we have six variables (denoted by squares) that

represent six test batteries of an intelligence test: Cattell’s culture-fair test (general), vo-

cabulary (vocab), reading comprehension (reading), maze (maze), block design (blocks)

and a picture completion test (picture). In the left panel, the latent variable example, the

latent variable g is the cause of the six variables, whereas in the mutualism model (right

panel of Figure 2.1), each of the six variables has direct and mutual relations with every

other variable in the model. Note that k1 . . .k6 represent environmental resources (such

as the parents’ level of education or a child’s age) that may influence individual variables.

Van der Maas and colleagues showed that, under certain circumstances, the latent vari-

able model and the mutualism model were statistically equivalent, even though they are

conceptually very different. That is, these results told us that you do not always need

a latent variable model to explain the existence of a positive manifold between psycho-

logical variables. The primary aim of the present chapter is to elaborate on this network

perspective as a theory whilst also providing the reader with a set of methods (including
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practical examples) that can be easily used for one’s own data.

The positive manifold is not unique to the topic of intelligence. For example, symp-

toms of psychological disorders (e.g., symptoms of major depression) are also consis-

tently positively correlated with one another (i.e., positive manifold; e.g., Hartman et al.,

2001); the same manifold was observed for variables that pertain to dimensions of normal

personality (e.g., neuroticism; Dolan et al., 2009). As such, van der Maas and colleagues

(2006) paved the way for exploring the feasibility of a network perspective in other areas

of psychological research: e.g., psychopathology (e.g., Borsboom et al., 2011; Cramer et

al., 2010; McNally et al., 2014), personality (Cramer et al., 2012), health-related quality

of life (Kossakowski et al., 2016), attitudes (Dalege et al., 2016) the International Classifi-

cation of Diseases and Related Health Problems (ICD) and the Diagnostic and Statistical

Manual of Mental Disorders (DSM; Tio et al., 2016). In particular, the network per-

spective on psychopathology (e.g., psychological disorders) has not only resulted in a

more mature conceptualisation of disorders (and comorbidity between them) as networks

of directly interacting symptoms (e.g., Cramer et al., 2010), it has also inspired the de-

velopment of a host of new methods with which one is able to estimate networks for

psychopathological data (see Fried et al., 2017 for an extensive review of the empirical

psychopathological network literature).

As previously stated, many psychological constructs can be studied from a network

perspective. In a network, individual variables are represented as nodes (circles); the mu-

tual relation between two variables is visualised as a line between these two variables

(hereafter called: edge; Newman, 2010). Figure 2.2 depicts two ways of constructing a

network, using the same intelligence data as was used for Figure 2.1. The left panel in

Figure 2.2 shows a binary network where an edge can be either present (“1”) or absent

(“0”). As such, all edges have the same weight (i.e., “1”) and thus the same thickness and

colour. The right panel features blue edges with different widths. Blue edges represent

positive relations between nodes, whereas red edges, not currently shown in Figure 2.2,

represent negative relations between variables/nodes (Costantini et al., 2015). Blue edges
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Figure 2.2: Six tests that measure different aspects of intelligence. Left = unweighted

network. Right = weighted network. General = Cattell’s culture-fair test. Vocab = vocab-

ulary. Reading = reading comprehension. Maze = maze. Blocks = block design. Picture

= picture completion test.

indicate that two variables reinforce each other: as one variable increases/decreases, the

other increases/decreases as well. In contrast, red edges indicate that, as one variable in-

creases/decreases, the other variable decreases/increases. The width and colour saturation

of the edge denotes the strength of the relation: the more saturated and thicker the edge,

the stronger the relation between two nodes (Epskamp et al., 2012). Edges do not nec-

essarily need to connect two nodes: it is also possible for a node to reinforce itself (e.g.,

insomnia results in more insomnia). A so-called self-loop is then present in the network:

an edge that starts and ends at the same node. In Figure 2.2 for example, the nodes that

denote the vocabulary test and the block design test have a strong self-loop.

In networks such as the one shown in the right panel of Figure 2.2, mutual relations be-

tween variables – that is, the connectivity of a network – can differ. This means that some

variables have a stronger or weaker relation than others. For example, in Figure 2.2, the

vocabulary test (vocab) and the block design test (blocks) have a strong relation in com-

parison to the other relations in the network, such as the relation between the variables
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reading test (reading) and the maze test (maze). This means that they, relatively speaking,

have a strong influence on each other: when individuals score high on the vocabulary test,

they also tend to score high on the block design test. The stronger the relations between

the variables, the stronger the variables influence each other. High connectivity refers

to a network with generally strong relations between variables, whereas low connectiv-

ity refers to a network with generally weak relations between variables. In other words,

the higher the connectivity in a network, the stronger the relations between the variables

in the network are. Considering intelligence, more strongly connected networks can be

beneficial: in a strongly connected network, different aspects of an intelligence test re-

inforce each other more, which may lead to higher scores on an intelligence test. Thus:

stronger connections may result in higher intelligence. Considering the development of

psychopathology, this characteristic may not be so beneficial. For example, van Borkulo

et al. (2015) showed that depressed participants, who still had the diagnosis of major de-

pressive disorder (MDD) after two years, had a more strongly connected network than

depressed participants who were in remission after two years. In this context, strong net-

work connectivity can be seen as a measure of vulnerability: individuals who are more

vulnerable for developing an episode of MDD tend to have a more strongly connected

network than individuals who do not have this vulnerability for MDD (Cramer et al.,

2016).

In this chapter, we aim at providing the reader with the basics of network modelling

and applying these modelling principles to studying vulnerability in psychopathological

constructs. We will start by providing an overview of various methods for estimating in-

dividual networks from empirical data (section 2.2), so that we can investigate vulnerabil-

ity in psychological constructs at the level of the individual. Next, in section 2.3, we will

elaborate on catastrophe theory, which is a central theory pertaining to studying vulnera-

bility from a network perspective. Following this, we explain the Cramer model (Cramer

et al., 2016) in section 2.4, accompanied by an application of this model to symptoms

of mania (Kessler et al., 2014). We will proceed with the explanation of the empirical
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mean field approximation (Kossakowski, Gordijn, Riese & Waldorp, 2019; Waldorp &

Kossakowski, 2020) in section 2.5, which is also accompanied by an application of the

model to various positive and negative affects. We will conclude this chapter by taking

a critical perspective: the network approach currently faces several challenges that have

not been met (yet) and are important for advancing network modelling in psychology in

general, and psychopathology in particular, in the next few years.

2.2 Constructing Networks

Various methods exist for estimating the connectivity of a network (i.e., the strength of the

relations between variables in a network). Networks can be estimated for an entire group,

or for individuals. When one estimates a network for a group of individuals, one can draw

conclusions, for example, about specific relations between variables, that may be gener-

alisable to the population of which we drew a sample. For this type of network, we only

need one measurement per individual (cross-sectional data). It is also possible to estimate

an intra-individual network, based upon which one can draw conclusions that only per-

tain to that specific individual. For this type of network, we need several measurements of

one individual (time-series data). The applicability of each estimation method described

in the remainder of this section heavily relies on the type of empirical data (categorical,

continuous, or a mixture of the two), the number of participants that are being measured,

and the number of measurements that have been collected per participant. The methods

that we elaborate on in this section can be used to estimate intra-individual networks. In

this section, we will discuss three methods: 1) IsingFit for binary data; 2) Graphical Vec-

tor Auto Regression (VAR) for continuous data, and 3) Mixed Graphical Model (MGM)

for data with both binary and continuous variables.

A general disadvantage of network estimation is that networks can have many edges:

in a network with six nodes, we can estimate up to 15 unique edges. However, in a

network with 25 nodes, we can estimate as much as 300 unique edges. Many of these

edges can be spurious. If we look at Figure 2.2 for example, an edge is present between
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the reading test (reading) and the block design test (blocks), while these two tests might

in fact not be directly related at all. It could very well be that, when one scores high on

the reading test, one also scores high on the vocabulary test (vocab), and as a result, also

scores high on the block design test. Thus, it is possible that the relation between the

reading test and the block design test is ‘caused’ by the vocabulary test.

All three methods control for such potentially spurious edges by using the least abso-

lute shrinkage and selection operator (LASSO; Tibshirani, 1996). The LASSO imposes

a parameter lambda (λ ) that controls the level of sparsity (a sparse network is one with

relatively few connections): a high λ will result in many weak edges that will be removed

from the network, while a low λ will result in fewer weak edges that will be removed

from the network. Choosing this parameter is therefore not trivial as it directly influences

the structure of the resulting network. All methods that will be discussed estimate the

network using different values for λ (Zhao & Yu, 2006). Then, the most optimal λ pa-

rameter is selected using the Extended Bayesian Information Criterion (EBIC; Chen &

Chen, 2008; Foygel & Drton, 2010), where the network model with the lowest EBIC is

chosen. The EBIC uses a parameter of its own gamma (γ), that controls whether or not

the EBIC prefers simpler models, where simpler indicates a sparse network with fewer

edges. A high γ parameter ensures that EBIC prefers the sparse network model with a

high λ parameter and fewer edges. The hyperparameter γ ranges between 0 and 1.5 and

needs to be manually set. For more information about this method for controlling sparsity,

see Epskamp (2016) and Epskamp & Fried (2018).

Each method will be demonstrated with the same empirical dataset. These data are

time-intensive measurements of one 57-year old male with a history of depression. Over

the course of 239 days, this participant monitored his daily life experiences and affects

several times a day, resulting in 1479 time points (for details about these data see Kos-

sakowski et al. 2017; Wichers et al. 2016). Table 2.1 shows the items, their meanings,

their intended ranges and the response ranges.
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Item labels Item meaning Item range Range of responses

1 I feel relaxed 1 to 7 1 to 7

2 I feel down -3 to +3 -3 to +3

3 I feel irritated 1 to 7 1 to 7

4 I feel satisfied 1 to 7 1 to 6

5 I feel lonely -3 to +3 -3 to +3

6 I feel anxious -3 to +3 -3 to +1

7 I feel enthusiastic 1 to 7 1 to 6

8 I feel suspicious 1 to 7 1 to 5

9 I feel cheerful 1 to 7 1 to 6

10 I feel guilty -3 to +3 -3 to +2

11 I feel indecisive 1 to 7 1 to 5

12 I feel strong 1 to 7 1 to 6

13 I feel restless 1 to 7 1 to 6

14 I feel agitated 1 to 7 1 to 6

15 I worry 1 to 7 1 to 6

16 I can concentrate well 1 to 7 1 to 6

17 I like myself 1 to 7 1 to 6

18 I am ashamed of myself 1 to 7 1 to 6

19 I doubt myself 1 to 7 1 to 5

20 I can handle anything 1 to 7 1 to 6

21 I am hungry 1 to 7 1 to 4

22 I am tired 1 to 7 1 to 5

23 I am in pain 1 to 7 1 to 3

24 I feel dizzy 1 to 7 1 to 3

25 I have a dry mouth 1 to 7 1 to 2

26 I feel nauseous 1 to 7 1 to 3

27 I have a headache 1 to 7 1 to 4

28 I am sleepy 1 to 7 1 to 7

Table 2.1: Items that were included in the analysis and their assigned item labels.
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2.2.1 Binary Data: IsingFit

The IsingFit method is based on the Ising model (Ising, 1925). This model originated in

statistical physics and was developed to model ferromagnetic materials, such as the con-

figuration of atoms and their corresponding spins. Nodes in an Ising model can only be

in one out of two possible states (i.e., ‘active’ or ‘inactive’). Furthermore, only pairwise

interactions are allowed in an Ising model, which means that only interactions between

two nodes are allowed, and not, for example, three-way interactions (for example, the

interaction between ‘vocab’ and ‘blocks’ in Figure 2.2 cannot be positive when ‘read-

ing’ is active, and negative when ‘reading’ is inactive). The Ising model consists of two

node-specific parameters: an interaction parameter, which denotes the strength of the

interaction between two nodes and thus the edge weight, and a threshold parameter that

represents the preference of a node to be either active or inactive regardless of the activity

of its neighbouring nodes (a neighbour is defined as all nodes that a particular node has

a connection with; van Borkulo et al., 2014). A positive threshold corresponds to a pref-

erence of being active, whereas a negative threshold corresponds to a preference of being

inactive. A threshold parameter of exactly 0 corresponds to having no preference.

Essentially, the IsingFit method regresses one node on all other nodes in an iterative

manner, using the optimal penalty parameter λ . This means that twice as many regres-

sions will be performed as there are nodes in the network. For example, when we consider

Figure 2.2, the vocab node will be regressed on reading, maze, blocks, picture and gen-

eral, reading will be regressed on vocab, maze, blocks, picture and general, and so on.

After this node-wise regression, we have an interaction parameter from vocab to read-

ing, and from reading to vocab. In order to calculate the final edge weight, the so-called

AND-rule is used: only when both interaction parameters are nonzero will an edge be

drawn between the two nodes, with an edge weight that is the mean of these two inter-

action parameters. It is also possible to use the OR-rule, which states that at least one of

the two parameters must be nonzero in order for an edge to be drawn between the two

nodes. This edge will then have the weight that is associated with the nonzero interaction
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parameter. For clarity of presentation, all networks in this chapter will be estimated using

the AND-rule.

Figure 2.3 demonstrates the IsingFit method. To improve visual comparison, the lay-

out of the networks is fixed. In the left panel, a network with a γ parameter of 0 is

estimated, while in the right panel, a network with a γ parameter of 1 is estimated. It can

be seen that item 12 (I feel strong) has many negative interactions with the other variables.

This means that, as item 12 increases, items such as item 1 (I feel relaxed), 16 (I can con-

centrate well) and 26 (I have a headache) decrease, and vice versa. The two networks

depicted in Figure 2.3 demonstrate why setting the γ parameter is not trivial: the network

in the left panel (estimated with γ = 0) has (somewhat) more edges than the network in

the right panel (estimated with γ = 1). More specifically, in the network in the left panel,

approximately 34% of the edges are nonzero, whereas in the network in the right panel,

approximately 30% of the edges are nonzero. This difference in networks estimated with

different values for γ will decrease as the sample size increases.
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Figure 2.3: Example networks estimated with the IsingFit estimation procedure. Left

panel: network structure estimated with γ = 0. Right panel: network structure estimated

with γ = 1.

The IsingFit method is initially intended for cross-sectional data. However, the pro-
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cedure is also suitable for time-series data if we assume that all measurements are inde-

pendent of one another. This means that the scores on measurement t do not rely on the

scores that were obtained at measurement t−1. To illustrate, suppose an individual com-

pletes the same questionnaire twice. The assumption then states that the answers given

the second time are not (partially) determined by the answers given the first time. It is

debatable whether this assumption holds in time-series data, but it is beyond the scope of

this chapter to go into further detail.

2.2.2 Continuous Data: Graphical Vector Auto Regression

When dealing with continuous time-series data, we can estimate two types of networks:

a contemporaneous network that shows the relations between variables that occur within

the same time point, and a temporal network that shows the relations between variables

that occur across time points (Epskamp, Waldorp, Mottus & Borsboom, 2018). For ex-

ample, Figure 2.4 shows hypothetical examples of these two types of networks for affect

variables: feeling distressed, active, interested, and alert. The left panel presents a con-

temporaneous network, which shows that feeling active and feeling interested have a

negative relation. This means that, as one feels more active, one will feel less interested

within the same time point, and vice versa. In a contemporaneous network, relations are

mutualistic (i.e., no arrows) because these relations unfold within the same time point.

The right panel of Figure 2.4 presents a temporal network. This network shows that feel-

ing distressed positively influences feeling alert at the next time point, but that feeling

alert negatively influences feeling distressed at the next time point.

Both networks are equally important and interesting: when collecting time-series

data, one is often interested in the progression of an individual throughout time. At

the same time, important associations between variables may occur within a single time

point that are not captured when solely considering temporal relations between variables.

Figure 2.4 shows this: fictitious relations are present between feeling distressed, active,

interested, and alert. Here, we see that a positive, mutual relation between feeling alert

26



2.2. Constructing Networks

distressed
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interested

alert

distressed

active

interested

alert

Figure 2.4: Simplified examples of the contemporaneous network (left panel) and the

temporal network (right panel) estimated with the graphical VAR estimation procedure.

Node labels (in clockwise direction): distressed, active, interested, alert.

and feeling active exists in the contemporaneous network (left panel), which means that,

as one feels more active, one also feels more alert and vice versa. At the same time, in the

temporal network (right panel), feeling active negatively influences feeling alert, which

means that, as one feels more active, one will feel less alert at the next time point. Also

note that there is a negative mutual relation between feeling distressed and feeling active

in the contemporaneous network, and that the temporal network shows that this relation

also exists over time: feeling distressed negatively influences feeling active over time,

and vice versa. As Aristotle once said: “the sum is more than its parts”; estimating both

a contemporaneous and a temporal network will give us a more complete picture of the

progression of a construct, such as a psychological disorder or intelligence, and will yield

more information than focusing on either one of the two networks (Epskamp et al., 2018).

We can estimate both these network structures using Graphical Vector Auto Regres-

sion (VAR; Epskamp et al., 2018). This method uses complex matrix algebra to estimate

the elements of a matrix containing the contemporaneous associations between the items

and the elements of a matrix containing the temporal relations between the items (Wild
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et al., 2010). It is beyond the scope of this chapter to go into depth with respect to the

estimation of the contemporaneous and temporal relations. For a more detailed and tech-

nical explanation, see Epskamp et al., (2018) and Wild et al. (2010). Figure 2.5 visualises

the essence of the Graphical VAR method: For each node, we regress it on itself at the

following time point t +1, and we regress it on all other items at the following time point

t +1. In the example shown in Figure 2.5, node S at time point t +1 is regressed on itself

and node C, both at time point t. The procedure is repeated for node C (at time point

t +1), which is regressed on itself and node S at the previous time point t.

s s

c c

t t +1

Figure 2.5: A visual representation of the Graphical VAR model. S = sleep problems. C

= concentration problems. t = time point.

Figure 2.6 shows network structures for data of the 57-year old male with depression

estimated using Graphical VAR. For explanatory purposes, we assumed all variables to

be continuous. The left panel shows the contemporaneous network, and the right panel

the temporal network, estimated with γ = 0. We left the network structures for γ = 1

out for clarity of presentation. In the contemporaneous network (left panel), variable 5 (I

feel lonely) has strong positive relations with items 2 (I feel down) and 6 (I feel anxious).

Furthermore, a strong negative relation is present between item 12 (I feel strong) and

item 16 (I can concentrate well). This means that, as the participant feels more strong,

he can concentrate less at the same time point. In the temporal network (right panel),

we see strong positive self-loops for items 11 (I doubt myself), 22 (I am tired) and 27

(I have a headache): when the participant doubts himself at one time point the feedback

reinforces this feeling, and he will doubt himself more at the next time point. Interest-
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Figure 2.6: Example networks estimated with the Graphical VAR estimation procedure

with γ = 0. Left panel: contemporaneous network. Right panel: temporal network.

ingly, the contemporaneous network has many more edges than the temporal network: in

the contemporaneous network, approximately 36% of the edges are nonzero, while in the

temporal network, approximately 4% of the edges are nonzero. This shows the impor-

tance of looking both at contemporaneous and temporal network structures to uncover the

dynamics of an individual throughout time.

2.2.3 Mixed Data: Mixed Graphical Model

In the previous two sections, we discussed methods that estimated one network structure.

When we estimate one network structure, we assume that this structure does not change

over time, and is thus stationary. When dealing with time-series data, we are interested in

how an individual potentially changes over time, and therefore we are also interested in

how the associated network might change over time. Where the IsingFit and the Graphical

VAR method both estimate one (contemporaneous) network, the Mixed Graphical Model

(MGM) method estimates multiple (more than 1) network structures that together demon-

strate how the relations between variables in a network of an individual may change over

time (Haslbeck & Waldorp, 2016a,b). For example, with the MGM method, we can esti-
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mate two, five, ten, or more network structures (how many is up to the user to decide) that,

when shown sequentially, display potential changes in the network structure throughout

time.

In order to estimate time-varying networks using the MGM method, we start out by

identifying the type of variables in the time-series: variables can be continuous (e.g.,

age) or categorical (e.g., sex). The time-series data is then cut into z pieces (the number

of pieces is chosen by the user), and for each piece, the network structure is estimated,

taking the types of variables (i.e., continuous or categorical) into account (see Haslbeck

& Waldorp, 2016b for a more detailed description). Similar to the IsingFit method, each

node is regressed on all other nodes. For example, when we again consider Figure 2.2,

the vocab node will be regressed on reading, maze, blocks, picture and general, reading

will be regressed on vocab, maze, blocks, picture and general, and so on. After this node-

wise regression, we obtain two edge weights for the edge between vocab and reading, for

example. When both of these edge weights are nonzero, the mean of these edge weights

will be used to visualise the relation between, in this example, vocab and reading. When

either of the two edge weights is zero, no edge will be drawn between the two variables.

Because one is estimating multiple network structures that together show the potential

changes in a network structure throughout time, one needs to decide how many network

structures are desired, which is an arbitrary choice. Also, the MGM method assumes that

the network structure does not change within each piece of time for which the network

structure is estimated. The MGM method assigns each time point within one piece a

certain weight, that indicates how important that time point is for the estimation of the

edges. Time points that are seen as more important will have a stronger influence on the

edge estimation process than time points that are seen as less important. For this chapter,

we use the default assignment of weights to time points, as suggested by Haslbeck &

Waldorp (2016a). For a more detailed and technical explanation of the MGM method,

see Haslbeck & Waldorp (2016a,b).

Figure 2.7 shows network structures for the single patient data estimated using MGM.
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Figure 2.7: Example networks estimated with the MGM estimation procedure. Each row

denotes a time step. All networks are estimated with γ = 0.
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In order to estimate an MGM, we dichotomised items 2 (I feel down), 5 (I feel lonely),

6 (I feel anxious) and 10 (I feel guilty), because their scale ranges from -3 to +3 and the

MGM method cannot handle negative scores. Furthermore, we assumed that items with

seven response categories were continuous, resulting in three continuous items and 25

categorical items. We decided (arbitrarily) to divide the time-series up into five pieces and

estimate five networks accordingly. We estimated the five network structures both with

γ = 0 and γ = 1. We left the network structures estimated with γ = 1 out for clarity of

presentation. Starting at the top network in Figure 2.7 and then going down, the changes

in the network structure become visible. For example, the edge between items 5 (I feel

lonely) and 10 (I feel guilty) is not present in the first network, but slowly appears in

the fourth and fifth network. This means that the relation between feelings of loneliness

and feelings of guilt developed over time. Furthermore, it can be seen that the edge

between items 2 (I feel strong) and 10 (I feel guilty) appears in the fourth network, but

disappears again in the fifth network. This indicates that, at the beginning and at the end

of the data collection period, feeling strong and feeling guilty were not related, but this

relation developed into a positive relation, and then disappeared again. This shows the

importance of estimating not one network structure, but several network structures, as

Figure 2.7 shows that we gain more insight into the dynamics of an individual throughout

time compared to only one network.

2.3 Catastrophe Theory

One of the problems with networks (also called systems) is that they easily become com-

plex. Even a relatively simple model with, say, ten variables already entails more than

fifty parameters to be estimated. For a slightly more complex model with 15 variables the

number of parameters to be estimated is larger than 100. As such, if one is interested in

understanding and/or predicting the behaviour of a system (network) as a whole, then this

becomes more difficult as the number of system variables increases and with it the number

of parameters. Therefore, in other fields, one reduces the complexity of a network model
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Figure 2.8: Example of a cusp catastrophe model for a psychological disorder (i.e., sys-

tem). Panel A: the 3D representation with stress on the x-axis, connectivity on the y-axis

and the behaviour of the system (ranging from non-disordered to disordered) on the z-

axis. Panel B: the 2D representation of the cusp as depicted in Panel A. In the case

of weak connectivity (top figure in Panel B), the system shows smooth continuous be-

haviour in response to increasing stress (invulnerable networks). In the case of strong

connectivity (bottom figure in Panel B), the system shows discontinuous behaviour with

sudden jumps from non-disordered to more disordered states and vice versa (vulnerable

networks). The system with strong connectivity shows two tipping points (black dots in

bottom figure of Panel B) with in between a forbidden zone (i.e., dashed part of the black

line in bottom figure of Panel B): in that zone, the behaviour of the system is unstable to

such an extent that even a minor perturbation will force the system out of that state into a

stable state (i.e., the solid parts of the black line).

in order to understand its general dynamics by means of using a cusp catastrophe model.

With this mathematical model, one reduces complexity by considering two orthogonal

control variables - instead of the more than 100 parameters when a system is comprised

of 15 variables - and their impact on the behaviour of a system.

Figure 2.8 shows a hypothetical cusp catastrophe model with two control variables,
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stress (x-axis) and connectivity (y-axis; Cramer et al. 2016) that have their own way of

influencing the behaviour of the system (i.e., a psychological disorder in our example;

z-axis). Panel A of this figure shows the 3D representation while Panel B shows the 2D

representation with stress on the x-axis and the behaviour of the system on the y-axis for

two situations: weak connectivity (top figure of Panel B) and strong connectivity (bottom

figure of Panel B). Stress acts as the so-called normal variable while connectivity acts as

the so-called splitting variable.

For sufficiently low values of the splitting (i.e., connectivity) variable, the behaviour

of the system responds to increasing values of the normal (i.e., stress) variable in a smooth

and continuous fashion (see top figure of Panel B of Figure 2.8): that is, when connectivity

of a, say, depression system is relatively weak, then more stress results in the system being

more depressed in a continuous fashion. Cramer et al. called such systems invulnerable

or resilient networks. For higher values of the splitting variable (i.e., strong connectivity)

the outcome surface splits and bifurcates from smooth, continuous changes to sudden,

discontinuous jumps for increasing values of the normal variable (i.e., stress; see bottom

figure of Panel B of Figure 2.8): that is, when connectivity of a psychopathological system

is relatively strong, then at a certain point (i.e., the tipping points in the bottom figure of

Panel B of Figure 2.8) the system either jumps from a non-disordered to a disordered

state, or the other way around, which is called a critical transition. Cramer et al. called

such systems vulnerable networks. In between these tipping points lies a forbidden zone

(in bottom figure of Panel B of Figure 2.8: the dashed part of the black line): within this

zone, the behaviour of the system (i.e., the disorder) is unstable to such an extent that

even a tiny amount of stress will already kick the system into a stable (non-)disordered

state (i.e., the solid parts of the black line).

A final phenomenon that is present in networks with strong connectivity is hysteresis.

Figure 2.9 shows a hypothetical example of hysteresis for a symptom network that is

strongly connected. The x-axis represents stress while the y-axis represents the state of

the system (from a healthy - none or few symptoms active - to a disordered state - most
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Figure 2.9: An example of hysteresis for a network with strong connectivity. The x-

axis represents stress while the y-axis represents the state of the system (from a healthy

- none or few symptoms active - to a disordered state - many or all symptoms active).

The blue line presents an average number of hypothetical active symptoms when stress

was increasing (UP); and the red line represents an average number of hypothetical active

symptoms when stress was decreasing (DOWN). Hysteresis is the phenomenon that the

amount of stress needed to get a system into a healthy, non-disordered, state (jump from

“disorder” to “health” in the red line) exceeds the amount of stress that tipped the system

into a disordered state in the first place (jump from “health” to “disorder” in the blue line):

i.e., hysteresis is the gap, marked with an arrow, between the red and blue line.

or all symptoms active). The blue line (UP) shows what happens if stress is increasing:

as we already saw in Figure 2.8 increasing stress results in a sudden jump from a healthy

state to a disordered state. But what happens when, once disordered, we start lowering the

amount of stress that is influencing the system? This is shown with the red line (DOWN):

the amount of stress needed to get the system back into a healthy, non-disordered, state

(jump from “health” to “disorder” in the blue line) exceeds the amount of stress that tipped

the system into a disordered state in the first place (jump from “disorder” to “health” in

the red line). That is, hysteresis is the gap, marked with an arrow in Figure 2.9, between

the blue and the red line.
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2.4 The Cramer Model

In an earlier section we elaborated on the theoretical principles of a cusp catastrophe

model. We sketched one possibility of such a model in which a disorder is the result

of an interaction between two control parameters, the connectivity of the system (i.e.,

the strength of relations in a symptom network of a disorder) and the amount of stress

(i.e., external perturbation) that is put on that system (see Figure 2.8). This may sound

appealing but we first need to establish that, indeed, vulnerability of a system to becoming

disordered has something to do with the connectivity of that system. In this section, we

first provide some information on mania data that we used as an example for showing the

workings of the Cramer model. Next, we outline the specifics of this model and show

that, indeed, vulnerable networks/systems are those with strong connections between its

symptoms. We conclude this section by showing how one might detect critical transitions

with this model.

2.4.1 Mania Data

Data for our example came from the National Comorbidity Survey Replication (NCS-R).

This is a nationally representative household survey of English speakers 18 years and

older in the United States (see Kessler et al., 2004). The NCS-R survey schedule is the

version of the World Health Organization (WHO) Composite International Diagnostic

Interview (CIDI) that was developed for the WHO World Mental Health Survey Initiative

(WMH-CIDI; Kessler & Ustun 2004). The interviews were conducted between February

2001 and April 2003. A total of 9282 respondents participated in Part 1 of the interview

(core diagnostic assessment), the data of which we used for this chapter. Specifically, we

used data for the 10 symptoms of mania: elevated mood, restlessness, pressure of speech,

flight of ideas, loss of social inhibitions, decreased need for sleep, inflated self-esteem,

distractibility, reckless behaviour, and marked sexual energy. For each of these criteria,

respondents had to indicate whether or not they had suffered from that symptom in the
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past year. As such, the data were dichotomous. Missing data were imputed with zeroes.

We estimated network parameters for the 10 symptoms of mania in the NCS-R dataset

with the IsingFit method as explicated earlier. Figure 2.10 shows the resulting network.

Note that the skip structure of the NCS-R schedule is responsible for the fact that elevated

mood (mod in Figure 2.10) is such a central symptom in this network: a ‘yes’ response

is needed to proceed to the remainder of the questionnaire while a ‘no’ results in skip-

ping the other nine mania criteria. Other relatively strong connections seem intuitively

plausible: for example, a strong connection between loss of social inhibitions and marked

sexual energy; and between distractibility and flight of ideas. The empirical parameters of

this network are used in the next section as input for the formal dynamic Cramer model.

2.4.2 The Cramer Model

The model assumes the following. First, symptoms Xi can be ‘on’ (1; active) or ‘off’

(0; inactive). Second, symptom activation takes place over time t such that, for example,

elevated mood at time t may cause marked sexual energy at time t +1. Third, a symptom

i receives input from symptoms with which it is connected in the empirical mania symp-

tom network based on the NCS-R data. We call these symptoms with which symptom

i is connected neighbour symptoms. The empirical weight parameters are collected in a

matrix W for the J = 10 mania symptoms: entry Wi j thus represents the logistic regres-

sion weight between symptoms i and j as estimated from the NCS-R data. Next, the total

amount of activation a symptom i receives at time t is the weighted (by W) summation

of all the neighbouring symptoms X - that is, the vector that contains the “0” (inactive)

and “1” (active) values - at time t− 1. Cramer et al. (2016) call this the total activation

function (boldfaced parameters are estimated from the NCS-R mania data):

At
i =

J

∑
j=1

WijX t−1
j (2.1)

An example: suppose we wish to compute the total activation function for marked

sexual energy, which is connected to elevated mood with a NCS-R weight parameter of
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rst
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inh

sle

est

dst

rck

sex

Symptom Threshold

Elevated mood (mod) -2.15

Restlessness (rst) -9.62

Pressure of speech (spe) -6.75

Flight of ideas (ide) -9.66

Loss of social inhibitions (inh) -9.66

Decreased need for sleep (sle) -9.61

Inflated self-esteem (est) -9.96

Distractibility (dst) 9.64

Reckless behavior (rck) -9.70

Marked sexual energy (sex) -8.64

Figure 2.10: The inter-individual mania symptom network based on the NCS-R data.

Each node in the upper panel of the figure represents one of the 10 symptoms of mania.

A line (i.e., edge) between any two nodes represents a logistic regression weight: the line

is blue when that weight is positive, and red when negative. An edge becomes thicker as

the regression weight becomes larger. The lower part of the figure displays the estimated

thresholds for each symptom.
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2 and to reckless behaviour with a NCS-R weight parameter of 0.80. Also assume that

at time t− 1 elevated mood is activated while reckless behaviour is not (encoded in the

vector X). In this simple example, the total activation at time t for the symptom marked

sexual energy is 2 ·1+0.80 ·0 = 2.

In the next step, we develop a function for computing the probability of symptom

i becoming active at time t. This logistic probability function states the following: the

probability of symptom i becoming active at time t depends on the difference between

the total activation of its neighbouring symptoms and the threshold (estimated with the

NCS-R mania data) of symptom i (in Formula 2.2: bi−At
i). The more the total activation

exceeds the threshold of symptom i at time t, the higher the probability that symptom i

becomes active (in Formula 2.2 P(X t
i = 1)) at time t. Cramer et al. (2016) call this the

probability function (boldfaced parameters are estimated from the NCS-R mania data):

P(X t
i = 1) =

1

1+ ebi−At
i

(2.2)

Please note that the parameter bi denotes the absolute value of the threshold of symp-

tom i as estimated from the NCS-R data. So let us return to our simple example above

in which marked sexual energy was only connected to elevated mood and reckless be-

haviour. Suppose that the threshold for marked sexual energy is 1 and we already know

that the total activation at time t equals 2. Then the probability of having marked sexual

energy at time t equals 1
1+e1−2 = 0.73. This probability becomes much lower when the

threshold exceeds the total activation, for example when the threshold would be 4. In that

case, the probability becomes 1
1+e4−2 = 0.11. A special case arises when At

i is equal to bi,

that is, when the amount of activation of the neighbours of symptom i is exactly equal to

the threshold of symptom i. In that case, the probability of symptom i becoming active is

exactly 1/2 (e.g., 1
1+e2−2 = 0.50).

To summarise, the Cramer model is a process model that develops over time. The

probability of a symptom becoming active at a particular point in time depends on both

its threshold and the amount of activation it receives from its neighbouring symptoms at
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that same point in time. The more activation a symptom i receives from its neighbouring

symptoms and the lower its threshold, the higher the probability of symptom i becoming

active. In the next few sections, we will use this model to study the behaviour of a strongly

connected mania system when put under stress. Will this behaviour conform to what we

would expect from the cusp catastrophe model we elaborated on earlier (i.e., the bottom

graph of Panel B of Figure 2.8)?

2.4.3 Putting the Cramer model under stress: critical transitions?

For the purposes of this section we are particularly interested in the potential behaviour of

a strongly connected system that is put under stress. Would we find, as a cusp catastrophe

model predicts, that putting stress on a strongly connected system results in sudden dis-

continuous jumps from one state to the other? More specifically, would there be a critical

transition, the change that occurs when the condition of a person exceeds the tipping point

(dots in bottom graph of Figure 2.8), which transfers the person from one state (e.g., no

mania) to another (e.g., mania) in response to a relatively small external force: i.e., in the

bottom graph of Panel B of Figure 2.8 only a relatively small amount of stress is needed

to get the system past the tipping point into an alternative stable state (i.e., one of the

solid parts of the black line in bottom graph of Panel B in Figure 2.8; Olde Rikkert et al.

2016). Cramer et al. (2016) showed that for a strongly connected depression network, it

was indeed the case that the behaviour of the depression system was discontinuous, with

sudden jumps from a non-depressed state to a depressed state with a forbidden zone in

between both stable states. Here, we sought to replicate these findings for the NCS-R

mania data.

First, in order for the mania system to be sufficiently strongly connected, we multi-

plied the weights matrix W that was estimated with IsingFit on the NCS-R mania data

with c = 1.5. Second, we extended the total activation formula in 2.1 with a stress param-

eter St
i a number that was added to the total activation of the neighbours of symptom i at

time t: the higher St
i - that is, the more stress - the higher the total activation function, and
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thus the higher the probability (Formula 2.2) that symptom i will become active at time t.

This resulted in the following modified total activation function:

At
i =

J

∑
j=1

cWijX t−1
j +St

i (2.3)

The probability function remained the same as stated in Formula 2.2. We simulated

10000 time points starting with all symptoms being “off” (i.e., vector X with only ze-

roes). At each time point, we computed the total activation and the resulting probability

of a symptom becoming active. Next, symptom values (either “0” or “1”, denoting inac-

tive and active, respectively) were sampled using these probabilities. Meanwhile, over the

course of the 10000 points St
i was repeatedly gradually increased from−15 to 15 and then

decreased from 15 to −15 with small steps of 0.01. The impact of the stress parameter

on the behaviour of the mania system was quantified by computing the average state M of

the system, the average number of symptoms active at a certain time point t. Specifically,

since all the stress parameter values were used multiple times during the simulation - be-

cause of the repeated increasing and decreasing of the stress parameter during the course

of the simulation - we averaged states within 0.20 ranges of these stress parameter values.

Figure 2.11 shows the main results of the simulation: the x-axis represents stress

while the y-axis represents the average state of the system M (note: the higher on the state

variable, the more mania symptoms are active, and thus the more ‘manic’ the system).

The grey line (and points) represents the average number of active symptoms when stress

was increasing; the black line (and points) represents the average number of active symp-

toms when stress was decreasing. The results are consistent with what we predicted from

the cusp catastrophe model. First, the behaviour of the system was discontinuous with

sudden jumps from a non-manic to a more manic state and vice versa. That is, a small

increase (decrease) in stress can lead to a disproportional reaction, resulting in a more

manic (non-manic) state with more (less) symptoms active. Second, Figure 2.11 clearly

shows that during the transition from healthier to more manic states, and vice versa, a

‘forbidden zone’ (from around 1 to 7 symptoms) was crossed that does not seem to func-
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Figure 2.11: The average state of the mania system in response to stress in the case of

strong connectivity. The x-axis represents stress while the y-axis represents the average

state of the mania system M: that is, the total number of active symptoms averaged over

every 0.20 range of the stress parameter. The grey line (and points) depicts the situation

where stress is increasing (UP) whereas the black line (and points) depicts the situation

where stress is decreasing (DOWN). The black box with Forbidden noted next to it rep-

resents an area without data points.

tion as a stable state (i.e., no data points in that area, see black box in Figure 2.11). Third,

and final, the results show clear hysteresis: the amount of stress reduction needed to get

the system into a non-disordered state (i.e., only a few symptoms active or none at all)

exceeds the amount of stress that initially tipped the system into a more manic state.

In sum, when put under stress, strongly connected systems that behave over time

according to the equations of the Cramer model (Cramer et al., 2016) show critical tran-

sitions from non-disordered states to disordered states and vice versa. These critical tran-

sitions take place at tipping points and between these tipping points states are unstable

thereby ‘forcing’ the system to either the upper branch of disorder (solid upper black line

in bottom graph of Panel B in Figure 2.8) or the lower branch of relative health (solid

bottom black line in bottom graph of Panel B of Figure 2.8). Perhaps more important

than knowing that there are critical transitions, is there any way with which we can detect

such upcoming critical transitions? Detecting upcoming critical transitions in real data
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Figure 2.12: Increasing autocorrelation as a potential early warning signal in the mania

network with strong connectivity. The x-axis represents stress while the y-axis represents

the average state: that is, the total number of active mania symptoms averaged over ev-

ery 0.20 range of the stress parameter value. The dashed lines depict the situation where

stress is increasing whereas the solid lines depict the situation where stress is decreas-

ing. The “jump” lines show the total number of active symptoms (i.e., the state M), the

“autocorrelation” lines track the autocorrelation between these states over time.

of individuals might prove beneficial, for example because it would allow for early in-

tervention, before a critical transition to a disordered state takes place, that might help in

preventing a diagnosis.

