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In every network, a distance between a pair of nodes can be defined as the length of the shortest path
connecting these nodes, and therefore one may speak of a ball, its volume, and how it grows as a function of the
radius. Spatial networks tend to feature peculiar volume scaling functions, as well as other topological features,
including clustering, degree-degree correlation, clique complexes, and heterogeneity. Here we investigate a
nongeometric random graph with a given degree distribution and an additional constraint on the volume scaling
function. We show that such structures fall into the category of m-colored random graphs and study the
percolation transition by using this theory. We prove that for a given degree distribution the percolation threshold
for weakly connected components is not affected by the volume growth function. Additionally, we show that the
size of the giant component and the cyclomatic number are not affected by volume scaling. These findings may
explain the surprisingly good performance of network models that neglect volume scaling. Even though this
paper focuses on the implications of the volume growth, the model is generic and might lead to insights in the
field of random directed acyclic graphs and their applications.

DOI: 10.1103/PhysRevE.101.012303

I. INTRODUCTION

In all networks one may attribute a notion of a distance
to a pair of nodes, by taking the length of the shortest path
connecting these nodes. One therefore may speak of a ball
of radius r centered at a chosen node, where r is a positive
integer. Studying how the expected volume of such a ball
grows with r gives a good proxy characterizing the interplay
of the space and structure of spatial random networks [1–5]:
If this quantity has a simple monomial shape rd , then one says
that d is the network’s dimension or volume scaling [3,4,6,7].
Dimensions of many real-life and artificial networks tend to
range from approximately 1.25 for the New York City subway
to 8.1 for YouTube [3]. The behavior becomes especially
pronounced when the edge lengths are constrained as in,
for instance, polymer networks [8], gels [9,10], and glasses
[11,12]. In contrast, small-world networks [13] have volume
scaling αr and therefore do not feature a finite dimension.

Complex networks that are viewed within the context of
their embedding space can be loosely defined as geometric
graphs or spatial networks [14]. The information about em-
bedding space might be given a priori, as in geometric graphs,
or the space, that is to say, the network geometry, may be
defined by the network’s metric, thus emergent or hidden
space [13,15–18]. Although spatial networks are ubiquitous
in a geographic context (road [19], transportation [20], and
river networks [21]), materials science (polymers [1], jammed
glasses [11], rubber, and gels [10]), and biology (cell growth
[22], cytoskeletons [23], and cellular and neural networks
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[24]), it is not clear how the metric induced by the network
is related to the global properties of random networks. Thus,
the underlying long-standing question, which is also topical in
many other studies [25], is the following: Which topological
constraints are necessary for a random graph model to repro-
duce the same global emergent properties as a given, possibly
spatial, real-world network?

In this paper we focus on one emergent property in par-
ticular, namely, the percolation threshold [26]. The effect of
the metric on the percolation threshold is difficult to assess
as real-world spatial networks often feature a variety of
properties that affect such a threshold, for instance, cluster-
ing, degree-degree correlation, and clique complexes [27].
However, neither clustering nor degree-degree correlation is
a necessary property of spatial networks. Nevertheless, all
spatial networks feature volume scaling that is in accordance
with the underlying metric space. It is not clear whether spatial
networks feature different percolation thresholds due to the
their volume scaling or different thresholds appear due to
other factors that tend to occur in, but not necessarily belong
to, spatial networks.

The first attempts to develop a random network model
where volume growth is fixed to a given function, characteris-
tic of three-dimensional Euclidean space, appeared in polymer
science [2,28], thus by requiring rd scaling, 2 � d � 3, in
any polymer network irrespective of the network density. In
other words, polymer networks are a very convincing example
of real-life networks that are not small world. For decades,
lattices were used in polymer network modeling due to their
inherently correct volume growth. However, the downside of
lattice models is their underlying periodic structure, which,
on one hand, alters the percolation threshold and, on the
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other hand, forces periodicity onto the random structure of
polymer networks. Polymer science has high expectations of
the configuration model as the degree distributions of polymer
networks are fully determined and limited by the underlying
chemistry. The configuration model tends to be better and
more efficient in explaining experimental observations of
branched polymers than lattices [1,10,29,30]. However, the
exponential volume growth associated with the conventional
configuration model is a factor that convincingly shows the
model’s limitation [1], especially in networks that are far
above their percolation threshold.