2.4.4 Detecting critical transitions: critical slowing down

There is evidence for the hypothesis that all catastrophic systems, from financial systems

to the climate, display early warning signals that a system is approaching a tipping point

(Carpenter & Brock, 2006; Dakos et al., 2008; Fort et al., 2010; Scheffer et al., 2014). One

such early warning signal is called critical slowing down: right before a tipping point, the

system becomes increasingly slower in recovering from small perturbations. Pertaining

to mania, for instance, one might see that someone has more difficulty than usual to

recuperate from a relatively minor daily hassle such as an argument with a spouse over

which restaurant to go to.
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Numerically, this slowing down can be traced by inspecting autocorrelations: that is,

the correlations between values of the same variable at multiple time points (e.g., the cor-

relation between 60 measurements of elevated mood over time). These autocorrelations

increase when the system slows down: slowing down means that at each time point, the

system much resembles the system as it was at the previous time point, meaning that the

autocorrelation is relatively high. The question now is: if we compute the autocorrela-

tions between the state variable M of the strongly connected mania system, would we find

an increase in these autocorrelations?

Again, we used the NCS-R mania data and specifically inspected the autocorrela-

tions between the state variable M (i.e., the total number of active mania symptoms) over

time for the network with strong connectivity. The setup of the simulation was identical

to the one reported in the previous section about putting a network/system under stress.

The results are presented in Figure 2.12. As expected, when stress was increasing, the

autocorrelations between the states of the strongly connected mania network increased

(dashed line increasing) markedly right before the network abruptly switched from a rel-

atively non-manic to a manic state (thicker dashed line jumping from 1 to 10 symptoms).

However, Figure 2.12 also showed an increase in active symptoms from 0 to 1 symptoms

before the sharp increase in autocorrelations so it appears that for this data example, the

early warning was not early enough. Since Cramer et al. (2016) did show a clear early

warning signal for major depression data it remains an open question to what extent the

present results are a clue to the unsuitability of autocorrelations as window into predicting

critical transitions.

2.5 The Empirical Mean Field Approximation

2.5.1 Description

The empirical MFA is based on the work of Waldorp & Kossakowski (2020). As previ-

ously stated, networks can quickly become quite complex. By assuming that variables
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behave in a similar manner and have the same number of connections to other variables,

we can reduce such a complex and multivariate system to a single equation (Kossakowski

et al., 2019; Waldorp & Kossakowski, 2020). We can then use this equation to investigate

the behaviour of the network as a whole over time.

Figure 2.13: Example network. WHITE = inactive nodes. BLACK = active nodes. Grey

lines indicate connected nodes.

Suppose we have a network with nine nodes, such as the one depicted in the left

panel of Figure 2.13. In this network, nodes are either active (1, black) or inactive (0,

white). For example, in the left panel of Figure 2.13, three nodes are active (i.e., black).

In the MFA, we check for each node how many of its neighbours (nodes that are directly

connected to a specific node) are active. In Figure 2.13 (left panel), when we focus on the

middle node, we see that it has four neighbours, and three of them are active. We use this

information on the activity of a node’s neighbours and whether or not this is the majority

of a node’s neighbours to set a probability parameter p that decides whether or not a

specific node becomes active itself at the next time point t + 1. As a rule, we state that,

when at least the majority of a node’s neighbours is active, the probability for that specific

node to become active will be 1− p. When less than the majority of a node’s neighbours

is active, this probability will be p. Looking again at Figure 2.13, 3 out of 4 neighbours

(i.e., the majority) of the middle node are active at time point t, so the probability for the

middle node to become active at time point t+1 is 1− p. In the right panel of Figure 2.13,

we see that the middle node indeed became active as a result of its active neighbours and
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Figure 2.14: Visualisation of the density set against time.

its probability parameter. We can repeat this process for each node within a time point,

and for each time point, thereby creating a t× n matrix that contains 0s and 1s for each

time point t and each node n.

For each time point, we can calculate the number of active nodes proportional to the

total number of nodes, called the density. These densities can be visualised, as is shown

in Figure 2.14 with time on the x-axis and the densities on the y-axis. In this figure, we see

how the density, the proportion of active nodes in a network, changes over time. In this

example, we see that the density suddenly jumps from one stable state to the other, which

is a critical transition. In this case, even though we spotted the transition, we are too late in

investigating whether or not the individual was vulnerable for the critical transition before

it occurred. Fortunately, the empirical MFA enables us to investigate this vulnerability.

The network in Figure 2.13 is called a grid where each node has the same number of

neighbours. In psychology, it is hard to come up with an example in which each variable

has the same number of neighbours. The MFA assumes that each node has the same

number of neighbours, and Waldorp & Kossakowski (2020) investigated the performance

of the MFA when this assumption is no longer satisfied, and nodes can have a different

number of neighbours. They also investigated two other types of network structures: a
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Figure 2.15: Examples of a random graph (left panel) and a small world graph (right

panel). Edge probability pe = 0.30. Rewiring probability pw = 0.20.

random graph and a small world graph, both of which are displayed in Figure 2.15. A

random graph is a network in which each edge has a constant probability to be drawn, pe

which is independent of the size of the network (Bollobás, 2001; Durett, 2007). In Figure

2.15 (left panel), we see a random graph with an edge probability of 0.3, which means

that each edge has a probability of 0.3 to be present in the network. This also means

that around 30% of the edges are present in the network. In the right panel of 2.15, we

see a small world graph, which is a network structure that starts out as a grid (i.e., each

node has the same number of neighbours, thus edges), but in which each edge has an

constant probability pw to be rewired to two other, possibly non-neighbouring nodes and

added to the grid (Newman & Watts, 1999a), and which is also independent of the size

of the network. In Figure 2.15 (right panel) we see a small world graph with a rewiring

probability of 0.2, which means that each edge in the original grid has a probability of

0.2 to be rewired and added to the network.

In Waldorp & Kossakowski (2020), the performance of the MFA was shown by means

of a simulation study: they theoretically determined the shape of the bifurcation diagram,

and determined how well simulated data matched the theoretical bifurcation diagram un-
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der various conditions. In Kossakowski et al. (2019), they showed how the MFA can

be used in practice. Using maximum likelihood (ML) estimation, it was shown how the

probability parameter p can be estimated from the data. This empirical MFA method

works as follows: first, the network structure is estimated using IsingFit. As there cur-

rently is no valid test that can distinguish between a random graph and a small world

graph, it is assumed that the network structure is a random graph, with the ratio of edges

that is non-zero and the possible number of edges as the edge probability pe. The edge

probability pe is needed to create the bifurcation diagram. After that, the probability pa-

rameter p is estimated from the data using ML estimation. The estimate of p ( p̂) is then

set off against the bifurcation diagram.

Figure 2.16 shows an example of such a bifurcation diagram. A bifurcation diagram

is created by plugging in several values for p (x-axis), and plotting the resulting expected

density µp (y-axis). A bifurcation diagram consists of two parts: the first is the area where

two lines occur (at p = 0 to x≈ 0.4). This is the area where critical transitions can occur;

the two lines in this part of the diagram represent the two stable states that an individual

can be in. The second part is the area where only one line exists (at p ≈ 0.4 to x = 1):

there is only one line, and therefore, critical transitions cannot occur. The empirical

MFA compares p̂ with the point at which the line splits into two lines, called the critical

value. When p̂ is smaller than the critical value, we conclude that the individual has an

increased risk for experiencing a critical transition. When p̂ is higher than the critical

value, we conclude that the individual does not have an increased risk for experiencing a

critical transition. For a more detailed and technical description, see Kossakowski et al.

(2019).

2.5.2 Application of the Empirical MFA to general affect data

Data for our example were collected from and by the first author (hereafter called par-

ticipant JK). For testing purposes, the participant monitored her daily affects using the

experience sampling method (ESM; Csikszentmihalyi & Larson, 1987). With ESM, the
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Figure 2.16: Example bifurcation diagram. The upper diagram denotes an example where

the estimate p̂ is in the area where one line exists. The lower diagram denotes an example

where the estimate p̂ is in the area where the two prongs exist.
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Figure 2.17: Network of participant JK (upper panel), the evolution of the percentage

of active nodes for each time point (middle panel), and the bifurcation diagram (lower

panel). The size of the associations between two nodes in the network is represented

using the colour and thickness of an edge, where positive associations are represented

by blue, and negative associations by red. The red line in the bifurcation diagram in the

lower panel indicates the estimate p.

50



2.5. The Empirical Mean Field Approximation

participant’s waking hours are divided by s intervals of equal size. Within these intervals,

the participant received a beep at a random time (within that interval) and is requested

to fill out a questionnaire, often on a palmtop or smartphone. Over the course of seven

days, participant JK (a 27-year-old female) completed 45 measurements, and missed 22

measurements; in total 67 measurements were collected. Participant JK completed the

Positive Affect Negative Affect Scale (PANAS; Watson et al., 1988), a 20-item question-

naire that contains ten positive mood states and ten negative mood states, each measured

on a 5-point Likert scale, ranging from ‘very slightly or not at all’ to ‘extremely’. Table

2.2 shows the twenty different mood states and their assigned node labels.

Positive variables were recoded, so that high scores indicate a more negative affect.

Missing measurements were replaced by the previous measurement, after which the vari-

ables were dichotomized using a median split, which is necessary for using IsingFit.

Finally, we removed six variables due to observing either of two response categories less

than four times.

Figure 2.17 (upper panel) depicts the network structure of participant JK, estimated

with the IsingFit method. For example, item 1 (feeling interested) has a strong connection

with items 3 (feeling excited), 5 (feeling strong) and 13 (feeling ashamed). Interestingly,

the association between items 1 and 5 is negative, which means that, as participant JK

feels more interested, she feels less strong and the other way around. The association

between items 2 (feeling distressed) and 4 (feeling upset) makes sense: as participant JK

feels more upset, she tends to feel more distressed and the other way around.

Figure 2.17 (middle panel) shows the trajectory of the density (the proportion of active

nodes) of participant JK over time. It can be seen that sometimes, the density does not

change, especially in the middle of the measurement period, but also that, at several

occasions, some peaks occur that are indicative of high general negative affect. However,

since there is no clear pattern in the densities, we would expect that participant JK is not

vulnerable for a critical transition from a positive affective state to a negative affective

state. The lower panel of Figure 2.17 shows the bifurcation diagram for participant JK,
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Item

label

Item meaning

1 To what extent do you feel interested

2 To what extent do you feel distressed

3 To what extent do you feel excited

4 To what extent do you feel upset

5 To what extent do you feel strong

6 To what extent do you feel guilty

7 To what extent do you feel scared

8 To what extent do you feel hostile

9 To what extent do you feel enthusiastic

10 To what extent do you feel proud

11 To what extent do you feel irritable

12 To what extent do you feel alert

13 To what extent do you feel ashamed

14 To what extent do you feel inspired

15 To what extent do you feel nervous

16 To what extent do you feel determined

17 To what extent do you feel attentive

18 To what extent do you feel jittery

19 To what extent do you feel active

20 To what extent do you feel afraid

Table 2.2: Items of the Positive Affect Negative Affect Scale (PANAS) and their assigned

item labels.
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and p̂ that we estimated from the data. It shows that p̂ is much higher than the critical

value, which lies around 0.26. This means that participant JK is not vulnerable for a

critical transition.

2.6 Discussion

In this chapter, we have outlined a network perspective on psychological constructs. We

have demonstrated various methods for estimating network structures and, subsequently,

we have shown – with the Cramer model and the Empirical MFA – how one can use

these network structures to investigate vulnerability and critical transitions: what makes

certain people vulnerable for developing psychopathology and can we anticipate critical

transitions from, say, a healthy to a disordered state? Pertaining to the latter question:

yes, we may. In the Cramer model, we saw that individuals with more strongly connected

networks are more vulnerable for the development of psychopathology. Detecting critical

transitions by means of autocorrelations, however, was an only partially successful en-

deavour. In the Empirical MFA, the vulnerability was estimated from the data: the lower

the probability parameter, the more vulnerable an individual is for a critical transition. For

our general affect examples, we showed that it is possible to see and potentially anticipate

critical transitions from one state to another.

Throughout this entire chapter, we investigated vulnerability for a critical transition

that an individual may or may not have. In the mania example described in section 2.4

the conceptual meaning of the two possible states and the transition is clear: the system

is in either a state of mania or not. However, in the general affect example described in

section 2.5 this may not be as clear. In terms of general affect, what are the two states that

an individual can be in, and what does the transition between one and the other mean? A

vulnerability analysis such as the ones performed in this chapter might be conceptually

meaningless if the system’s two states are ill-defined or not defined at all. Therefore, not

every (psychological) construct might lend itself for such an analysis, and when applying

these models, researchers are best advised to first have a clear view on what the two states
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are in the system, and what it means if an individual transitions between them. Addi-

tionally, some psychopathological constructs might have more than two states. Consider

bipolar disorder for example: this disorder is characterised by switching between two

states, a depressive state with predominantly depressive symptoms (e.g., feeling blue, in-

somnia) and a manic state with predominantly manic symptoms (e.g., irritability, sexual

promiscuity). In this case it would make sense to hypothesise the existence of not 2 but 3

states: one healthy state (e.g., bipolar patient in remission), a depressive state and a manic

state. It remains to be seen if one could model a system with three states at all and if so, if

the general principles of, for example catastrophe theory (e.g., hysteresis, discontinuous

behaviour), would apply.

In this chapter, we studied critical transitions from a healthy state to a disordered state.

We also saw that a strongly connected network is indicative of a vulnerability for a critical

transition: when a strongly connected network is put under stress, the system may jump

from one state to the other, whereas a weakly connected network, when put under stress,

may gradually transition. When healthy individuals are being studied, having a strongly

connected network is a disadvantage, for those individuals may experience a critical tran-

sition from a healthy state to a disordered state. However, a critical transition can always

occur in two ways: from healthy to disordered and from disordered to healthy. In the case

of depressed patients, a critical transition may occur from a disordered to a healthy state.

In this particular case, having a strongly connected network is an advantage: if some in-

tervention would succeed in turning a few symptoms “off” then strong connectivity might

result in the triggering of additional symptom deactivation. In future research, it is there-

fore important to study critical transitions both from a healthy → disorder perspective,

and from a disorder→ healthy perspective.

The ultimate goal of the models shown in this chapter is to assess an individual’s vul-

nerability for a critical transition, before the transition itself occurs. It is quite possible

that, by the time individuals enter therapy, it is too late for us to assess their vulnerability;

for a critical transition may already have occurred. In such a case, the goal of therapy
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also transitions from preventing a critical transition to a disordered state, to helping that

individual transition back to a healthy state. If we would solely want to prevent critical

transitions, we would need to track virtually every individual from the age of 15 onwards

in order to assess their vulnerability for a critical transition from a healthy to a disordered

state. This would be an impossible task to carry out. Furthermore, many individuals who

may never experience mental problems are in this scenario forced to complete question-

naires whose results will never be used. In studying critical transitions, researchers should

therefore not only focus on the prevention of critical transition, but also on how critical

transitions can be induced, so that therapists can use our models to help patients return to

a healthy state faster.

In the empirical examples of both models, missing data were imputed with either

zeroes (Cramer model) or with the previous measurement (Empirical MFA). In any type

of data collection, but especially with intensive data collection like ESM, participants may

fail to fill out certain questions for numerous reasons. The design of the questionnaire may

lead to missing data, as certain questions may only be asked when a specific answer is

given to some other question, or participants may skip questions and fail to return to these

questions. In the case of ESM data, participants may forget their phone or may not simply

be in the mood to complete the questionnaire when it is asked of them several times a day.

The effect of missing data on the results of a vulnerability analysis is, while writing this

chapter, unclear. The methods for dealing with missing data showed in this chapter led to

a decrease in item variance, which may result in removing that specific item from the data

that is used for the entire analysis. Future research should therefore focus on investigating

the effects of the different types of missing data (missing completely at random, such as

missing random measurements; missing at random, such as forgetting the phone with

which you completed the questionnaires; or missing not at random, such as not being in

the mood to complete a questionnaire before having a cup of coffee in the morning) on

the results, and how much data can be missing before results become unreliable. A way

of gauging the reliability of network parameter estimates that is currently available for
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cross-sectional data and that could potentially be used for time-series data, is implemented

in R (Epskamp, Borsboom, & Fried, 2018). This software package enables calculating

confidence intervals around edge weights by means of bootstrapping these weights. The

resulting confidence intervals indicate how safe one is in concluding that the estimated

edge weight is reliable (e.g., potentially less reliable if the confidence interval around an

edge weight includes zero).

This chapter described two models for studying vulnerability and critical transitions

that are currently still in their developmental phase. Even though there are some se-

rious conceptual and technical challenges that need to be overcome (Fried & Cramer,

2017), both the Cramer model and the Empirical MFA show promising results and have

the potential to aid clinical psychologists and psychiatrists in both successfully treating

patients and preventing relapses by, for example, tracking individuals during therapy in

order to find the window of optimal opportunity for such successful interventions. That

is, in our view, network modelling of psychopathological phenomena holds the promise

of ultimately leading the field of psychopathology into an era of personalised care.
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Mean field dynamics of stochastic cellular automata
for random and small-world graphs

This chapter is submitted as: Waldorp, L. J., & Kossakowski, J. J. (2020). Mean field

dynamics of stochastic cellular automata for random and small-world graphs. Under

review at Journal of Mathematical Psychology.

57



3. MEAN FIELD DYNAMICS OF STOCHASTIC CELLULAR AUTOMATA FOR RANDOM
AND SMALL-WORLD GRAPHS

Abstract

We investigate dynamical properties of networks by reducing such networks to

one-dimensional dynamical systems by simplifications. We aim to provide a theo-

retical framework to explain the discrete transitions of mood connecting ideas from

network theory and dynamical systems theory. It was recently shown how networks

(graphs) can be used to represent psychopathologies, where symptoms of, say, de-

pression, affect each other and certain configurations determine whether someone

could transition into a depression. To analyse changes over time and characterise

possible future behaviour is in general rather difficult for large graphs. We describe

the dynamics of graphs using one-dimensional discrete time dynamical systems the-

ory obtained from a mean field approximation to stochastic cellular automata (SCA).

Often the mean field approximation is used on a regular graph (a grid or torus) where

each node has the same number of edges and the same probability of becoming active.

We provide quantitative results on the accuracy of using the mean field approximation

for the grid and random and small-world graph to describe the dynamics of the SCA.

Bifurcation diagrams for the mean field of the different graphs indicate possible phase

transitions for certain parameter settings of the mean field. Simulations confirm for

different graph sizes (number of nodes) that the mean field approximation is accurate.

3.1 Introduction

People appear to shift moods, sometimes rather suddenly, in a discrete manner (Hosenfeld

et al., 2015). Such ‘discontinuities’ can be the result of relatively small changes in the

environment or person. In some cases such transitions in mood are associated to mental

disorders like depression. Recently, mental disorders have been described as a network

(graph) of interacting symptoms (Borsboom et al., 2011; van Borkulo et al., 2014). For

instance, lack of sleep during the night could lead to poor concentration during the day,

which in turn could lead to lack of sleep again by worrying that your job may be on the

line. Here we use these ideas and model the dynamics of psychopathology networks as

stochastic cellular automata. This connects networks and dynamical systems theory to
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provide a framework for an explanation for transitions in mood. To analyse the dynamics

we use a mean field approximation to stochastic cellular automata where each node is

similar in behaviour to all others. We extend known results for the mean field approach

in this context to other types of graphs (random and small-world graphs), where the mean

field can be interpreted as a weighted average of all nodes in the graph. We provide

quantitative results on the error of approximation for the mean field for the different types

of graphs.

Cellular automata are discrete dynamical systems that have deterministic, local rules

to move from one generation (time point) to the next (Wolfram, 1984b; Sarkar, 2000).

Introduced by Von Neumann (1951), the most famous version is Conway’s game of life,

popularised by Gardner (1970), and has found many applications from computer science

(Wolfram, 1984a) to neuronal population modelling (Kozma et al., 2005) to epidemiology

(Kleczkowski & Grenfell, 1999). In a cellular automaton each cell or node in a finite grid

(usually a subset of the lattice Z2) can be ‘active’ or ‘inactive’ (1 or 0) and if, for instance,

two (direct) neighbours are active, then the node will become active at the next time step.

Another example of a cellular automaton is bootstrap percolation, where each node can

only become active and cannot be inactivated by its neighbours, and the objective is to

determine the initial configuration of active nodes that results in all nodes being active

(Janson et al., 2012). In general, a new generation in a cellular automaton is determined

by a local and homogeneous update rule φ . For each node i in the graph this induces a se-

quence of states, an orbit. A (random) configuration at time t = 0 then determines whether

all nodes in the network will be active, inactive, or whether the network will demonstrate

periodic or perhaps chaotic behaviour. A generalisation of a cellular automaton is to in-

troduce a probability p to φ to decide whether or not a node will become active, using by

a node’s neighbours. One such rule is the majority rule that gives the probability to switch

depending on whether the majority of its neighbours are active. Such a system is called a

stochastic cellular automaton (SCA). Here we will investigate the dynamic behaviour of

the proportion of active nodes (density) for an SCA with a majority rule that is defined on
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toroidal, random and small-world graphs.

Many versions of SCA exist, of particular interest are those that behave similar to

the Ising network. The reason is that the Ising network is often used to model realis-

tic phenomena, like magnetisation (Kindermann & Snell, 1980; Sethna et al., 2004) or

psychopathologies (van Borkulo et al., 2014). We have in mind the application to psy-

chopathology here. In such systems the symptoms of disorders are the nodes in the graph

and edges between the symptoms are estimated from data using the Ising model (van

Borkulo et al., 2014) or connectivity is obtained from verbal accounts. A possible ap-

plication of the work presented here is to apply the models to real data analysis using

results from discrete Markov chains and assess the location of the person with respect to

the possible stable states.

Watts (1999) showed that a one-dimensional, large-scale cellular automaton (deter-

ministic), where the connectivity between nodes was arranged as a small-world, could ex-

ecute the density (all zeroes) (end up with a majority of active nodes) and synchronisation

(eventually alternating between all active and all inactive nodes regardless of the initial

configuration) tasks. Newman & Watts (1999b) gave approximations for path length and

clustering on a small-world, to obtain an analytic solution to the threshold above, which a

large number of active nodes. Callaway et al. (2000) also studied percolation in different

graph topologies in deterministic automata, focusing on the consequences of (randomly)

deleting nodes. Here again the objective was to concentrate on stable solutions of the

graphs. In a stochastic version, Tomassini et al. (2005) investigated a one-dimensional

SCA on a regular and small-world graph in terms of its performance on the density and

synchronisation tasks. They determined by using evolutionary algorithms that a small-

world topology is most efficient (compared to random graphs and lattices) to solving

both tasks, corresponding to the results of Watts (1999) in a deterministic version. Their

objective was different from ours in that here we are interested in all types of dynamic

behaviour (stable or not), and specifically representing this behaviour for the SCA by the

mean field.
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3.1. Introduction

Our starting point is the work by Balister et al. (2006) and Kozma et al. (2005) where

a two-dimensional (toroidal) grid on an SCA is defined. In a two-dimensional grid the

nodes are located on the intersecting points of integers in the plane, where at the edges

of the grid nodes are connected to the nodes on the opposite end, so that is in fact a torus

(see Figure 3.2). The mean field is then used to determine the unconditional probability

distribution of the density (relative number of active nodes). Balister et al. (2006) showed

that the mean field model predicts a bifurcation for small values of the probability of a

node switching to another state and determine its critical point for a neighbourhood of size

five (see also Kozma et al., 2004, 2005). This is of particular interest in our case as it may

explain mood disorders (e.g., depression or bipolar disorder) from symptoms and their

connectivity. To apply these results to random and small-world graphs we determine the

marginal distribution across the possible node degree (number of connections of a node)

probabilities given the topology of the random or small-world graph. Extending results

of homogeneous graphs has been applied to social networks by Barrat et al. (2008) and to

cellular automata (Janson et al., 2019).

We first introduce stochastic cellular automata in Section 3.2. Then in Section 3.3

we show how the traditional version of an SCA on a grid can be reduced to a single

discrete time dynamical system, called the mean field. In Section 3.3.2 we show that for

the random graph we can use a variation on the formulation for the grid of the dynamical

system to describe dynamics. We use these results on the random graph to show in Section

3.3.3 that we can obtain a similar approximation for the small-world graph, again using

the formulation for the grid. Having shown that these approximations are appropriate, we

see in Section 3.4 what the dynamics of the process is for the different graph topologies.

We follow these theoretical results by simulations to verify the accuracy of the mean field

in Section 3.5. Proofs can be found in Appendix A.
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3.2 Stochastic cellular automata

A cellular automaton is a dynamical system consisting of nodes in a fixed, finite grid

where directly connected nodes (neighbours) determine the state of a node at each subse-

quent time step (Wolfram, 1984a). Each node i in a node set V = {1,2, . . . ,n} is at time

t in one of the states of a finite alphabet A, referred to as xi = a ∈ A, where, for instance,

A = {0,1} (in this chapter we only consider binary alphabets). The neighbours in the

graph G = (V,E) are given by the edges (i, j) in the edge set E. Often the graph G is the

square lattice Z2, where for each node i the neighbourhood Γ(i) are the nodes that have an

edge to i and includes i as well, that is Γ(i) = { j : (i, j)∈ E}∪{i}. A local rule φ : AΓ→ A

assigns to each configuration of states of the nodes in the neighbourhood xΓ(i) a value such

that φ : xΓ(i) 7→ xi, where xi = a ∈ A. For instance, consider the one-dimensional graph (a

graph on a line with neighbours on each side) in Figure 3.1, where in each figure the top

row represents time point t and the bottom represents time point t +1. The middle node

has two neighbours, and application of φ is represented by the row below it indicated

by t + 1. Each node has a value from the binary alphabet A = {0,1}. There are three

nodes and the local rule φ determines from xΓ(2) = (x1,x2,x3)
ᵀ at time point t the value

φ(xΓ(2)) at time point t +1. Many different rules for the update function φ exist (e.g., see

Wolfram, 1984b). In Figure 3.1 we show so-called Rule 30, so named because when the

output values are considered as coefficients of the binary expansion, then they represent

the number 30. This Rule 30 determines, for instance, that if all nodes in Γ(2) are 1, then

at the next time point, the value of the middle node is 0. All 8 possible configurations for

three nodes in the neighbourhood Γ(2) are considered in Rule 30 and are shown in Figure

3.1. Cellular automata are completely determined by a particular mapping chosen for φ .

Although (deterministic) cellular automata show extremely interesting and complex

behaviour such as periodicity and chaos, we require a stochastic cellular automaton (SCA;

e.g., see Paz, 1971) because in psychology we do not have full knowledge of how a

symptom changes from inactive to active. Therefore, we make the state of a node Xi,t a

Bernoulli random variable that is 0 or 1 at time point t. We also define Zi,t = ∑ j∈Γ(i) X j,t
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Figure 3.1: The 8 configurations of states xΓ(2) (above the three nodes) for the local rule

φ applied at time t (three nodes at the top) that result in the active or inactive node at time

t + 1 (single node at the bottom with its subsequent state below it). All configurations

with the output (at the bottom of each configuration) give the binary expansion 0 ·27 +0 ·

26 +0 ·25 +1 ·24 +1 ·23 +1 ·22 +1 ·21 +0 ·20 (from left to right) which equals 30, and

hence the name Rule 30.

for the sum of active neighbours of node i. In an SCA one of the most common rules

to determine the probability of the state of a node at time point t + 1 is by the majority

rule; the majority rule is popular not only because of intuitive appeal, but also because it

is stable in the sense that a small number of random flips in the input will not easily lead

to different results (O’Donnell, 2014). The majority rule for any node is defined as the

probability p of obtaining state 0 if there are fewer than half of the neighbours in state

1 at time point t, and probability 1− p of obtaining 1 if there are more than half of the

neighbours 1 at time point t. That is,

P(Xi,t+1 = 1 | zi,t) = majp(zi,t |Γ(i)|) =


p if zi,t ≤ |Γ(i)|/2

1− p if zi,t > |Γ(i)|/2
(3.1)

where |Γ(i)| denotes the cardinality of the neighbourhood set Γ(i); we refer to this

rule as majp. The nodes in graph G are updated simultaneously. The value for node i is

obtained by comparing a value u obtained from the uniform distribution on the interval
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t

1− p

t +1

Figure 3.2: Illustration of a two-dimensional grid (lattice) where the middle node had

four neighbours and itself at the previous time point (not shown). Each node has the

same number of neighbours, and the nodes at the edges of the grid are connected to the

nodes on the opposite end (dashed lined), making it a torus. At time point t there are

three neighbours active, and at time point t +1 the middle node has probability 1− p of

becoming active.

[0,1] to p or 1− p, depending on the number of active neighbours zi,t . If u < p (or u <

1− p) then node i will have state 1 at time t +1. As an example, consider a small lattice

or grid with boundary conditions (shown in Figure 3.2), such that each node has exactly

four other neighbours and itself at time point t. The middle node has three neighbouring

nodes in state 1 at time point t and so we obtain the probability 1− p of the middle node

being in state 1 at time point t +1.

We now have an SCA with the majority rule majp that can be run and has been shown

to lead to complex behaviour. It has proved difficult to describe long term behaviour, like

fixed points or bifurcation points, in general for SCA (Kozma et al., 2004). Therefore,

approximations have been obtained by assuming homogeneity of the nodes (mean field)

such that the long term behaviour of the SCA can be described. Here we follow the

approach of Balister et al. (2006) where they use a mean field approach.
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3.3 Mean field approximation on graphs

To learn about long term behaviour of the SCA we may turn to the mean field, which

uses the assumption of homogeneous nodes, all having the same update rule and same

number of neighbours. In doing so we are able to reduce the complicated SCA to a one-

dimensional discrete-time Markov chain. This will allow us to analyse its dynamics more

easily (see Section 3.4). The key ingredient of the mean field approximation, shown by

Balister et al. (2006), is that the properties of interest are uniform over the graph. For the

(toroidal) grid topology in two dimensions this is intuitive to see: Any node has the same

number of neighbours and each node becomes 0 or 1 by the same local rule (majority

rule). We extend results of the grid to the random graph and the small-world graph,

where, clearly, the assumption that each node has the same number of nodes is the same

is violated. We first consider the case for a grid and then move on to the random and

small-world graph.

3.3.1 Mean field on a grid

Let the graph Ggrid(n,Γ) be a grid with n nodes and boundary conditions such that each

node has exactly the same number of neighbours. The mean field approximation for

the grid assumes that any set of nodes (of the size of the neighbourhood) could serve

as part of the neighbourhood, that is, we have a generic set of nodes Γ from the graph

Ggrid instead of the exact neighbourhood Γ(i) for node i because each node has the same

number of nodes and the same update rule. For instance, in the two-dimensional lattice

Z2 the number of neighbours is then 5 (including the node itself). This implies that

the number of active nodes in Γ, referred to as Zt = ∑ j∈Γ X j,t (without the subscript i),

depends on the number on the number of nodes in state 1. We call the number of active

nodes in the entire graph Yt defined by ∑ j∈V X j,t , the sum of all |V |= n nodes in the graph

Ggrid. In order to know the evolution of Yt over time we need to know the transition

probability P(yt+1 | yt) in the setting of the SCA with the majority rule. Since Xi,t are
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Bernoulli random variables, Yt is binomial of size n and with the success probability the

probability of Xi,t , which depends on the number of active nodes in the neighbourhood Γ.

The probability of obtaining an active node in the generic neighbourhood Γ is determined

by yt/n, which is often referred to as the density and denoted by ρt . So, in the mean field

we have the probability P(Xi,t = 1 | zt ,ρt), and we require the probability P(Xi,t = 1 | ρt),

which demands that we know P(Zt = r | ρt) so that we can marginalise over the possible

values r = 0,1, . . . , |Γ| for the number of nodes in state 1. The probability of r nodes in

state 1 in the neighbourhood Γ is

P(Zt = r | ρt) =

(
|Γ|
r

)
ρ

r
t (1−ρt)

|Γ|−r

Then the probability of the conditional event Xi,t | ρt , that node i will have state 1 at

time t + 1 given the density ρt at time t, is obtained by marginalising over all possible

numbers of active neighbours r, i.e., the marginal P(xi,t+1 | ρt) is

|Γ|

∑
r=0

P(xi,t+1 | zt ,ρt)P(zt | ρt) =
|Γ|

∑
r=0

majp(r, |Γ|)
(
|Γ|
r

)
ρ

r
t (1−ρt)

|Γ|−r. (3.2)

This marginal can be written in a more intuitive way where the majority function is

directly applied as a function of the number of active nodes r (see also Kozma et al., 2005)

b|Γ|/2c

∑
r=0

p
(
|Γ|
r

)
ρ

r
t (1−ρt)

|Γ|−r +(1− p)
|Γ|

∑
r=d|Γ|/2e

p
(
|Γ|
r

)
ρ

r
t (1−ρt)

|Γ|−r,

where bxc is the greatest integer less than or equal to x and dxe is the least smallest integer

greater than or equal to x. We call this marginal probability

pgrid(ρt) = P(xi,t+1 | ρt) (3.3)

where the marginal was over the different number of active neighbours zt ∈{0,1, . . . , |Γ|}.

As Balister et al. (2006) showed, it follows that the number of nodes in state 1 in graph
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Ggrid is then a Binomial random variable. Let B(n, p) denote a binomial random variable

with n Bernoulli trials each with success probability p.

Lemma 1 (Balister et al., 2006, Theorem 2.1) Let Ggrid(n,Γ) be a grid with an SCA as

defined above with majority rule majp in (3.1) and ρt =Yt/n be the proportion of nodes in

state 1 at time t. Let the marginal probability pgrid(ρt) = P(xi,t+1 | ρt) in (3.3) be denoted

by pgrid. Then the evolution of the number of active nodes Yt on Ggrid is

Yt+1 = B(n, pgrid(ρt)). (3.4)

The mean and variance for the density ρt = Yt/n are, respectively, µgrid = pgrid and

σ2
grid = pgrid(1− pgrid)/n for any t.

In this binomial process at each time step the proportion ρt = Yt/n is determined,

after which the function pgrid in (3.3) is applied. This provides a new probability for the

binomial process at each time point. Because we are considering an averaging process,

the mean field, we are interested in the repeated application pgrid ◦ · · · ◦ pgrid(ρt), where

the composition pgrid ◦ pgrid(ρt) is defined by pgrid(pgrid(ρt)). If the mean pgrid is a good

description of the process (deviations from pgrid are not too large), then we can use this

mean field as an accurate description of the binomial process. We are then interested in

the evolution of pgrid. First we consider the accuracy of the approximation.

For each t, Xi,t+1 is Bernoulli distributed B(1, pgrid(ρt)) for all nodes i ∈ V , and the

number of active nodes Yt+1 is the sum of the outcome of Bernoulli trials. Hence, we

can apply the law of large numbers so that for large graphs (large n), the mean of the

proportion of active nodes µgrid = pgrid is close to ρ (where we ignored the subscript t for

the moment since this holds for any t) with high probability. Indeed, we can use Chernov’s

bound to obtain that for any t the difference |ρ − pgrid| is bounded as a function of the

size of the graph |V |= n (a proof is in Appendix A).
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Lemma 2 (Accuracy bound of density) Let Yt = ∑x∈V Xi,t be the sum of n Bernoulli trials

given by (3.4), with mean of the density pgrid(ρt). For every 0 < ε < min{pgrid,1− pgrid},

let δ = 2exp(−ε2/2σ2
grid). We then have with probability at least 1−δ

|ρ− pgrid|≤
√

pgrid(1− pgrid)

n
2log(2/δ ) (3.5)

For instance, we obtain the interval with probability at least 0.95 of [µgrid − 2.72σgrid,

µgrid + 2.72σgrid]. Another interval can be obtained from the DeMoivre-Laplace central

limit theorem. This theorem tells us that for large enough n, Wgrid = (ρ − pgrid)/σgrid

is distributed as N(0,1). In fact, if the third order moment of Wgrid is c < ∞, the Berry-

Esseen theorem says that the order of approximation of the distribution of ρ to the normal

distribution is O(3c/
√

n) (Venkatesh, 2012). This provides an interval for ρt+1 as a mea-

sure of accuracy with [µgrid−1.96σgrid,µgrid +1.96σgrid] with probability 0.95. Clearly,

in both limit laws the size of the network n determines the accuracy of the approximation.

3.3.2 Mean field on a random graph

In the original setting of a grid (with boundary conditions) the number of neighbours is

fixed and it was seen that the mean field approximation pgrid was accurate for the density

because each node is identical with respect to a change depending on its neighbours.

Here we introduce the neighbourhood size |Γ| as a random variable such that we obtain

the probability P(Xi,t+1 | |Γ|= k,ρt). Then we determine the probability of Xi,t+1 | ρt

by averaging over all possible sizes of neighbourhoods k = 0, . . . ,n− 1 weighted by its

probability for neighbourhood size (marginalising).

This is done in a random graph where each node has a binomial number of neigh-

bours. Let Grg(n, pe) be a random graph with n nodes and (constant) probability pe of

an edge being present, independently (Bollobás, 2001; Durett, 2007). Let the size of the

neighbourhood |Γ| be a binomial random variable with maximal value n− 1 neighbours

and probability pe, that is, B(n−1, pe). Then the probability of obtaining an active node
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can be defined conditionally on the event {|Γ|= k}, the neighbourhood having size k.

That is, we obtain the probability for each neighbourhood size

P(|Γ|= k) =
(

n−1
k

)
pk

e(1− pe)
n−k−1.

Marginalising over the possible neighbourhood sizes, we obtain prg for the probability of

a node being active in the binomial process for the random graph Grg. Then the probability

of obtaining Xi,t+1 is

prg(ρt) =
n−1

∑
k=0

P(Xi,t+1 | |Γ|= k,ρt)P(|Γ|= k)

Then using (3.2) obtaining

P(xi,t+1 | |Γ|= k,zt = r,ρt) = majp(r,k)
(

k
r

)
ρ

r
t (1−ρt)

|Γ|−r,

we obtain the probability P(Xi,t+1 | ρt) for the random graph

prg(ρt) =
n−1

∑
k=0

k

∑
r=0

majp(r,k)
(

k
r

)
ρ

r
t (1−ρt)

k−r
(

n−1
k

)
pk

e(1− pe)
n−k−1. (3.6)

This is a rather lengthy expression and is not easy to work with. So we aim to approx-

imate this expression and determine the error of approximation. Intuitively we would

expect that we could replace the sum over all neighbourhood sizes k in (3.6) and take

only the expected neighbourhood size bpe(n−1)c for each node, where bac is the integer

part of a. Then we obtain a result for the average neighbourhood size, which should be

reasonably close. This would result in a simpler formulation of the probability of a node to

be active in a random graph and would make determining fixed points easier and simplify

computation for large graphs considerably. We next show that such an approximation is

a reasonable approach (the proof is in Appendix A).

Proposition 3 (Probability on a random graph) If the neighbourhood in Grg(n, pe) of each

node in an SCA as defined above is fixed with the expected number of nodes under the

random graph ν = bpe(n−1)c such that the neighbourhood size |Γ| is replaced by ν in

the majority rule majp in pgrid in (3.2), then the probability prg can be approximated by
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Figure 3.3: The expectation µrg = prg (blue, solid curve) of equation (3.6) and µν
grid (red,

dotted curve) of equation (3.7) with p = 0.1 and pe = 0.3. Left panel shows the curves

for a graph of size n = 25, showing a clear difference between the curves, and the right

panel for graph size n = 100. Note that the difference between the curves at the crossings

with the 45◦ line is small.

pν
grid(ρt) =

ν

∑
r=0

majp(r,ν)
(

ν

r

)
ρ

r
t (1−ρt)

ν−r. (3.7)

The approximation error is

|prg− pν
grid|≤ 2|p−1/2|exp

(
− (n−1)ε2

pe(1− pe)
+ log(n)

)
for any ε > 0 and with 0 < pe < 1.

This shows that the number of active nodes Yt in the random graph with probability prg in

(3.6) and the number of active nodes with probability pν
grid in (3.7) converge in probability

with exponential rate with graph size n. Figure 3.3 illustrates the difference between prg

and pν
grid for graph sizes n = 25 and n = 100.
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Remark To retain a probability of an edge in pν
grid leads to a larger approximation error,

i.e., using

pn−1
grid (ρt) =

n−1

∑
r=0

majp(r,n−1)
(

n−1
r

)
(ρt pe)

r(1−ρt pe)
n−r−1 (3.8)

leads to an error of at most |p−1/2|, which makes it non-ignorable (see Appendix A).