In this work we develop the null model for a maximum
entropy network, or random graph, that has a layered structure
and satisfies a given degree distribution. The fraction of nodes
in every layer is defined by an arbitrary volume growth func-
tion, which we choose in accordance with the volume scaling
in Euclidean d-dimensional space. The presented model can
be thought of as a special case of a multilayer network [26], in
which the number of layers tends to infinity and the fraction
of nodes in each layer is fixed. In other words, the model
characterizes an infinitely sized random directed acyclic graph
with arbitrary degree distribution.

Directed acyclic graphs experience wide applications in ci-
tation networks [31,32], epidemiology [33,34], and food webs
[35]. Many artificial networks feature a layered structure,
where the number of nodes per layer is set by the design. Most
notably, the design of (deep) neural networks often implies an
inverse hourglass topology, which corresponds to a peculiar
nonmonomial growth function that is also covered in this
work.

In the rest of the paper we show how an infinite configura-
tion model with colored edges [26,36] can be used to realize
the model with controlled volume growth. This is done by
constructing the colored degree distribution in such a way
that its marginal corresponds to the desired degree distribution
and the moments in each layer are given in accordance with
the volume growth function. We then show that, surprisingly,
when the degree distribution is fixed, the growth function has
no effect on the percolation threshold. This result may shed
light on one of the reasons why the Molloy-Reed criterion
is so effective [37], even when applied to networks that the
criterion is not originally designed for, i.e., spatial networks
in this case.

II. MODEL

We introduce a network model with layered structure and
the layers (generations) being connected in a consecutive
manner. Nodes of generation g are only allowed to connect to
nodes of generation g − 1 and g + 1. The degree distribution
u(k), which is the probability that a randomly chosen node
has degree k, is arbitrary and fixed as a model parameter. In
the present model, all nodes of the network satisfy the same
degree distribution u(k), independently of their associated
generation. Let n(g) be the fraction of nodes in generation
g, which is the same as the probability that a node chosen
uniformly at random is part of generation g. In the course of
this section we will establish the precise relationship between
the fraction of nodes per generation n(g) and the arbitrary
volume growth function P(g), which allows us to design a

g=4 g=3 g=2 g=1 g=5 

g=4 g=3 g=2 g=1 g=5 

Palgebraic(g) Phourglass(g) 

(a) (b)

FIG. 1. Illustration of the generation model. The directed lay-
ered network is illustrated, with the edge orientation in accordance
with the generation sequence. Networks with two different volume
growth functions are shown: (a) monomial growth and (b) inverted
hourglass.

network with arbitrary growth behavior of the fraction of
nodes per generation. The only input to the model is the degree
distribution u(k), the volume growth function P(g), and the
total number of generations G. Apart from these constraints,
the network is entirely random.

The presence of the volume growth function P(g) that
defines the fraction of nodes in every generation is inspired by
spatial networks. In spatial networks, the number of neighbors
at generation g often grows in a similar manner as the volume
of a ball in the corresponding metric space, where g is mapped
to the radius of the ball. Figure 1 illustrates the concept of
the generation model depicting two generation networks with
different volume growth functions P(g). Explicit examples of
volume growth functions will be discussed in Sec. II B.

The model utilizes the following concept. The consecutive
generations of the network are represented as a directed
graph (see Fig. 1). The orientation of the directed edges is in
accordance with the sequence of the consecutive generations,
that is, the edges point from generation g − 1 to generation
g with g = 1, . . . , G. Thus, the resulting network describes a
directed acyclic graph. It is important to note that nodes exist
that do not have in-edges, i.e., they may not be linked to the
previous generation by a directed path but might be linked via
an undirected path (a path irrespective of the orientation of the
edges). Therefore, the network in general does not have one
distinct root node. Since we differentiate in- and out-edges,
degree k is split into the in-degree k1 and out-degree k2 with
k = k1 + k2. A directed edge between generations is formed
by pairing an out-edge of one generation with an in-edge of
the consecutive generation.