We now have expression (3.7) similar to (3.2) for a random graph with the probability

of an active node at time t determined by both the density ρt and an edge being present

pe in the size of the neighbourhood. From (3.6) and Lemma 1 and Proposition 3 the

evolution equation for the random graph can also be described by a binomial process

with probability (3.7)

Yt+1 = B(n, pν
grid(ρt)). (3.9)

We immediately have that the probability pν
grid is close to the density ρ for each time point

t for large graph size n. In fact, we find by the triangle inequality

|ρ− pν
grid|≤ |ρ− prg|+|prg− pν

grid|,

both terms on the right hand side converge to 0. The first term |ρ− prg| converges to 0 by

the Chernov bound (Lemma 2) with prg, and |prg− pν
grid| converges to 0 by Proposition 3.

Note that we require for obvious reasons that the random graph is connected. It fol-

lows that we need a minimum probability pe such that the graph is connected. The prob-

ability that a random graph Grg is connected is exp(−exp(−λ )), where pe = (logn+

λ +o(1))/n with λ fixed (Bollobás, 2001, Theorem 7.3). For instance, if we choose the

probability of Grg being connected to be 0.99 and we use n = 50, then we obtain λ = 4.6

and hence pe = 0.17. We can therefore not go below 0.17 for a graph with n = 50 nodes.

3.3.3 Small-world graph

More interesting in many real-world applications is the small-world graph, and so we

perform a similar analysis for the small-world graph as for the random graph. A small-

world graph is one which has high average clustering and low average path length, relative
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to a random graph with the same number of nodes and edges. These graphs have been

shown to model realistic networks like those of working relations between actors and

the nerve cells in the worm C. elegans (Watts & Strogatz, 1998), and subsequently the

small-world has been shown to apply to many different networks, like the (parcellated)

brain (Sporns & Honey, 2006). Most recently, the network of symptoms as defined by the

diagnostic statistical manual (a compendium to diagnose patients) has been found to be a

small-world. This finding is a possible explanation for the correlations between pairs of

symptoms found in different sub-populations (Borsboom et al., 2011).

Here we use the modified Newman-Watts (NW) small-world of Newman & Watts

(1999b), where for a given grid structure where each node has neighbourhood Γ, a set

of (n− 1)pw edges is on average independently added to the graph, where pw is the

probability of two nodes being wired. Such a graph is denoted by Gsw(n,Γ, pw). The same

idea as with the random graph, where the probability for an active node was corrected by

the probability of the degree of a node, averaged over all possible neighbourhood sizes,

can be used for the random part in the NW small-world. In the NW small-world we start

with a grid with neighbourhood size |Γ|, which is fixed, and augment the graph randomly

with edges according to a binomial variable with probability pw. We then obtain

psw(ρt) =
n−1

∑
k=|Γ|

k

∑
r=0

majp(r,k)
(

k
r

)
ρ

r
t (1−ρt)

k−r
(

n−1
k

)
pk

w(1− pw)
n−k−1. (3.10)

We could define the small-world probability using this definition. But we can split up

psw in two terms, one involving the fixed neighbourhood Γ of the grid, and one random

neighbourhood consisting of the possible shortcuts. We therefore start with the proba-

bility in a grid pgrid corrected by the (1− pw)
n−|Γ| requiring that no possible randomly

added edges are present, i.e., we obtain

psw
grid = pgrid(1− pw)

n−|Γ| (3.11)

for the first part of the fixed grid with neighbourhood Γ. Then, in accordance with the

random part of the NW small-world, a probability is added to emulate the possible addi-
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tional neighbours in the random part of the graph, ignoring the first |Γ| neighbours from

the grid. We obtain this part directly from Proposition 3 for the remaining n−|Γ| nodes.

Define the probability

prg\Γ(ρt) =
n−1

∑
k=|Γ|+1

k

∑
r=0

majp(r,k)
(

k
r

)
ρ

r
t (1−ρt)

k−r
(

n−1
k

)
pk

w(1− pw)
n−k−1, (3.12)

where the first |Γ| neighbours are ignored since they were included already as neighbours

in the grid structure in psw
grid. For the second part prg\Γ, however, we have the approxima-

tion as before from the random graph, leaving out the first Γ nodes from the grid. This

leads to the simplification using the grid probability only

pν

grid\Γ(ρt) =
ν

∑
r=|Γ|+1

majp(r,ν)
(

ν

r

)
(ρt)

r(1−ρt)
ν−r, (3.13)

where ν = bpw(n−|Γ|)c. The error of approximation using pν

grid\Γ instead of prg\Γ fol-

lows immediately from Proposition 3 for fixed grid neighbourhood Γ, except that the first

|Γ| nodes in the grid are taken out.

Corollary 5 (Probability on a NW small-world) Let Gsw(n,Γ, pw) be the NW small-world

graph of size n with |Γ| nodes in the fixed neighbourhood for each node. Furthermore,

let 0 < pw < 1 be the wiring probability and ν = bpw(n−|Γ|)c. Then the approximation

error for the probability using the grid structure pν
grid in (3.13) in the random part is

|prg,\Γ− pν

grid,\Γ|≤ 2|p−1/2|exp
(
− (n−|Γ|)ε2

pw(1− pw)
+ log(n−|Γ|+1)

)
,

for any ε > 0.

Equations (3.10) to (3.13) and Corollary 5 prove that the equation for the evolution on an

NW small-world is

Yt+1 = B(|Γ|, psw
grid(ρt))+B(n−|Γ|, pν

grid\Γ(ρt)) (3.14)

We write

pν
sw =

|Γ|
n

psw
grid +

n−|Γ|
n

pν

grid\Γ (3.15)
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Figure 3.4: The expectation psw (blue, solid curve) of equation (3.10) and pν
sw (red, dotted

curve) of equation (3.13) with p = 0.1 and pw = 0.3. The left panel shows the curves for

a graph of size n = 25, showing a clear difference between the curves, and the right panel

for graph size n = 100. Note that the difference between the curves at the crossings with

the 45◦ line is small.

for the NW small-world probability based on the approximation with the grid. Figure 3.4

shows two examples of the approximation pν
sw for the NW small-world. It is clear from

Corollary 5 that convergence is a bit slow for small graphs since the difference of nodes

in the fixed neighbourhood Γ and in the expected pw(n−|Γ|) neighbours in the random

part, determines the rate. But again, we can use pν
sw to determine the dynamics of the

mean field for large graphs.

3.4 Dynamics properties

We are interested in the long run behaviour of pgrid because this mean field describes

what the number of active nodes Yt+1 in (3.4) will be, which is a binomial process

B(n, pgrid(ρt)). We use the grid as a basis to generalise to both the random graph and

the NW small-world graph, because the probability for a random and NW small-world
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graph have been shown to be simple extensions of the probability on a grid.

For the process Yt we know from that the transition probabilities are

P(Yt+1 = r | Yt = k) =
(

n
r

)
pgrid(ρt)

r(1− pgrid(ρt))
n−r (3.16)

where ρt = k/n. It is easily seen that this is a discrete time Markov process on a finite

state space of size n, since the probability of Yt+1 depends only on Yt . It is also clear

that for each time point t the transition probability is different, i.e., we are dealing with

an inhomogeneous Markov process. For graph G of size n we have n+ 1 states, and

because we define the transition probability in (3.16) using the time dependent value

ρt = Yt/n = ∑
n
j=1 X j,t/n in the function pgrid, we obtain a different transition probability

at each t. Following Saloff-Coste & Zuninga (2010), we denote the transition probability

in (3.16) by Kt(k,r) = P(Yt+1 = r | Yt = k) (also called a Markov kernel), and denote the

(n+1)× (n+1) matrix of transition probabilities by Kt .

By Lemma 2 we know that most of the proportions ρt = Yt/n will be around pgrid.

Hence, if we have some form of stability of the long run distribution of the Markov pro-

cess, we can gauge the probable locations by considering pgrid. Therefore, we investigate

the stability properties of the process Yt and then consider (qualitatively) the probability

for the proportion of active nodes.

3.4.1 Stability

For a time-independent (homogeneous) transition Markov kernel K(r,k) = P(Yt+1 = r |

Yt = k), for any t, the Markov chain at time t is πt = π0Kt , for initial distribution π0 over

the n+ 1 states. Recall that if K is irreducible, then πt is essentially independent of the

initial distribution, and there exists a unique invariant distribution π such that πK = π .

If in addition K is aperiodic, then for large t the distribution π is well approximated by

πt (Norris, 1997; Levin et al., 2017). Similar (but weaker) results can be obtained with

inhomogeneous Markov chains (Saloff-Coste & Zuninga, 2009). For an inhomogeneous

Markov chain of finite state, we are concerned with a dissociation from the initial distri-
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bution (merging) and whether at some time point the Markov chain becomes stable (the

distribution remains within a certain range for each state). Note that probabilities πt(r)

need not be stationary, and we do not always expect that such stability will be obtained

(e.g., see Saloff-Coste & Zuninga, 2010, for examples).

First, we consider whether the distribution with the Markov chain obtained by the

product

πt = π0K0,t = π0K0K1 · · ·Kt

where π0 is the initial distribution at time t = 0, will be the same for any other initial

distribution π ′0. This is sometimes referred to as ‘merging’ because, if we consider the

total variation distance ||P−G||TV=
1
2 ∑x|P(r)−G(r)| for r ∈ {0,1,2, . . . ,n} and two

probability measures P and G, then

||π0K0,t −π
′
0K0,t ||TV→ 0 as t→ ∞

implies that two different initial distributions result in the same distribution πt (Saloff-

Coste & Zuninga, 2010); in other words, πt is for large t independent of the initial dis-

tribution π0. So, independently of where we start, π0 or any other π ′0, we will end up

with the same (possibly time varying) distribution πt (Levin et al., 2017). Merging is also

sometimes called weak ergodicity (Mott & Schneider, 1957).

For merging (weak ergodicity) we require that π0K0,t is close to π ′0K0,t in total varia-

tion for large enough t. This is the case if the transition kernel K0,t is contracting in total

variation distance. That is, if

||π0K0,t+s−π
′
0K0,t+s||TV≤ ||π0K0,t −π

′
0K0,t ||TV

for any t and s. This is because for the single step transition K0,1 we have by the triangle

inequality

||π0K0,1−π
′
0K0,1||TV≤

1
2 ∑

k∈V0

∑
r∈V0

K0,1(k,r)|π0(k)−π
′
0(k)|
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where π0(k) is the probability of state k at time point 0 and V0 = {0,1, . . . .n}. Because

K0,1(k,r) = P(Xi,1 = r | Xi,0 = k), we have that ∑r∈V0
K0,1(k,r) = 1, which gives the result

when recursively applying the above inequality. It is clear that if the kernels Kt,t+1(k,r)

were too small, the inequality is not true, and we would not have a contracting Markov

chain. Hence, this result from Saloff-Coste & Zuninga (2010, Thm. 4.3) about merging,

assumes that each of the Kt in the product K0K1 · · ·Kt is irreducible. In fact, we require

that for any time point t the elements of the transition kernel Kt,t+1(k,r) = P(Yt+1 = r |

Yt = k) in (3.16) are > ηt , for some ηt > 0 and states k and r (uniform irreducibility).

The transition kernel Kt,t+1(k,r) is 0 only if pgrid is 0. Hence, we obtain the fact that

the Markov kernel Kt,t+1 on the finite state space {0,1, . . . ,n} is irreducible if the orbit

pt
grid(ρ0) will not become 0 or 1 at some point. This requires that the parameter p in

the majority rule majp in (3.2) is such that pgrid cannot be in the stable set S(0) = {ρ :

pt
grid(ρ0) = 0 for any t} or similarly in S(1) = {ρ : pt

grid(ρ0) = 1 for any t}.

Second, with the same irreducibility assumption, we obtain stability. We obtain that

the probabilities are for all states r in πt(r) in an interval determined by the smallest and

largest transition probabilities. This stability implies that the probabilities settle down to

some specified interval, but not a specific value.

Lemma 6 Let Yt+1 in (3.4) with mean field probability pgrid in (3.3) be the binomial

process. Suppose that the parameter p in the function pgrid is not in the stable set S(0)∪

S(1), and hence that for each t the matrices Kt are uniformly irreducible, i.e., for all states

k and r, Kt(k,r)> ηt . Then we have the following.

(1) The chain Kt for large t is merging, i.e., for any initial distribution the chain will

approximately be πt .

(2) The probabilities πt(r) are are stable, i.e., within the bounds

min
k,m

Kt(k,m)≤ πt(r)≤max
k,m

Kt(k,m).
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This result tells us that from any initial distribution π0 we will get to a distribution πt , and

these probabilities lie within a certain interval. This is true for some but not all values

p in the majority rule majp. We must therefore investigate for which values of p in the

majority rule the mean field process pgrid moves to either 0 or 1, in which case we know

that the merging and stability results do not hold. We therefore investigate next the orbits

of the mean field pgrid.

3.4.2 Dynamics of the mean field

The dynamics of the mean field in the grid Ggrid from (3.2) have been described in Balister

et al. (2006) and Kozma et al. (2005) for a neighbourhood size of |Γ|= 5. The probability

function pgrid : [0,1]→ [0,1] defined in (3.2) is continuous. And so, since [0,1] is closed

and bounded, we find that pgrid has at least one fixed point in [0,1] (Holmgren, 1996;

Hirsch et al., 2004). A fixed point is one where we find pgrid(ρt) = ρt . Finding the fixed

points for pgrid is generally not trivial. Balister et al. (2006) showed that if |Γ|= 5 in

the finite grid, then p = 7/30 ≈ 0.233 is a critical (bifurcation) point, such that if p is in

[7/30,1/2] then there is a stable fixed point at ρ = 0.5, but when p < 7/30 then ρ = 0.5

is unstable and there are two other stable fixed points. This can be seen in Figure 3.5,

which shows two bifurcation plots, where for each value of 0 < p ≤ 0.5 the function

µgrid = pgrid is iteratively applied for 1000 steps, and only the last 50 are plotted. Figure

3.5 (left panel) shows that for |Γ|= 5 neighbours the fixed point is at 7/30, and shows

bi-stability for p ∈ [0,7/30) and unistability for p ∈ [7/30,0.5], as predicted. Since pgrid

is continuous, stability can be checked by considering the derivative ∂ pgrid/∂ρ = ṗgrid.

If |ṗgrid| is bounded by 1, then the fixed point ρ is attractive, otherwise it is repellent. The

derivative with respect to ρt is

ṗgrid(ρt) =
|Γ|

∑
r=0

majp(r, |Γ|)
(
|Γ|
r

)
(r−ρt |Γ|)ρr−1

t (1−ρt)
|Γ|−r−1

For example, the derivative for p = 0.15 is not bounded by 1 for all values of ρ . The

fixed point ρ = 0.5 is repellent since at this point ṗgrid(0.5) ≈ 1.359, and so iteration of
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Figure 3.5: Bifurcation plots of µgrid in a graph of size n = 100 for |Γ|= 5 (left) and

|Γ|= 15 (right) neighbours.

pgrid will lead away from 0.5. The derivative for p = 0.35 is smaller than 1 (≈ 0.672)

and so ρ = 0.5 is an attractive fixed point. It can be seen that for |Γ|= 5 the critical

(bifurcation) point is at 0.233, as predicted by theory (Balister et al., 2006). It can also

be seen that increasing the neighbourhood size to |Γ|= 15 (right panel of Figure 3.5)

increases the critical point to about 0.32. This increase in critical point corresponds to the

simulations in Kozma et al. (2005) where (‘long range’) edges were added to the nodes,

which increased the neighbourhood size.

The dynamics of pν
grid in the random graph Grg are similar to that of the grid. The

main difference is that the critical point of the bifurcation is closer to p = 0.5. This

follows from the previous section where we saw that the critical point increases when

the neighbourhood size is increased. As is clear from the definition of pν
grid in (3.7),

the only difference with that of the grid is the neighbourhood size which is increased to

ν = bpe(n− 1)c. Figure 3.6 shows the result for a graph with n = 25 nodes (left panel)

and for a graph with n = 100 nodes (right panel). The approximation of pν
grid is quite

accurate, also for the location of the critical point. With a graph of size n = 100 the

accuracy is such that prg and pν
grid are nearly indistinguishable, which corresponds to the
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Figure 3.6: Plots of µrg (red) and µν
grid (blue) as a function of p. In the left panel the

bifurcation plots are given for a random graph of size n = 25 and in the right panel for a

random graph of size n = 100. All plots are obtained with edge probability pe = 0.4 to

guarantee connectedness of the graph.

result in Proposition 3.

The dynamic behaviour of psw is shown in Figure 3.7. Generally, the behaviour is

similar to that on the random graph. In Figure 3.7 the left panel shows a bifurcation plot

of psw and pν
sw on Gsw(49,0.4). The accuracy of pν

sw improves greatly for larger n, as

seen in the right panel of Figure 3.7 for Gsw(100,0.4). For low values of new edges in

the NW small-world pw, the probability pν
sw is smaller than in the grid. This is because

the probability psw
grid = pgrid(1− pw)

n−|Γ| is corrected by the number of edges not added

to the graph.

In each case we see that for the interval ρt ∈ (0,0.5] the proportion is either stable

or the proportion is bistable. This implies that we expect the binomial process (3.14) to

have most probability for p > pc around a single stable fixed point or when p < pc most

probability is around one of the two stable fixed points. As mentioned above, determining

the critical value pc is obtrusive.
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Figure 3.7: Bifurcation plots of the small-world mean field µν
sw = pν

sw based on the ap-

proximation of the random part (in blue) and the mean field µsw = psw in (3.10) based on

the random graph (in red). In the left panel a small-world of n = 49 nodes and in the right

panel a graph of n = 100 nodes; all graphs are obtained with the probability of wiring

(adding edges) in the NW small-world of pw = 0.4.

3.5 Numerical evaluation of the mean field

To evaluate the accuracy of the predictions of the mean field in the grid, random, and

small-world graph, we simulated networks of different sizes in the topology of a grid,

a random graph, and an NW small-world graph. For each combination of parameters,

100 graphs were simulated. In combination with the majority rule the SCA for the grid,

random graph or small-world was run for a certain duration T and the states of the last

section of the time series were determined to see if it matches that of the predictions of

the mean field. At time point t = 0, data in {0,1} were generated for each one of the

three types of graph, according to the Ising model using the R-package IsingSampler

(Epskamp, 2015). Subsequent values t > 0 were obtained for all nodes by the majority

rule given the value p for each type of graph. To determine the accuracy we used both

90% and 95% confidence intervals obtained from the central limit theorem (see Section
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Figure 3.8: Examples of simulated random graphs (top row) and small-world graphs

(bottom row) with network size n = 16. The probabilities of an edge pe in the random

graph and the probability of new edges in the small-world range between 0.1 and 0.5.

3.3.1) for each of the three different graphs. Figure 3.8 shows the topology of some

simulated random graphs and small-world graphs arranged in a finite grid.

We varied the size of the network n ∈ {16,25,49,100}, the number of time points

T ∈ {50,100,200,500,5000}, and the probability of an active node in the majority rule

p ∈ {0.1,0.2,0.3,0.4,0.5}, see (3.1). We also varied the probability of an edge in the

random graph pe ∈ {0.1,0.2, . . . ,0.9}, and the probability of wiring in the small-world

graph pw ∈ {0.1,0.2, . . . ,0.9}. Figure 3.9 visualises the evolution of selected simulation

conditions. All simulated data, figures, as well as the used R-code are publicly available

at the Open Science Framework (Kossakowski & Waldorp, 2020).

Results in bifurcation diagrams with 90% and 95% confidence intervals are shown

in Figure 3.10. The black lines are the bifurcation predictions from the mean field, the

grey area above and below the mean field is the 90% confidence interval, and the grey

dotted lines indicate the 95% confidence intervals. The red dots correspond to the last

100 points in the evolution of a particular kind of graph. It can be seen that for each of

the different types of graph the densities of the simulated networks (red dots) are mostly

within the 95% confidence interval. Except around the critical point (around 0.3) there
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Figure 3.9: Examples of the evolution of a torus (upper panel; p = 0.1), a random graph

(middle panel; p = 0.3, pe = 0.6) and a small world graph (lower panel; p = 0.1, pw =

0.9).
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Figure 3.10: Bifurcation diagrams of a torus (upper panel), a random graph (middle panel;

pe = 0.5) and a small world graph (lower panel; pw = 0.6). Grey solid area = 90%

confidence interval around bifurcation. Dashed grey lines = 95% confidence interval

around bifurcation. Red dots = last 100 points in the evolution at different values of p.
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t = 50 t = 500 t = 5000

n = 16 n = 49 n = 100

p 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Torus
90%CI 0.75 0.99 0.92 0.94 0.96 0.29 0.97 0.63 0.75 0.81 0.12 1.00 0.50 0.75 0.75

95%CI 0.80 0.99 0.99 0.99 0.99 0.67 0.99 0.75 0.83 0.87 0.55 1.00 0.50 0.83 0.75

Random 90%CI 0.97 1.00 0.55 0.78 0.85 1.00 1.00 0.98 0.92 0.94 1.00 1.00 0.87 0.98 0.99

graph 95%CI 0.97 1.00 0.76 0.88 0.92 1.00 1.00 0.98 0.97 0.98 1.00 1.00 0.91 1.00 1.00

Small-world 90%CI 0.34 0.20 0.38 0.54 0.63 1.00 1.00 1.00 0.98 0.99 1.00 1.00 0.99 1.00 1.00

graph 95%CI 0.76 0.43 0.59 0.69 0.75 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00

Table 3.1: Proportion of the densities of active nodes ending up in the confidence interval

(90% or 95%). The setup is similar to Figure 3.10, where each row corresponds to a type

of network and the columns correspond to the size of the network and length of the time

series. In each cell the probability p of a 1 is varied, as in Figure 3.10.

is some difference between the density of the network and the mean field approximation,

especially for smaller time series. Table 3.1, showing the proportions of the densities

corresponding to Figure 3.10, confirms the lower proportions in the confidence intervals

around the critical point in smaller time series. Note that we did not average the values

obtained from the evolution of the graphs, and so the individual fluctuations are also

represented by the red dots. All in all, results show that the mean field approximation

also performs well when non-regular network structures are considered.

3.6 Conclusions and discussion

To model the complex dynamics of large-scale networks (graphs) is generally difficult.

This is because there are many different ‘agents’ that operate within the graph. In par-

ticular, if the nodes in the graph represent symptoms and the edges represent their mu-

tual influence, then the interacting symptoms show complex behaviour on a macroscopic

scale, e.g., at the level of the number of active symptoms. Here we showed that the mean

field model for a stochastic cellular automaton (SCA) with a majority rule, can serve as
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an accurate approximation to such large-scale graphs, and can simplify the analysis of the

dynamics of such systems. Specifically, we showed that averaging across the different

possible node degrees for a random and small-world graph, results in approximations that

lie with high probability close to the mean field. These theoretical results were confirmed

by extensive simulations, showing that for smaller graphs the mean field lies within the

95% confidence interval.

Our approximation is based on the formulation of the grid (torus) where a relatively

simple sum over possible active nodes determines the probability of a randomly selected

node in the graph being active. We showed that for large graphs this approximation

is accurate. This simplification could serve to obtain a more extensive analysis of the

dynamics such as that presented in Janson et al. (2019). There the majority rule (the

stochastic element) was removed from the model, to obtain exact fixed points for the

model. Here we chose not to remove the stochastic element since we aim to introduce

different rules for updates than the majority rule, like a conditional Ising probability.

Our initial motivation for these results was to obtain a model where we could assess

the possibility of a person changing mood suddenly. Based on the estimate of the graph

and the corresponding probability of an active node p and its corresponding bifurcation

diagram, we would then be able to determine the possibility of that person ‘jumping’

from one state into another. This assessment might be useful in a clinical setting where a

decision in a particular type of intervention is required. This idea is pursued chapter 4.
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Applying a Dynamical Systems Model and Network
Theory to Major Depressive Disorder

This chapter is published as: Kossakowski, J. J., Gordijn, M. C. M., Riese, H., & Waldorp,

L. J. (2019). Applying a dynamical systems model and network theory to major depres-

sive disorder. Frontiers in Psychology: Quantitative Psychology and Measurement, 10,

1-18. DOI: 10.3389/fpsyg.2019.01762.
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4. APPLYING A DYNAMICAL SYSTEMS MODEL AND NETWORK THEORY TO
MAJOR DEPRESSIVE DISORDER

Abstract

Mental disorders like major depressive disorder can be modelled as complex dy-

namical systems. In this study we investigate the dynamic behaviour of individuals

to see whether or not we can expect a transition to another mood state. We introduce

a mean field model to a binomial process, where we reduce a dynamic multidimen-

sional system (stochastic cellular automaton) to a one-dimensional system to analyse

the dynamics. Using maximum likelihood estimation, we can estimate the parameter

of interest which, in combination with a bifurcation diagram, reflects the expectancy

that someone has to transition to another mood state. After numerically illustrating

the proposed method with simulated data, we apply this method to two empirical ex-

amples, where we show its use in a clinical sample consisting of patients diagnosed

with major depressive disorder, and a general population sample. Results showed

that the majority of the clinical sample was categorised as having an expectancy for

a transition, while the majority of the general population sample did not have this

expectancy. We conclude that the mean field model has great potential in assessing

the expectancy for a transition between mood states. With some extensions it could,

in the future, aid clinical therapists in the treatment of depressed patients.

4.1 Introduction

Major depressive disorder (MDD) is unfortunately not that uncommon: around 350 mil-

lion people around the globe suffer from MDD (World Health Organization, 2012). While

many studies have been conducted in the treatment of MDD, it remains unclear why cer-

tain people develop MDD and others do not; we do not know the exact circumstances of

the person and its environment that may lead to MDD. There is some empirical evidence

that people experience discrete mood states (Hosenfeld et al., 2015). This has led to the

hypothesis that mood changes or (sudden) transitions to MDD may be related to dynam-

ical systems theory (van de Leemput et al., 2014; Cramer et al., 2016; Wichers et al.,

2016). In this chapter, we build on these ideas to assess the expectancy that a person has

to develop MDD and embed such assessments more thoroughly in dynamical systems
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theory and network theory in order to obtain a reasonable explanation of transitions to

MDD.

Recently, the idea has been put forward that mental disorders, like MDD, can be con-

sidered as a system of interacting variables (Borsboom et al., 2011; Cramer et al., 2016;

Guloksuz et al., 2017; Kossakowski & Cramer, 2019). Aspects of MDD, like loss of en-

ergy or feelings of worthlessness, can be seen as nodes in a network that interact with,

and influence each other at later times and other symptoms of MDD (Cramer et al., 2012).

This system of interacting emotions may change over time, making the system dynamic

(Gulyás et al., 2013). Connections between various aspects of MDD can increase or de-

crease in strength over time, or aspects themselves may increase or decrease in strength

as an individual develops MDD. We can measure these changes by means of the Experi-

ence Sampling Method (ESM; Csikszentmihalyi & Larson, 1987), where individual daily

life experiences are measured several times a day for an extended period of time. At

some point in time, when the system has surpassed some critical point (Scheffer et al.,

2014), a discontinuous transition is made from a stable and healthy mood state to a stable

and depressed mood state. Several studies have illustrated the bimodality of MDD, see

for example van de Leemput et al. (2014); Wichers et al. (2016); Cramer et al. (2016)

and Kossakowski & Cramer (2019). These sudden jumps, called transitions (Kuznetsov,

2013), are central to complex dynamical systems, and are the subject of the assessment

that we will undertake in the present chapter. Please note here that we do not make any

inferences about an individual’s mental status before or after a transition has taken place.

In this study we are mainly interested in the assessment of an individual’s expectancy to

transition between two mood states.

Attempts to anticipate a transition are often approached by so-called early-warning

signals obtained from ESM studies (Kossakowski & Cramer, 2019). Dynamical systems

leave ‘breadcrumbs’ behind in these time series that hint towards such a transition. These

breadcrumbs occur before the transition, and after critical slowing down that may occur

when the system finds it more difficult to return to the original equilibrium state (Scheffer
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et al., 2014). Recently, it has been empirically shown that critical slowing down actually

occurs prior to the transition (van de Leemput et al., 2014; Wichers et al., 2016). While

critical slowing down is an important line of research, it is difficult to analyse critical

slowing down in a system that has more than a handful of variables.

Hosenfeld et al. (2015) introduced a statistical measure to determine whether there

are one or two stable mood states, based just on the distribution of the number of active

symptoms per measurement. This statistical measure, called the bimodality coefficient

(BC), only considers this distribution and determines whether there is evidence for one

or two stable states. However, this approach offers no explanation of any kind of the

phenomena observed in the distribution.

In this study we take a different approach and try to assess the expectancy of a tran-

sition between mood states. We investigate this expectancy by combining dynamical

systems theory with network theory. More specifically, we use cellular automata as the

framework for networks (cellular automata) and their stochastic counterparts to investi-

gate dynamic behaviour. There are three reasons why we believe that the dynamics of

a stochastic cellular automaton may be appropriate for psychopathology. First, there is

some evidence that mood states are discrete, or at least they are experienced as such (i.e.,

see Hosenfeld et al., 2015), and mood can switch between these states. A cellular automa-

ton such as the one we propose is able to have multiple stable states that are discrete, and

the process can ‘jump’ between these states. The fact that the process can switch between

states is important because we want to know the conditions under which such sudden

changes can occur. Second, in line with network theory, we think that mood states and

symptoms interact with each other and hence will influence each other (see Borsboom,

2017). A cellular automaton is a direct implementation of these ideas: it is a network

and by definition each node affects its neighbours through an update rule, which can be

specified based on the application. Third, because we always have uncertainty as to the

correct specification of the variables in the network, we allow the updating process to be

stochastic, accounting for unknown exogenous effects.
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We will simplify the automaton by reducing the network to a single dynamic equation

(given certain assumptions), and by characterising the possible states of this reduced sys-

tem. We then have a process that may be an accurate description of what is going on with

the changes in symptoms over time. We can, in turn, analyse these changes analytically

and through simulations. We assume (intuitively) that the nodes in the network function

roughly in the same manner and that each of the nodes affects the others in a similar

way. The assumptions lead to a so-called mean field model. Using these assumptions,

our focus becomes the proportion of active nodes in the system, which now forms a se-

quence of states ranging from 0 to 1. Since this sequence of states only depends on the

proportion of active nodes at the previous time point, we obtain what is called a Markov

chain and we can estimate the parameters by means of maximum likelihood estimation in

a straight forward manner. Using this dynamical system allows us to determine whether

it is possible for an individual to experience a transition or not.

As an example, we consider a time series of the proportion of active emotions for a

single subject, shown in Figure 4.1 (left panel). We identify the possible states of this

person with respect to the network of emotions, depending on the parameter of the pro-

cess we assume underlies these observations. For this process we can obtain a so-called

bifurcation diagram (Figure 4.1, right panel). This bifurcation diagram shows the possi-

ble (likely) states for this person given a value on the probability p of emotions changing

from inactive to active. We assess from the time series of this person the parameters

of our model and obtain an estimate of where in the bifurcation diagram this person is

(represented by the vertical red line in the right panel of Figure 4.1). If the probability

p is in the range of [0.34,0.50], where there is one point per value of p on the x-axis,

then this person will remain stable. If the probability is lower than approximately 0.34,

where there are two values for each value for p on the x-axis, then there are two stable

states, one with a high proportion of active emotions and one with a low proportion of

active emotions. The estimate of the probability p for this person is 0.192 (the vertical

red line in the right panel of Figure 4.1). Based on this, we would classify this individual
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Figure 4.1: The evolution of the percentage of active nodes for each time point (left

panel), and the accompanying bifurcation diagram (right panel). The red line in the bifur-

cation diagram in the right panel indicates the estimation of p. The x-axis in the left panel

denotes the measurement occasions over time. The x-axis in the right panel denotes the

probability p for a node to become active. The y-axis denotes the proportion of nodes in

the system that are active.

as someone who may expect a (sudden) increase in the proportion of active emotions and

thereby experience an episode of depression. And indeed, for this individual we know

(from external evidence) that a depressive episode had taken place after the time series

that we used to determine the state of the person (see Wichers et al., 2016; Kossakowski

et al., 2017).

In the present chapter we obtain the maximum likelihood (ML) estimate for the model

and the standard errors. We show, using simulations, that for many of the values of the

parameter the estimate is reasonably close to the true value. Furthermore, we apply the

proposed method to two real datasets, one with patients diagnosed with MDD, and one

with subjects from the general population. This chapter is set up as follows. First, we will

briefly explain the theory (Section 4.2) of the mean field model and the proposed method

(Section 4.3 and 4.4). Then we present the simulation to show how the ML estimation

performs in Section 4.5. Finally, in Section 4.6 we apply our method to two datasets to

show how the method works in different contexts.
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4.2 Stochastic cellular automata

To model interacting symptoms and emotions we use a particular kind of structure, a

stochastic cellular automaton (SCA). Such automata are particular dynamical systems

that show typical behaviour for stable and bistable behaviour depending on the settings

(Kozma et al., 2004; Balister et al., 2006), which is what we assume to the case for MDD.

For the interested reader, the books by Holmgren (1996); Hirsch et al. (2004); Hasselblatt

& Katok (2003) and Golubitsky & Stewart (2003) provide background information on

dynamical systems theory. A cellular automaton (CA) is a dynamical system where nodes

are arranged in a fixed and finite grid, and where connected nodes determine the state of

a node at each subsequent time point (Wolfram, 1984b; Sarkar, 2000). A node j that is

directly connected to node i is called a neighbour. A grid is a graph Ggrid(n,Γ) with n

nodes in the set V = {1,2, . . . ,n}where each node i has the same number of neighbours in

its neighbourhood Γ = { j ∈V : j is connected to i}∪{i} including itself. To ensure that

all nodes have exactly the same number of neighbours, we impose the boundary condition

such that a node at the boundary is connected to a node on the opposite end, making it

a torus. An example of such a grid is shown in Figure 4.2 (left), where the middle node

is directly connected to its four neighbours, marked in grey. We consider elementary

CAs where each node can be in either of two states: ‘active’ (coded by 1) or ‘inactive’

(coded by 0). In a CA a deterministic, local update rule φ determines the state xi,t of each

node i ∈ V at the next time step based on which nodes are active in the neighbourhood

of node xi,t . An example of such an update rule is the majority rule, where each node

becomes 1 (active) whenever more than half of the neighbours of node i at the previous

time point are active, and 0 (inactive) otherwise. Although many other update rules are

possible, we will focus on this particular rule in the present study. One of the reasons for

choosing the majority rule is that it is stable. In other words, small changes in the number

of active nodes will not affect the decision (O’Donnell, 2014). Repeated application of

the update rule φ results in a vector of 0s and 1s, called an orbit: At any time point t the

orbit φ t(xi) = φ ◦φ ◦φ · · · ◦φ(xi,0) (initial value at t = 0), such that the same local rule is
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Figure 4.2: Visualisation of a grid structure (left panel), a random graph structure (middle

panel), and a small-world structure (right panel). Grey nodes indicate the neighbours of

the middle node in each graph. Solid lines indicate pairwise connections between nodes.

Dashed lines are also pairwise connections, but have been curved and dashed as they are

hidden behind other connections in a 2D-view.

applied to the result of the previous time point t times.

To illustrate, say that we have the network presented in Figure 4.2 (left), and we have

the following orbit of active and inactive nodes φ 0(x1,0) = 1, and for the other 8 nodes

1, 0, 1, 0, 0, 1, 1, 0, as shown in Table 4.1. We can then determine how many active

neighbours r each node has, by just counting the number of active nodes each node is

connected to. As mentioned in Table 4.1, nodes 1, 5 and 7 have three active neighbours,

nodes 2, 3, 4, 8 and 9 have two active neighbours, and node 6 has one active neighbour.

For this example we will use the majority rule φ that is described earlier, which states

that a node is activated (‘1’) when more than half of that node’s neighbourhood is active.

The majority rule uses r > |Γ|/2 to indicate whether the number of active neighbours

is greater than half the size of the neighbourhood, where Γ denotes the size of a node’s

neighbourhood. In our example, |Γ|= 5: each node has exactly four neighbours, and the

node itself at t − 1 is the fifth addition to |Γ|. With the majority rule φ , the next time

step becomes φ 1(xi,1) = (1,0,0,0,1,0,1,0,0). We then use this sequence of active and

inactive nodes to determine the number of active nodes r at t = 1, which is described in
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Node t0 r0 t1 r1 t2

1 1 3 1 1 0

2 1 2 0 2 0

3 0 2 0 1 0

4 1 2 0 3 1

5 0 3 1 0 0

6 0 1 0 1 0

7 1 3 1 1 0

8 1 2 0 2 0

9 0 2 0 1 0

Table 4.1: Illustration of the majority rule as used for Figure 4.2. The columns t0, t1 and

t2 denote the sequence of active nodes at a specific time point. The columns r0, r1 and r2

denote the number of active neighbours per node at time point t.

Table 4.1, column r1. We can continue this process for a length T (not shown in Table

4.1), thus creating a T ×n matrix that holds the orbit φ t(xi,t) on the columns.

In the illustration above, the majority rule used to update the system was a deter-

ministic one. In a stochastic cellular automaton (SCA), a probability is introduced to

model uncertainty, based on the number of active neighbours (r). In our application to

psychopathology, this uncertainty is required because we cannot predict the behaviour of

emotions in our network exactly, and because we know that exogenous events influence

these emotions that we cannot measure. By just counting the number of active neighbours

that a node has, we can determine the probability for a node to become active. The prob-

ability 0 ≤ p ≤ 1 determines whether or not a node becomes active at time point t + 1.

The majority rule combined with this probability equals the probability that we obtain for

node xi,t+1 = 1, given that there are r active neighbours is
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P(Xi,t+1 = 1 | r) =

 p if r ≤ |Γ|/2

1− p if r > |Γ|/2
(4.1)

where |Γ| is the size of the neighbourhood and r the number of active neighbours.

The parameter p is determined a priori or is estimated from data (see below). Because

P(xi,t+1 | r) depends on the behaviour of the majority of a node’s neighbourhood, this

update rule is also called the majority rule. In this SCA each node i ∈ V is then updated

according to the majority rule; all nodes are updated simultaneously (synchronous updat-

ing). The result for each node is a sequence (orbit) of 0s and 1s. From all n = |V | nodes

we can determine the total number of active nodes Yt at time point t, for all time points up

to time T . We are interested in the number of active nodes Yt = ∑
n
i=1 Xi,t (where Xi,t is the

value of node xi at time point t) and so we average over all nodes in the grid at each time

point t, obtaining ρt = Yt/n, which is often referred to in the literature as the density. An

example of the density (proportion) is shown in Figure 4.1 (left panel).

4.3 Mean field model

It is rather difficult to infer the characteristics of what the system will do in the long run

from an SCA (Lebowitz et al., 1990). We need to simplify the SCA in order to make it

possible to derive the characteristics of the SCA. Here we use an approximation for the

structure of the network, where we assume the average of the number of neighbours for

each node |Γ|. We also assume that nodes can be in either of two states: active (‘1’) or

inactive (‘0’), and that the nodes behave in a similar manner. The latter assumption means

that the majority rule, as presented in equation (4.1), is applied to all nodes in the network,

and that all nodes become active or inactive in the same way. In the grid (Figure 4.2, left

panel) it is easily seen that each node is similar to any other node since each node has the

same number of neighbours, and becomes active or inactive in the same way by means

of the majority rule that is based on the number of active neighbours. This allows us to
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simplify an SCA to a single discrete time dynamical system, as in Kozma et al. (2005),

Balister et al. (2006), and Waldorp & Kossakowski (2020).

In the mean field model we make use of the uniformity of the nodes in a grid. The

change of a node from 0 to 1 or vice versa is based on the number of active neighbours in

that node’s neighbourhood (r) and the probability parameter p, following the majority rule

defined in equation (4.1). In a grid each node has exactly the same number of neighbours

and so the probability of a node changing value depends on the properties of the grid and

not on the local activity. Therefore, as shown in Kozma et al. (2005) and Balister et al.