Let the volume growth function P(g) be the probability that
a half-edge of a node in generation g is identified as an in-edge
and Q(g) = 1 − P(g) that it is an out-edge, always satisfying
P(g), Q(g) � 0. We require the expected number of out-edges
of generation g to be equal to the expected number of in-
edges of generation g + 1 for g = 1, . . . , G − 1. Under the
assumption that the expected number of half-edges per node
is the same in all generations, which is the case if all genera-
tions satisfy the same degree distribution, this requirement is
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given by

[1 − P(g)]n(g) = P(g + 1)n(g + 1). (1)

Therefore, we can write n(g + 1) as

n(g + 1) = 1 − P(g)

P(g + 1)
n(g), (2)

with n(1) = 1
N , where N = 1 + ∑G

g=2

∏g−1
i=1

1−P(i)
P(i+1) is the nor-

malization factor. The number of nodes per generation n(g)
is thus related to the expected in- and out-degree in each
generation. For example, under the assumption that nodes
of all generations satisfy the same degree distribution and
the expected in-degree is always smaller than the expected
out-degree, then the fraction of nodes per generation increases
with every generation. Note that in the general case, P(g) is
explicitly dependent on the generation g.

We define the ratio of nodes of consecutive generations as

x(g) = n(g + 1)

n(g)
. (3)

In the case of monomial volume growth, x(g) will mono-
tonically decrease from x(g) > 1 to x(g) → 1 for g → ∞.
If x(g) ≡ C and C > 1, the expected number of nodes per
generation increases exponentially.

Let the degree distribution u(k) be arbitrary, however
bounded by the maximum degree F < ∞ and normalized∑F

k=0 u(k) = 1. The moments of the degree distribution are
given by

μn =
F∑

k=0

knu(k), (4)

with μ1 denoting the expected number of half-edges per node,
i.e., the expected degree. Since the total number of half-edges
of a node is randomly partitioned into in- and out-edges
according to the probabilities P(g) and Q(g), the directed
degree distribution u[g](k1, k2) defining the probability that a
node in generation g has k1 in- and k2 = k − k1 out-edges is
given by the binomial distribution

u[g](k1, k2) =
(

k1 + k2

k1

)
P(g)k1 Q(g)k2 u(k1 + k2), (5)

with
∑

k1,k2
u[g](k1, k2) = 1. Let the partial moments of the

degree distribution be defined as

μ[g]
mn =

∑
k1,k2

km
1 kn

2u[g](k1, k2). (6)

Substituting Eq. (5) into Eq. (6) leads to

μ
[g]
10 = μ

[g]
01 = μ1P(g) = μ1Q(g),

μ
[g]
11 = (μ2 − μ1)P(g)Q(g),

(7)
μ

[g]
20 = μ1P(g)Q(g) + μ2P(g)2,

μ
[g]
02 = μ1P(g)Q(g) + μ2Q(g)2,

with μ
[g]
10 the expected number of in-edges and μ

[g]
01 the ex-

pected number of out-edges of a node of generation g.

A. Connection of the m-colored directed random graph
to the generation model

The generation model can be formulated in terms of a
random m-colored directed graph [26] as follows. Edges
that connect two distinct generations are assigned one color.
Generations are connected consecutively and the edge orien-
tation is such that it points towards the higher generations. A
half-edge type is then defined by color and direction (in- or
out-edge). Thus, any node bears half-edges with at most two
distinct colors: one color for in-edges that connect the node to
the previous generation and one for the out-edges connecting
the node with the next generations.

Instead of treating the first and last generations as special
generations with only one type of edges, we allow them to
have both in- and out-edges. Also, we define pairing between
the out-edges of generation G and in-edges of generation
1. If desired, the probability of having in-edges in the first
generation and out-edges in the last generations can be cho-
sen to be zero by assigning P(1) = 0 and P(G) = 1 in the
volume growth function. Another option is to allow the last
generation to connect to the first generation, if n(1)P(1) =
n(G)[1 − P(G)] and 0 � P(g) � 1 is satisfied. In this case any
node features two half-edge types, including the first and last
generations. This leads to the number of colors being G and
the number of half-edge types being 2G.

In order to formulate the network with generations as a
special case of the directed m-colored random graph, we
consider for every node a vector of half-edge counts k =
(k1, . . . , k2g−1, k2g, . . . , k2G) of all possible half-edge types
where g ∈ {1, . . . , G}. The presence of generations is then
enforced by a strong constraint on the count vector: The
count vector can only contain at most two nonzero elements,
namely, k2g−1 and k2g. The count k2g−1 is the in-degree and k2g

is the out-degree of nodes of generation g.
The permutation matrix P defines the pairing rules between

half-edges. In the case of only one generation (color), we have

P[1] =
(

0 1
1 0

)
. (8)

A nonzero element Pi, j = 1 indicates that a half-edge of type
i pairs with a half-edge of type j. In this case, out-edges are
paired with in-edges and the other way around. In the case
of G generations (and G colors), the 2G × 2G permutation
matrix is given by

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 P[1] 0 · · · 0 0

0 0 P[1] . . .
...

...
...

...
. . .

. . . 0 0
0 0 · · · 0 P[1] 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

with P[1] as defined in Eq. (8) and 0 being a 2 × 2 zero matrix.
The general expression for the elements of M is given by

M i, j = E[kik j]

E[k j]
− δi, j, (10)
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where expectation value E[ f (k)] of a function f (k) with
respect to the degree distribution u(k) is defined as

E[ f (k)] =
∑
k�0

f (k)u(k). (11)

Thus, the expectation values E[k j] and E[kik j] in Eq. (11) are
first and second moments of the count vector k.

The probability that a randomly chosen node is part of
generation g, that is, it has k2g−1 in- and k2g out-edges, is
given by

u(k) =
⎧⎨
⎩

n(g)u[g](k2g−1, k2g) for k2g−1, k2g � 0;
k2i−1, k2i = 0 (i �= g)

0 otherwise,
(12)

with u[g](i, j) given in Eq. (5). Having the degree distribution
of the whole system u(k), the expected number of edges in
each generation can be expressed as,

E[k2g−1] = μ
[g]
10 n(g),

E[k2g] = μ
[g]
01 n(g), (13)

where μ
[g]
mn is given in Eq. (6). The second-order expectation

values are only nonzero if the corresponding half-edge types
have a nonzero probability to occur simultaneously on the
same nodes. Thus, only the following values contribute:

E[k2g−1k2g] = μ
[g]
11 n(g),

E
[
k2

2g−1

] = μ
[g]
20 n(g), (14)

E
[
k2

2g

] = μ
[g]
02 n(g).

The expectation values for any other combinations of half-
edge types in E[kik j] are equal to zero. By combining the
expressions for E[k j] and E[kik j] and using Eq. (7), we
simplify Eq. (10) to

M =

⎛
⎜⎜⎜⎜⎝

C[1] 0 · · · 0

0 C[2] . . .
...

...
. . .

. . . 0
0 · · · 0 C[G]

⎞
⎟⎟⎟⎟⎠. (15)

The 2 × 2 block matrices C[g] are of shape

C[g] = λ

(
P(g) P(g)
Q(g) Q(g)

)
, (16)

where

λ = μ2 − μ1

μ1
(17)

does not depend on the generation g ∈ {2, . . . , G − 1}.

1. Percolation threshold of the generation model

If a colored graph satisfies degree distribution u(k), the
degree distribution after removal of a p fraction of edges
uniformly at random is written as [26]

u′(k′) =
∑
k�0

2G∏
i=1

(
ki

k′
i

)
pk′

i (1 − p)ki−k′
i u(k). (18)

The expectation values of u(k) and u′(k′) are related as

E[k′
i] = pE[ki],

E[k′
ik

′
j] = p2E[kik j] + (p − p2)E[ki]δi, j (19)

and the percolation threshold corresponds to the percolation
parameter p, for which the system exhibits criticality. At
criticality, the component size distribution shows scale-free
behavior, which is fulfilled if and only if

PM ′v = v, (20)

where v has all elements positive and the matrix M ′ is solely
characterized by the expectation values of an arbitrary degree
distribution u′(k′) according to Eq. (10). The derivation of
Eq. (20) can be found in Ref. [26].