(2006), we obtain at time point t + 1 the number of active nodes in the grid Yt+1, which

is a random variable with a binomial distribution that has a success probability ρt =Yt/n,

the proportion of active nodes (density) at the previous time point t. The number of

draws in the binomial probability is determined by the size of the neighbourhood |Γ|

particular to the graph. The majority rule in equation (4.1) determines for which number

of active nodes we obtain p up until the number of active nodes r ≤ b|Γ|/2c, where bac

is the integer part of a, or 1− p otherwise. To define the probability of the number of

neighbours that are 1, we need to consider all possible configurations of |Γ| in terms of

active-inactive nodes in the graph. There are
(|Γ|

r

)
ways to choose r active nodes out of |Γ|

each with a success probability ρt = Yt/n. We then obtain for the probability of r active

nodes out of |Γ|

P(r | ρt) =

(
|Γ|
r

)
ρ

r
t (1−ρt)

|Γ|−r. (4.2)

Simultaneously, we require the probability p or 1− p from the majority rule in equation

(4.1), which is assumed to be independent. We need to define the probability for any

number of active nodes and therefore marginalise over the number of possible active

nodes in the neighbourhood r. Putting equation (4.1) and equation (4.2) together, we

obtain the joint probability P(Xi,t+1 = 1 | r,ρt) = P(Xi,t+1 = 1 | r)P(Xi,t+1 | ρt). Hence we

obtain the probability for any node in the graph to be 1 as

ρ
grid
t+1 =

|Γ|

∑
r=0

P(Xi,t+1 = 1 | r)
(
|Γ|
r

)
ρ

r
t (1−ρt)

|Γ|−r. (4.3)
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Because the evolution is binomial based on the proportion of active nodes at the pre-

vious time point (see equation (4.3)), it follows from the transition probability that the

number of active nodes Xt+1 = xt+1, given that at t Xt = xt in the graph Ggrid, is

P(Xt+1 = xt+1 | Xt = xt) =

(
n

xt+1

)
ρ

grid
t (xt/n)xt+1(1−ρ

grid
t (xt/n))n−xt+1 . (4.4)

So, we know how in a grid with n nodes the proportion of active nodes ρt changes

from time point t to time point t+1, for any t. The mean field model uses the mean of this

binomial process and divides by n to obtain the proportion. We often denote the expected

value of Yt+1/n by µgrid := ρ
grid
t to emphasise that we use the mean of the process in a

grid. We know that the fluctuations around the mean are small (depending on the standard

deviation and size of the grid, see Waldorp & Kossakowski, 2020), so the mean is a good

approximation of the process itself.

As an illustration of the binomial process, in the left panel of Figure 4.3 we see a

typical SCA process where it is clear that the fluctuations are around a particular mean

(0.3) for time points before t = 125 approximately. After this point (tipping point) the

fluctuations revolve around another mean (0.7) with a higher proportion of emotions. In

the right panel of Figure 4.3 we see a plot of the expectation of the process, which is

the mean field that predicts the values at which the mean of the process converges to

eventually. It is this mean field function that we will use to represent the process and the

network that evolves over time.

We now regard the mean field, the expectation of the binomial process E(Yt/n) =

µgrid, as the dynamical system that is a representation of the network. This dynamical

system evolves by repeated application of µgrid to its previous result. We analyse the

dynamical properties of µgrid by considering a so-called bifurcation diagram. Plugging in

different values for the a priori set parameter p from equation (4.3) in the majority rule,

in the interval (0,0.5], we obtain a bifurcation diagram, as shown in Figure 4.1 (right

panel). In a bifurcation diagram the repeated application of µgrid is applied to updated

values of ρ
grid
t such that the last section of the orbit is displayed where the process is
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Figure 4.3: Example of a stochastic cellular automata process that includes a transition

(left panel). Example of the corresponding mean field function (right panel). The red line

indicates the expectation of equation (4.3) divided by the number of nodes.

in equilibrium (stable if stable fixed points exist; Hirsch et al., 2004). For each value

of p, displayed on the x-axis in Figure 4.1, one sequence is generated, of which the last

50 are displayed in Figure 4.1. In some cases, the sequence will find two equilibria,

and thus we draw two points at those two equilibria. In other cases, the sequence will

converge to one equilibrium, and thus only one point will be drawn in the bifurcation

diagram. Such diagrams show what kind of behaviour can be expected to be generated

by the process. Here we see that there are two kinds of situations: (a) a stable situation

when p is in the interval (0.34,0.50], where irrespective of the starting point, the process

ends up at that stable fixed point, and (b) a bistable situation when p is in [0,0.34] where

the process could (suddenly) switch between states (transition) to a low or high density.

The parameter value p at which the process changes from a stable to a bistable situation is

called the critical point. In Figure 4.1 the critical point lies at p≈ 0.34; the parameter area

0 < p≤ 0.34 is bimodal where transitions can occur, whereas the parameter area 0.34 <

p < 0.50 represents a unimodal area where the mean field is stable. Thus, the parameter
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p can be used to determine whether a process has two stable states, and therefore can

transition between them, or one stable state, where no transition can occur.

The probability for the mean field in equation (4.3) is designed for a grid with a

fixed neighbourhood size |Γ|. In the context of psychology and psychopathology, it is

hard to come up with a graph representing the interactions between variables, that would

take the form of a grid. We therefore also looked at the mean field model for a random

graph and a small-world graph. A random graph Grg(n, p(e)) is a graph structure with n

nodes and a (constant) probability p(e) for an edge to be present in the graph (Bollobás,

2001; Durett, 2007). In the mean field model of a random graph, the neighbourhood size

|Γ| is a random variable that is maximally n− 1. Each node has a binomial number of

neighbours with expected number of neighbours p(e)(n−1). We extend the idea used for

the grid, where we marginalise over all possible configurations of the number of active

nodes for each neighbourhood of size n−1 for the random graph. One can approximate

this probability accurately with a small modification of the probability used for a grid

(Waldorp & Kossakowski, 2020). The difference with the probability on the grid is in

the size of the neighbourhood (see Figure 4.2, left and middle panel), where in the grid

the neighbourhood size is fixed to |Γ|. In the mean field model for the random graph,

we fix this to the expected number of neighbours p(e)(n− 1). Let ν = bp(e)(n− 1)c

be the integer part of the expected number of neighbours. For the random graph Grg the

neighbourhood size is no longer |Γ| (like it is for the grid), but ν . The probability in a

random graph for a node to become active given the graph’s density at time point t (ρt )

and the edge probability then becomes (Waldorp & Kossakowski, 2020):

ρ
rg
t+1 =

ν

∑
r=0

P(Xi,t+1 = 1 | r)
(

ν

r

)
ρ

r
t (1−ρt)

ν−r. (4.5)

A small-world graph is in between a grid and a random graph where, compared to a

random graph, the average clustering is high and the average path length is low (Watts &

Strogatz, 1998). A modified version of the small world is the Newman-Watts (NW) small-

world (Newman & Watts, 1999a). In the NW small-world Gsw(n,Γ, p(w)) the n nodes
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each have a neighbourhood Γ as in the grid and edges are added to the network following

a (constant) wiring probability p(w) (Newman & Watts, 1999a). We can then split up

the probability in a part associated with the grid and a part associated with the random

graph. The part for the grid is adjusted such that it corresponds to no other edges being

present, i.e., we obtain ρ
grid
t (1− p(w))n−|Γ|, where the product (1− p(w))n−|Γ| represents

the probability that no other edges are present for n−|Γ| nodes. For the random part we

obtain the probability as in equation (4.5) but the first |Γ| edges left out, because they have

already been accounted for by the grid part. We denote this probability by ρ
rg,Γ
t , which

denotes the probability as in equation (4.5) but with ρ
rg,Γ
t starting at |Γ|+1 instead of 0.

Then the probability for a node to become active given the graph’s density at time point t

(ρt ) and the wiring probability p(w) in the small-world graph Gsw is

ρ
sw
t+1 =

|Γ|
n

ρ
grid
t (1− p(w))n−|Γ|+

n−|Γ|
n

ρ
rg,Γ
t . (4.6)

The small-world probability is therefore a combination of the probability from the grid

and from a random graph, proportionately weighted.

4.4 Estimation of probability p and graph parameters

Our objective is to derive an estimate of the probability parameter p from a time series to

determine whether an individual can expect a transition between two mood states. One

way of obtaining such an assessment is to determine where in a bifurcation diagram a

person is located with respect to the parameter p in the majority rule; is this in the stable

area, where no transition can occur, or is it in the bistable area where a transition can

occur. In order to do this, we need to estimate the parameter p that is essential in the

majority rule in equation (4.1). Here we use maximum likelihood (ML) to obtain an

estimate of p (Rajarshi, 2012).

If we take a closer look at equation (4.3), it can be noticed that all parameters are

known prior to the analysis, with the exception of the probability parameter p. To obtain

p, we can estimate it from the data using ML estimation. We then obtain the maximum of
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the log-likelihood for the probability parameter p that exists in equation (4.1). We write

the transition probability in going from state xt to state xt+1 (number of active nodes in

the graph) in equation (4.4) from t to t + 1 as P(Xt+1 = xt+1 | Xt = xt). The log of the

joint probability function (loglikelihood) for the number of active nodes is then

logP(Xt , t ≥ 0) =
T−1

∑
t=0

logP(Xt+1 = xt+1 | Xt = xt), (4.7)

where T denotes the total duration of the sequence in time points. The transition proba-

bility P is as in equation (4.4). The data that are plugged into this equation is a vector of

length T that holds the number of active nodes for each time point t. At each time point

the number of active nodes is given as input to the probability in the binomial process

ρt = (Yt/n), where xt is the number of observed active nodes at time point t. The data

are plugged in the transition probabilities, where we recognise in the SCA that we can

relatively easily find the transition probability to go from xt to xt+1 active nodes. We can

find these transition probabilities because of the fact that we have, for each of the graphs

Ggrid, Grg, and Gsw, a binomial process with a probability of success particular to each

type of graph. The parameter ρt for the random graph Grg and the small-world graph Gsw

are similar except that we change the probability of success to ρ
rg
t or ρsw

t , respectively.

The process is ergodic whenever the probability ρ
grid
t is not in the basin of attraction

of 0 and 1 (see Waldorp & Kossakowski, 2020). In other words, a process is ergodic

when the process is stationary and when all nodes in the graph follow the same dynamics

(Molenaar, 2007). In those cases we could simplify equation (4.7) using only the transi-

tion probabilities that do not depend on time. In general, however, we do not know where

the probabilities are, and therefore we do not assume ergodicity and cannot simplify the

log-likelihood to terms consisting only of the states and not on time (Fleming & Harring-

ton, 1978). We maximise the log-likelihood function in equation (4.7) with respect to p to

obtain its estimate from an empirical time series, making it possible to place that person

on the bifurcation diagram and assess the expectancy of possible switching.

In both the random and small-world graph we have additional graph parameters: in the

random graph we have the probability of an edge p(e), and in the small-world graph we
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4.4. Estimation of probability p and graph parameters

have the probability of re-wiring p(w). Both parameters are obtained by maximising the

log-likelihood with respect to p(e) and p(w) respectively. Equations (4.3), (4.5) and (4.6)

each show how we calculate the density (ρ) in a grid, a random graph, or a small-world

graph, respectively. One only needs to plug in a value for p (and the graph parameters

p(e) or p(w) in the case of a random graph or a small-world graph) into the equation and

let it run for some time T (often 1000 is enough), to find out at what density it will end up,

or between which two values it may transition in the case of two stable states. By varying

the value for p, one can create a bifurcation diagram, of which examples are shown in

Figure 4.4. Each dot represents a separate run of the mean field equation. Equation (4.3)

is reflected in the top panel of Figure 4.4, equation (4.5) in the middle panel, and equation

(4.6) in the bottom panel of Figure 4.4.

Taking the top panel of Figure 4.4 as an example, if we run equation (4.3) with

p = 0.1, it can be seen that the binomial process ends up in either 0.1 or 0.9 approxi-

mately, and could switch between these states. Our mean field model says that if we es-

timate the probability parameter p for an individual to be p̂≈ 0.1, then this person could

experience a transition between the two states, which could be related to a depressive

episode. When we increase the value of the probability parameter p̂ ≈ 0.3, the binomial

process no longer has the possibility of a transition between states, but will remain around

0.5 approximately. The critical point, the point where the system changes from having

two stable states to one stable state, differs depending on the size of the graph and the type

of graph; for the random graph and the small-world graph the location of the critical point

also depends on the graph parameters p(e) or p(w), as seen in Figure 4.4. To summarise,

in order to categorise individuals, we need to determine the most appropriate the size of

the graph, the most appropriate graph structure and its associated graph parameter to find

the critical point in this personalised mean field model. Using this model, we can then

determine an individual’s position in terms of the probability parameter p.

Uncertainty can be quantified by the standard error of the estimate p̂. For the grid

we only have the estimate of p and for the random graph and the small-world graph
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Figure 4.4: Examples of bifurcation diagrams for a grid (upper panel), a random graph

(middle panel; p(e) = 0.1) and a small-world graph (lower panel; p(w) = 0.1). The x-axis

denotes the probability p for a node to become active. The y-axis denotes the proportion

of nodes in the system that are active.
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we have the edge probability p(e) and p(w), respectively. Standard errors are obtained

from the second order derivatives (Hessian) of the log-likelihood (Rajarshi, 2012). The

inverse (matrix) of the Hessian and scaled by 1/T results in the variance of the parameter

estimates. The square root of the diagonal elements are the standard errors, i.e., SE(p̂) =√
1
T h11 is the standard error for p̂,SE(p̂(e)) =

√
1
T h22 is the standard error for the edge

probability in the random graph, and SE(p̂(w)) =
√

1
T h22 is the standard error for the

rewiring probability in the small-world graph, where hi j is the i jth element of the inverse

Hessian.

4.5 Numerical illustration of probability p and graph parameters

Before we apply the mean field model to empirical data, we want to know how well

the mean field model can estimate the probability parameter p in simulated data. We

simulated 100 networks for each topology of a grid, a random graph, and a small-world

graph. We varied the size of the network V ∈ { 16, 25, 49, 100 }, the number of time

points T ∈ { 50, 100, 200, 500, 5000 }, and the probability p ∈ { 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9 } (Equation 4.3). We also varied the probability for an edge in the

random graph p(e) ∈ { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 } (Equation 4.5) and the

probability for an edge to be rewired in the small-world graph p(w) ∈ { 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9 } (Equation 4.6). For t = 0, a random number of nodes was set to

active by using the R-package IsingSampler version 0.2 (Epskamp, 2015).

For each of the 100 simulation runs, we used the T ×n set of active and inactive nodes

to estimate the probability parameter p and the graph parameters p(e) and p(w). All

simulated data, figures, and the used R-code are publicly available (OSF; Kossakowski,

2019). For clarity of presentation, figures are only presented for T = 50, as results for the

other number of time points were nearly identical. We also only present the results for p,

p(e) and p(w) ∈ {0.1,0.2,0.3,0.4,0.5} as the simulation results for these parameters >

0.5 hardly occur in empirical data, and are therefore for this chapter less interesting. These

and other results can be found online (Kossakowski, 2019). For each simulation run, we
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calculated the absolute difference between the probability parameter p, under which the

data were simulated, and p̂, which we estimated from the data using ML estimation.

We denoted this absolute difference by ∆(p), after which we take its mean (∆(p)). This

mean is determined for each replication, and can be interpreted as an error rate. The

lower this value, the closer the estimate p̂ is to the original value p. The same procedure

was performed to determine the accuracy for graph parameters p(e) (∆(p(e))) and p(w)

(∆(p(w))). A complete overview of all results across all conditions can be found in Table

S1 the supplementary files online.

Figure 4.5 shows a visual representation of the mean absolute difference (∆(p)) be-

tween the true probability parameter p, and the estimated probability parameter p̂. It can

be seen that the error rate ∆(p) for p is low for all different network structures. Supple-

mentary file S1 shows the mean estimate of p and its associated standard deviation for

all conditions. The standard deviation for p̂ is pretty low across conditions and never

exceeds 0.04. The mean error rate ∆(p) did not exceed 0.08 for the grid (for T = 5000,

n = 100, p = 0.4), 0.06 for the random graph (for T = 50, n = 25, p = 0.2, p(e) = 0.1),

and 0.04 for the small world graph (for T = 50, n = 16, p = 0.5, p(w) = 0.4). The error

rate ranged between [0.006−0.12] for the grid, [0.0009−0.15] for the random graph, and

[0.008−0.16] for the small world graph. A small increase in the error rate can be noticed

for the grid around the values p = 0.3 and p = 0.4. We think that a possible explanation

is that the mean field model has some issues with estimating p around the critical value,

the point where the system either has one stable state, or two stable states. Because of

fluctuations in the process, the exact critical point is difficult to estimate.

The same conclusion cannot be drawn for graph parameters p(e) and p(w), as seen

in Figure 4.6. For a random graph, ∆(p(e)) is high when p(e) is low, and decreases as

p(e) is increased. This shows that the graph parameter p̂(e) is most accurate when p(e)

is high. A possible explanation for this finding could be found in the connectedness of

random graphs. When p(e) is small, the probability that not all nodes are connected

increases, resulting in isolated nodes. When we look at the minimum probability p(e),
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Figure 4.5: Visualisation of the mean error rate between p and p̂. Mean absolute dif-

ference (|∆|) is shown for a grid (left column), a random graph (middle column), and a

small-world graph (right column) at T = 50. For the left column, the x-axis denotes the

parameter p for which we simulated data, and the y-axis the mean absolute difference |∆|

between p and p̂. For the middle and right column, the x-axis denotes the parameter p for

which we simulated data, the z-axis the graph parameter that was used to simulate data

(p(e) or p(w)), and the y-axis the mean absolute difference |∆| between p and p̂. The

mean absolute difference ranges between 0 and 1, where a lower value indicates a smaller

difference between p and p̂.
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such that the graph is connected for different network sizes, we see that p(e) must be at

least 0.46 when the network size is 16, 0.31 when the network size is 25, 0.17 when the

network size is 49 and 0.09 when the network size is 100. Thus, as p(e) increases, the

probability for the network to be connected increases, and as a result of this, the error

∆(p(e)) decreases. The reverse is true for the small-world graph, where ∆(p(w)) is high

when p(w) is high and p is low, and decreases when p(w) also decreases. This shows that

the graph parameter p̂(w) is most accurate when p(w) is low and when p is high.

To investigate the standard errors, we calculated the mean standard error (SE) and its

associated standard deviation for all conditions using the Hessian matrix provided by the

ML estimation procedure. Table S1 in the supplementary files depict the mean SE and

its standard deviation for all conditions. It can be seen that the mean SE is extremely

low across all conditions, indicating good accuracy of the estimates. We calculated the

absolute difference between the standard deviation of p̂ and the SE of p̂. The difference

ranged from 0.0003 to 0.18, and in 98.9% of all conditions, the difference between the

standard deviation and the SE is smaller than 0.05.

Next to the SE, we calculated the error rate ∆(p) when the network structure is mis-

specified, and thus used the incorrect model to estimate p̂ from the data. We used two

datasets that represent the best and worst case scenario in terms of data structure. The

worst case is the data with n = 100 nodes and T = 50 time points. The best case is the

data with n= 16 nodes and T = 5000 time points. By taking the least and most ideal com-

bination of n nodes and T time points, we obtain results where all other combinations will

most likely lie in. With these properties in mind, we selected the data simulated for all

three network structures, and applied all three models to estimate p̂. Figure 4.7 depicts

the error rate ∆(p) for n = 100 nodes and T = 50 time points. We chose not to present the

results for the data with n = 16 nodes and T = 5000 nodes for clarity of presentation. We

estimated p̂ for all three network structures for all datasets. It can be seen in Figure 4.7

that ∆(p) is generally low, regardless of the network structure that was used to simulate

the data.
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Figure 4.6: Visualisation of the mean absolute differences between p(e) and p̂(e) and

p(w) and p̂(w) at T = 50. Mean absolute difference is shown for a random graph (left

column) and a small-world graph (right column). The x-axis denotes the parameter p for

which we simulated data, the z-axis the graph parameter that was used to simulate data

(p(e) or p(w)), and the y-axis the mean absolute difference |∆| between p(e)/p(w) and

p̂(e)/ p̂(w). The mean absolute difference ranges between 0 and 1, where a lower value

indicates a smaller difference between p(e)/p(w) and p̂(e)/ p̂(w).
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Figure 4.7: Visualisation of the mean absolute differences between p and p̂ that resulted

from the misspecification analysis with n = 100 nodes and T = 50 time points. The rows

denote the structure for which the data were simulated. The columns denote the structure

for which p̂ was estimated. For the left columm , the x-axis denotes p for which we

simulated data, and the y-axis the mean absolute difference between p and p̂. For the

middle and right column, the x-axis denotes the parameter p for which we simulated data,

the z-axis the graph parameter that was used to simulate data, and the y-axis the mean

absolute difference between p and p̂ that ranges between 0 and 1. The mean absolute

difference ranges between 0 and 1, where a lower value indicates a smaller difference

between p and p̂.
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For each estimation we calculated the Bayesian Information Criterion (BIC) and com-

pared it to the BIC of the other two network structures. The BIC is used for model selec-

tion, where the model with the lowest BIC is most preferred (Wit et al., 2012). We chose

the BIC here over other information criteria because of its dependency on the sample size

(Vrieze, 2012). As the sample size increases, the penalty of the BIC increases as well.

We calculated the Akaike Information Criterion as well and obtained similar results. We

therefore decided to only present the results for the BIC. Results showed that the grid

structure was never the preferred network structure. The random graph is often selected

(63.8% of the cases across conditions) as the preferred network structure when the data

are simulated under a random graph. The small-world graph is preferred over the random

graph at p(e) = 0.1 or p(e) = 0.2. A possible explanation for this is that, at this value for

p(e), the network is very sparse and it may be difficult to distinguish between the network

structures. For data simulated under the small-world graph, the small-world graph itself

is most often selected based on the BIC (69.3% of the cases across conditions). There

are no conditions in which the random graph is preferred over the small-world graph. It

is worthy to note that, as p increases, the difference in mean BIC between the network

structures decreases, and more often the “incorrect” model is selected. This is also shown

in Figure 4.4, where there is little difference between the bifurcation diagrams, especially

when p is high.

As a last measure to study the robustness of our ML estimation, we performed a subset

analysis, taking either 50% or 75% of the simulated time points to estimate p̂. Similar to

the misspecification analysis that we described previously, we looked at data with n= 100

nodes and T = 50 time points, and data with n = 16 nodes and T = 5000 time points. For

each simulation condition, we randomly selected one simulation and selected a subset

of the data, which we repeated 100 times. Figure 4.8 shows the mean error rate ∆(p)

between p and p̂ for n = 100 nodes and T = 50 time points. It can be seen that the mean

error rate is generally low for all conditions and network structures. This means that, even

when we take a subset of the data, the mean field model is able to correctly estimate p
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Figure 4.8: Visualisation of the mean absolute differences between p and p̂ that resulted

from the subset analysis with n = 100 nodes and T = 50 time points. The rows denote

the structure under which the data were simulated and analysed. The left columns shows

the result for the subset analysis with 50% of the data retained, while the right column

shows the results with 75% of the data retained. The x-axis denotes the parameter p for

which we simulated data, the z-axis the graph parameter that was used to simulate data

(in case of the 3D figures), and the y-axis the mean absolute difference between p and p̂.

The mean absolute difference ranges between 0 and 1, where a lower value indicates a

smaller difference between p and p̂.
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from the data that we used.

In sum, the mean field model estimates p well from the data; the graph parameters

p(e) and p(w) could not be estimated as accurately. For the random graph parameter

p(e), this could potentially be solved by taking the ratio of edges present in the graph,

and the total number edges possible in the graph. Alas, there is no similar solution for

the small-world graph parameter p(w). In the application of the mean field model, we

assume all graphs to be random graphs. As estimating p(e) from the data and extracting

it from the graph resulted in nearly identical results, we decided to use the former option.

4.6 Application to empirical time-series data

Here, we will demonstrate how the probability p of an emotion to be active is estimated

from empirical data. In the following sections, we will show two empirical examples and

demonstrate how the proposed method works in each of these examples. By showing the

application of our proposed method on two different kinds of data, we aim to show how

our proposed method works for different participants, and different types of data. The

first example is a dataset of patients who were admitted as patients to a closed, psychiatric

ward of an academic hospital (Gordijn et al., 1994, 1998). The second example is a dataset

of healthy participants who were originally recruited in a nation-wide study (van der

Krieke et al., 2015).

The data in these examples are time-series data. When collecting these types of data,

participants are asked to complete a questionnaire several times a day. These question-

naires often contain items regarding a participant’s current mood state, but can also hold

items regarding a participant’s physical condition, for example. In both examples, par-

ticipants received a ‘beep’ on fixed times during the day and were asked to complete the

questionnaire. These beeps, in turn, correspond to the time points in time-series data. For

example, when a participant completed twenty questionnaires, the data contains T = 20

time points. All analyses were performed using the R statistical software 3.4.4 (R Core

Team, 2016).
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Next to the estimation of the probability parameter p, we calculate the Bimodality

Coefficient (BC; Hosenfeld et al., 2015) for each participant in both datasets, and compare

the outcome of the two measures. The BC only takes information from the distribution of

the proportion of active nodes (density) to determine whether there is evidence for one or

two stable states. The BC is calculated as follows:

BC =
s2 +1
k+C

(4.8)

where s is the skewness of the distribution, k the kurtosis of the distribution, and C a

correction factor that depends on the number of variables: C = 3(n−1)2

(n−2)(n−3) . The BC obtains

values between 0 and 1 and considers values > 0.55 to mean there is evidence for two

states (Hosenfeld et al., 2015). We only use the BC for comparison, the BC uses no

specific information or assumptions about the process, only distributional properties are

involved. We assume that the process is essential for the assessment of a possible bimodal

system, and as the BC and our proposed method are not mathematically interchangeable,

we believe that these two methods should not necessarily correspond. The mean field

model that we propose here takes the process that generated the data into account, which

is an advantage in comparison to the BC.

4.6.1 Example 1: Clinical sample

This example involves a secondary analysis of data that were originally gathered for a

study in patients diagnosed with MDD, who were admitted to a closed, psychiatric ward

of an academic hospital (Gordijn et al., 1994, 1998). The data have been described in

detail in previous papers (Gordijn et al., 1994, 1998). The study was approved by the

medical ethical committee of the university hospital of Groningen, the Netherlands. Pa-

tients gave their written informed consent. Patients in this study completed the Dutch

version of the Adjective Mood Scale (AMS; von Zerssen, 1986) twice a day at fixed time

points for a period of six weeks, resulting in a maximum of 84 measurements per patient.

Patients had to indicate on this 28-item questionnaire which of two given emotions (or
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neither) corresponded most closely to the patient’s emotion at that moment in time. A

detailed description of the items of the AMS can be found in Table 4.2.

We dichotomized the data by collapsing the ‘neither’ condition with the positive mood

state per individual item. We coded the positive mood state as ‘0’ and the negative mood

state as ‘1’. We also collapsed the ‘neither’ condition with the negative mood state and

ran the analyses with these data, but as these results were very similar to the ones we

present, we left it out of this study. After dichotomising the data, we replaced any missing

measurements with the previous measurement. We also considered removing the missing

measurements entirely, but as we found nearly identical results, we chose not to present

these results.

A total of 82 patients were initially included in the study. Thirty three patients were

excluded from the analyses due to either a too low number of measurements (< 5; N = 4),

or a lack of variance in the response categories (smallest response category must contain

at least 5% of the responses; N = 29). This resulted in 49 patients that were included in the

analyses. Excluded patients (mean age = 48.79 years, SD = 14.09 years, 72.73% women)

missed on average 28.10% of the measurements, and completed on average 60.39 mea-

surements (SD = 30.33). These patients were admitted between 1988 and 1994, and

were admitted on average for 209.45 days (SD = 119.59 days, min = 53 days, max =

536 days). Excluded patients completed significantly less measurements than included

patients (W = 587.5, p = 0.036). Included patients had a mean age of 47.92 (SD = 13.13

years) at the time of admission to the closed ward, with 71.43% women. These patients

missed on average 9.86% of the measurements, and registered on average 75.71 measure-

ments (SD = 11.29). Patients were admitted between 1988 and 1994, and were admitted

on average for 179.35 days (SD = 129.75 days, min = 49 days, max = 572 days). Mann-

Whitney tests revealed that the excluded and included patients did not significantly differ

in age (W = 831, p = 0.835), and admission period (W = 755.5, p = 0.131). Under

the EU General Data Protection Regulation, we are not allowed to publish raw results.

Result figures for all patients can be found online (Kossakowski, 2019).
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More Dutch/English More Dutch/English Neither/nor

1 0 Openhartig/openly 2 Geremd/inhibited 1

2 0 Welgemoed/good mood 2 Droefgeestig/bad mood 1

3 2 Inactief/passive 0 Bedrijvig/active 1

4 2 Ziekelijk/sickly 0 Kiplekker/healthy 1

5 0 Doelbewust/purposefully 2 Doelloos/aimlessly 1

6 2 Ernstig/serious 0 Geestig/humorous 1

7 2 Fantasieloos/unimaginative 0 Fantasierijk/imaginative 1

8 0 Gevoelig/sensitive 2 Gevoelloos/numb 1

9 2 Pessimistisch/pessimistic 0 Optimistisch/optimistic 1

10 0 Zorgeloos/carefree 2 Tobberig/worried 1

11 2 Gebroken/broken 0 Monter/cheerful 1

12 0 Liefderijk/lovingly 2 Liefdeloos/loveless 1

13 2 Schuldig/guilty 0 Onschuldig/innocent 1

14 2 Uitgeput/tired 0 Uitgerust/rested 1

15 2 Levensmoe/life-tired 0 Levenslustig/lively 1

16 0 Goed/good 2 Slecht/bad 1

17 0 Vrolijk/cheerful 2 Treurig/tearful 1

18 0 Bemind/loved 2 Onbemind/unloved 1

19 2 Lui/lacking in energy 0 Actief/energetic 1

20 2 Gesloten/withdrawn 0 Open/sociable 1

21 0 Levendig/lively 2 Levenloos/sluggish 1

22 0 Temperamentvol/temperamentfull 2 Futloos/lifeless 1

23 0 Oplettend/watchful 2 Verstrooid/absent 1

24 2 Wanhopig/desperate 0 Hoopvol/hopeful 1

25 0 Tevreden/satisfied 2 Ontevreden/dissatisfied 1

26 2 Angstig/anxious 0 Strijdlustig/combative 1

27 0 Krachtig/powerful 2 Krachteloos/powerless 1

28 0 Evenwichtig/balanced 2 Gejaagd/agitated 1

Table 4.2: Items of the Adjective Mood Scale (AMS) and their assigned labels. Items

marked with a * have a reversed response scale. The English translation may differ from

the original AMS scale, as well as the order of the items.
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Figure 4.9: Proportion of active emotions (left panel), distribution of the proportion of

active emotions (middle panel) and bifurcation diagram (right panel) of one participant

from the the Groningen data. BC = bimodality coefficient. Red line indicates the estimate

p̂.

Figure 4.9 shows the evolution of the density (left panel), a distribution of the density

ρt (frequency of the number of active nodes; middle panel), and the estimate of p̂ in the

bifurcation diagram (right panel) of a single patient. Figures of all patients are available

online. According to the mean field model 87.8% of the patients had an expectancy for

a transition. This is not surprising given that the sample is from a population of patients

in a psychiatric ward. To compare, we calculated the bimodality coefficient (BC), which

uses a function of the skewness and kurtosis from the distribution of the time series of

the proportion of symptoms (see Hosenfeld et al., 2015 for details). The BC classified

59.2% of the cases as being bimodal. When we compare the results from the mean field

model to the BC, we see that the methods agree in 55.1% of the cases, with κ = 0.26

(maximal κ = 1). In the case of the patient whose results are depicted in Figure 4.9, the

BC is very high (0.86), which is reflected in the shape of the distribution of the density

and corresponds to the result of the MFA.

We investigated the robustness of the mean field model in an empirical setting by

running a subset analysis. This analysis is similar to the one we conducted with simulated

data that is described earlier. We randomly selected either 50% or 75% of the time points

per patient and used ML estimation to estimate p̂. Results showed that in 96.3% of the

117



4. APPLYING A DYNAMICAL SYSTEMS MODEL AND NETWORK THEORY TO
MAJOR DEPRESSIVE DISORDER

participants, taking a subset of the data resulted in the same conclusion according to the

mean field model. For the BC, we found that, taking a subset of the data resulted in the

same conclusion in 86.6% of the patients. This shows that the mean field model is fairly

robust when one does not use all the data available.

4.6.2 Example 2: General sample

Participants were originally recruited in a nation-wide study called HoeGekIsNL (in En-

glish: HowNutsAreTheDutch) and have been described in detail in a previous paper

(van der Krieke et al., 2015). The original study was approved by the medical ethical

committee of the university medical center Groningen, the Netherlands. Informed con-

sent was digitally obtained during the primary data collection. Participants in this study

filled out a 43-item questionnaire that consisted of new items created for this study, and

items from existing and validated questionnaires. Participants completed this question-

naire three times a day with a six-hour interval between the time points, for a period of

31 days, resulting in a maximum of 93 measurements per participant (van der Krieke et

al., 2015).

From the original questionnaire, we selected items that pertained to mood states (21

items), appetite (one item) and laughter (one item), ending up with 23 items. Table 4.3

shows a detailed description of the included items. We recoded 10 positive items so that

high scores indicate a more negative affect on all items. All included items were measured

on a 0-100 scale. We dichotomized the data using a median split. This means that we

calculated the median for each item for each participant, and split the data accordingly.

We coded all the responses below the median as ‘0’, and everything above the median as

‘1’. We also considered using a k-means clustering to dichotomise the data, but as these

results were very similar to the results that we present, we chose not to include these

results here. We replaced any missing measurements with the previous measurement.

We also considered removing the missing measurements entirely, but as we found nearly

identical results, we chose not to present these results.
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Item Meaning Range

1 I feel relaxed not at all (0) – very much (100)

2 I feel gloomy not at all (0) – very much (100)

3 I feel energetic not at all (0) – very much (100)

4 I feel anxious not at all (0) – very much (100)

5 I feel enthusiastic not at all (0) – very much (100)

6 I feel nervous not at all (0) – very much (100)

7 I feel content not at all (0) – very much (100)

8 I feel irritable not at all (0) – very much (100)

9 I feel calm not at all (0) – very much (100)

10 I feel dull not at all (0) – very much (100)

11 I feel cheerful not at all (0) – very much (100)

12 I feel tired not at all (0) – very much (100)

13 I feel valued not at all (0) – very much (100)

14 I feel lonely not at all (0) – very much (100)

15 I feel I fall short not at all (0) – very much (100)

16 I feel confident not at all (0) – very much (100)

17 I worry a lot not at all (0) – very much (100)

18 I am easily distracted not at all (0) – very much (100)

19 I feel my life is worth living not at all (0) – very much (100)

20 I am unbalanced not at all (0) – very much (100)

21 I am in the here and now not at all (0) – very much (100)

22 My appetite is.. much small than usual (0) – much larger than

usual (100)

23 Since the last measurement I had a laugh not at all (0) – very much (100)

Table 4.3: Items that were included in the analysis, the meaning of each item, and the

response range in word and number.
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A total of 974 participants participated in this study. We excluded 182 participants

from the analyses due to a too low number of measurements (< 5), resulting in 792 par-

ticipants that were included in the remainder of this section. Excluded participants (mean

age = 41.17 years, SD = 13.56 years, 84.06% women) missed on average 88.57% of the

measurements, and completed an average of 1.38 measurements (SD = 1.35). Excluded

participants completed significantly less measurements than included participants (W = 0,

p < 0.001). Included participants had a mean age of 40.21 (SD = 13.48 years) at the start

of the data collection, with 82.49% women. These participants missed on average 35.81%

of the measurements and registered on average 58.67 measurements (SD = 36.37). Mann-

Whitney tests revealed that excluded and included participants did not significantly differ

in age (W = 75248, p = 0.353). We also looked at the mean scores of the Depression

and Anxiety Stress Scale (DASS; S. H. Lovibond & Lovibond, 1995; P. F. Lovibond &

Lovibond, 1995), the Quick Inventory of Depressive Symptomatology (QIDS; Rush et al.,

2003, 2006), and the Positive Affect Negative Affect Scale (PANAS; Peeters et al., 1996;

Raes et al., 2009). Mann-Whitney tests revealed that excluded and included participants

did not significantly differ on the DASS (W = 10093, p = 0.194), the QIDS (W = 74275,

p = 0.127), the positive items of the PANAS (W = 67314, p = 0.557) or the negative

items of the PANAS (W = 72253, p = 0.366). Under the EU General Data Protection

Regulation, we are not allowed to publish raw results. Result figures for all participants

can be found online (Kossakowski, 2019).

Figure 4.10 shows the evolution of the density (left panel), a distribution of the den-

sity (frequency of the number of active nodes; middle panel), and the estimate of p̂ in

the bifurcation diagram (right panel) of a single participant. Figures of all participants

are available online. According to the mean field model 20.8% of the participants have

an expectancy for a transition. This is not surprising given that the sample is from the

general population. To compare, we calculated the bimodality coefficient (BC), which

uses a function of the skewness and kurtosis from the distribution of the time series of the

proportion of symptoms (see Hosenfeld et al. (2015) for more details). The BC classified

120



4.6. Application to empirical time-series data

0 30 60 90

0

0.2

0.4

0.6

0.8

1
P

ro
p

o
rt

io
n

Time

0 50 100

Percentage

BC = 0.409

0 0.1 0.2 0.3 0.4 0.5

Probability p

p̂ = 0.377

Figure 4.10: Proportion of active emotions (left panel), distribution of the proportion of

active emotions (middle panel) and bifurcation diagram (right panel) of one participant

from the HowNutsAreTheDutch data. Red line indicates the estimate p̂.

31.9% of the participants as being bimodal. When we compare the results from the mean

field model to the BC, we see that the methods agree in 61.1% of the cases, with κ = 0.39

(maximal κ = 1). In the case of the participant whose results are depicted in Figure 4.10,

the BC is not that high (0.409); this is reflected in the shape of the distribution of the

density, which has a unimodal shape. This corresponds to the MFA result which indicates

stability.

We investigated the robustness of the mean field model in an empirical setting by

running a subset analysis. This analysis is similar to the one we conducted with simulated

data that is described earlier. We randomly selected either 50% or 75% of the time points

per participant and used ML estimation to estimate p̂. Results showed that in 85.5% of

the participants, taking a subset of the data resulted in the same conclusion according to

the mean field model. For the BC, we found that, taking a subset of the data resulted in

the same conclusion in 81.6% of the participants. This shows that the mean field model

is fairly robust when one does not use all the data available.
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4.7 Discussion

The present study combined dynamical systems theory and network theory to assess the

expectancy for a transition, a sudden jump between two stable mood states, using a mean

field model. We provided a numerical illustration that shows that a mean field model can

accurately identify (simulated) individuals who may expect to experience a transition. We

then applied the mean field model to two different empirical examples: data from patients

admitted to a closed ward, and data from a general sample from a nation-wide study.

Results from these applications show how our proposed method works in practice.

A big question remains to be answered after this study: did the participants who

were expected to transition actually had a transition between mood states? The analyses

that we ran are of a probabilistic nature; expecting that a participant makes a transition

between mood states does not mean that a participant actually makes this transition. Un-

fortunately, we do not have any follow-up measures to investigate whether or not these

transitions actually occurred. From the patients in the clinical sample we know that they

were eventually released from the closed ward. It can thus be hypothesised that this is

an indication of a transition occurring in these patients. Future research could shed some

light on this hypothesis by collecting data after patients are released from a (closed) ward.

It would also be interesting to follow-up on the participants from the HowNutsAreThe-

Dutch study to investigate if participants transitioned between mood states.

The data used in this study were collected in different decades. Data from the clinical

sample were collected between 1988 and 1994, whereas data from the general sample

were collected between 2014 and 2016. Between the time of data collection and the

current time, the general view towards mental disorders like MDD has changed, and

questionnaires and methods for collecting data have adapted with it. Even though the data

from the clinical sample was collected thirty years ago, their approach to collecting the

data (intensive data or time-series data collection) is an approach that is still used today,

and is becoming more and more a common practice (e.g., Janssens et al., 2018). Also,

the questionnaire used to collect these data has a different design than the questionnaire
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used in the general sample, as shown in Tables 4.2 and 4.3. Nevertheless, we believe that

we can draw similar conclusions from the results that were obtained with these datasets,

as both questionnaires enquired about various aspects of a participant’s mood in a similar

way.