Substituting Eq. (19) into Eq. (10) results in M ′ = pM.
In the directed m-colored random graph [26], the percolation
threshold is given by the solution to the eigenvalue problem

PMv = λv, with λ = 1

pcrit
, (21)

for the critical percolation threshold.
Now we show that the largest eigenvalue of PM in the

special case of the generation model with P and M according
to Eqs. (9) and (15) is given by λ = μ2−μ1

μ1
. By a simple

check one can see that the vector v = (1, 1, . . . , 1) is a left
eigenvector of M:

vM = λv. (22)

Since all elements of v are the same and P is a permutation
matrix, one may substitute vP = v to obtain vPM = λv, and
therefore PM has an eigenvalue λ.

Due to its special shape, M can be rewritten
as M = λDB, with the diagonal matrix D =
diag(P(1), Q(1), . . . , P(G), Q(G)) and the block diagonal
matrix B = diag(J1, . . . , JG) with Ji = J for i = 1, . . . , G
and J being a 2 × 2 all-ones matrix. We will now show that λ

is the largest eigenvalue, or the spectral radius of PM. Due to
Gelfand’s formula, the spectral radius of the matrix product is
bounded by ρ(PM) = ρ(λPDB) � λρ(P)ρ(D)ρ(B) � λ, as
ρ(P) = ρ(B) = 1 and ρ(D) � 1. The eigenvalue λ coincides
with a known upper bound on the eigenvalue spectrum.
Therefore, for an arbitrary volume growth function, the
critical percolation probability pcrit = 1

λ
of the network is

given by

pcrit = μ1

μ2 − μ1
. (23)

This expression coincides with the critical percolation prob-
ability for an undirected unicolored random graph [29] and
degree distribution u(k).

2. Percolation threshold with intrageneration edges

Until now we have only considered edges that connect two
consecutive generations, which led to the pairing rules defined
by the permutation matrix in Eq. (9). In this section we will
also allow edges within one generation, as illustrated in Fig. 2.
Let us introduce the parameter a that defines the probability
that a half-edge of any given type connects to a half-edge of
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g=4 g=3 g=2 g=1 g=5 

Pmonomial (g) 
0<a<1 

g=4 g=3 g=2 g=1 g=5 

Pmonomial (g) 
a=1 

(a) (b)

FIG. 2. Illustration of the generation model with intrageneration
edges. The intrageneration edges are represented by undirected
edges. Two networks with different fractions of intrageneration edges
are presented: (a) 0 < a < 1, leading to the coexistence of directed
edges that connect consecutive generations and undirected edges
within one generation, and (b) a = 1, leading to a network with the
generations being disconnected.

the same type. This leads to the permutation matrix

P̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 0 1 − a

0 P̃
[1]

0 · · · 0 0

0 0 P̃
[1] . . .

...
...

...
...

. . .
. . . 0 0

0 0 · · · 0 P̃
[1]

0
1 − a 0 0 0 0 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

with

P̃
[1] =

(
a 1 − a

1 − a a

)
. (25)

In a similar manner as in the preceding section we prove
that the parameter a does not affect the percolation thresh-
old. First, it can easily be shown that the equality vP̃ = v
still holds. Second, as the matrix M is not affected, the
spectral radius is again bounded by ρ(P̃M) = ρ(λP̃DB) �
λρ(P̃)ρ(D)ρ(B), with ρ(B) = 1 and ρ(D) � 1. As P̃ is the
product of a permutation matrix and the block diagonal ma-
trix diag(P̃

[1]
, . . . , P̃

[1]
) of dimensions 2G × 2G, its distinct

eigenvalues are given by the eigenvalues of P̃
[1]

, that is,
λ̃ = a ± (a − 1)2. Given that a ∈ [0, 1], the eigenvalues are
bounded by λ̃ = ±1, which bounds the spectral radius to
ρ(P̃) � 1. Thus, ρ(PM) � λ and Eq. (23) still holds for
λ = μ2−μ1

μ1
.