When collecting time-series data, participants are requested multiple times a day to

fill out a questionnaire for a certain period of time. This type of data collection demands

time and effort of the participants. It thus makes sense that participants sometimes for-

get to complete a questionnaire, or are simply not up for it at that specific moment, for

whatever reason. In the data that we analysed, we came across different ratios of missing

data and completed measurements, ranging from no missing measurements to almost as

much as 90%. Since we assumed a Markov model and so, the item responses should

not change much and thus, we replaced missing measurements with the previous mea-

surement. Adopting this approach for handling missing data decreases the variance that

individual items may have, thereby increasing the probability that a participant may be

expected to experience a transition. Although we did not find evidence that our analysis

differed much if we removed these measurements altogether, at this point in time, there

is no clear picture of the effects of missing data in the current analysis. Future research

should focus on mapping the effects that different types of missing data have on the cur-

rent analysis, and what the effect of various imputation methods have on the analysis.

The current study only allows for binary and non-missing data. We applied differ-

ent techniques for dichotomising the data and handling missing data. Even though these

different approaches did not lead to different conclusions, the current approach may not

be ideal. Data are often imperfect: low variance within item scores, as well as missing

data occurs recurrently in time-series data. More importantly, it can be argued that MDD

symptoms may not be binary, but categorical or even continuous. One can imagine that

there exists a scale on which individual MDD symptoms lie. For example, two partici-

pants may experience insomnia (one of the MDD symptoms as listed in the Diagnostic

and Statistical Manual of Mental Disorders American Psychiatric Association, 2013), but
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the severity of this symptom may differ greatly between individuals. In the future we aim

to expand the mean field model so that it allows continuous data as well as items with low

variance.

In the clinical sample, we had to exclude quite a few patients as a result of data hav-

ing too little variance. Too little variance here means that the response category with

the smallest number of responses (either 0 or 1) included less than 5% of the total num-

ber of responses. We had to exclude these patients because the mean field model that

we proposed in this study needs a minimal amount of variance to assess an individual’s

expectancy for a transition. The question can be raised here what it empirically means

when an individual shows little variation in their item responses. Does it indicate that an

individual can expect to transition between mood states, or that an individual varies so

little in their emotions that a transition cannot be expected. Unfortunately the mean field

model in its current state cannot solve this issue. More research is needed to theoretically

decide what no variance in item responses means in a clinical setting, and to expand the

mean field model so that it may account for little to no variance in the data.

The mean field model that we used in this chapter has three assumptions: (1) we

assume that each node in a graph has the same neighbourhood size, (2) nodes can only

be in one of two states (active/inactive) and (3), we assume that all nodes in a graph

show equal behaviour. Waldorp & Kossakowski (2020) showed one can deviate from the

first assumption, whilst maintaining a high accuracy in estimating the probability p. We

discussed the second assumption in more depth previously, which leaves us with the final

assumption of the mean field model. In the current study, we operationalised the third

assumption by fixating the probability p to be equal for all nodes in the graph. However,

it is unlikely that all symptoms of psychological disorders like MDD behave in a similar

manner. For example, some individuals can handle sleep deprivation better than others. In

this case, the “sleep problems” node would less easily be activated in individuals that can

handle sleep deprivation in comparison to individuals that cannot handle sleep deprivation

that well. A possible extension of the mean field model as is used in this chapter is to vary
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the probability value p, which appears in the majority rule, for every node in the graph.

In the example of sleep deprivation, we could operationalise the sensitivity difference by

using different values for p between nodes.

In the current study, we estimated the probability p per individual for the entire time-

series. This means that p cannot change between time points. One may wonder if this

value is supposed to be static, or that it could change between time points. The advantage

of a static probability value is that it is easy to estimate. However, a static probability

value may not reflect an individual’s expectancy for a transition accurately. By allowing

the probability p to vary over time, one could gain more insight into how an individual

moves throughout time with respect to p. One possible method to accomplish this is to

work with a moving window, in which one uses a window to select a snippet within the

time series to estimate p, and let that window move throughout the time series. In this

situation, we can estimate p several times on different segments of the time series; the

size of the window will determine how many values are estimated. In the future we hope

to expand the mean field model and allow for the probability p to vary.

In the numerical illustration section of our current study we only looked at values for

p, p(e) and p(w) between 0.1 and 0.5. Since these parameters are probabilities, their

theoretical range lies between 0 and 1. Although we did run the numerical illustration for

values up to 0.9, we chose not to present them as values rarely occur in empirical data.

Also, at higher values for p(e) and p(w), the clustering within the network structures

increases and can create some strange behaviours that are beyond the scope of this chapter.

A possible solution when dealing with high clustering values within a network is to switch

to a so-called scale-free degree distribution.

Based on the simulated and empirical examples provided in this study, we believe

that the mean field model is a promising method. We do emphasise that the predictions

of our proposed model have not been verified using empirical evidence. We surely must

investigate further to what extent the proposed method could be useful in clinical practice,

but depending on the possible adjustments of the probability or majority rule in the model,
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the validity of the method could be high and therefore useful.
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The Search for Causality: A Comparison of
Different Techniques for Causal Inference Graphs
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J. (2020). The Search for Causality: A Comparison of Different Techniques for Causal

Inference Graphs. Under review at Psychological Methods.
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Abstract

Many are interested in causal relations between two or more variables. Establish-

ing a causal relation between two variables can help us in answering that big question

of why something happens. However, using solely observational data is insufficient

to get the complete causal picture. The combination of observational and experimen-

tal data may give enough information to properly estimate causal relations. In this

study, we consider the conditions where estimating causal relations might work and

we show how well five different algorithms determine causal relations in a simula-

tion study. Results showed that two algorithms, based on the principle of invariant

causal prediction, perform best in most simulation conditions. We believe that the

combination of the two algorithms may be suitable to be used in future research.

5.1 Introduction

Some tens of thousands of years ago, humans began to realise that certain

things cause other things and that tinkering with the former can change the

latter. No other species grasps this, certainly not to the extent that we do.

From this discovery came organised societies, then towns and cities, and

eventually the science- and technology-based civilisation we enjoy today.

All because we asked a simple question: Why? (Pearl & Mackenzie 2018)

The quest for causality is one that people have been striving for for decades. Estab-

lishing a causal relation between two phenomena or variables can help us in answering

that big question of why something happens. In psychology, we study the (possible)

causal relation between psychological constructs, like sleep, concentration, or feelings of

guilt. For example, does sleep deprivation lead to concentration problems? And could

sleep deprivation be caused by increased feelings of guilt? Knowing what the cause is of

something so intrusive as sleep problems may in turn lead to finding the solution to help
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an individual who experiences sleep problems. If we know what causes a problem, we

can help to solve it.

What is a causal relation? Although much can be said and has been said about causal

relations, we confine ourselves here to an interventional (or, equivalently, a counterfac-

tual) definition of causality. The idea is that, if one changes (perturbs) variable X , then

this should only have an effect on variables with which X has a causal relation. For in-

stance, if we consider the structure X → Y ← Z, then we expect that changing X will

change Y , but this change in X will not change Z. Therefore, we use the following def-

inition of a causal relation: “a relation between two variables (X → Y ) where, when one

changes one variable (X), one observes a change in the other variable (Y )”. In general,

when more than three variables are involved, we require that, conditioned on all other

variables, a direct cause X is one that changes the distribution of Y . If we go back to the

example of sleep problems, concentration problems and feelings of guilt, our definition

of a causal relation states that, when there is an change in sleep problems, there should

be a change in the level of concentration as well, or any other aspect of the distribution

of the effect variable. The definition of a causal relation that we use here also implies a

counterfactual relationship (Pearl, 2009). If there is a causal relation from X to Y , our

definition implies that when we do not observe a change in Y , no change has occurred in

X . It may be argued that our definition is not sufficient to capture all aspects of a causal

relation. For instance, we ignore the question of what kind of events could have a causal

relation, thereby interpreting the causal relations themselves. We confine our definition to

a rather practical version which allows one to statistically determine directional effects.

The type of data that is most often used to estimate causal relations between variables

are observational data. These are (empirical) data in which no perturbations have taken

place. Observational data includes cross-sectional data that one collects with question-

naires, for example. The most widely used technique to estimate causal relations with

observational data is the algorithm developed by Pearl (2009) and Spirtes et al. (2000).

Pearl uses the notion of (conditional) dependence and independence between sets of three
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Figure 5.1: The different causal structures that can be detected using conditional

(in)dependence. Arrows indicate causal relations. The chain structures (first and sec-

ond panel from the left) and the common cause structure (third panel from the left) are

statistically equivalent, whereas the collider structure (fourth panel) is statistically unique.

variables to determine a causal relation. The ideas from Pearl & Verma (1991) and Spirtes

et al. (2000) indicate that, if one were to solely use multivariate normal observational data,

we can infer causal relations using the notion of conditional (in)dependence. Based on

the raw (simple, Pearson) and partial correlations, four different causal structures can be

obtained, as shown in Figure 5.1. In the first three situations (the two chain structures

and the common cause structure), nodes 1 and 3 have a nonzero correlation, but their

partial correlation is zero when conditioning on node 2. In the fourth structure (collider

structure), nodes 1 and 3 have a zero correlation, but a nonzero partial correlation when

conditioning on node 2 (See Appendix D.1 for more details on this).

As the rules for conditional independence are equal for the first three causal structures,

they are statistically equivalent, and therefore one cannot distinguish them from one an-

other. It is only possible to identify the fourth (collider) structure from the other three

(Pearl, 2009, but see Mooij et al., 2016, for some interesting cases). These ideas have

been used in different methods to obtain causal relations. Tetrad (Glymour & Scheines,

1986) applied a conditional independence test to each possible alternative path, while

Gaussian Graphical Models (GGMs; Drton & Richardson, 2004) use a likelihood based

method for a complete set of conditional independencies. Temporal ordering has also

been used (Hamaker et al., 2015; Usami et al., 2019; Zyphur et al., 2019). However,
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using observational data exclusively will not resolve all causal relations.

This led Granger (1980) to state that an “observed relationship does not allow one to

say anything about causation between the variables”, and Holland (1986) argued that there

can be “no causation without manipulation”. Although one can use observational data to

estimate some causal relations, this alone is not enough to properly estimate all relations

between variables. As implied by our definition of a causal relation, one needs to perturb

one variable and observe its effect in order to establish causal relations between variables.

This means that we also need so-called experimental data to estimate causal relations.

These are (empirical) data where some perturbation has taken place. Examples include

psychological experiments where a perturbation takes place by assigning participants to

different conditions, or questionnaire research where participants’ attitude are changed

with hypothetical scenarios (see Hoekstra et al., 2018, for an empirical example). The

combination of observational and experimental data may give us a complete picture of

the causal relations between variables, which in turn may be used by professionals to

set up a treatment plan where the causes of constructs like concentration problems are

attacked, instead of just the effect. We need observational data to see what the relation

between two variables is without any perturbations, and experimental data to see how

variables change as an effect of perturbing one or more variables.

The goal of this chapter is two-fold: (1), we want to provide an overview of a set

of algorithms that stem from different fields, describing and illustrating each algorithm.

The second goal is to investigate how well each of these algorithms can estimate causal

relations by means of a simulation study. First, we will describe the algorithms that can

be used to estimate causal relations. For each algorithm we use a simulated dataset as

an illustration. Then we will describe the simulation study that we have set up to test

not only the performance of these techniques individually, but also in comparison to one

another.
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5.2 Methods of causal inference

The goal of this study is to compare different algorithms for inferring causal graphs.

We focus here on Directed Acyclic Graphs (DAGs). These are graphs that only show

causal (directed) relations between variables, and that do not contain any feedback loops

(acyclic). Furthermore, we assume that all (conditional) independencies are obtained in

the graph and vice versa (the Markov and faithfulness conditions, see Appendix D.1 for

more details).

Identifying causal relations is not an easy task. Take for example the causal graph

shown in Figure 5.2, where one can see that there is no direct relation between variables

2 and 5. There is a correlation between variables 2 and 5 due to the chain structures

2 −→ 3 −→ 5 and 2 −→ 4 −→ 5. So, there are three possible paths. The trick is then to

remove the path 2−→ 5 in this case. Two methods are generally used. The first is called

transitive reduction (Klamt et al., 2010; Pinna et al., 2013). Here, a causal graph is set

up, and direct connections are removed if there is enough evidence to suggest that two

variables are not directly connected. When there is a direct causal relation between two

variables, any alternative path between these variables should be removed with transitive

reduction. However, when a direct causal relation is small, algorithms that use transitive

reduction will erroneously remove the direct connection in favour of the alternative paths.

Transitive reduction thus may not also work in practice. We expand on this more in

Appendix D.2.

The second method is by conditioning on the remaining variables, both by using ob-

servational and experimental data (Meinshausen et al., 2016; Peters et al., 2017). In our

example this is guaranteed to work, since conditioning on both 3 and 4 will remove the

correlation between variables 2 and 5. Here, we investigate the accuracy of various algo-

rithms for causal graphs. To explain these algorithms, we will use one simulated causal

graph and associated dataset that contain five variables, visualised in Figure 5.2. For

illustration purposes we simulated data for 1000 measurements. We will compare five

algorithms: the Peter and Clark algorithm (PC; Kalisch & Buhlmann, 2007), the Down-
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Figure 5.2: Visualisation of the causal graph that we use to illustrate the different algo-

rithms. Arrows represent causal relations between individual variables, which are de-

picted as circles.

Ranking of Feed-Forward Loops algorithm (DR-FFL; Pinna et al., 2013), the Transitive

Reduction for Weighted Signed Digraphs algorithm (TRANSWESD; Klamt et al., 2010),

the Invariant Causal Prediction algorithm (ICP; Meinshausen et al., 2016) and the Hidden

Invariant Causal Prediction algorithm (HICP; Peters et al., 2017). We chose to include

the PC-algorithm, even though it only uses observational data, to compare its results to

algorithms that include experimental data next to observational data. Also note that there

are more algorithms that can be used to estimate causal relations. We chose to restrict our

study to these five algorithms for clarity of presentation.

The data used to illustrate the different algorithms are publicly available, so that the

reader may use the data to replicate our examples. Throughout this section, we will use

p to denote the number of nodes that exist in the causal graph, n to denote the number of

measurements, and ei j to denote the directed edge i→ j. Symbols that are associated with

specific algorithms will be explained when we introduce the symbol for the first time. At

the end of this section, we provide a summary table (Table 5.1) that gives an overview of

the algorithms that are discussed here, and their properties.
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5.2.1 Peter and Clark Algorithm

The PC-algorithm (Spirtes et al., 2000) has a two-step process that solely uses observa-

tional data (in contrast to the other algorithms that will be discussed later). We used the

R-package pcalg (version 2.6-2; Kalisch et al., 2012) to run the PC-algorithm. The first

step in the PC-algorithm is to find the skeleton of the causal graph. A skeleton is an

undirected graph that shows all edges that are possible causal relations. For each node

individually, we look at every possible relation with every other remaining node in the

graph. The raw correlation between each pair of nodes is calculated, after which partial

correlations are calculated between every pair of nodes, conditioning on subsets of the

remaining variables, increasing in size of the subsets. All possible partial correlations are

calculated until either the algorithm has calculated the partial correlation for all possible

subsets, or if a partial correlation returns zero when conditioning on a specific subset.

In the second step of the PC-algorithm, the direction of the relation is determined by

considering collider structures (fourth panel, Figure 5.1). A collider structure is a causal

structure where a node is caused by two other nodes. Because the correlation pattern

for a collider (a nonzero partial correlation between nodes 1 and 3 when conditioning on

node 2) is different from the chain and common cause structure (zero partial correlation

between nodes 1 and 3 when conditioning on node 2), the collider structure can be dis-

tinguished, and hence gives information about the direction of the causal relations. By

looking for collider structures first, the PC-algorithm can already determine the direction

of specific causal relations. This facilitates the search for the chain or common cause

structure. If the direction of specific edges is already determined, the PC-algorithm can

eliminate possible causal structures that are no longer optional.

To illustrate the PC-algorithm, we use the illustration data that is based on Figure 5.2.

This is a n× p matrix with n = 1000 and p = 5. The PC-algorithm needs the correlation

and partial correlation matrices between the nodes in the graph. As the data are simulated

from a normal distribution, we calculated Pearson’s r correlation between every pair of

nodes, as well as the partial correlations (conditioning on all remaining variables):
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r =



1.000

−0.028 1.000

−0.019 0.711 1.000

−0.073 0.717 0.517 1.000

0.298 0.723 0.759 0.748 1.000


rp =



1.000

−0.006 1.000

−0.468 0.389 1.000

−0.515 0.392 −0.467 1.000

0.686 0.038 0.685 0.693 1.000


(5.1)

In the first step of the PC-algorithm, we determine the skeleton of the causal graph.

Figure 5.3 (left panel) shows the skeleton based on our illustration data, using a signif-

icance level of 0.05. It can be seen that most edges are already in the correct location,

when we compare it to the true causal graph (Figure 5.2). The only exception is e14. It

is possible that small correlations (like the raw correlation between variables 1 and 4)

become significant faster with a larger sample size, even though this should theoretically

not be the case if we look at the true causal graph (Figure 5.2). Only when we condition

on node 5 should the correlation between nodes 1 and 4 be significantly different from

zero.

In the next step of the PC-algorithm, we determine the direction of the relation be-

tween those nodes for which an edge was found in the skeleton graph. The algorithm first

determines the collider structures, which exist as node 5 is the effect of nodes 1, 3 and 4.

After determining the collider structures, the PC-algorithm continues with determining

the direction of the remaining edges. Figure 5.3 (right panel) shows the final result of

our illustration. Four out of six edges that are present are correctly identified. What is

interesting in this example is the edge e23. This edge is undirected, as the PC-algorithm

could not determine a direction. This makes sense when we look at the causal structure

that is formed between nodes 2, 3 and 5, and between nodes 3, 2 and 4. No matter the

direction of the edge between nodes 2 and 3, the causal structures between nodes 2, 3

and 5, and between nodes 3, 2 and 4 will remain statistically equivalent. It is therefore

impossible for the PC-algorithm to determine a direction. This illustration shows one of

the prime disadvantages of the PC-algorithm, in that it sometimes cannot determine the

causal direction of an edge at all. The other edge that stands out is e14. We already saw
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Figure 5.3: Visualisation of the skeleton (left panel), and the causal graph (right panel)

estimated with the PC-algorithm (Kalisch et al., 2012) available in R.

this (spurious) edge in the skeleton graph. In the final causal graph, one can see that

the edge creates a collider structure with e24. This indicates that the algorithm found a

significant partial correlation between nodes 1 and 2 when conditioning on node 4.

Overall, in this illustration the PC-algorithm performs reasonably well, only one edge

is incorrectly estimated, and one edge is left undirected. Most of the edges that are present

in the true causal graph are correctly estimated.

5.2.2 Down-Ranking of Feed-Forward Loops Algorithm

The PC-algorithm is solely suitable for observational data. The Downward Ranking of

Feed-Forward Loops algorithm (DR-FFL; Pinna et al., 2013) has an advantage over the

PC-algorithm in that it uses both observational data and experimental data to estimate a

causal graph. The DR-FFL algorithm (Pinna et al., 2013) originates from the field of gene

biology and estimates unweighted, unsigned causal graphs for single subjects and single

measurements (where each node was perturbed once). Unweighted here means that the

algorithm will not indicate the strength of the causal relation between two nodes, and

unsigned means that the algorithm will not indicate whether the causal relation between
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two nodes is positive or negative. The DR-FFL algorithm employs a two-step process.

In the first step, the algorithm compares the effect of perturbing a node to the average

effect that includes the observational data as well to create a perturbation graph (PG).

The DR-FFL algorithm then applies transitive reduction to remove direct causal relations

from the perturbation graph where indirect effects are in order. See Appendix D.2 for an

extended description of the notion of transitive reduction.

The DR-FFL algorithm needs two components to infer a causal graph: observational

data for each of the nodes (Gwt ; also known as wild-type data) and experimental data (Gko;

also called knock-out data) where each node in the data is perturbed. The experimental

data is a p× p matrix where the rows correspond to the node that is perturbed, and the

columns to all the nodes in the graph and thus the nodes that the perturbed node may have

an effect on. For example, row 1 of such a knock-out matrix will depict the new values

that the nodes in the graph have after perturbing node 1.

The first step in the DR-FFL algorithm is the generation of the PG. This graph will

show only those causal relations between nodes for which the perturbation effect was

strong enough to suggest a causal relation. In order to determine how strong a perturbation

effect is, we first calculate absolute z-scores for each possible edge in the graph:

|zi j|=

∣∣∣∣∣Gko
i j −µ j

σ j

∣∣∣∣∣ , (5.2)

where µ j is the mean of all perturbation effects on node j, and σ j the standard deviation

of node j across different perturbations. Both µ j and σ j are calculated using both the

observation for node j and the perturbation effects of all nodes on node j. The PG is then

generated by selecting those edges whose |z|-score is larger than a pre-specified threshold

β .

The second step of the DR-FFL algorithm is transitive reduction. In this step, the

algorithm narrows its search to edges that connect strongly connected components. A

strongly connected component is a (sub)set of nodes where any node can be reached

(i.e., there must be a directed path) from any other node in the component. The DR-
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FFL algorithm only focuses on edges between strongly connected components because

cycles exist between the nodes within a strongly connected component. For each edge

ei j that connects two strongly connected components, the DR-FFL algorithm searches

for alternative paths, and removes the direct edge ei j if the alternative path satisfies two

criteria (1), edge ei j can only be removed when ei j connects different strongly connected

components in the PG and (2), edge ei j can only be removed when there is an alternative

route from node i to node j without using ei j.

To illustrate the DR-FFL algorithm, we again use the data simulated using the causal

graph shown in Figure 5.2. For this illustration, we averaged over the sample size (N =

1000), thereby creating set of observational data Gwt and experimental data Gko. We chose

to deviate from the single-subject objective of this algorithm to highlight the differences

between the DR-FFL algorithm and the TRANSWESD algorithm that is described in the

next section. Below you find the observational and experimental data that is created to

illustrate the DR-FFL algorithm.

Gwt = (−0.015,0.025,−0.001,0.013,0.015) (5.3)

Gko =



−0.018 0.115 −0.003 0.064 0.072

−0.070 −0.012 −0.004 0.063 0.073

−0.079 0.128 0.134 0.067 0.075

−0.073 0.108 −0.004 0.082 0.080

−0.093 0.105 −0.003 0.079 −0.032


(5.4)

In this knock-out matrix, element Gko
25 represents the new value that node 5 has after

perturbing node 2. We first calculate the |z|-scores that indicate the existence of a causal

relation. Using the data that we described earlier, we obtain the following |z|-scores:
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|z|=



0.000 0.651 0.405 0.090 0.542

0.370 0.000 0.425 0.072 0.567

0.641 0.872 0.000 0.233 0.611

0.452 0.513 0.423 0.000 0.718

1.047 0.463 0.416 0.693 0.000


(5.5)

The PG, shown in the left panel of Figure 5.4, is created using a threshold β = 0.60,

an arbitrary value. In this illustration, four strongly connected components exist (see the

middle panel of Figure 5.4): nodes 4 and 5 form a strongly connected component (com-

ponent A), and nodes 1, 2 and 3 each from their own individual component (components

B, C and D, respectively). There are only five edges that connect these strongly connected

components, shown by the middle panel of Figure 5.4.

For each of these five edges, the DR-FFL algorithm determines whether an alterna-

tive path exists to connect these two components. There are no alternative paths between

components A and B, components A and C, and components A and D. There is an al-

ternative path between components D and B (D→ A→ B) and components D and C

(D→ A→ B→ C). Thus, the edges that directly connect components D and B (e31)

and components D and C (e32) are removed from the causal graph, resulting in the graph

shown in Figure 5.4 (right panel). The resulting causal graph is an unweighted and un-

signed graph, meaning that the edges do not indicate any strength between the nodes, nor

does it indicate whether this causal relation is positive or negative.

Overall, the DR-FFL algorithm does not perform well in this illustration. Only two

edges that exist in the true causal graph (Figure 5.2) are also estimated here. Two edges

are estimated in the wrong direction, one edge is incorrectly estimated and one edge is

incorrectly absent from the graph.
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Figure 5.4: Visualisation of the process of the DR-FFL algorithm. The left panel denotes

the perturbation graph in which present edges represent potential causal relations whose

effect where strong enough (using a threshold value β = 0.60). The middle panel depicts

the edges between strongly connected components that can be removed in the transitive

reduction step of the DR-FFL algorithm. The black boxes around the nodes in the middle

panel indicate the strongly connected components. The right panel depicts the final causal

graph that results from the DR-FFL algorithm.

5.2.3 Transitive reduction for weighted signed digraphs

A disadvantage of the DR-FFL algorithm is that its resulting causal graph is unweighted

and unsigned. This means that the algorithm does not add any weight to the causal rela-

tions, nor does it indicate if the causal relation is positive or negative. The TRANSitive

reduction for WEighted Signed Digraphs (TRANSWESD; Klamt et al., 2010; Pinna et

al., 2013), which has a similar approach as the DR-FFL algorithm, does return a causal

graph with weighted edges that indicate a positive or a negative relationship, while ap-

plying transitive reduction to estimate a causal graph at the same time (See Appendix D.2

for an extended description of the notion of transitive reduction). Furthermore, where

the DR-FFL mostly handles single-subject data (it can handle between-subjects data by

averaging over measurements, although the effect of doing this is unknown), the TRAN-

SWESD algorithm can be solely applied to between-subjects data. Like the DR-FFL, the

TRANSWESD algorithm uses observational and experimental data to estimate the causal

graph.
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As a first step, we generate the PG. Like the DR-FFL algorithm, we calculate |z|-

scores. In addition to the |z|-score, we calculate an absolute change score |d| between

Gwt and Gko that shows the absolute effect of perturbing a node. Edges are retained in the

PG when their associated |d|-scores exceed a pre-specified threshold γ . Each edge in the

PG gets a sign si j that reflects the direction of the change that node j has made after node

i was perturbed: if the change score is positive, then the edge will be blue, and when the

change score is negative, the edge will be red. Each edge also has a weight wi j that reflects

the certainty of the causal relation, where a higher weight indicates a lower certainty. The

weight wi j is determined by 1−|ρi j|, where ρi j is the conditional correlation (Rice et al.,

2005). A conditional correlation is a correlation between two nodes i and j, given that

node i was perturbed, and is calculated as follows:

ρi j =
∑

2n
a=1(xi,a− xi)(x j,a− x j)(

∑
2k
a=1[xi,a− xi]2

)1/2 (
∑

2n
a=1[x j,a− x j]2

)1/2
. (5.6)

For nodes i and j equation (5.6) only uses the observational data and the experimental

data where node i was perturbed. This gives us two vectors, xi,a and x j,a, each of length

2n, assuming the same number of data points for observational and experimental data.

Parameters xi and x j represent the means of these two vectors.

In the second step of the TRANSWESD algorithm, transitive reduction is applied,

just like in the DR-FFL algorithm. In this step, the algorithm removes any edge ei j when

there is an alternative path between nodes i and j and when that alternative path satisfies

the following four conditions: (1) the alternative path must not contain a cycle, (2) the

alternative path cannot contain the edge ei j that is under consideration, (3) the overall sign

of the alternative path must be equal to that of the edge ei j under consideration (obtained

by multiplying the signs of all edges on the alternative path) and (4), the maximum weight

of all edges on the alternative path must be lower than the weight of the edge ei j under

consideration multiplied by a pre-specified threshold α . For all analyses, we set α = 0.95,

the default value used by Klamt et al. (2010). All edges that exist in the PG are sorted

based on their edge weight. The transitive reduction starts with the edge that has the

143



5. THE SEARCH FOR CAUSALITY: A COMPARISON OF DIFFERENT TECHNIQUES
FOR CAUSAL INFERENCE GRAPHS

highest weight (and thus the lowest certainty).

To illustrate the TRANSWESD algorithm, we use the simulated data that is used

throughout this overview. Equation (5.4) depicts the observational and experimental data.

Equation (5.7) depicts the absolute change scores between the observational data Gwt and

the experimental data Gko.

|d|=



0.000 0.131 0.013 0.079 0.087

0.096 0.000 0.029 0.038 0.048

0.079 0.129 0.000 0.068 0.076

0.086 0.094 0.017 0.000 0.067

0.108 0.090 0.018 0.064 0.000


(5.7)

The PG, shown in Figure 5.5, is created using thresholds β = 0.5 and γ = 0.05, which

are arbitrary values. The conditional correlations calculated with equation (5.6) are used

to determine the edge weights. The conditional correlation matrix and the resulting edge

weights are listed below:

ρ =



0.00 −0.015 −0.034 −0.008 0.032

−0.039 0.000 0.068 0.108 0.087

−0.029 0.965 0.000 0.695 0.707

−0.034 0.953 0.676 0.000 0.700

0.344 0.755 0.788 0.804 0.000


(5.8)

Note that, due to the design of the conditional correlation, the resulting matrix is not

symmetric. Each edge is assigned a weight wi j. The lower wi j (the closer it is to 0), the

more certainty there is about the existence of the edge. For example, w41 = −0.034 has

a very low weight, and thus a high certainty. On the other hand, w32 = 0.965 is relatively

high, so there is low certainty when it comes to that specific edge.

All edges in Figure 5.5 are sorted based on their edge weight. The transitive reduction

starts with the edge that has the highest weight (and thus the lowest certainty). In the PG

in Figure 5.5, five edges (e12, e31, e32, e35, and e42) contain a cycle on their alternative

144



5.2. Methods of causal inference

1

2

3

4

5

Figure 5.5: Visualisation of the perturbation graph generation. Blue edges indicate pos-

itive causal relations, and red edges denote negative causal relations. The thickness and

saturation of the edge colour indicate the strength of the causal relation.

paths (condition 1), and the same five edges are the only edges that have an alternative

path (condition 2). This means that no edges are removed from the causal graph, and that

the perturbation graph in Figure 5.5 will not change after the transitive reduction step.

If we were to look at the third and fourth condition, we see that, of these five edges,

four (e12, e32, e35, and e42) satisfied the third condition (the product of the signs of the

alternative path must match the sign of the edge ei j that is under consideration). All of

these edges did not meet the final requirement that states that the maximum weight of all

edges on the alternative path cannot exceed the weight of the edge ei j under consideration

multiplied by α .

Similar to the DR-FFL algorithm, the performance of the TRANSWESD algorithm

seems subpar. Three edges that exist in the true causal graph (Figure 5.2) are correctly

estimated, two edges are estimated in the wrong direction and four edges are incorrectly

estimated.

145



5. THE SEARCH FOR CAUSALITY: A COMPARISON OF DIFFERENT TECHNIQUES
FOR CAUSAL INFERENCE GRAPHS

5.2.4 Invariant causal prediction

The ICP-algorithm (Meinshausen et al., 2016) combines both the advantage of the PC-

algorithm in that it considers a multivariate system (and not a two-step procedure like

the DR-FFL and the TRANSWESD algorithms), and uses both observational and exper-

imental data in a single analysis. Another advantage of the ICP-algorithm is that the

perturbations inflicted on the data do not have to be node-specific: perturbations can be

non-specific and generic for subsets of nodes. The core assumption of the ICP-algorithm

is that the conditional distribution of an individual node, controlling for its direct causes,

does not change across perturbations (Peters et al., 2016). In other words, a causal rela-

tion between two nodes only exists when the residuals do not change when a perturbation

has taken place on any node, except for the receiving node, called the target node here.

The ICP-algorithm needs two components: the raw data (both observational and ex-

perimental data), and an identifier variable ε . We use ε to distinguish between different

perturbations, which we call environments, following Peters et al. (2016). This is simi-

lar to the experimental data matrix used in the DR-FFL and TRANSWESD algorithms,

where the rows indicate each separate perturbation. Another example of a situation where

multiple environments exist is in datasets where every participant is measured on two or

more time points. Every time point is then a unique environment. The minimal require-

ment is that the data must have at least 2 environments. Typically, one environment

consists of observational data.

The ICP-algorithm works node-wise, each time by selecting a target node. We then

use the remaining nodes to identify all possible subsets. Subsets can range from an empty

subset (where the target node had no cause) to a subset that contains all remaining nodes.

After we determined the possible subsets, the ICP-algorithm regresses the target node

onto each subset, and obtains its associated residual distribution. The ICP-algorithm then

splits the residuals up according to the environment it belongs to, and it will compare the

residuals of one environment against the residuals of all remaining environments using

a Kolmogorov-Smirnov test. Subsets whose residual distribution are equal across envi-
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ronments are called “invariant”; only those nodes that are part of each invariant subset

(intersection) are said to be causes of the target node, and edges are drawn from those

nodes to the target node. The ICP-algorithm is then repeated for each node in the data,

ensuring that every node is the target node once. It is important to note that the direct

causes of a target node and its associated residuals must be independent of each other.

The following section will describe a solution when this assumption cannot be satisfied.

To illustrate the ICP-algorithm, we use the causal graph that we used in previous

sections, shown in the top row in Figure 5.6, and the data that we used to describe the

other algorithms. As our target node, we select node 5. We then proceed by identifying

all possible causal relations that can exist with our target node at the receiving end of that

causal relation. Figure 5.6 shows all possibilities for the target node. In our illustration,

the subset enclosed by the black square depicts the true subset; the causal relations that

exist in our original causal graph. We will give two examples of subsets to show how the

ICP-algorithm works: the subset where no node has a causal relation with the target node

(the empty subset), and the subset that contains the nodes that have a causal relation with

the target node (the true subset). The residual distribution for the empty subset is shown

in the left panel of Figure 5.7. The residual data for the two environments is separated

by a dashed vertical line. It is obvious that the residual distributions are not equal, which

is also confirmed by the Kolmogorov-Smirnov test (using a significance level of 0.05).

Based on this result, we conclude that the empty subset does not hold the optimal subset

of nodes that may have a causal relation with the target node.

Let’s take a look at the true subset. The residual distribution for the true subset is

shown in the right panel of Figure 5.7. The residual data for the two environments is

again separated by a dashed vertical line. In contrast to the empty subset, the residual

distributions of the true subset do not show a visual difference between the two environ-

ments. The Kolmogorov-Smirnov test confirms this (using a significance level of 0.05).

Based on this result, we conclude that this subset is “invariant” across environments, and

is accepted as the set that may hold the causal relations with the target node. In the sit-
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Figure 5.6: The true causal graph (most upper panel), and all possible subsets that may

potentially cause the target node 5. The set in the black square indicates the subset that

captures the true causal relation with the target node.
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Figure 5.7: Visualisation of the residual distribution for the empty subset (left panel), and

the true subset (right panel). Vertical dashed lines indicate the partition of the residuals

according to the different environments that we used for this illustration.

uation where more than one subset is accepted, the ICP-algorithm will only select those

nodes that appear in all accepted subsets (the intersection of the subsets) and will return

that set as the set of nodes that have a causal relation for which the target node is on the

receiving end. When we repeat this process for each node in the data, we end up with the

original causal graph shown in the top row of Figure 5.6. The ICP-algorithm can return a

value for the causal relations, and thus it can return a weighted and signed causal graph.

In our simulation study we chose not to vary the strength of the causal relations in the

simulated graphs, therefore, we do not use the weights of the causal relations that are

returned by the ICP-algorithm.

The data we used to illustrate the ICP-algorithm contains six unique environments:

one environment that contains the observational data, and five environments that match

the number of nodes in the causal graph. For each target node, we select the environ-

ment that holds the observational data, and the environment in which we perturbed all

nodes but node 5 (see the section on data simulation for a more detailed description).

We only select these two environments because one of the main assumptions of the ICP-

algorithm states that perturbations can take place at all nodes but the target node (Pe-

ters et al., 2016). We use the R-package InvariantCausalPrediction (version 0.7-2, Mein-

shausen 2018) to run the ICP-algorithm. We programmed a wrapper function (available at

https://osf.io/n8gxh/) so that the ICP-algorithm is repeated for every variable in the data,
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and then combined into a single adjacency matrix.

Overall, the ICP-algorithm performs exceptionally well in this illustration. All edges

that exist in the true causal graph (Figure 5.2) are correctly estimated, and there are no

edges that are incorrectly estimated or determined to be absent from the graph.

5.2.5 Hidden Invariant Causal Prediction

The HICP-algorithm (Peters et al., 2017) is similar to the ICP-algorithm discussed pre-

viously. The major difference between the two algorithms is that the HICP-algorithm

controls for hidden variables, variables that are unobserved, but may affect the observed

variables. Where the ICP-algorithm assumes that a target node’s direct causes and its

residuals are independent, this assumption can no longer be satisfied when hidden vari-

ables exist. To illustrate, see Figure 5.8, copied from Peters et al. (2017). Here, Y denotes

the target node, X its direct cause, H the hidden variable, and Z the instrumental variable.

As seen in Figure 5.8, the hidden variable affects both the target node and its direct cause.

If one were to use the ICP-algorithm, where hidden variables are not accounted for, the

correlation between the target node Y and its direct cause X will be inflated due to the

influence of the hidden variable H. It is therefore impossible to infer the unique influence

between X and Y in this illustration. Consider the setup in Figure 5.8. For explanatory

purposes, the HICP-algorithm implements an instrumental variable Z in order to remove

the effect of the hidden variable on X −→ Y . This instrumental variable cannot directly

influence the target node Y , as shown in Figure 5.8. Here, the environmental variable ε

is used as the instrumental variable, as the division of the data into two separate environ-

ments does not directly influence the target node Y . By using the environmental variable

ε as the instrumental variable Z, the regression of the target node onto the remaining

variables will be split for the different time points, and the difference between these time

points is used to estimate the causal effect.

For explanatory purposes, we name the causal effect from X to Y to be α (as shown

in Figure 5.8 and as described by Peters et al. 2017). The variables X and Y are defined
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X Y

H

Z

αβ

γ δ

Figure 5.8: Illustration of the HICP-algorithm. Figure is adapted from Peters et al. (2017)

as follows:

X = βZ + γH +Nx (5.9)

Y = αX +δH +Ny,

which follows directly from Figure 5.8. The terms Nx and Ny denote the error terms (here

we assume normally distributed variables with mean 0 and variance σ ). The estimate of

the causal effect from X to Y , α̂ is defined as follows:

α̂ =
cov[X ,Y ]

var[X ]
= α +

δγ var[H]

var[X ]
(5.10)

where α denotes the causal effect from X to Y , and δγ var[H]
var[X ] the bias term to account for

the hidden variable. When there are no hidden variables, the variance of H is 0, and the

bias term will disappear as a result of this. When hidden variables exist but not accounted

for, one ends up with a biased estimate for the causal effect from X to Y . This shows that,

in this situation, the estimate for the causal effect is not representative of the true causal

effect. The HICP-algorithm follows a two step regression to estimate α . It first regresses

X on Z to estimate β , where the estimate is denoted by β̂ . Then, this coefficient is used

to estimate α:
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α̂ =
cov[β̂Z,Y ]
β 2 var[Z]

=
αβ̂ 2 var[Z]
β 2 var[Z]

(5.11)

When the sample size becomes large, β̂ and β will be arbitrarily close. Equation (5.11)

shows that, in the limit, the estimate for α (α̂) will be equal to the true causal effect. The

steps that Peters et al. (2017) took to obtain equation (5.10) are straightforward, see Ap-

pendix D.3 for a more detailed description. It is important to note that the HICP-algorithm

assumes that the hidden variable H and the instrumental variable Z (the environmental

variable ε) are independent of one another. The ICP-algorithm has to satisfy the assump-

tion that the causes of a target node and its associated residuals are uncorrelated. In

contrast, the HICP-algorithm frees up this assumption. Another difference between the

HICP and the ICP-algorithm is that the HICP-algorithm does not create subsets of the set

of nodes that remain after selecting a target node. To speed up computations, all variables

are simultaneously tested to see if they are a cause of the target node.

We use the data that we used earlier to illustrate the HICP-algorithm. Figure 5.6 shows

the correct subset of direct causes when we take node 5 to be the target node. The causal

coefficients α are estimated as follows. Let X be a n× (p− 1) matrix that contains the

raw data (both observational and experimental data) for all variables but the target node:

α̂ = (X ′X)−1X ′y =



−8.204 0.171 0.194 0.866

0.171 −4.056 −5.138 −5.955

0.194 −5.138 −12.874 −7.624

0.866 −5.955 −7.624 −16.888



−1

−7.124

−10.961

−20.295

−23.772


(5.12)

α̂ =



0.998

0.009

0.991

1.009


(5.13)
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Figure 5.9: Illustration of the HICP-algorithm.

One can immediately see that nodes 1, 3 and 4 have a causal coefficient that is very

high, and that node 2 has a almost non-existent causal coefficient. The causal coefficients

in α are then tested for significance. When we repeat the HICP-algorithm for each node

in our illustration data (that does not contain any hidden variables), we end up with the

causal graph depicted in Figure 5.9. It is noticeable that, next to the edges that are present

in the true causal graph (shown in Figure 5.2), many spurious edges exist. Since the

HICP-algorithm tests all variables in the data simultaneously, spurious edges can arise

as a result of partialling out the effect of the hidden variables. With a large sample size

(like the sample size of the illustration data), these spurious edges are easier deemed as

significant causal relations.

We have added a detailed description of the entire estimation part as it occurs in the R-

package in the supplementary materials for the interested reader in Appendix D.3. We use

the R-package InvariantCausalPrediction (version 0.7-2, Meinshausen 2018) to run the

HICP-algorithm. We programmed a wrapper function (available at https://osf.io/n8gxh/)

so that the HICP-algorithm is repeated for every variable in the data, and then combined

into a single adjacency matrix.

Overall, the HICP-algorithm does not seem to perform too well in this illustration.
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All edges that exist in the true causal graph (Figure 5.2) are correctly estimated, but there

are many edges (6) that are incorrectly estimated.
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5.3 Data simulation

In order to study the accuracy of the algorithms that we described in the previous section,

we simulate data according to a DAG, and apply each of the five algorithms to estimate a

causal graph. Based on the adjacency matrix of the simulated DAG (see Appendix D.4 for

more detail on how we created DAGs) that we call B, we simulate data in which some sort

of perturbation has taken place. The rows in B reflect the nodes where the causal relations

are outgoing, and the columns the nodes where the causal relations are incoming. We

start out by creating a n× p matrix, called X that we fill with numbers drawn from a

normal distribution with a mean of 0 and a standard deviation of 0.5. Here, p reflects the

number of nodes in the graph, and n the number of participants or observations for which

we want to simulate data. We then select a node (called the target node), and we create n

error terms called e, all drawn from a normal distribution with a mean of 0 and a standard

deviation of 0.5. We then create observational data in a following manner:

y = bXb + e (5.14)

where b denotes the row in B of length 1× p that corresponds with the target node, and

Xb the column in X corresponding with the target node. The result is a n× 1 vector y

that holds the observational data. We repeat this process for all nodes in the DAG, and

combine them in a n× p matrix Y . The next step is to create perturbation data. For each

node independently, we select all data from our original matrix X , excluding the target

node. This n×(p−1) matrix is then multiplied with p−1 values (called a) drawn from a

normal distribution with a predetermined mean (m) and standard deviation (sd), creating

a new matrix Xper. We then create experimental data similar to the previous step:

yper = b(aXb)+ e (5.15)

We repeat this process for all nodes in the DAG, and combine them in a n× p matrix

Yper.
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We also simulated data in which we added hidden variables. The equations for the

simulation of data with hidden variables are similar to the regular data simulation (shown

in (5.14) and (5.15)) with the following addition. We create hidden variables by drawing

n values from a normal distribution (with a mean of 1 and a standard deviation of 1).

These n values are then multiplied by a parameter h that we have set to be 5. We then take

the outer product of h and a vector of 1s of length p, and add this to our matrix X . This

matrix is then used in a similar manner as described above.

5.4 Numerical evaluation of causal inference algorithms

In this simulation study we evaluated the performance of five methods of causal inference,

namely the PC, DR-FFL, TRANSWESD, ICP and the HICP-algorithm. We simulated six

DAGs in total: three with p= 5 nodes, and three with p= 10 nodes. We varied the density

of the graphs (the proportion of edges present in the graph) d ∈ {0.1,0.25,0.5}. Figure

5.10 depicts all causal graphs that were created for this simulation study. We varied the

number of participants n ∈ {50,100,500,1000,5000} and the mean of the perturbation

distribution m ∈ {1,5}. These values correspond to a small and large perturbation ef-

fect. The standard deviation of the perturbation distribution was also varied sd ∈ {0.5,5}.

These values correspond to an effective and a noisy perturbation. For the DR-FFL and

the TRANSWESD algorithms, we varied β ∈ {0.5,1,1.64,1.96,2.58}, and γ was set

to 0. We simulated data with and without hidden variables to see how the addition of

hidden variables affected the performance of the algorithms. For each combination of

parameters, we ran the simulation 100. We set the significance level for the PC, ICP and

HICP-algorithm to be 0.05. All simulated data, as well as the used R-code are publicly

available at https://osf.io/n8gxh/.

In the numerical evaluation we focus on Matthew’s correlation coefficient (MCC;

Powers, 2011). The MCC takes both true and false positives and negatives into account,

and therefore gives a good overview of the overall performance of the different algo-

rithms. The MCC is calculated as follows:
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Figure 5.10: DAGs that were used to simulate data. p = number of nodes in the graph. d

= the percentage of edges present in the graph.

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(5.16)

where T P represents the number of true positives, T N the number of true negatives, FP

the number of false positives and FN the number of false negatives. The MCC can be

interpreted the same way as a regular correlation coefficient (Matthews, 1975). The more

positive the MCC, the better the correspondence between simulated and estimated edges.

We also calculated other metrics (e.g., positive/negative predictive rate, false negative/-

positive rate), but we chose not to present these here. Results for all metrics can be found

online at https://osf.io/n8gxh/.

Figure 5.11 shows the MCC for the different algorithms. Overall, the ICP and HICP-

algorithm have the highest MCC. The MCC of the PC-algorithm is generally low. For

clarity of presentation, we only show results for p = 10 nodes, with a graph density

d = 0.25. All other results can be found online. The PC-algorithm seems to benefit from
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Figure 5.11: Matthew’s correlation coefficient (MCC) for p = 10 nodes with a network

density of d = 0.25 when no hidden variables were simulated. Top left = m = 1,sd = 0.5,

top right = m = 1,sd = 5, bottom left = m = 5,sd = 0.5, bottom right = m = 5,sd = 5.

a density that is not too high. The MCC increases when the graph density d increases from

0.1 to 0.25, but decreases again when d is increased to 0.5. Also, the size of the graph

(reflected by p) has an impact on the MCC: when p is increased from 5 to 10, the MCC

decreases from on average 0.55 to 0.23. The PC-algorithm can have issues determining

the direction of directed edges. In around 18.75% of all the simulations, the PC-algorithm

returned an undirected graph. It turns out that the MCC is almost always higher when we

do not take the direction of the edges into account. This effect is especially present when

the density of the graphs is low. To illustrate, when d = 0.1, the average MCC increases

from 0.47 to 0.87 when we do not take the direction of the edges into account, but when

d = 0.5, the difference in average MCC is only 0.05 on average. These results indicate

that the PC-algorithm can be useful in determining the pairs of variables between which

a causal relation exists, but that it may not be the appropriate algorithm to determine the

direction of these causal relations.

In general, both the DR-FFL and the TRANSWESD algorithm perform badly, as

seen in Figure 5.11. Both the mean of the perturbation distribution (m) and its standard
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deviation (sd) do not have an effect on their performances. When p = 5, both algorithms

seem to perform a little better, but the difference in MCC is only about 0.1 between the

two network sizes. The root cause of this seems to lie in the first step of the transitive

reduction scheme that the two algorithms apply. Where on average each simulated graph

had about 13.45 edges, both the DR-FFL and the TRANSWESD algorithm returned on

average 2.95 edges. When there are only a few edges present in the graph, transitive

reduction works sub optimally, as even fewer edges can be removed from the graph. Our

findings indicate that transitive reduction may not be the best way to go when estimating

a causal graph. We tried a different approach in the data simulation, but we found similar

results. We also simulated data with an extremely large perturbation mean (m = 100), but

the MCC hardly improved.

The ICP-algorithm seems to do a better job at correctly estimating the causal graphs in

some cases. Overall, the ICP-algorithm works best at d = 0.25. The MCC is much lower

when the network density is lower (or higher). In general, when p = 5, the ICP-algorithm

performs best (at d = 0.25). In that situation, the mean and standard deviation of the

perturbation distribution do not have an effect on the MCC. In contrast, when p = 10, the

influence of these two parameters is much bigger. As shown in Figure 5.11, only when

m = 5 and sd = 0.5 is the MCC high; in all other cases it is mediocre at best. The ICP-

algorithm can be conservative: of all the edges that it finds, the algorithm will only take

the intersection as the (sub)set of causes of a target node. The results shown here suggest

that the ICP-algorithm can estimate causal graphs pretty accurately when there are not

too few or too many edges in the graph, and when the perturbation effect is strong and

precise enough.

Lastly, the HICP-algorithm displays a mixed performance. When p = 5, we see a

similar pattern as with the ICP-algorithm, albeit it less extreme. With a graph density

d = 0.25, the HICP-algorithm has a high MCC, but for the other two graph densities,

the MCC is smaller. The declining effect that we observe in Figure 5.11 returns for

other graph sizes and densities as well: when the sample size n increases, the MCC
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decreases. The cause of the decrease can be found in the number of false positives. Like

we saw in the illustration in the previous section, the causal graph that is the result of

the HICP-algorithm often contains spurious edges. This is likely due to the fact that

the HICP-algorithm only investigates the entire set of remaining nodes in the graph to

determine the causes of the target node, in contrast to the ICP-algorithm that investigates

each possible subset separately. Because of this set-up, spurious edges can occur, which

become significant more easily with a larger sample size. This indicates that the HICP-

algorithm does not need a large sample to estimate a causal graph.

Figure 5.12 gives a more detailed insight into the strengths and weaknesses of each

algorithm. To increase readability of the causal graphs, we chose to display the results

for p = 5 and d = 0.25. These graphs are publicly available for all simulation conditions.

The number of false positives (red edges) for the DR-FFL, TRANSWESD and HICP-

algorithm immediately stand out. The HICP-algorithm stands out from the DR-FFL and

the TRANSWESD algorithm because it also has a high number of true positives, indi-

cated by the thickness and saturation of the blue edges. The conservativeness of the ICP-

algorithm is less visible, but present nonetheless. Where the HICP and the PC-algorithm

correctly identified the present edges (as shown in the true graph) in either 99−100% of

the simulations, the ICP-algorithm’s rate lies around 90− 96%, which is still very high.

The PC-algorithm’s struggle with determining the direction of the edges is also depicted

in Figure 5.12. The direction of two edges here (e42 and e32) are just as often correctly as

incorrectly identified.

We also ran the simulation study using data that contained hidden variables. The

results are very similar to the results using data without hidden variables. See Appendix

D.5 for the results using data with hidden variables.

5.5 Discussion

The present study compared five different algorithms that are used for causal inference.

We provided a simulation study in which we showed how well each algorithm is able to
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Figure 5.12: Visualisation of the number of true positives and false positives for p =

5, d = 0.25, n = 5000, m = 5, sd = 0.5 and β = 0.5 without the addition of hidden

variables. Blue edges indicate true positives, and red edges indicate false negatives. The

saturation and thickness of the edge represents how often that edge was (in)correctly

estimated. Upper left = true graph, upper middle = PC, upper right = DR-FFL, lower left

= TRANSWESD, lower middle = ICP, lower right = HICP.

estimate the causal graph under which the data were simulated. We simulated data from

causal graphs with different properties to assess the effect of the number of nodes and the

density of the graph on the estimation of the graph itself. The results that we showed did

not present us with a clear winner: only under specific circumstances did each algorithm

perform well. The exception to this are the DR-FFL and TRANSWESD algorithm that

never showed a good performance, contrary to earlier studies on these algorithms (Pinna

et al., 2013).

Every algorithm that is discussed here had its own advantages and disadvantages.

The PC-algorithm only uses observational data to estimate the causal relations between
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variables. Although this implies that less data is needed to run the algorithm, we did see

that the MCC of the PC-algorithm is never higher than 0.8. Furthermore, we found that

the PC-algorithm often has the location of a causal relation correctly identified, but not

its direction. This may suggest that the PC-algorithm is useful to find the location of the

causal relations, but that some other algorithm is needed to identify the direction of that

relation.

It is quite noticeable that the DR-FFL and the TRANSWESD algorithm do not per-

form as well as the others do. In nearly 75% of all simulations 10% or less of the number

of possible edges survived the first step of these algorithms. This is why the MCC for

both the DR-FFL and the TRANSWESD algorithm is so low across simulation condi-

tions. We performed the same simulation study, but in contrast to the one described here,

we only select 1 node (instead of p− 1) that we perturbed and used to create our exper-

imental data. However, results from this design are similar to the results presented here.

It is possible that a different data simulation design might give different results, but this

remains to be investigated.

The ICP-algorithm has proven to be able to correctly identify edges that are present

in the true graphs. It also often makes the correct decision when edges are absent in the

true graphs. However, the ICP-algorithm will only perform well when specific conditions

are satisfied with respect to the data. For instance, the high MCC that we found in this

study was only obtained when the mean of the perturbation distribution was high, and

its associated standard deviation small. In all other conditions, the MCC was mediocre

and in some cases poor. This suggests that the ICP-algorithm is a conservative one. A

conservative attitude is not necessarily a disadvantage of an algorithm, but when it is

applied to empirical data, the resulting graph may be sparser than one may hope for.

Also, the ICP-algorithm investigates every possible subset of the variables that remain

after selecting a target variable. This step leads to computational issues when graphs with

a large number of nodes are studied. When a graph has p = 5 nodes, the number of

subsets per target variable is 16. When a graph has p = 10 nodes, the number of subsets
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grows to 516, and for p = 15 nodes, the number of subsets equals 16384. In the future we

hope to develop an adaptation for the ICP-algorithm where a subset selection is made in

such a way that the computation time decreases while maintaining similar specificity and

sensitivity values.

Lastly, the HICP-algorithm outperforms the other algorithms in terms of the MCC in

many simulation conditions. However, as is clearly shown in Figures 5.12 and D.4, many

edges are incorrectly seen as present (false positives; red edges) next to the correctly

identified edges (true positives; blue edges). This phenomena most likely occurs because

not every possible subset is investigated separately, as is the case in the ICP-algorithm.

Next to the disadvantages that we discussed previously, we made some arbitrary de-

cisions for the algorithms in this study. The PC, ICP and HICP-algorithm all require a

significance level that we set to be 0.05. The DR-FFL and the TRANSWESD algorithm

have one or two threshold parameters that need to be set prior to the analysis. We chose

to use different values to evaluate the effect of these parameters. Results of our simula-

tion study showed that the value of these thresholds impact the MCC of the algorithm: the

higher the threshold, the less edges are returned after the first step of these two algorithms,

and therefore the less edges can be reduced from the graph. Choosing a value for these

threshold parameters is thus not trivial. Ideally, one would want to set these parameters

in such a way that enough edges are returned after the first step of the algorithms, but not

too many that none of them can be removed due to cycles, for example. It remains that,

with the DR-FFL and the TRANSWESD algorithm, setting the threshold parameter(s) is

no trivial matter and confounds the results tremendously. Future research could look into

the possibility of using maximum likelihood estimation to obtain a reasonable threshold

parameter based on the data.

We simulated data without and with the addition of hidden variables. Although they

are present, it is hard to find differences between the results for data without, and data with

hidden variables. We followed the steps shown in the description of the HICP function

of the associated R-package. Due to the high number of simulation conditions that we
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already have, we chose not to add any by varying the strength of the hidden variable. It

is possible that a hidden variable with a stronger effect may result in larger differences

in specificity and sensitivity. In a future extension of this study, one can vary the hidden

variable to investigate the effect of a hidden variable on the results.

As every algorithm has its own advantages and disadvantages, a possible combina-

tion of two or more algorithms may be the solution. For instance, one can use the PC-

algorithm to determine the skeleton of a causal graph, and use that input for the ICP-

algorithm. In this combination, the number of subsets decreases substantially. Another

option would be to copy the subset design of the ICP-algorithm, and use in with the HICP-

algorithm. Investigating multiple subsets may result in a lower number of false positives,

and thus a more accurate depiction of the true causal graph.

To our knowledge, this is the first study that compared different algorithms for causal

inference based on experimental data. Based on the simulation results, we gain more in-

sight into the accuracy of each algorithm, and how suited they are for empirical (psycho-

logical) data. The ICP and HICP-algorithm are the top candidates to be used in psycho-

logical research. As hidden variables are a common problem in psychological research,

a possible combination of the ICP and HICP algorithm may be the best plan of attack to

estimate causal relations between psychological variables.
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Introducing the Causal Graph Approach to
Psychopathology: An Illustration in Patients with

Obsessive-Compulsive Disorder

This chapter is submitted as: Kossakowski, J.J., van Oudheusden, L. J. B., McNally, R.

J., Waldorp, L. J., Riemann, B. C., & van der Maas, H. L. J. (2020). Introducing the

Causal Graph Approach to Psychopathology: An Illustration in Patients with Obsessive-

Compulsive Disorder. Under review at Clinical Psychological Science.
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Abstract

Clinicians aim to discern causal relations among features of mental disorders. Yet

observational data are insufficient to confirm these relations. In the present study, we

describe a causal graph approach to illustrate how one can discern causal relations

among aspects of obsessive-compulsive disorder (OCD) by applying the Invariant

Causal Prediction (ICP) algorithm and the Hidden Invariant Causal Prediction (HICP)

algorithm, supplemented by findings from a literature review. Applying these meth-

ods to symptom severity data from four time points (before, during [twice], and after

behavioural treatment) we estimated a causal graph for OCD. The resulting causal

graph reveals multiple cycles between aspects of OCD that may play a role in the

maintenance of the disorder. We conclude that the proposed design has great poten-

tial and could benefit clinicians with some adjustments and extensions.

6.1 Introduction

The network perspective is an emerging view that postulates that mental disorders form a

system of interactive symptoms. Instead of a latent variable – the “underlying disorder” –

causing symptoms that presumably reflect its presence, symptoms and their interactions

constitute the disorder, rendering the latent variable entirely redundant (Borsboom, 2017;

Borsboom & Cramer, 2013). Figure 6.1 illustrates a causal graph: a network where the

symptoms (here X , Y and Z.) are depicted as nodes (the circles), and the causal relations

between symptoms are represented by an arrow (directed edge).

Clinical researchers aim to identify causal relations among symptoms. Unfortunately,

their aspirations are often stymied by mere correlational data that can suggest, but never

confirm, causal relations. Indeed, experimental manipulations designed to underwrite

causal conclusions are frequently infeasible in clinical settings. However, new methods

have emerged that enable such inferences (Kossakowski et al., 2020). The purpose of

our chapter is to introduce these methods by applying them to patients with obsessive-

compulsive disorder (OCD).
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X

Y

Z X

Y

Z

Figure 6.1: Illustration of causal relations among three variables X, Y, and Z. The left

panel depicts a Directed Acyclic Graph (DAG), whereas the right panel shows a Directed

Cyclic Graph.

In this study, we define a causal relation as a relation between two variables X −→ Y

where, when we manipulate (or intervene on) variable X , we observe a change in variable

Y (conditioned on all other variables; Kossakowski et al., 2020). This definition also

means that, if we do not observe any changes in Y , no intervention has taken place on

X . When it comes to the treatment of patients, it is important to know whether symptom

X causes symptom Y , or perhaps vice versa. Figure 6.1 (left panel) illustrates a simple

example where we have three variables, X −→ Y −→ Z. If the causal relations among

these three variables are unknown, a therapist may first therapeutically target variable Z.

However, as shown in this illustration, it may be more effective to target variables X and

Y , as both of these have an (in)direct effect on variable Z.

Many studies use observational data to estimate causal relations between variables.

Observational data are data on which no interventions have taken place. However, ob-

servational data alone do not allow one to estimate causal relations accurately, one needs

to manipulate variables to estimate true causal relations (Holland, 1986). Thus, we need

interventional data upon which some manipulation or intervention has taken place. Inter-
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vention here indicates that some manipulation is performed compared to the observational

data. Examples include starting treatment or reducing one’s medication. By using both

observational and interventional data, we could potentially estimate true causal relations

between symptoms (Meinshausen et al., 2016).

In this study, we describe a causal graph approach in which we combine observa-

tional and interventional data to estimate a causal graph. This approach is illustrated with

an application to data of patients diagnosed with OCD who were measured at four time

points: before, twice during, and after treatment. OCD is characterised by intrusive, per-

sistent thoughts, urges or images (obsessions), and repetitive behaviours or mental acts

(compulsions) performed to relieve the distress that accompanies the obsessions (Amer-

ican Psychiatric Association [APA], 2013). US national and global life-time prevalence

rates for OCD range from between 1.6% to 2.3% (e.g., Kessler et al., 2005; Fontenelle et

al., 2006; Ruscio et al., 2010). Two network studies on OCD estimated Directed Acyclic

Graphs (DAGs) involving features of OCD and symptoms of depression (McNally et al.,

2017; Jones et al., 2018). A DAG illustrates potential predictive causal relations among

symptoms that together depict a causal system (Pearl & Mackenzie, 2018), but only if two

stringent assumptions are met. The causal graph must contain all important variables, and

there cannot be any cycles among the nodes. A cycle is shown in Figure 6.1 (right panel),

where variable Z is the cause of variable X , thereby creating a cycle.

Ideally, to estimate causal relations, we would want to manipulate one symptom at a

time, and observe its effects on other symptoms. This approach would mimic an approach

in gene biology whereby researchers “knock-out” or silence a specific gene and observe

the subsequent effects (Serra et al., 2004; Pinna et al., 2010). Using a “slim finger”, ge-

neticists can deactivate a gene while leaving all other genes untouched. Unfortunately,

clinical psychologists are saddled with “fat fingers” that render it difficult to deactivate a

single symptom without simultaneously affecting other symptoms. For example, it would

be nearly impossible to administer a benzodiazepine for insomnia without also reducing

anxiety at the same time. Ironically, targeting one symptom (e.g., insomnia) will not
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only affect other symptoms in serial fashion (e.g., less fatigue the following day), but will

also produce effects on additional symptoms in parallel fashion (e.g., anxiety), thereby

complicating causal analysis. Indeed, algorithms designed for gene knock-out experi-

ments may not work as accurately when applied to psychological data (Kossakowski et

al., 2020).

In the causal graph approach, we applied the Invariant Causal Prediction (ICP) al-

gorithm (Meinshausen et al., 2016) and the Hidden Invariant Causal Prediction (HICP)

algorithm (Peters et al., 2016, 2017). These algorithms represent a significant advance

over DAGs as the daunting assumptions of the latter are difficult to meet in clinical sci-

ence. The ICP-algorithm can handle interventional data where multiple symptoms are

simultaneously manipulated. The HICP-algorithm complements the ICP-algorithm be-

cause it can accommodate hidden variables – unmeasured variables that may affect the

measured variables nonetheless (Peters et al., 2016, 2017). Both algorithms have shown

great potential for psychological applications (Kossakowski et al., 2020). Lastly, follow-

ing Meinshausen et al.’s (2016) approach, we also searched the literature for evidence of

causal relations between features of OCD. We combined results from the ICP-algorithm,

the HICP-algorithm and the literature review into a single causal graph that may give an

overview of the causal structure of OCD.

6.2 Methods

6.2.1 Participants

We used archival clinical data from patients with a primary OCD diagnosis. A total

of 3474 patients entered the study at one of the ten locations of the Rogers Behavioral

Health centers across the United States treated between June 2012 and June 2018. Pa-

tients received treatment either in an intensive outpatient (n = 1320), partial hospitalisa-

tion (n = 1247), or in a residential unit (n = 906). The treatment setting for one patient

was unknown. The primary intervention was exposure and response prevention therapy.
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We included only those patients who completed the relevant questionnaires prior to treat-

ment, at the first and second progress assessments, and the post-treatment assessment

(t = 4 time points). We ended up with 903 patients that were included for all analyses.

Patients gave their written informed consent to use de-identified data for research pur-

poses. Of this sample, 282 patients received treatment in an intensive outpatient unit,

371 patients received treatment in a partial hospitalisation unit, and 250 patients received

treatment in a residential unit. One patient switched from an intensive outpatient unit to a

partial hospitalisation unit after the initial measurement. The average number of days be-

tween admission and discharge was 56.39 (SD = 20.29 days). The average time between

measurements ranged from 15.81 to 23.25 days, with a standard deviation ranging from

7.43 to 17.67 days. The sample consisted of 478 (52.93%) females and 424 (46.95%)

males, whose age ranged from 18 to 76 (M = 29.69, SD = 11.42). The gender of one par-

ticipant was unknown. Based on the recommendations presented by Mataix-Cols et al.

(2016), who argue that a treatment response is shown by a reduction in Y-BOCS score by

at least 35% compared to their score at baseline, 538 patients in our sample experienced

a clinically meaningful reduction in symptoms.

6.2.2 Yale-Brown Obsessive-Compulsive Scale Self-Report

Patients completed a test battery that contained, among other questionnaires, the Yale-

Brown Obsessive-Compulsive Scale Self-Report (Y-BOCS-SR; Steketee et al., 1996), the

self-report version of the Y-BOCS (Goodman, Price, Rasmussen, Mazure, Fleischmann,

et al., 1989). Patients completed the Y-BOCS-SR at four time points before, during, and

after treatment. The Y-BOCS-SR is a 10-item questionnaire that evaluates features of

OCD without taking the content of a patient’s obsessions and compulsions into account

(e.g., harming versus contamination obsessions; checking versus washing compulsions).

The Y-BOCS-SR has a symmetric structure: the questionnaire evaluates five aspects of

obsessions and of compulsions, respectively. Table 6.1 gives a more specific overview

of the individual items, including the means and standard deviations of each item per

172



6.3. Causal Graph Approach

measurement. All items were measured on a five-point Likert scale, ranging from 0 (no

symptoms) to 4 (extreme). The Y-BOCS-SR shows excellent psychometric properties

(Goodman et al., 1989, Goodman et al., 1989, Steketee et al., 1996).

6.3 Causal Graph Approach

The proposed causal graph approach combines evidence for specific directed edges from

three different sources: the ICP-algorithm (Meinshausen et al., 2016), the HICP-algorithm

(Peters et al., 2017), and a literature study.

6.3.1 Invariant Causal Prediction

The ICP-algorithm (Meinshausen et al., 2016; Peters et al., 2016) is designed to handle

the combination of observational and interventional data. The basic idea is that the con-

ditional distribution of a single node (called the target node), given its direct causes, does

not change if some manipulation takes place on variables other than the direct causes of a

target node. Hence, for each node, the ICP-algorithm ascertains the subset of remaining

nodes that cause the target node. The algorithm starts by selecting one node, which is

the target node. The target node is then regressed on each possible subset of remaining

nodes, ranging from an empty subset, to all remaining nodes in the graph. For each of

these regressions, we obtain the residual distribution. This is then split according to an in-

strumental variable. This variable indicates which score (i.e., residual) belongs to which

measurement time point. The algorithm then compares the residual distributions for every

pair of measurements (4 in our illustration: before, twice during, and after treatment). If

the residual distributions of a pair of measurements are deemed equal, we conclude that

the causal relation between the subset of nodes and the target node is “invariant.” After

all subsets are examined, we draw directed edges from the intersection of all subsets to

the target node. If, for a given subset of nodes, the residuals are similar across all mea-

surements, then conditional on the direct causes of the target node, any manipulation will

not change the distribution of the residuals of the target node when one conditions on the
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Item Item label Mean (SD)

Baseline

Mean (SD)

Progress1

Mean (SD)

Progress2

Mean (SD)

Post

Time occupied by

obsessive thoughts

O-Time 2.66 (1.15) 2.34 (1.04) 2.16 (1.05) 1.76 (0.98)

Interference due to

obsessive thoughts

O-Int 2.39 (1.06) 1.99 (0.93) 1.77 (0.95) 1.41 (0.89)

Distress associated

with obsessive

thoughts

O-Distr 2.55 (1.02) 2.12 (0.89) 1.97 (0.91) 1.64 (0.87)

Resistance against

obsessions

O-Res 1.72 (0.99) 1.42 (0.85) 1.27 (0.85) 1.01 (0.88)

Degree of control

over obsessive

thoughts

O-Cont 2.32 (0.96) 1.91 (0.83) 1.74 (0.81) 1.42 (0.79)

Time spent per-

forming compul-

sive behaviours

C-Time 2.17 (1.16) 1.81 (1.03) 1.67 (0.99) 1.41 (0.95)

Interference due

to compulsive

behaviours

C-Int 2.11 (1.16) 1.74 (1.04) 1.54 (0.97) 1.28 (0.95)

Distress associated

with compulsive

behaviour

C-Distr 2.36 (1.06) 2.05 (0.93) 1.91 (0.93) 1.56 (0.90)

Resistance against

compulsions

C-Res 1.89 (1.06) 1.40 (0.84) 1.23 (0.85) 0.95 (0.82)

Degree of control

over compulsive

behaviour

C-Cont 2.16 (1.00) 1.74 (0.86) 1.56 (0.83) 1.28 (0.79)

Table 6.1: The Yale-Brown Obsessive Compulsive Scale Self-Report (Y-BOCS-SR) with

their assigned item labels and mean (SD) scores per time point.
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direct causes. This process is then repeated for all nodes in the graph. For a more detailed

description of how the ICP-algorithm performs in a simulation study, see Kossakowski et

al. (2020) and Meinshausen et al. (2016).

6.3.2 Hidden Invariant Causal Prediction

When we run the ICP-algorithm, we assume that we have measured all possible causes

of every single node. However, it is very difficult to satisfy this assumption, especially in

psychopathology. Many aspects or events can affect features of OCD that are not captured

by the Y-BOCS-SR. For example, research has shown that the catastrophic misinterpre-

tation of obsessive thoughts (Rachman, 1997) can influence OCD symptoms. Also, OCD

tends to co-occur with other mental disorders such as anxiety or mood disorders (see

Ruzzano et al., 2015; McNally et al., 2017; Jones et al., 2018). Therefore, we ran the

HICP-algorithm to account for the influence of hidden variables: variables that are not

measured, but that may affect those we did measure (Meinshausen et al., 2016; Peters et

al., 2017).

A hidden variable that affects both the cause and the target node inflates the relation

between the two variables if the hidden variable is not accounted for. When hidden vari-

ables affect variables of interest, the ICP-algorithm can no longer estimate the causal re-

lation between two variables accurately. Accordingly, to estimate the true causal relation

between two variables, the HICP-algorithm employs an instrumental variable. An instru-

mental variable influences only the cause, but not the target node. It is the same variable

that we used in the ICP-algorithm to split the data according to the different time points

in the dataset. An instrumental variable splits the data into four parts that correspond to

the four assessments that we have for our data. By comparing every pair of time points,

the HICP-algorithm partials out the effect of the hidden variable. For more information

on the HICP-algorithm and how it performs in a simulation study, see Kossakowski et al.

(2020).
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6.3.3 Literature Search

We aimed to complete the causal graph that results from the ICP and HICP-algorithm by

means of a literature study. Using Google Scholar and Web of Science, we searched for

articles on OCD. Within these studies, we looked for sentences that signify a causal rela-

tion between specific aspects of OCD. For example, Marker et al. (2006, p. 390) state that

“Obsessive-compulsive disorder (OCD) is a common anxiety disorder characterised by

intrusive thoughts that are difficult to dismiss and that increase anxiety.” A sentence such

as this expresses a causal relation from O-Time (time occupied by obsessive thoughts)

to the subsequent O-Distr (distress associated with obsessive thoughts). An independent

researcher unaware of our results double-checked our findings as a safeguard against any

possible subjectivity and confirmation bias.

6.4 Results

6.4.1 Literature Study

The two researchers – the first two authors of this paper – found a total of 74 causal

relations in 15 articles and two books. Researcher R1, who also searched for the literature,

found 53 causal relations, and researcher R2 56. Of these causal relations, initially 21

were found by both researchers in the same materials. The initial lack of overlap between

the two researchers was due to a different interpretation of the resistance items (O-Res

and C-Res). After deliberation between the two researchers, the overlap increased to 35

causal relations, of which nine represent unique causal relations. We decided to include

only those causal relations found by both researchers. Table 6.2 gives an overview of all

the edges that are in the causal graph with the corresponding source.

6.4.2 Causal Graph

Figure 6.2 presents the causal graph, in which both show the split results from the al-

gorithms and the literature review (Figures 6.2a and 6.2b), and a causal graph (Figure
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Figure 6.2: Causal graph of the Y-BOCS-SR items, detected by the ICP and HICP al-

gorithms (a), found in the literature (b), and combined (c). Item labels are described in

Table 6.1. White nodes signify aspects of obsession, whereas grey nodes signify aspects

of compulsions. Solid edges are those detected by either of two algorithms and in the lit-

erature. Dashed edges are those found with either of two algorithms, or in the literature.

The edge thickness and colour saturation shows how often an edge is detected, the thicker

and more saturated an edge, the more often it was detected.
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6.2c), where we combined the results from the ICP, the HICP-algorithm, and the litera-

ture review. Table 6.2 gives an complete overview of the sources justifying inclusion of

edges in Figure 6.2. The first characteristic that stands out in this causal graph is the lack

of overlap between the different sources. Out of the 14 edges that were detected, three

edges were detected by both the ICP-algorithm and the HICP-algorithm, and only two

edges were detected by either an algorithm and the literature review. At the same time,

many edges appeared at least two studies or sources; only five edges had only one source

(algorithm or literature).

Edge Algorithm Literature

O-Time→ O-Int Goodman et al. (2000, chapter 1, p. 33)

O-Time→ O-Distr ICP Goodman et al. (2000, chapter 1, p. 33)

Goodman et al. (2000, chapter 7, p. 239)

Goodman et al. (2000, chapter 11, p. 395)

Okasha (2002, chapter 1, p. 2)

Jacoby et al. (2016, p. 179)

Janeck et al. (2003, p. 182)

Blakey et al. (2017, p. 113)

Marker et al. (2006, p. 390)

O-Time→ O-Cont Janeck et al. (2003, p. 182)

O-Time→ C-Time Goodman et al. (2000, chapter 6, p. 223)

Goodman et al. (2000, chapter 11, p. 404)

O-Int→ O-Distr ICP + HICP

O-Distr→ C-Time Najmi et al. (2009, p. 494)

Manos et al. (2010, p. 700)

O-Distr→ C-Int ICP

O-Cont→ O-Int ICP

C-Time→ O-Time Goodman et al. (2000, chapter 6, p. 223)

Continued on next page
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Table 6.2 – Continued from previous page

Edge Algorithm Literature

Goodman et al. (2000, chapter 6, p. 229)

Goodman et al. (2000, chapter 7, p. 241)

Goodman et al. (2000, chapter 11, p. 393)

Goodman et al. (2000, chapter 11, p. 399)

Najmi et al. (2009, p. 495)

Hezel & McNally (2016, p. 222)

Hezel & McNally (2016, p. 223)

Hezel & McNally (2016, p. 223)

McNally & Ricciardi (1996, p. 17)

Tolin et al. (2002, p. 1256)

C-Time→ O-Distr Goodman et al. (2000, chapter 7, p. 241)

Goodman et al. (2000, chapter 11, p. 393)

Goodman et al. (2000, chapter 11, p. 395)

Goodman et al. (2000, chapter 11, p. 399)

Najmi et al. (2009, p. 495)

C-Time→ C-Int HICP Goodman et al. (2000, chapter 1, p. 33)

C-Time→ C-Distr Goodman et al. (2000, chapter 1, p. 33)

Goodman et al. (2000, chapter 7, p. 239)

Luchian et al. (2007, p. 1657)

Okasha (2002, p. 3)

C-Int→ C-Time HICP

C-Distr→ C-Cont ICP + HICP

C-Cont→ C-Distr ICP + HICP

Table 6.2: Overview of the source of each edge that is in Figure 6.2.

Another interesting aspect of this causal graph is that it depicts four cycles. The first
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cycle (detected by both the ICP and the HICP algorithms) exists between C-Distr and

C-Cont, which indicates that, when for example the score on C-Distr (distress associated

with compulsive behaviour) changes, this causes the score on C-Cont (degree of control

over compulsive behaviour) to change as well, and vice versa. This means that, on aver-

age, when patients score higher on C-Cont, and thus have a lower level of control over

their compulsions, their score on C-Distr increases as well, and they on average experi-

ence more distress associated with their compulsions.

The second cycle in Figure 6.2a and 6.2c is between C-Time and C-Int. This cycle,

which is only detected by the HICP-algorithm, may indicate that, when patients’ score

on C-Time (time spent on compulsive behaviours) changes, this causes the score on C-Int

(interference due to compulsive behaviours) to change as well, and vice versa. This means

that, on average, when patients score higher on C-Time, and thus spend more time per-

forming compulsive behaviours, their score on C-Int changes as well, and they on average

experience more interference in their daily life due to their compulsive behaviours.

The third cycle was between O-Distr and C-Time (Figure 2b and c). This cycle ap-

peared only in the literature and suggests that when patients’ score on O-Distr (distress

associated with obsessive thoughts) changes, this causes the score on C-Time (time spent

on compulsive behaviours) to change as well, and vice versa. This means that, on aver-

age, when patients score higher on O-Distr, and thus on average experience more distress

due to their obsessive thoughts, their score on C-Time increases as well, and they spend

more time performing compulsive behaviours.

The fourth and last cycle was between C-Time and O-Time, and also only appeared

in the literature. This cycle indicate that, as patients’ score on O-Time (time spent on ob-

sessive thoughts) changes, their score on C-Time (time spent on compulsive behaviours)

changes as well, and vice versa. Thus, spending more time on obsessive thoughts results

in spending more time on compulsive behaviours, which in turn leads to spending more

time on obsessive thoughts.

Interestingly, Figure 6.2 shows that the item O-Time is the cause of several other
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nodes and only received causal influence from the item C-Time. This could imply that

the amount of time spent obsessing is the key driver of the causal system depicted in

the graph, at least for those individuals already diagnosed with OCD. This seems to con-

firm the (dominant) view that OCD starts with obsessive thoughts, although not everyone

agrees with this (Gillan & Sahakian, 2015). Lastly, two clinical features are disconnected

from the rest of the causal graph, O-Res and C-Res. It is possible that this symptom is

disconnected because it is part of the treatment (exposure and response prevention) that

was given to the patients that were part of this study.

Notably, only three causal relations connect the obsessive items with the compulsive

ones, O-Time ←→ C-Time, O-Distr ←→ C-Time (both found in the literature) and the

causal relation O-Distr −→ C-Int (found with the ICP-algorithm), which in turn is also

causally related to C-Time. This implies that there are only a few pathways whereby ob-

sessive thoughts can lead to compulsions in patients, either directly or via some alternative

path.

6.5 Discussion

In this exploratory study we introduced a causal graph approach and applied it to data

of patients with OCD who completed the Y-BOCS-SR four times before, (twice) dur-

ing, and after treatment. Using two algorithms, we estimated a causal graph for OCD

by combining observational and interventional data. The addition of interventional data

enables the estimation of causal relations that are hard to detect with only observational

data. The resultant causal graph generated by the algorithms was complemented with a

literature study. Results exposed several cyclic patterns between features of OCD. These

may signify subsystems that maintain (parts of) the disorder throughout therapy. The ICP

and HICP-algorithms did not estimate many causal relations between the items of the

Y-BOCS-SR. The ICP-algorithm estimated six causal relations, and the HICP-algorithm

estimated five causal relations, three of which were estimated by both algorithms.

In a graph where 45 different edges are possible, it is unclear whether the few causal
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relations detected by these algorithms exhaust all of them or whether limited statistical

power may have rendered others difficult to detect. Indeed, Kossakowski et al. (2020)

showed that the ICP-algorithm can be quite conservative and will only use the intersection

of all the subsets that are investigated. This means that edges will only be estimated when

a specific edge appears in all the subsets that have significant causal relations with the

target variable (i.e., the item that is the recipient of the causal influence). The conservative

character of the ICP-algorithm is also shown by its high accuracy when the intervention

is strong with a small variance, which is an aspect of interventional data that is difficult to

ascertain. At the same time, Kossakowski and colleagues showed that the HICP-algorithm

has a high sensitivity, but only a moderate to high specificity depending on the number

of edges in the graph and the strength of the intervention. The lack of variance within

the items could also have caused the small number of causal relations to be estimated.

However, as shown in Table 6.1, the standard deviations of the items per time point are

high enough to suggest otherwise.

The causal graph that shows the combined result of the ICP and HICP-algorithm

visualised a discrepancy between these two algorithms and the results of the literature

study. Only two causal relations that were detected by either of the two algorithms were

confirmed with the literature study. It is quite possible that the causal relations estimated

with the algorithms exist in the literature, but that we have not found the right studies

that show evidence for these relations. Even though many articles were found, not all

articles explicitly stated a causal relation between any two features of OCD, other than

its two global, defining symptoms: obsessions and compulsions. A search on Web of

Knowledge uncovered more than 5500 articles exist with the term “obsessive-compulsive

disorder” in their title, so 17 different sources may not be representative of the existing

literature on OCD. Another disadvantage of the current literature study is that the used

sources did not experimentally test if one feature of OCD (e.g., time spent on obsessive

thoughts) had a causal effect on another (e.g., distress associated with compulsions).

The ICP and HICP-algorithm state that a causal relation between two variables can

182



6.5. Discussion

only be invariant when the residual distributions between time points are equal. This

means that the causal relations found by the ICP and the HICP-algorithm reflect those

causal relations that exist throughout therapy. Causal relations that change due to therapy

are not included, as these relations cannot be picked up by either the ICP-algorithm or

the HICP-algorithm. Although it is interesting to explore the causal relations that are not

affected by therapy, it can also be interesting to study those causal relations that vanish

as a result of therapy. Furthermore, in this study we examined patients who underwent

treatment. We did not have access to a control or waitlist condition for which we could run

the same analyses and compare the results. In future studies, adding a control condition

and comparing results could illuminate differences attributable to therapy. Another option

would be to use therapy as a dummy variable (when the data consists of an experimental

and control condition) and estimate the causal graph with that dummy variable, similar to

the approach that Blanken et al. (2019) used.

To our knowledge, this is the first study that estimates a causal graph for OCD using

both observational and interventional data. By combining results from different algo-

rithms and sources, we may uncover causal relations between features that otherwise are

left unknown. The result of this causal graph approach may potentially be used to set up

intervention strategies in a therapy setting. Even though we have to investigate to what

extent this causal graph approach is useful and meaningful for clinical practice, we do

believe that the causal graph approach has a great potential for illuminating the causal

structure of psychopathology.
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Discussion

7.1 Overview

In this dissertation, I focused on two questions, (1) can we, and if so how, assess to what

extent a complex dynamical system is in such a state that it can transition between two

stable states, and (2) how well are we able to estimate a causal graph when we combine

observational and experimental data. Chapter 2 provided an overview on various tech-

niques that can be used to estimate network structures. Two models, the Cramer model

and the Empirical Mean Field Approximation, were described and illustrated using em-

pirical data. In chapter 3, we theoretically showed that it is possible to reduce a multidi-

mensional dynamical system to a single equation, which in turn may be used to estimate

a system’s dynamical properties. In other words, the mean field model that is introduced

here can be used to infer whether or not a system is in a space where two stable states

exist, or in a space where only one stable state exists. chapter 4 expanded on this work

and combined the mean field model with maximum likelihood estimation to estimate the

parameter of interest in the mean field model. With this parameter, we could then assess

the expectancy of an individual to transition between two stable states.

The second part of this dissertation focused on causality. Causality is a difficult topic.

Many researchers strive to find causal relations between constructs, but few actually man-

age to detect these causal relations. Chapter 5 studied different algorithms to estimate
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causal graphs. Here, we argued that using observational data alone will not give the en-

tire causal picture. By combining observational data with experimental data, it is possible

to detect meaningful causal relations that would otherwise stay undetected. Not only

did we show the advantage of the combination of observational and experimental data

in a simulation study, chapter 6 showed that this approach also results in interesting and

meaningful causal relations when empirical data are used.

In this discussion I will reflect on both the mean field model and the (hidden) invariant

causal prediction algorithms. Every model suffers from limitations, and it is important to

acknowledge these. Specifically, I will cover some of the questions that I have had myself

whilst writing this dissertation. What have we learned from these models, and what steps

need to be taken to make them accessible for clinical researchers? Furthermore, how can

these methods aid therapists in their goal to help patients who suffer from mental disor-

ders? In answering these questions, I will also look forward and elaborate on possible

extensions for the mean field model and the causal graph approach.

7.2 The research that is

The five chapters that form the body of this dissertation are the result of four years of

doing research. In these four years, I have developed a mean field model with which we

can assess if individuals are likely to transition between two stable mood states (chapter

2, 3 and 4), and I have taken a step into the domain of causality (chapter 5 and 6) where I

looked into techniques for estimating a causal graph. These models offer a new view on

(clinical) psychology. For the mean field model, this means that the first steps have been

taken towards a goal where one can predict if an individual may experience a transition

between two stable mood states. Predicting this transition may be of vital importance

for the clinical field; predicting may ultimately result in preventing a transition from

a healthy to a depressed mood state. The causal graph approach proves that a mental

disorder like obsessive-compulsive disorder (OCD) cannot be captured with an acyclic

graph. Most researchers agree that mental disorders contain feedback loops that represent
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the vicious circles that maintain the disorder. For OCD, such a feedback loop could be

spending time on compulsions−→ distress associated with obsessions−→ spending time

on compulsions. Locating these feedback loops and other causal relations may enhance

our understanding of a mental disorder, how it develops and how it is maintained. Gaining

a complete overview of a mental disorder may result in the improvement of treatments of

mental disorders by localising the most important chains in the causal graph.

Despite the promising results for both the mean field model and the causal graph

approach, neither of them are, in their current state, suitable to use in clinical practice.

Like most statistical models, the mean field model and the causal graph approach suffer

from limitations, some more severe than others. Here, I will elaborate on three of these.

I will discuss in a later section how the future may look for the mean field model and the

causal graph approach.

7.2.1 An abundance of assumptions

Every statistical model comes with its own set of assumptions that need to be satisfied

in order to interpret the results. The mean field model and the causal graph approach are

no exception to this. However, when a model has so many assumptions that it places too

many restrictions on the data, we may wonder to what extent this bundle of assumptions

also restricts the results and consequential interpretations. For example, the mean field

model assumes that all nodes in a network display the same behaviour and change from

active to inactive (or vice versa) in a similar manner. Moreover, the model assumes that

the system can only transition between two stable states, if it is in a space where tran-

sitions can occur. The set of assumptions for the mean field model is complemented by

assumptions with respect to the data, some of which will be discussed later in more detail.

We are required to make these assumptions in order to present a working model, but

it can be debated if these assumptions can be met when it comes to clinical psychology.

This debate is open-ended at the time of writing; we do not know yet how the interaction

between symptoms differs for each pair, if at all. Also, the assumption that every node in
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a (psychological) network changes from active to inactive (or vice versa) the same way

may not be satisfied in clinical practice. It is likely that a node like “sleep problems” de-

velops differently, and thus activates in a different manner, than say, “suicidal thoughts”.

Since it is possible that nodes change differently, they may also display other behaviours,

which is also an assumption. Currently, we have no way of knowing to what extent these

assumptions are violated when collecting psychopathological data. Measuring individual

symptoms over time, or perturbing individual symptoms may give us this knowledge on

how symptoms develop and affect one another, although perturbing individual symptoms

is an issue on its own, which will be discussed later.

Some agree that mental disorders like depression have two stable states: a healthy and

a depressed mood state, while others think that some individuals develop depression is a

more gradual manner. Also, the two-stable system may not fit every mental disorder that

appears in the diagnostic and statistical manual of mental disorders (American Psychiatric

Association, 2013). More specifically, mental disorders like developmental or personality

disorders may not adhere to this view. The results that are discussed in this dissertation

should be interpreted in the light of the assumptions that are made for that specific model,

and users should be aware of these assumptions as they may limit inferred conclusions or

generalisations to a broader population.

7.2.2 Completeness of data

Both the mean field model and the causal graph approach require complete, non-missing

data. This resulted in the exclusion of participants and the replacement of missing data.

Both ways of dealing with missing data are less than ideal. Excluding participants may

lead to a (great) loss of data. To illustrate, in chapter 6, we started with 3474 patients, and

included only 903 patients, which is close to 26% of the original sample size. In chapter

4, we included approximately 60% and 81% of the original sample sizes. Excluding data

is never the preferred solution when it comes to missing data. It is costly, both in time

and financial sense, to collect data. Filling out questionnaires can be burdensome for
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participants, especially when one has to complete questionnaires multiple times per day.

We do not do justice to participants when we ask them to complete several questionnaires

only to throw them away during the analysis phase of our research, even though arguments

for excluding data and/or participants is justified. I believe that we as researchers have the

obligation to develop statistical models that require less data, thereby lowering the burden

on the participants, and more optimal solutions in dealing with missing data.

In chapter 4, we replaced any missing measurements with either the previous mea-

surement, or by removing the measurement entirely. While both methods returned similar

results, one may call into question whether this is an optimal way of dealing with missing

measurements. Replacing missing measurements (while keeping all other thing equal)

often results in a decrease in both the mean and the variance of an item. This in turn may

lead to lower estimation of the probability parameter p and a bigger chance of concluding

that an individual is in a space where a transition between two stable states is possible.

Regardless of the current mood state of the participant, under- or overestimating the prob-

ability parameter p may lead to the wrong conclusion and possibly to a faulty treatment

plan if the model is used in clinical practice. In studies where non-time-series data are

used, data imputation is an available technique that conserves the properties that exist in

the data.

Before imputing missing data, it important to first decide what type of missing data

one is dealing with. Missing data can be completely at random (MCAR; there is no un-

derlying process for the missing data, all missing data occur at random. An example

of MCAR data includes a researcher forgetting to hand out a questionnaire), at random

(MAR; the location of the missing data depends on participant characteristics, the previ-

ous measurement or on some other process. An example of MAR includes only observing

missing data in a subgroup), and not at random (MNAR; the missing data is influenced

by unobserved processes, such as spontaneous recovery; Little & Rubin, 2002). While

MCAR is the preferred type of missing data, MAR is the most occurring type. Data im-

putation for time-series data is not trivial. More often than not, missing data in time-series
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data is MNAR. For example, participants may not complete any measurement when they

are feeling bad. Sun et al. (2019) studied missingness in time-series data and found that

missing data was hard to predict. This research suggests that missing data may be less of

an issue than we thought, although more research has to be conducted to get a definitive

answer. At the time of writing this discussion, data imputation is difficult and suboptimal

for time-series data.

7.2.3 Perturbations

In chapter 5 I argued that using both observational and experimental data may return the

most reliable causal graph. Experimental data here are data on which some perturbation

has taken place. The issue here lies in what is meant by “some perturbation”. According

to Webster’s International Dictionary (2008), a perturbation is “the action of perturbing or

condition of being perturbed”, and to perturb means to “to throw into disorder or disturb”.

A perturbation is thus something that disturbs something else. Disturbing something does

not bring us any closer to a concrete definition of what a perturbation is. A perturbation

can take place on two levels in a dynamical system (see Figure 2.8): we can perturb the

behaviour, by actively pushing specific variables. Examples of this include giving a pa-

tient sleep medication to help with his or her insomnia. With these kinds of perturbations,

an individual may experience a transition, but this is only a short-term effect. By perturb-

ing the “stress” variable of the system, we aim to change the dynamical landscape that

an individual is in, resulting in (hopefully) long-term effects in terms of psychological

well-being. Even though the causal graph algorithms developed by Meinshausen et al.

(2016) and Peters et al. (2017) do not set any requirements to the nature of a perturbation

in a clinical sense, when using these algorithms one needs to consider what kind of per-

turbation is placed upon participants and their corresponding data, and what the resulting

causal graph means in light of this perturbation.

In psychology, to perturb often means that something is manipulated. Examples in-

clude giving patients either a pill with working elements or a placebo, or giving treatment
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versus being put on a waiting list. We can use this type of experimental data to estimate a

causal graph, but then we may run into interpretation problems. The edges in this causal

graph represent those causal relations that are shared by both the experimental and the

control condition, whereas most experiments are performed to find if there is a difference

between the two. A classic experimental design with two (independent) groups may not

be the best design to use when estimating a causal graph.

Another issue with the types of perturbations that are often used is that they perturb

the entire system. I wonder if we can apply node-specific perturbations to psychology,

similar to the gene knock-out experiments for which the DR-FFL and the TRANSWESD

algorithms were developed (Pinna et al., 2010). A perturbation that is often used in psy-

chology include therapy and/or medication. While some specific medications like sleep-

ing medication may only perturb one symptom, it is more likely that they “attack” the

entire system that is the mental disorder. Here, we also have to consider how we de-

fine symptoms. It is beyond the scope of this dissertation discuss this problem to its full

extent. Research by Fried (2017) showed that different questionnaires often result in dif-

ferent operationalisations of depression symptoms, which may lead to validity issues: to

what extent do we measure the symptoms of a mental disorder like depression?

7.3 The research to come

The results in this dissertation are in no way the final destination of these methods in

psychology, they are merely the beginning. When you are at the start of a road, many

options seem possible. This also holds for the mean field model and the causal graph

approach. In this dissertation I presented starting points for both methods that work when

many assumptions are satisfied. Some of the possible extensions have been discussed in

chapters 4 and 6, but I will elaborate on them and others in more detail here.
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7.3.1 Complex System

The mean field model is designed to take the essence of a complex dynamical system and

place this in a space where either one or two stable states are possible. By only looking

at the number of active nodes at each time point, we can estimate a probability parameter

p and compare this to a bifurcation diagram, which then tells us if the system is able to

make a transition between two stable states or not. The data published by Kossakowski et

al. (2017) were used to validate this approach. Taking only the data up until the transition,

we showed that the mean field model is able to detect whether an individual can transition

between two stable (mood) states.

While the mean field model as described in chapters 2, 3 and 4 already works well,

there are several extensions possible that may enhance the performance of the mean field

model. Take for example the mean field model as it is formulated in equation (3.2). Here,

we take the entire complex dynamical system as a whole and reduce it to just the number

of active nodes per time point that is then used to determine the probability parameter p.

Often, these complex dynamical systems consist of items that can be categorised in posi-

tive and negative items. The questionnaire used by van der Krieke et al. (2015) contained

items such as “I feel nervous” and “I feel calm”. It is possible to apply not just one com-

plex dynamical system, but two interacting systems: one for the positive items, and one

for the negative items. By separating the items that measure positive affect and negative

affect, we can adjust the mean field model to fit those sets of items, thereby improving

the estimation of the probability parameter p and the inference based on that parameter.

The extension to two complex dynamical systems also makes sense from a clinical point

of view. In order to get a major depressive disorder diagnosis, a patient must experience

either a depressed mood, or a loss of interest (American Psychiatric Association, 2013).

In other words, a patient must either experience an increase in negative mood, or a de-

crease in positive mood. We can even extend the number of dynamical systems to match

the number of items that are part of the original complex dynamical system. As many

questionnaire items or symptoms present themselves differently in different individuals,
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attaching a dynamical system to each item further personalises the mean field model and

may improve the estimation of not only the probability parameter, but also the conclusions

taken from that parameter.

The mean field model as it is formulated in chapters 3 and 4 is currently only suitable

for dichotomous data: data with only two response categories. In psychology, very few

(if any) constructs or symptoms are dichotomous in nature (Borsboom et al., 2016). For

example, there is a degree to which one may suffer from sleep problems. Also, one

major depressive episode may be stronger than another. While using dichotomous data

is a good starting point, they may not accurately represent how an individuals truly feels.

Fortunately, it is possible to rewrite the mean field model in such a way that, instead of a

binomial distribution, a Gaussian distribution can be used to describe the probability for

a node to be active (equation (3.2)). With a Gaussian distribution, the mean field model

becomes accessible for continuous data, which is a vast improvement from dichotomous

data. A next step would be to combine the mean field model with ordinal data, or even

a combination of dichotomous, continuous and ordinal data. Many questionnaires exist

that measure major depressive disorder, and each questionnaire has its own set of items

and response scales (Fried, 2017). Developing a mean field model that accommodates

different questionnaires makes the model more accessible for clinical researchers, who

cannot always adjust their study design to the model that is to be used later on in the

analysis stage of their research.

The probability parameter p operationalises whether or not an individual can expe-

rience a transition between two stable (mood) states. In the mean field model as I have

discussed it in this dissertation, we estimate this parameter only once for the entire time

series. It thus gives an indication of an individual’s position for the entire data collection

period. If the parameter is smaller than the critical value, two stable states exist and an

individual can experience a transition between the two states. If the parameter is greater

than the critical value, only one stable state exists and a transition is not possible. We

do not interpret the value of the probability parameter, other than to make a comparison
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to the critical value. An interesting next step would be to employ a “moving window”

approach and estimate a time-varying probability parameter p. One can imagine that the

probability for a node to be active may change as time progresses, and may also change as

a result of significant life events. A time-varying parameter may aid therapists as it may

indicate when a patient, who is in a depressed mood state, can experience a transition to

a healthier mood state.

7.3.2 Causal System

A causal graph visualises how variables influence each other. An arrow from variable X

to variable Y indicates that, when a change occurs in variable X , a change will also occur

in variable Y . A causal graph combines all these causal relations and gives an overview

of a (psychological) construct and how all its individual bits and pieces are connected.

All the causal relations that exist within this graph denote relations that survived some

perturbation. This also means that, if a causal relation changes after some perturbation

has taken place, it will not show up in the final causal graph.

In chapter 5, I showed how to estimate a causal graph and what the advantages and

disadvantages of various algorithms are. Two algorithms showed the most promise for

(clinical) psychology: the Invariant Causal Prediction algorithm (ICP; Meinshausen et

al., 2016) and the Hidden Invariant Causal Prediction algorithm (HICP; Peters et al.,

2017). Where the ICP-algorithm can be quite conservative and return a small number of

connections, the HICP-algorithm can return many false positives. A combination of the

two, like I showed in chapter 6, may therefore be a good alternative.

The conservativeness of the ICP-algorithm is possibly due to the design of the algo-

rithm: it investigates every possible subset, and will only accept the intersection of the

subsets as the set of nodes that are the cause of the target (causally receiving) node. With

more nodes comes a larger group of subsets to investigate, and thus a smaller chance of

causal relations to be accepted as “true”. When the perturbation effect is strong and pre-

cise, the number of subsets becomes just a computational issue. However, when analysing
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empirical data, the strength and precision of the perturbation is unknown, and the issue

is no longer just a computational one. In order to be able to interpret an empirical causal

graph, one needs to know if all causal relations are picked up. We saw in chapter 5 that

the Peter and Clark algorithm (PC; Kalisch & Buhlmann, 2007) can accurately find the

skeleton graph that forms the base of a causal graph. Since the PC-algorithm only uses

observational data, the strength and precision of a perturbation do not have an influence

on the performance of the PC-algorithm. Perhaps we can combine the skeleton finding

skills of the PC-algorithm, and combine it with the ICP-algorithm. In this scenario, the

skeleton graph that results from the PC-algorithm serves as input for the ICP-algorithm,

and thus specifies the subsets and target nodes that are to be investigated. Here, we would

decrease the number of subsets to be investigated, thereby increasing the chance for causal

relations to be accepted.

Where the ICP-algorithm can investigate a great number of subsets, the HICP-algorithm

only uses the entire group of remaining nodes as input. Since there is no intersection to

select, every causal relation that is significant is accepted and thus exists in the causal

graph. As a result, spurious causal relations may appear in the causal graph. The higher

the sample size, the more spurious causal relations we observe in the causal graphs (see

chapter 5). In an extension, the subset design that is implemented in the ICP-algorithm

could also be employed by the HICP-algorithm. The computational limits that exist for

the ICP-algorithm would also exist for the HICP-algorithm, possibly to a greater ex-

tent since more steps are involved in the HICP-algorithm to account for possible hidden

variables. Naturally, the combination with the PC-algorithm to decrease the number of

subsets can be applied here as well.

7.3.3 A Complex Causal System

Throughout this dissertation I discussed the two main topics (complex systems and causal

systems) separately. An interesting next step would be to combine the two systems. Can

we combine the two into one complex causal system? One could first estimate a causal
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graph using time-series data, after which this graph serves as input for the mean field

model. The causal graph indicates which items are causally related, and therefore also

indicates which items are neighbours of each other. The latter is needed for the mean

field model so that it can apply the majority rule (presented in equation (3.1)) properly.

Although this may seem like a simple extension, there are some aspects in both the mean

field model and the causal graph that need to be thoroughly considered before attempting

this. In the mean field model, the first issue that we are presented with is the choice

of network structure. In its current version, we described two network structures that

return good results in the estimation of the probability parameter p: the random graph

(Bollobás, 2001) and the small-world graph (Watts & Strogatz, 1998). These network

structures are suitable for undirected networks, and thus can not be used when we want to

incorporate a causal graph with the mean field model. A directed alternative is the Price

model (Newman, 2010), but this specific network structure comes with its own advantages

and disadvantages.

For the causal graph, an issue that we need to consider is the division of the data

in order to create (at least) two environments, which are needed to apply the (hidden)

invariant causal prediction algorithms. One can use time-series data to estimate a causal

graph, but this type of data are often observational, meaning that no perturbations are

implemented in the design of the study. Theoretically, this is easily solved: one has to

add some perturbation design whilst collecting data. In practice, this turns out not to

be a trivial matter, as we saw earlier in this discussion. A design like the one used in

the data published by Kossakowski et al. (2017) is an option for participants who are

on medication and want to reduce their medication intake. For participants that do not

fall into this category, a possibility is to collect time-series data in two periods, with a

“resting” period in between in which no questionnaires are completed.
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7.4 Conclusion

In this dissertation I have introduced a new model for complex systems and an approach

for estimating a causal system. For the former, I showed that we can average the system

in such a way that we assess whether or not the system is under such an amount of

pressure that a transition can take place between two stable states. I showed for the latter

that we can estimate a causal graph when we not only observe a system, but also put a

system under some pressure by perturbing it. With this combination causal relations can

be accurately estimated.

Both models represent a different view on the problem that they are aiming to solve.

For the mean field model (chapters 2, 3 and 4), this means that, next to trying to explain

mental disorders such as depression, we wanted to know if we could accurately assess

whether an individual can experience a transition or not. Here, the pressure that is put

on the system is passive in nature: a complex dynamical system is not actively forced

towards the tipping point between a healthy and a depressed mood state, but instead shifts

towards this tipping point because of circumstances inside and outside the individual.

For the causal graph approach (chapter 5 and 6), I offered a new point of view in

the estimation of causal graphs in (clinical) psychology. Causality can be a difficult and

sensitive topic. Many researchers attempt to find causal relations, but few manage to

accurately estimate them. I illustrated the potential of the causal graph approach in the

explanation of mental disorders like OCD. With the causal graph approach, pressure is

actively put on the causal system by means of perturbations. With a perturbation in place,

causal flow can be observed since a change in the cause will lead to a change in the effect.

All in all, this dissertation may be used as the beginning of new lines of research,

where the focus shifts from assessing transitions to predicting them, and from observ-

ing to perturbing in order to estimate causal graphs. These two goals in psychological

research, explanation and prediction, cannot be just be seen separately, they go hand in

hand. One cannot predict without understanding (parts of) a mental disorder, and predic-

tion in turn may lead to a greater understanding of a mental disorder. This dissertation
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showed how important both aspects are, and it may bring us new insights into systems

that are actively or passively put under pressure.
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Supplementary Material to Chapter 3

Proof (Lemma 2) Let the Kullback-Leibler divergence between p+ ε and p be defined

as a function of 0≤ ε ≤ p

h+(ε) = (p+ ε) log
p+ ε

p
+(1− p− ε) log

1− p− ε

1− p

and similarly, define h−(ε)= h+(−ε). Then Chernov’s bound (Lesigne, 2005; Venkatesh,

2012) for the density ρt of a grid with n nodes and its mean at time t, pgrid(ρt defined in

(3.2), for 0 < ε < min{pgrid,1− pgrid} immediately gives

P(|ρt − pgrid(ρt)|> ε)≤ exp(−nh+(ε))+ exp(−nh−(ε))

The Kullback-Leibler divergence can be approximated quadratically by

h+(ε) =
ε2

2p(1− p)
+O(ε3)

Similarly for h−(ε) gives

P(|ρt − pgrid(ρt)|> ε)≤ 2exp(−ε
2/2σ

2
grid(ρt)) (A.1)

where σ2
grid = pgrid(1− pgrid)/n. Let δ = 2exp(−ε2/2σ2

grid(ρt)) such that ε =
√

2σ2
grid log(2/δ ).

Then we obtain the result with probability at least 1−δ . �
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Proof (Equation 3.8) To obtain (3.8) assume a fixed value ν for all neighbourhood sizes

k, majp uses the value k = ν . Then majp only depends on the number of active neighbours

r. First note that (
k
r

)(
n−1

k

)
=

(
n−1

r

)(
n− r−1

k− r

)
Second, by changing the order of summation and reordering the sums, we get

n−1

∑
r=0

majp(r,n−1)
(

n−1
r

)
ρ

r
t pr

e

n−r−1

∑
k=r

(
n− r−1

k− r

)
(pe(1−ρt))

k−r(1− pe)
n−k−1

In the sum on the right we can use the binomial theorem with m = k−r and N = n−r−1,

which gives

N

∑
m=0

(
N
m

)
(pe(1−ρt))

m(1− pe)
N−m = (pe(1−ρt)+1− pe)

N

which leads to (3.8).

For the approximation error, write majp(r,k) = p1{r≤ k/2}+(1− p)1{r > k/2} and

recall that ν is fixed. Then

prg(ρt)− pν
grid(ρt) =

n−1

∑
k=0

k

∑
r=0

(
k
r

)
ρ

r
t (1−ρt)

k−r
(

n−1
k

)
pk

e(1− pe)
n−k−1[majp(r,k)−majp(r,ν)]

Using Hölder’s inequality with the `∞ and `1 norms, gives∣∣∣∣∣n−1

∑
k=0

k

∑
r=0

(
k
r

)
ρ

r
t (1−ρt)

k−r
(

n−1
k

)
pk

e(1− pe)
n−k−1[majp(r,k)−majp(r,ν)]

∣∣∣∣∣
≤

n−1

∑
k=0

k

∑
r=0

(
k
r

)
ρ

r
t (1−ρt)

k−r
(

n−1
k

)
pk

e(1− pe)
n−k−1 max

r,k
|majp(r,k)−majp(r,ν)|

The binomial theorem for the first term of the right hand side gives

n−1

∑
k=0

k

∑
r=0

(
k
r

)
ρ

r
t (1−ρt)

k−r
(

n−1
k

)
pk

e(1− pe)
n−k−1

=
n−1

∑
r=0

(
n−1

r

)
(ρt pe)

r(1−ρt pe)
n−r−1 = 1.

For each r,k let majp(r,k), where k denotes the neighbourhood size, such that r ≤ k we

have that
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majp(r,k)−majp(r,ν) =

p(1{r ≤ k/2}−1{r ≤ ν/2})+(1− p)(1{r > k/2}−1{r > ν/2})

The term |majp(r,k)−majp(r,ν)| is at most 2p−1 if ν < k or 1−2p if ν ≥ k for any r,k,

which gives the size of the error bound. �

Proof (Proposition 3) If we fix ν = bpe(n−1)c, the expectation of the random variable

for each node of the possible number of neighbours B(n−1, pe), such that each k = ν in

the part for the density we obtain

n−1

∑
k=0

(
n−1

k

)
pk

e(1− pe)
n−k−1

(
ν

∑
r=0

(
ν

r

)
majp(r)ρ

r
t (1−ρt)

ν−r

)
,

from which we obtain pν
grid(ρt). The approximation error for the probabilities is then

|prg(ρt)− pν
rand(ρt)|=

∣∣∣∣∣n−1

∑
k=0

(pk
grid(ρt)− pν

grid(ρt))

(
n−1

k

)
pk

e(1− pe)
n−k−1

∣∣∣∣∣ .
The probability of obtaining a neighbourhood size k close to the expected number of

neighbours ν = pe(n− 1) can be obtained from the Chernov bound in Lemma 2, giving

P(|k−ν |≤ t)≥ 1−2exp(−(n−1)ε2/pe(1− pe)), for ε↘ 0. This leads to the difference

being bound by

|prg(ρt)− pν
rand(ρt)|≤

∣∣∣∣∣n−1

∑
k=0

(pk
grid(ρt)− pν

grid(ρt))2exp(−(n−1)ε2/pe(1− pe))

∣∣∣∣∣ .
Using Hölder’s inequality with the sup and `1 norms, we find that the above is

≤max
k
|pk

grid(ρt)− pν
grid(ρt)|

n−1

∑
k=0

2exp(−(n−1)ε2/pe(1− pe)).

The difference pk
grid(ρt)− pν

grid(ρt) is determined by the mismatch between k and ν and

is at most 2p−1 if ν < k and 1−2p if ν ≥ k for any r,k. And so we obtain

|prg(ρt)− pν
grid(ρt)|≤ |p−1/2|2exp(−(n−1)ε2/pe(1− pe)+ log(n)),

completing the proof. �
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Proof (Lemma 6) We showed already in Section 3.4.1 that the transition kernel is a con-

traction and so with t increasing we will decrease the distance in total variation to 0

between π0K0,t and π ′0K0,t . For this to work we need that for each t, Kt,t+1, the sin-

gle step transition probability, is irreducible. This implies that the transition probability

P(Yt+1 = m | Yt = k) from state k to state m

Kt,t+1(k,m) =

(
n
m

)
pgrid(

k
n )

m(1− pgrid(
k
n ))

n−m

with

pgrid(ρt) =
|Γ|

∑
r=0

majp(r)
(
|Γ|
r

)
ρ

r
t (1−ρt)

|Γ|−r

in (3.16) cannot be 0 or 1. From Section 3.3.2 it is clear that pgrid converges to 0 as t→∞

when ρt is in the stable set S(0) of pgrid. Hence we require that ρt is outside of S(0).

Likewise, we require that ρt is not in the stable set S(1). So, only if pgrid converges to 0

will Kt,t+1 converge to 0. For any p in the majority function majp such that it is not in

S(0)∪S(1) we define ηt = mint,k,m Kt,t+1(k,m), which implies that for each time point t

and any states k and m there is an ηt such that Kt,t+1(k,m) ≥ ηt , which is uniform (over

states) irreducibility. We can therefore conclude that whenever ρt is not in S(0)∪ S(1),

then we obtain merging. Since

πt+1(k) =
n

∑
r=0

P(Yt+1 = k | Yt = r)P(Yt = r)

and

min
r,k

P(Yt+1 = k | Yt = r)
n

∑
r=0

P(Yt = r)≤
n

∑
r=0

P(Yt+1 = k | Yt = r)P(Yt = r)

we obtain the inequality mink,r P(Yt+1 = k | Yt = r) ≤ πt+1(k). Similarly for the other

inequality, giving the range for all probabilities πt+1(k). �
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B

Supplementary Material to Chapter 4: Data from
‘Critical Slowing Down as a Personalized Early

Warning Signal for Depression’

Abstract

We present a dataset of a single (N=1) participant diagnosed with major depres-

sive disorder, who completed 1478 measurements over the course of 239 consecutive

days in 2012 and 2013. The experiment included a double-blind phase in which the

dosage of anti-depressant medication was gradually reduced. The entire study looked

at momentary affective states in daily life before, during, and after the double-blind

phase. The items, which were asked ten times a day, cover topics like mood, phys-

ical condition and social contacts. Also, depressive symptoms were measured on a

weekly basis using the Symptom Checklist Revised (SCL-90-R). The data are suit-

able for various time-series analyses and studies in complex dynamical systems.

B.1 Overview

B.1.1 Collection Date(s)

The data were collected between August

13, 2012, and April 11, 2013.

B.1.2 Background

We present a dataset of a single partici-

pant, with a history of major depressive

disorder (MDD), whose daily life experi-

ence was monitored over the course of 239

days (Wichers et al., 2016). The partici-
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B. SUPPLEMENTARY MATERIAL TO CHAPTER 4: DATA FROM ‘CRITICAL SLOWING
DOWN AS A PERSONALIZED EARLY WARNING SIGNAL FOR DEPRESSION’

pant, who initiated the experiment, wanted

to obtain more personal insight during a

period in which the anti-depressants were

gradually reduced. The aim of the par-

ticipant was to know whether or not he

would become more vulnerable to develop

a new depressive episode when the anti-

depressants were reduced, and whether this

vulnerability could be detected in the data.

The study design was set up at the ini-

tiative of, and in collaboration with, the

participant, who agreed upon the set of

items that was selected and added some

items that were relevant to the participant.

The participant had also found a pharmacist

who provided a dose-reduction scheme that

was randomly chosen out of several dose-

reduction schemes that were designed in

collaboration with the participant. The cho-

sen dose-reduction scheme was unknown

to both the participant and the researchers

involved in the experiment. The partici-

pant was monitored on a momentary basis

during a baseline period, a period of dose-

reduction and a post-reduction period. The

participant also initiated a follow-up mea-

surement period in which his daily life ex-

periences kept being monitored.

B.2 Methods

B.2.1 Sample

The participant is a 57-year old male with

a history of MDD. The participant has been

using antidepressants for 8.5 years (Groot,

2010). The participant completed on aver-

age 6.2 assessments per day (SD = 1.9).

B.2.2 Materials

The dataset consists of items that were

measured momentary, daily, and weekly.

Momentary

Momentary items (no. items is 50) were

collected using the experience sampling

method (ESM; Csikszentmihalyi & Lar-

son, 1987). Items were selected based

on previous experience with these types

of items regarding within-person variation,

loading on a negative or positive affect

component, the relevance for the current

type of psychopathology and specific per-

sonal characteristics of the participant. The

momentary assessment questionnaire con-

sisted of items pertaining to mood states

(e.g. feeling relaxed, feeling irritated etc.),

self-esteem, the company the participant
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Figure B.1: Number of items answered per assessment.

was in at the moment of assessment, the

pleasantness or unpleasantness of being in

company, physical condition, the activity

that the participant was doing at the mo-

ment of assessment, and to an important

event that had occurred since the last as-

sessment.

33 items were measured on a 7-point

Likert scale, ranging from 1 (not) to 7

(very). The items concerned with feeling

down, lonely, anxious and guilty were mea-

sured on a 7-point Likert scale, ranging

from −3 (not) to +3 (very). This scale dif-

fers from the majority of the items as a pi-

lot trial showed that the participant reported

more variation with a 7-point Likert scale

ranging from −3 to +3 than a 7-point Lik-

ert scale ranging from 1 to 7. Items with re-

spect to the company the participant was in,

the activity the participant was enrolled in

or any event that had taken place since the

last assessment were categorised accord-

ingly. Two items concerning the pleasant-

ness and importance of the event were mea-

sured on a 7-point Bipolar scale, ranging

from −3 (unpleasant/unimportant) to +3

(pleasant/important). Figure B.1 shows the

number of items answered per assessment.

The average number of items answered per

assessment is 43.4 (SD = 2.7).
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Daily

Two separate sets of items were completed

daily: a six-item set after waking up (item

labels start with ‘mor’), with which infor-

mation is collected on the quality of sleep.

The other set consists of six items and were

asked to be filled out right before the partic-

ipant went to sleep (item labels start with

‘evn’). This set of items was concerned

with the quality of the day the participant

had. At both occasions, the participant was

asked whether or not he took his medica-

tion either yesterday (morning item), or to-

day (evening item). Three of the morning

items were categorised accordingly. Two of

the morning items and four of the evening

items were measured on a 7-point Likert

scale, ranging from 1 (not) to 7 (very).

The medication items together with one

evening item was measured dichotomously

(yes/no).

Weekly

Once a week the participant completed 13

items of the depression subscale of the

Symptom Checklist Revised (item labels

start with SCL-90-R; Derogatis et al.,

1976). Each item is scored on a 5-point

Likert scale, with 0 meaning that the par-

ticipant wasn’t bothered by that specific

thought or feeling at all, and 4 meaning that

he was extremely bothered by it.

B.2.3 Missing Data

Missing data for momentary items

Each day, 43.4 items were filled out on

average (SD = 1.3) per day at each as-

sessment. In total, out of 1478 assess-

ments, only five were aborted before com-

pletion. At 1478 assessments, items were

completed on average 1280.4 times (SD =

378). Figure B.2 depicts the number of as-

sessments completed per day. The average

number of completed assessments per day

is 6.2 (SD = 1.9).
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Figure B.2: Number of assessment completed per day.

Missing data for daily items

During the entire study, 59.7% of the set

of morning items and 81.5% of the set of

evening items were completed. Each day,

either the entire set of morning/evening

items was answered, or none. On average,

3.6 (SD = 2.9) of the morning items and

4.9 (SD = 2.3) of the evening items were

completed.

Missing data for weekly items

The study lasted for 34 weeks. During this

period, depressive symptoms were mea-

sured on a weekly basis. This weekly

questionnaire was completed 28 times (=

82.4%). On each of these occasions, all

items were answered.

B.2.4 Procedures

The entire study comprised 5 phases: (1)

a baseline measurement period that lasted

four weeks, (2), a double-blind period in

which the anti-depressant dosage was not

yet reduced, which lasted between zero and

six weeks, (3) a double-blind period in

which the anti-depressant dosage was grad-

ually reduced from 150 mg (venlafaxine)

to 0 mg, which lasted eight weeks, (4), a

post-assessment period in which the anti-

depressant dosage was not changed, which

lasted again eight weeks, and (5), a follow-

up period that lasted twelve weeks.

The dose-reduction scheme issued in

phase 3 was set up by the pharmacist who

provided the anti-depressants during the
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study. Several reduction schemes were de-

veloped, which varied with respect to the

length in weeks before the dose reduc-

tion started (phase 2). During the experi-

ment, the participant and the researchers in-

volved were unaware of the dose-reduction

scheme, although they did know that the

anti-depressant dosage was going to be re-

duced. The participant reported after the

experiment that he had not been able to

figure out which eventual dose-reduction

scheme had been used.

At the start of the experiment, the par-

ticipant received a PsyMate (a digital de-

vice with touch screen; Wichers et al.,

2011), which was set up to send out a beep-

signal at random moments within each of

ten 90-minute intervals between 07.30 AM

and 10.30 PM every day. At each beep-

signal, the participant completed a 50-

item questionnaire. Each beep-signal was

accompanied by a ten-minute window in

which the questionnaire was available to

the participant. Assessments were started

on average within 2.16 minutes (SD = 21

seconds). At the beginning and ending of

each day, the participant was asked to com-

plete an extra set of six items. On Mondays,

the participant’s depressive symptoms were

measured using the depression subscale of

the SCL-90-R (Derogatis et al., 1976).

B.2.5 Quality Control

All questionnaires were administered by

means of a digital device (PsyMate). In a

few cases, the SCL-90-R was completed on

paper and e-mailed to the researchers, who

added the scores to the dataset.

B.2.6 Ethical Issues

The participant (the 2nd author of this pa-

per) initiated the study and expressed that

he wanted the data to be published. Ap-

proval from the Maastricht University eth-

ical committee was therefore unnecessary

and not obtained. The participant gave

his consent for collecting and (re)using the

data.

B.3 Dataset description

B.3.1 Object name

The datafile is named “ESMdata.zip”. This

zip file contains the data “ESMdata.xls”,

“ESMdata.csv”, “ESMdata.txt”, a code-
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book “Codebook.pdf” and a supplement

“MissingnessMomentaryItems.pdf”.

B.3.2 Data type

All datafiles are primary data, with the ex-

ception of one variable called “dep”. This

is a mean score of the SCL-90-R items as is

mentioned as such in the codebook.

B.3.3 Format names and versions

The data are provided in three different for-

mats: .xls, .csv and .txt format. The ac-

companying codebook and the supplement

are in .pdf format.

B.3.4 Data Collectors

Peter Groot and Marieke Wichers designed

the entire study and the experiment. Frenk

Peeters was involved as a psychiatrist in the

design phase of the experiment, Claudia Si-

mons was responsible for the ESM briefing

and technical assistance regarding the use

of the PsyMate to collect the data.

B.3.5 Language

English.

B.3.6 License

The data have been deposited under a CC-

By Attribution 4.0 International (CC-By)

License.

B.3.7 Embargo

Not applicable.

B.3.8 Repository location

http://osf.io/j4fg8

B.3.9 Publication date

The data have been published online since

November 30, 2016.

B.4 Reuse potential

The dataset contains around 1500 mea-

surements and over 50 items. Further-

more, items have been completed at dif-

ferent time scales: momentary, daily and

weekly. It is a very extensive time-series

dataset that can be used for several pur-

poses. First, Wichers et al. (2016) showed

that the participant experienced a critical

transition and that symptoms behaved con-

form principles of complex dynamical sys-

tems. Therefore, these data are extremely

213



B. SUPPLEMENTARY MATERIAL TO CHAPTER 4: DATA FROM ‘CRITICAL SLOWING
DOWN AS A PERSONALIZED EARLY WARNING SIGNAL FOR DEPRESSION’

suitable for researchers to validate new

methods for predicting the onset of a crit-

ical transition. Second, there have been

recent developments into estimating time-

varying networks. These data can be used

as an empirical example to show how time-

varying networks can be estimated and how

the network develops over time. Lastly,

since items were measured at different time

scales, this dataset can aid research that

aims to combine (time-series) data from

different time scales.
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C

Supplementary Material to Chapter 5: Psychological
Perturbation Data on Attitudes Towards the

Consumption of Meat

Abstract

We present a dataset on participants’ attitudes towards the consumption of meat

(N = 30). Participants were presented with a baseline questionnaire entailing 11 state-

ments. After a baseline measurement, we perturbed the participant’s opinion on one

of the 11 items, after which the participant completed the same questionnaire. By

repeating this procedure for each of the 11 items, we measured to what extent the

perturbation changed the participant’s baseline score. In addition, we asked partici-

pants to draw the influence of a specific item onto the other items in a network format.

The data are suitable for various purposes, like causal inference and the malleability

of attitudes.

C.1 Overview

C.1.1 Collection Date(s)

The data were collected between June 8,

2017, and July 7, 2017.

C.1.2 Background

We present a dataset of 30 participants on

their attitudes towards the consumption of

meat. The complexity of the issues sur-

rounding meat consumption in this era is

extensive. The consumption of meat is
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linked to several health problems such as

heart and vascular disease (Walker et al.,

2005), has a negative influence on the well-

being of animals (Grandin, 2014), and is

highly damaging for the environment (Ste-

infeld et al., 2006). Consumers should ar-

guably consider the influence the consump-

tion of meat has on their well-being, animal

welfare and their environmental footprint.

The aim of the original study was to in-

vestigate to what extent causal influences

between different components of attitudes

toward the consumption of meat can be

estimated. For this study we adapted

a questionnaire developed by Dorresteijn

(2017) “Attitude Towards the Consumption

of Meat Questionnaire”. Following the tri-

partite model of attitudes (Bagozzi et al.,

1979), the questionnaire captures three im-

portant aspects of attitudes: cognition, af-

fect and behaviour.

C.2 Methods

C.2.1 Sample

The sample consists of 30 participants re-

cruited through the psychology lab at the

University of Amsterdam from June 8, un-

til July 7, 2017. Participants ranged in age

from 19 to 57, with a median age of 20

(SD = 9 years). The majority of the par-

ticipants were female (21). Of the 30 par-

ticipants, 15 reported to perceive their di-

etary life style to be omnivores, 14 flexi-

tarians (dietary life style in which individu-

als choose not to eat meat at least 3 days a

week; Voedingscentrum, 2018) one partic-

ipant reported to be vegetarian and no par-

ticipants reported to perceive their dietary

life style as vegan. Participation was either

compensated with 10 euros per hour or re-

search credit.

C.2.2 Materials

The dataset consists of data collected with

an altered version of “Attitude Towards the

Consumption of Meat Questionnaire”, de-

veloped by Dorresteijn (2017). The orig-

inal questionnaire contained 22 items re-

garding affect (6), behaviour (10), cogni-

tion (6), and six demographic questions.

We selected 11 items (6 cognition items and

5 affect items) that we felt were the eas-

iest to perturb. Furthermore, we used 15

behaviour items and selected three demo-

graphic items that were asked at the end of
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the experiment.

Note that we have more behaviour

items than the original questionnaire, since

we created separate items to investigate

how many days during the week a partic-

ipant eats cheese, dairy products or eggs.

These three items were combined into one

item in the original questionnaire.

Baseline questionnaire

The baseline questionnaire consists of 11

items regarding the participants’ attitude

towards the consumption of meat, which

was measured on a 6-point Likert-scale

ranging from 1 (completely disagree) to 6

(completely agree), four behaviour ques-

tions measured on a 7-point scale (days of

the week), and three demographic ques-

tions, namely, age, gender, and perceived

lifestyle (omnivore, flexitarian, vegetarian,

vegan). The baseline questionnaire demon-

strated internal consistency (α = 0.70), as-

sessed with Cronbach’s alpha, using the

omega() function in the R-package psych

(version 1.8.4; Revelle, 2018). The omega

hierarchical estimate, determined with the

same function was 0.51. The question-

naire can be found in the supplementary file

“questionnaire.pdf” at https://osf.io/8tm5f/.

Hypothetical scenarios

Each of the 11 questionnaire items corre-

sponds to a hypothetical scenario. These

scenarios were written with the intention

to perturb the participant’s initial response,

i.e., to alter their answer on the baseline

questionnaire, either positively or nega-

tively. The goal of the hypothetical sce-

nario was to perturb the participant’s atti-

tude in the opposite direction of their ini-

tial attitude regarding the particular state-

ment. Participants were asked to identify

themselves with the hypothetical scenario

and to contemplate how this would change

other aspects of their attitude towards the

consumption of meat. After the partici-

pant was presented with a hypothetical sce-

nario, the participant completed the ques-

tionnaire again (including the item that was

perturbed), keeping the hypothetical sce-

nario in mind. This procedure was repeated

for each of the 11 items.

For example, after a participant an-

swered the item “The production of meat is

harmful for the environment” in the base-

line questionnaire with “completely dis-
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agree” (value = 1), they would receive a

hypothetical scenario that would alter their

initial statement positively (values 4–6).

In this case the participant would receive

the following hypothetical scenario: “The

meat and dairy industry has a huge CO-

2 emission and is therefore harmful for

the environment. How does this influence

your attitude towards the consumption of

meat?” All the 22 hypothetical scenarios

can be found in the supplementary file “sce-

narios.pdf” at https://osf.io/8tm5f/.

Adjacency matrix

When participants completed the question-

naire after an individual item was per-

turbed, participants drew their own network

to visualise the effect of the statement on

remaining items of the questionnaire. Par-

ticipants received instructions and a blue

print of a network containing 11 nodes (cor-

responding to the 11 items) and no edges.

They were asked to draw an arrowhead line

from node A to B if they thought node A

had a causal influence on node B. Figure

C.1 (upper panel) shows an example of an

empty network as it was presented to the

participants. The middle panel of Figure

C.1 depicts a network of a participant who

drew the effect of item 7 (“I like/do not like

the taste of meat”) on the remaining items

of the questionnaire. In order to create one

adjacency matrix for each participant, we

added all 11 adjacency matrices (one for

each of the statements). The lower panel

of Figure C.1 shows a network that depicts

all causal influences that a participant drew.
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Figure C.1: The upper panel depicts an empty network that was presented to the partici-

pants. The middle panel depicts a network of a participant who drew the effect for item

7 (“I do/don’t like the taste of meat”). Note that in the experiment, participants drew the

causal effects on paper. For printing purposes, this drawing was digitalised. The lower

panel depicts all causal influences a participant drew.
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C.2.3 Procedures

Participants first received a baseline ques-

tionnaire regarding their attitude towards

the consumption of meat. Based upon these

scores, participants received 11 hypothet-

ical scenarios, which corresponded to the

11 items. After each scenario the partici-

pant completed the questionnaire again. In

addition to the questionnaire that had to be

filled out after each hypothetical scenario,

participants were asked which items were

influenced by the item that was perturbed

and had to draw these causal influences in

an empty network. The questionnaire items

were randomised for each hypothetical sce-

nario. We also randomised the order of the

hypothetical scenario per participant.

C.2.4 Quality Control

The questionnaire was administered on pa-

per. Hypothetical scenarios (positive/nega-

tive) were selected and administered based

on the baseline measurement for each in-

dividual participant. The data were dig-

italised by Ria Hoekstra and checked by

Jolanda Kossakowski.

C.2.5 Ethical Issues

This study was approved by the ethical re-

view board of the University of Amster-

dam. All participants signed an informed

consent form before participating in the

study. The data were anonymised before

publication.

C.3 Dataset description

C.3.1 Object name

The datafile is named “data.zip”. This

zip file at https://osf.io/8tm5f/ contains the

data “PerturbationData.xls”, “Perturbation-

Data.csv”, “PerturbationData.txt”, the in-

dividual adjacency matrices “adj1.txt –

adj30.txt”, a codebook “Codebook.pdf”, a

supplement holding the used hypothetical

scenarios “scenarios.pdf”, and a supple-

ment containing the questionnaire “ques-

tionnaire.pdf”.

C.3.2 Data type

All datafiles are primary data.

C.3.3 Format names and versions

The primary data are provided in three dif-

ferent formats: .xls, .csv, and .txt format.
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The individual adjacency matrices are pro-

vided in one format: .txt. The accompany-

ing codebook, the scenario supplement and

the questionnaire are provided in .pdf for-

mat.

C.3.4 Data Collectors

Ria Hoekstra, Jolanda Kossakowski and

Han van der Maas designed the entire study

and the experiment. Ria Hoekstra was re-

sponsible for the actual data collection.

C.3.5 Language

English.

C.3.6 License

The data have been deposited under a CC-

By Attribution 4.0 International (CC-By)

License.

C.3.7 Embargo

Not applicable.

C.3.8 Repository location

http://osf.io/8tm5f.

C.3.9 Publication date

The data have been published online since

February 21, 2018.

C.4 Reuse potential

This dataset contains data from 30 partic-

ipants who completed the same question-

naire 12 times. We perturbed the partici-

pant’s opinion on each of the 11 items and

measured to what extent this changed the

participant’s scores on the questionnaire.

The dataset also contains adjacency matri-

ces for each individual, holding informa-

tion about their perceived causal relations

between questionnaire items. It is a unique

dataset that can be used for several pur-

poses. First, the questionnaire data can aid

research that aims to infer causal relations

between variables. Since the data contain

both observational and experimental data,

algorithms like the downward ranking of

feed-forward loops (DR-FFL; Pinna et al.,

2013), the invariant causal prediction (ICP;

Meinshausen et al., 2016), or newly cre-

ated algorithms can be used to investigate

to what extent questionnaire items causally

influence each other. Second, these data
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can be used to study the malleability of a

person’s attitude towards meat consump-

tion, a “hot topic” (Dalege et al., 2017).

Third, these data are suitable for stud-

ies that look into attitude differences be-

tween participants that maintain different

dietary lifestyles, like vegetarians and om-

nivores. Lastly, the adjacency matrices can

aid research that aims to combine infor-

mation from different participants on per-

ceived causal relations between items into

one set of perceived causal relations.
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D

Supplementary Material to Chapter 5

D.1 D-separation in a DAG

Earlier we described the four different causal structures that can exist in a causal graph

(see Figure 5.1). By determining the conditional (in)dependencies between sets of vari-

ables, the PC-algorithm estimates a DAG. The notion of conditional independencies can

be extended to the idea of directed (d) separation. D-separation generalises a conditional

independence relation between two variables. Say we have a path from variable X to

variable Y . Variables X and Y are d-separated (denoted by X |= GY | Z) given a variable

Z if Z blocks the path from any node in X to any node in Y . D-separation is relatively

easy in the case of a chain or a common cause structure. With these specific structures, X

and Y are d-separated given Z when Z is observed. When Z is observed, it “blocks” the

path from X to Y . The reverse is true for the collider structure: X and Y are d-separated

given Z as long as Z, or any of its descendants are not conditioned on. For a disjoint set

of random variables X , Y and Z with joint probability distribution P, we note that X is

conditionally independent of Y given Z by X |= PY | Z. From this notion of d-separation,

two assumptions follow:

Assumption 1: We assume that for disjoint sets of variables X, Y and Z the causal Markov

condition is satisfied, which specifies that
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X |= GY | Z =⇒ X |= PY | Z (D.1)

This assumption guarantees that, when we find that two variables are d-separated, these

two variables are conditionally independent given a third variable.

Assumption 2: We assume that for disjoint sets of variables X, Y and Z the causal faith-

fulness condition is satisfied, which specifies that

X |= PY | Z =⇒ X |= GY | Z (D.2)

This assumption ensures that, when two variables are conditionally independent given a

third, they are also d-separated given that third variable.
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D.2 Theory of transitive reduction

Both the DR-FFL and the TRANSWESD algorithm use transitive reduction to estimate a

causal graph. Both algorithms first draw up a perturbation graph in which causal relations

between variables exist that exceed a pre-specified threshold. Often (but not always),

the correlation between two variables is used. The idea here is that, when a correlation

between two variables is nonzero, then there must be either a direct or an indirect relation

between these two variables. Transitive reduction aims to remove direct effects where

there should not be one, by considering alternative paths between two variables.

To illustrate transitive reduction, we have set up two examples, visualised in Figure

D.1. Here, we consider the causal relation between variables W and Y . Wright (1921)

showed that the correlation between W and Y is sum of the product of the path coefficients,

denoted by βi j. In the first example, shown in the left panel of Figure D.1, two paths exist

from W to Y : W −→ X −→ Y and W −→ Z −→ Y . The correlation ρWY then becomes

(0.20)(0.20)+ (0.20)(0.20) = 0.08. The following criterion is used to remove a direct

effect from the perturbation graph:

min{|ρ{ /0,s}
WX1
|, . . . , |ρ{ /0,s}

XkY |}> |ρ
{ /0,s}
WY |, (D.3)

where { /0,s} denote the observational environment in which no perturbations have taken

place ( /0), and the experimental environment in which perturbations have taken place on

variable s. The variables X1 . . .Xk denote the variables that lie on the path from W to Y .

In other words, (D.3) states that if the smallest absolute path coefficient is larger than

the direct effect between two variables, then the direct effect is to be removed from the

perturbation graph. In our illustration, the correlation between W and Y (ρWY = 0.08) is

smaller than the smallest path coefficient on either path (all path coefficients are 0.20),

and thus there should not be a direct effect from W to Y . Therefore the left panel of Figure

D.1 shows that transitive reduction is able to come to the right conclusion. However, the

criterion in (D.3) is necessary, but it turns that that it is not sufficient to find the true
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Figure D.1: Two examples of perturbation graphs one for which transitive reduction is

appropriate (left panel) and one for which it is not (right panel).

causal graph. This is shown with the example in the right panel of Figure D.1. Here,

there is a direct effect from W to Y . Now ρWY becomes (0.20)(0.20)+ (0.20)(0.20)−

0.10 = −0.02, which is still smaller than the smallest path coefficient. Here, transitive

reduction would erroneously remove the direct effect from W to Y . This shows that

transitive reduction may not reach the correct causal graph, especially when the path

coefficients are small. Specifically, the criterion in (D.3) will not work when the sum of

the direct effect and ρi j is smaller than the smallest absolute path coefficient on any path

between i and j.
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D.3 Formal description of the HICP-algorithm

The HICP-algorithm controls for hidden variables by employing an instrumental variable

Z. This instrumental variable cannot directly influence the target node Y , as shown in

Figure 5.8. By using the instrumental variable Z, the regression of the target node onto the

remaining variables will be split for the different time points, and the difference between

these time points is used to estimate the causal effect. The causal effect from X to Y ,

denoted by α̂ , is calculated as follows:

α̂ =
cov[X ,Y ]

var[X ]
= α +

δγ var[H]

var[X ]
(D.4)

α̂ =
cov[X ,Y ]

var[X ]
(D.5)

=
cov[X ,αβZ +(αγ +δ )H]

var[X ]

=
αβ cov[X ,Z]+ (αγ +δ ) cov[X ,H]

var[X ]

=
αβ cov[βZ + γH,Z]+ (αγ +δ ) cov[βZ + γH,H]

var[X ]

=
αβ 2 var[Z]+ γ(αγ +δ ) var[H]

β̂ var[Z]+ γ2 var[H]+var[Nx]

=
αβ 2 + γ2α +δγ

β 2 + γ2 +σ2
x

=
α(β 2 + γ2)+δγ

(β 2 + γ2)

= α +
δγ

var[X ]
,

where α , β , δ and γ represent relations between X , Y , H and Z. See Figure 5.8 for a

visual representation. We can rewrite equation (D.5) as follows:
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α̂ =
cov[X ,Y ]

var[X ]
(D.6)

=
cov[X ,αX ]+ cov[X ,δH]

var[X ]

=
α var[X ]+δγ var[H]

var[X ]

= α +
δγ var[H]

var[X ]

where the term δγ var[H]
var[X ] will be 0 when there are no hidden variables. In order to estimate

α̂ , the HICP-algorithm employs a two-step procedure. It first estimates β̂ (the effect from

the instrumental variable Z to variable X), after which β̂ is used to estimate α̂:

α̂ =
cov[β̂Z,Y ]
β 2 var[Z]

(D.7)

=
β̂ cov[Z, β̂Z + e]

β 2 var[Z]

=
β̂ 2 var[Z]
β 2 var[Z]

Note that the equations here are employed after the target node is selected. The com-

putational steps that are taken to estimate all the causal effects are described below for a

target node. We programmed a wrapper function that repeats these steps for every vari-

able in the data. The HICP-algorithm uses the instrumental variable to divide the data

into two subsets. The first subset contains data from the first environment (often that part

of the data in which no perturbation has taken place). The second subset consists of all

the remaining data. We can rewrite equation D.5 to make it computationally appropriate:

α̂ = (X ′X)−1X ′y (D.8)

=

[
X ′1X1

n1
− X ′2X2

n2

]−1

·
[

X ′1Y1

n1
− X ′2Y2

n2

]
=

cov[X1,Y ]− cov[X2,Y ]
var[X1]−var[X2]

,

228



D.3. Formal description of the HICP-algorithm

where X1 and X2 represent the predictor variables for the two environments, and Y1 and

Y2 denote the scores on the target node for the two environments. The parameters n1

and n2 denote the number of participants that exist in the two environments. The result

of equation (D.8) is a p× 1 matrix that holds all the regression coefficients from every

remaining node to the target node. After calculating α̂ , we proceed with the calculation

of Z-values for all participants per environment:

Zi,ε =−τ ·
P

∑
p=1

τ

[
X ′1Y1

n1
− X ′2Y2

n2

]
+Yi,ε τ, (D.9)

where τ =
[

X ′1X1
n1
− X ′2X2

n2

]−1
·Xi,ε . The parameter τ is created for each participant i and

environment ε individually. The matrix Xi,ε is a 1× p vector that holds the observational

data for participant i and p variables. Two separate n× p matrices emerge from this

equation: one for the first environment, and one for the second environment. The next

step includes the calculation of σ :

σ =

√
diag

(
s2(Z1)

n1
+

s2(Z2)

n2

)
(D.10)

where s2(Z1) and s2(Z2) denote the covariance matrix of the Z-values that we calculated

previously in (D.9) for environments 1 and 2, and n1 and n2 the number of participants

in the first and second environment. The term diag here indicates that we only take the

diagonal of the result of s2(Z1)
n1

+ s2(Z2)
n2

. In the last step we calculate the p-values associated

with α̂ . These are calculated in the following manner:

p = max

 2K ·1− t(|β̂ |/max(10−10,σ))

1
(D.11)

where K is the number of environments (2 in this study). The parameter t() denotes the

critical value in a t-distribution for a value of |β̂ |
max(10−10,σ)

, with degrees of freedom n−1

(the total sample size). In order to estimate the maximal effect for each variable, we first

determine the Z-value:
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Z = qnorm [max(0.5,1−α/(2K))]σ (D.12)

which is then used in combination with α̂ to calculate the maximimal effect:

θ = sign(β̂ ) ·max(0, |β̂ |−Z) (D.13)

The maximal effects for insignificant variables is set to be 0 due to the max term that

exists in θ .
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D.4 The Creation of a Directed Acyclic Graph

When constructing a Directed Acyclic Graph (DAG), one needs to specify the number of

nodes in the graph p, and the proportion of edges that should be present in the graph d,

the density of the graph. In a graph p2− p edges are possible (self-loops are not possible),

and therefore the number of edges that will be drawn in the graph is d ·
(

p2− p
)
= e. We

added a constraint to the number of edges that states that e cannot be lower than p− 1.

We added this constraint to ensure that all nodes in the graph have at least one connection.

We start out with a p× p adjacency matrix that consists of solely 0s. Then, we ran-

domly select e cells and set them to 1s: a 0 indicates the absence of an edge, and a 1

the presence of an edge. The diagonal of the matrix is always 0, as self-loops are not

permitted at this point in time. To illustrate, say one wants to create a DAG consisting

of p = 5 nodes, with d = 0.25, which translates to e = 5. This process may result in an

adjacency matrix like this:



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


−→



0 0 0 0 1

0 0 1 1 0

0 0 0 0 0

0 0 0 0 1

0 1 0 0 0


After this initiation process, the DAG, which we call G, is checked to see if it satisfies

the following conditions: (1) the number of edges in G must equal e, (2) each node in G

must have at least one connection, (3) all edge weights in G must equal 1, (4) all nodes

in G must be connected in one component and (5), G cannot contain any cycles. This

process may result in the following adjacency matrix:
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Figure D.2: Visualisation of the DAG simulation. The left panel depicts a graph after the

initiation process, and the right panel depicts a graph after it satisfies all conditions.



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


−→



0 0 0 0 1

0 0 1 1 0

0 0 0 0 0

0 0 0 0 1

0 1 0 0 0


−→



0 0 0 0 1

0 0 1 1 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0


Figure D.2 shows the visualisation of the graph G after the initiation process (left

panel) and after all criteria are satisfied (right panel). After the DAG is finalised, its

adjacency matrix is ordered so that all nonzero elements are in the lower-diagonal part

of the matrix. This process does not alter the DAG itself, solely its representation. This

ordering process is needed to properly simulate data, which is discussed in section 5.3.
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D.5 Numerical evaluation of causal inference algorithms with

hidden variables

Next to the simulation study reported in section 5.4, we ran a second simulation study

using data that contained hidden variables. Figure D.3 shows the MCC for the five algo-

rithms that we investigated. The results are very similar to the results using data without

hidden variables. For the PC-algorithm, we again see that the graph density d influences

the MCC, where it reaches the highest numbers when d = 0.25. This effect only appears

when the graph size p = 5. With p = 10, the MCC is generally low (average MCC =

0.09) at d = 0.5 and will only increase to mediocre (average MCC = 0.56) values when

d = 0.1.

The picture we painted in section 5.4 for the DR-FFL and the TRANSWESD algo-

rithms does not improve when hidden variables are included. When the graph size p = 5,

the average MCC lies around 0.15, whereas when p = 10, the average MCC is around

0.03. The sample size n does not seem to influence the performance of both algorithms.

On the other hand, the threshold parameter β has a big impact. The lower β , the higher the

MCC is. To illustrate, when β = 0.5, the average MCC is 0.50, whereas when β = 2.58,

the average MCC is close to zero. The threshold parameter β influences how many edges

are retained after the first step in both the DR-FFL and the TRANSWESD algorithm. The

higher the threshold, the lower the number of edges that are present in the perturbation

graph, and thus the lower the MCC.

The ICP-algorithm has the best performance when there is a medium number of edges

in the graph (d = 0.25). As we saw before, we observe high MCC values with the smaller

graphs (p= 5). When p is increased to 10, the ICP-algorithm becomes more conservative,

resulting in a lower MCC. Only when the mean of the perturbation distribution (m) is

high and the standard deviation is small can the ICP-algorithm accurately estimate causal

graphs. This indicates that the ICP-algorithm needs a strong and effective perturbation in

order to correctly identify causal relations.
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Figure D.3: Matthew’s correlation coefficient (MCC) for p = 10 nodes with a network

density of d = 0.25 with the addition of hidden variables. Top left = m = 1, sd = 0.5, top

right = m = 1, sd = 5, bottom left = m = 5, sd = 0.5, bottom right = m = 5, sd = 5.

The mixed performance that we saw earlier with respect to the HICP-algorithm is also

present when we add hidden variables to the data. This means that the HICP-algorithm

can accurately estimate causal graphs with a small sample size. When the sample size

increases, the accuracy decreases. This effect is present in almost every simulation con-

dition. The only exception is when the graph density is low (d = 0.1). In that case, the

MCC increases when the sample size increases.

Figure D.4 paints a similar picture that we saw in section 5.4. The lack of accuracy of

the DR-FFL and the TRANSWESD algorithm is clearly visible, as are the spurious edges

that are estimated by the HICP with a large sample size. Even though hidden variables

are added to these data, the ICP-algorithm shows the highest number of true positives,

combined with the lowest number of false positives for this simulation condition. Lastly,

the PC-algorithm can have issues with determining the direction of an edge. This problem

emerges independent of the presence of hidden variables, as we have seen this in section

5.4 as well. All in all, these results may suggest that the ICP-algorithm is the saver option

when one wants to estimate a causal graph.
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Figure D.4: Visualisation of the number of true positives and false positives for p= 5, d =

0.25, n = 5000, m = 5, sd = 0.5 and β = 0.5 with the addition of hidden variables. Blue

edges indicate true positives, and red edges indicate false negatives. The saturation and

thickness of the edge represents how often that edge was (in)correctly estimated. Upper

left = true graph, upper middle = PC, upper right = DR-FFL, lower left = TRANSWESD,

lower middle = ICP, lower right = HICP.
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English summary

Until recently, it was believed that psychological phenomena like depression or general

intelligence could be explained by a latent (unobserved) variable. In the past years, net-

work theory has gained popularity. This theory claims that a latent variable is not needed

to explain psychological phenomena. Instead, network theory argues that a construct

like depression or general intelligence is a network that comprises reciprocal (potentially

causal) relations between variables, which can be used to gain a better understanding of

a psychological construct. In the example of depression, such a network can be seen as

a complex system: a set of variables that influence each other in such a way that critical

transitions from one stable state to the other are possible.

Complex systems are complex for more than one reason. The system as a whole can

quickly grow to be too complex to study in its entirety, and relations between variables

can produce critical transitions: a sudden jump from one stable state to another. Systems

of only few variables and relations do not pose a problem, but the systems that are studied

in psychology often consist of ten or more variables, with many potential edges that are

estimated. It is thus vital to simplify these systems. In the first part of this dissertation, we

reduced these complex systems by means of a mean field approximation (MFA), where

we approach the complex system as a stochastic cellular automaton (SCA).

A cellular automaton (CA) is a discrete dynamical system that has a deterministic,

local update rule to move through time. Every node in a CA lies in a finite grid and can

either be ‘active’ (1) or ‘inactive’ (0). An update rule that is often used is the majority
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rule. This rules states that, when the majority of a node’s neighbours is active, then the

node itself will become active at the next time point. While the deterministic majority

rule can be efficient, it is not an accurate representation of psychological constructs, as

there is always some uncertainty in human beings, their behaviour, and their emotions.

Therefore we introduced a SCA, in which the majority still considers a node’s neighbours,

but instead of fixing the outcome based on that node’s neighbours, it assigns a probability

p for that node to become active at the next time point. By assuming that all nodes in

a system have the same update rule and the same number of neighbours, we can reduce

that system to a one-dimensional discrete Markov chain. Since we also assume that every

node can be in either one of two states, the process of updating a node’s state is Bernoulli

distributed. This simplifies the system, enabling us to analyse the entire system more

easily.

With the MFA, one only needs to determine the state of the nodes at t = 0 and the

probability parameter p for the majority rule, and the system will continue to update. At

a certain point in this process, the system will find either one or two equilibria, based on

the probability parameter p. If a system has two equilibria, it can show critical transitions

between the two; with only one equilibrium critical transitions are theoretically impossi-

ble. By varying this probability parameter, we can map the space where the system is in,

and pin point where one theoretically would expect critical transitions.

In theory, when one knows the probability parameter p and the space of the system,

one could determine whether a system can experience critical transitions or not. In psy-

chopathology, we could indicate whether or not an individual is mathematically in a place

where critical transitions can occur. In practice, we can estimate this probability parame-

ter from the data using maximum likelihood estimation. In both a simulation study and an

empirical analysis, we showed that this estimation process works well, and that we were

able to infer whether patients diagnosed with depression or healthy participants could

experience critical transitions.

Relations between variables are often reciprocal, indicating that two variables may
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influence each other. Establishing a causal relation between two variables is an essential

next step; learning the cause of a symptom like concentration problems can help to reduce

symptoms like these. A causal relation can indicate many things. Here, we define a causal

relation to be a relation X −→ Y where, when we change the cause (X), we observe a

change in the effect (Y ). This also means that, when we do not observe a change in Y , no

change in X has occurred.

The type of data that is often used to estimate causal relations are observational data.

These are data in which no perturbations (manipulations or interventions) have taken

place. However, we cannot unravel all causal relations with only observational data. As

implied by our definition, we need to perturb variables and observe its effects in order

to establish causality between variables. Therefore, we need experimental data. These

are data where some perturbation has taken place. By combining observational and ex-

perimental data, we may have enough information to properly estimate causal relations.

Observational data is used to establish a connection between two variables, and experi-

mental data is needed to estimate whether any (or both) of these variables change as a

result of perturbing the other.

In the second part of this dissertation, we put several algorithms for estimating causal

relations to the test in a simulation study, and found that two algorithms - the invariant

causal prediction (ICP) and the hidden ICP (HICP) algorithm - in particular hold the best

cards for correctly estimating causal relations. These algorithms search for the common

denominator: only those causal relations that exist in all subsets of the data are retained

in the final causal graph. The difference between the algorithms lies in the accountability

of hidden variables, where the ICP-algorithm does not control for them, and the HICP-

algorithm does.

In an empirical study, we combined the results of these two algorithms with a liter-

ature study in a causal graph approach to create a causal graph of obsessive-compulsive

disorder. Although we saw a discrepancy between the algorithms and the literature, we

uncovered causal relations that otherwise may have been left unknown, and showed the
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potential of such an approach for psychopathology.

In my discussion, I took a critical stance towards my research. What steps have been

taken, what have we accomplished, what do we need to do to achieve the goals where we

can predict (instead of assessing) if individuals may experience critical transitions, and

where we gain a full understanding of a disorder in terms of its causal relations? Although

the research presented in this dissertation demonstrate the first steps towards these goals,

we are not there yet. I elaborate on specific limitations, that may pose to be limitations for

other studies as well, such as the great number of assumptions that accompany models, or

(currently unsolved) issues of dealing with missing data. Despite these limitations, both

the mean field model and the causal graph approach can be extended and adapted in many

ways. It may be even possible to combine the two into a complex causal system.

This dissertation showed that both prediction and explanation are important in psy-

chological research. By putting a system passively or actively under pressure, we may

assess where a system can go to, where we may gain a better understanding of the inter-

nal workings of a system.
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Tot voor kort geloofde men dat psychologische fenomenen zoals depressie of algemene

intelligentie verklaard konden worden door een latente (niet-geobserveerde) variabele.

In de laatste jaren is de netwerktheorie in populariteit gestegen. Deze theorie beweert

dat een latente variabele niet nodig is om psychologische fenomenen uit te leggen. In

plaats daarvan beargumenteert de netwerktheorie dat een construct zoals depressie of

algemene intelligentie een netwerk is dat wederkerige (mogelijk causale) relaties tussen

variabelen bevat, welke gebruikt kunnen worden om een beter begrip te krijgen van een

psychologisch construct. In het voorbeeld van depressie kan zo’n netwerk gezien worden

als een complex systeem: een set variabelen die elkaar beı̈nvloeden op zo’n manier dat

kritische transities van een stabiele staat naar een andere mogelijk zijn.

Complexe systemen zijn complex om meerdere redenen. Het systeem als geheel kan

uitgroeien tot zo’n groot systeem dat het te complex is om in zijn geheel te bestuderen, en

relaties tussen variabelen kunnen kritische transities produceren: een plotselinge sprong

van één stabiele staat naar een andere. Systemen van slecht enkele variabelen en re-

laties vormen niet zo’n probleem. Echter, de systemen die vaak bestudeerd worden in de

psychologie bevatten vaak tien of meer variabelen, met vele potentiële verbindingen die

geschat worden. Het is dus van essentieel belang om deze systemen te simplificeren. In

het eerste deel van dit proefschrift hebben we deze complexe systemen gereduceerd door

middel van een gemiddelde-veld-approximatie (GVA), waarin we het complexe systeem

benaderen als een stochastisch cellulair automaat (SCA).
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Een cellulair automaat (CA) is een discreet dynamisch systeem met een lokale, de-

terministische actualisatieregel om zich voort te bewegen door de tijd. Elke knoop in

een CA ligt op een eindig rooster en kan ‘actief’ (1) of ‘inactief’ (0) zijn. Een actual-

isatieregel die vaak gebruikt wordt is de meerderheidsregel. Deze regel stelt dat, wanneer

de meerderheid van de buren van een knoop actief is, de knoop zelf ook actief wordt op

het volgende tijdpunt. Hoewel de deterministische actualisatieregel efficiënt kan zijn, is

het geen accurate representatie van psychologische constructen omdat er altijd een vorm

van onzekerheid zit in mensen, hun gedrag, en hun emoties. Daarom hebben we een SCA

geı̈introduceerd, waarin we nog steeds kijken naar de buren van een knoop. In plaats van

het vastzetten van de uitkomst op basis van van de buren van een knoop wordt er een kans

p toegewezen voor die knoop om actief te worden op het volgende tijdpunt. Door aan

te nemen dat alle knopen in een systeem dezelfde actualisatieregel hebben en dezelfde

hoeveelheid buren kunnen we het systeem reduceren tot een eendimensionale, discrete

Markov-keten. Omdat we ook aannemen dat elke knoop zich slechts in één van twee

staten kan bevinden is het proces van het bijwerken van de staat van een knoop Bernouilli

verdeeld. Dit simplificeert het systeem waardoor we het gehele systeem makkelijker kun-

nen analyseren.

Met de GVA hoeft men alleen de staat van alle knopen op t = 0 te bepalen en de kans

parameter p voor de meerderheidsregel om het systeem continue te laten bijwerken. Op

een bepaald punt in dit proces zal het systeem één of twee evenwichten vinden, gebaseerd

op de kans parameter p. Als een systeem twee evenwichten heeft kan het kritische transi-

ties vertonen tussen de twee; met een enkel evenwicht zijn kritische transities theoretisch

onmogelijk. Door de kans parameter te laten variëren kunnen we de ruimte waar het sys-

teem zich in bevindt in kaart brengen en vaststellen waar men theoretisch gezien kritische

transities kan verwachten.

Wanneer men de kans parameter p en de ruimte van het systeem kent, kan men in

theorie bepalen of een systeem kritische transities kan ervaren. In de psychopathologie

zouden we kunnen inschatten of een individu mathematisch gezien op een plek is waar
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kritische transities kunnen voorkomen. In de praktijk schatten we deze kans parameter

uit de data door middel van maximale waarschijnlijkheidsschatting. In zowel een simu-

latiestudie als een empirische analyse hebben we laten zien dat dit schattingsproces goed

werkt en dat we in staat zijn om te bepalen of patiënten met een depressie diagnose of

gezonde deelnemers kritische transities konden verwachten.

Relaties tussen variabelen zijn vaak wederkerig. Een dergelijke relatie geeft aan dat

twee variabelen elkaar beı̈nvloeden. Het vaststellen van een causale relatie tussen twee

variabelen is een essentiële volgende stap; het vinden van de oorzaak van een symptoom

zoals concentratieproblemen kan ons helpen om dergelijke symptomen te verminderen.

Een causale relatie kan wijzen op meerdere dingen. Hier definiëren we een causale relatie

als een relatie X −→ Y waarbij, wanneer we de oorzaak (X) veranderen, we een veran-

dering in het gevolg (Y ) waarnemen. Dit betekent ook dat, wanneer we geen verandering

in Y waarnemen, er geen verandering in X heeft plaatsgevonden.

Het soort data dat vaak gebruikt wordt om causale relaties te schatten zijn obser-

vatiedata. Dit zijn data waarop geen perturbaties (manipulaties of interventies) hebben

plaatsgevonden. We kunnen echter niet alle causale relaties vinden met louter obser-

vatiedata. Zoals geı̈mpliceerd in onze definitie van een causale relatie moeten we vari-

abelen perturberen en de effecten hiervan waarnemen om causaliteit tussen variabelen te

kunnen vaststellen. Hiervoor hebben we experimentele data nodig. Dit zijn data waarop

een vorm van een perturbatie heeft plaatsgevonden. Door observatie en experimentele

data te combineren hebben we wellicht genoeg informatie om causale relaties naar be-

horen te schatten. Observatie data worden gebruikt om een verbinding tussen twee vari-

abelen vast te stellen en experimentele data om te schatten of één (of beide) variabelen

veranderen als gevolg van het perturberen van de andere variabele.

In het tweede deel van dit proefschrift hebben we verschillende algoritmes waarmee

causale relaties geschat kunnen worden getest in een simulatiestudie. In deze studie von-

den we dat twee specifieke algoritmes - het invariante causale predictie (ICP) algoritme

en het verborgen invariante causale predictie (VICP) algoritme - de beste papieren hebben
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om causale relaties te schatten. Deze algoritmes zoeken naar de gemene deler: alleen die

causale relaties die in alle deelverzamelingen van de data voorkomen blijven behouden

in de uiteindelijke causale graaf. De verschillen tussen de algoritmes liggen in het om-

gaan met verborgen variabelen, waarbij het ICP-algoritme niet controleert voor zulk soort

variabelen, en het VICP-algoritme wel.

In een empirische studie hebben we de resultaten van beide algoritmes en een lit-

eratuurstudie gecombineerd in een causale-graaf-benadering om een causale graaf van

obsessief-compulsieve stoornis te creëren. Hoewel we een gebrek aan overlap moesten

vaststellen tussen de algoritmes enerzijds en de literatuurstudie anderzijds, ontdekten we

causale relaties die anders wellicht onbekend zouden blijven. We hebben daarmee het

potentieel laten zien van een dergelijke benadering voor de psychopathologie.

In mijn discussie heb ik een kritische blik geworpen op mijn onderzoek. Welke stap-

pen zijn er genomen, wat hebben we bereikt, wat moeten we doen om de doelen te

bereiken waarbij we kunnen voorspellen (in plaats van inschatten) of individuen kritis-

che transities kunnen ervaren en waarbij we volledig begrip krijgen van een stoornis door

middel van zijn causale relaties? Hoewel de onderzoeken die gepresenteerd zijn in dit

proefschrift de eerste stappen vormen richting deze doelen, zijn we er nog niet. Ik ga in

op specifieke beperkingen van de studies, die mogelijk ook beperkingen opleveren voor

andere studies, zoals de hoeveelheid aannames die samen met modellen komen, of de (op

dit moment nog niet opgeloste) problemen die ontstaan wanneer we om moeten gaan met

missende data. Ondanks deze beperkingen kunnen zowel het gemiddelde-veldmodel als

de causale-graaf-benadering op verschillende manieren uitgebreid en aangepast worden.

Het is wellicht zelfs mogelijk om de twee te combineren in een complex, causaal systeem.

Dit proefschrift laat zien dat zowel predictie als verklaring belangrijk zijn in psychol-

ogisch onderzoek. Door een systeem passief of actief onder druk te zetten kunnen we

inschatten waar een systeem naartoe gaat en krijgen we een beter begrip van de interne

werkingen ervan.
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Conway’s Game of Life

Here you can play Conway’s Game of life Gardner (1970), discussed in the introduction.

Here are the rules to the game:

1. A live cell (black) that has less than two live neighbours will die.

2. A live cell with two or three live neighbours will live.

3. A live cell that has more than three live neighbours will die.

4. A dead cell that has exactly three live neighbours will be brought to live.

On the next page you will find several empty boards. Use the first one to colour in several

cells, and play the game from there.

Enjoy!
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