Even though the percolation threshold remains invariant
when allowing for edges within one generation, the network
structure changes drastically. While for a = 0 the system
simplifies to the previously discussed case of no edges within
one generation and a fully directed acyclic graph, 0 < a < 1
corresponds to a system with both directed edges connecting
consecutive generations and undirected edges within one gen-
eration present, as shown in Fig. 2(a). The extreme case of a =
1 defines a system where all generations become disconnected
[see Fig. 2(b)]. While separated from other generations, every
generation on its own is equivalent to a bicolored undirected
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FIG. 3. Various volume growth functions P(g): (a) monomial
growth with dimensionality d = 1, 2, 3, 4 and (b) exponential
growth with α = 2 and inverted hourglass with d = 2.

random graph characterized by the permutation matrix

P̃
[1]
a=1 =

(
1 0
0 1

)
, (26)

which exhibits the same percolation threshold as the global
system.

B. Examples of volume growth functions

In the following section we will discuss examples of the
volume growth function P(g). The growth function can be
chosen fully arbitrarily, as long as it fulfills the following
conditions: (a) [1 − P(g)]n(g) = P(g + 1)n(g + 1), as defined
in Eq. (1); (b) 0 � P(g) � 1 for all g ∈ {1, . . . , G}; (c)
P(1)n(1) = [1 − P(G)]n(G) with n(G) in accordance with
Eq. (2); and (d) P(g) > 0 for at least one g ∈ {1, . . . , G}. If
one of the first three constraints is violated, the network does
not satisfy the degree distribution u(k), and n(g) = 0 for all
g ∈ {1, . . . , G} in case of the violation of the fourth condition.
If the system is chosen such that no edges exist between the
first and last generation, meaning P(1) = 0 and P(G) = 1,
the third condition is trivial. If the number of edges between
the first and last generation is chosen to be nonzero, one
simple scenario is n(1) = n(G), which leads to the conditions
P(1) = 1 − P(G). In this section, only these two scenarios
will be considered.

We will discuss three types of volume growth: (i) expo-
nential growth with n(g) ∝ αg, (ii) monomial growth with
n(g) ∝ gd−1, and (iii) the inverted hourglass. In the case of the
inverted hourglass, we connect the first and last generations,
whereas in (i) and (ii) we do not connect them. In Fig. 3, P(g)
is illustrated for all three types of volume growth.

The volume growth function featuring an exponential in-
crease of the fraction of nodes with generations is the simplest
case. The dependence n(g) ∝ αg is achieved by defining the
volume growth function as

Pexponential(g) =

⎧⎪⎨
⎪⎩

0 for g = 1
1

α+1 for 1 < g < G

1 for g = G.

(27)

If α = 1, the number of nodes is constant for any generation.
No edges connecting the first and last generations are present.

In order to ensure monomial behavior in the number of
nodes per generation, we relate the expected number of nodes
in generation g, n(g), to the surface area of a ball at radius r
with radius r = g�r, with the incremental radius �r > 0 and
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the dimensionality d . Thus, the ratio of the number of nodes
of two consecutive generations is proportional to the ratio of
the surface area of a ball at radius r + �r to the surface area
of a ball with radius r, n(g+1)

n(g) = (r+�r)d−1

rd−1 , or equivalently

x(g) =
(

1 + 1

g

)d−1

. (28)

In the one-dimensional case d = 1, n(g) is constant over all
generations. For d � 2, n(g) increases proportionally to gd−1.
The volume growth function P(g) is then given by

Pmonomial(g) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for g = 1
P(2) for g = 2

P(g) = 1−P(g−1)
x(g−1) for 3 � g � G

1 for g = G.

(29)

Here P(2) is chosen such that the function P(g) is stable,
which is the case for

P(2) =

⎧⎪⎨
⎪⎩

1
2 for d = 1
3
8 for d = 2

1
x(1) for d � 3.

(30)

In the case of the inverted hourglass, any volume growth
function P(g) that causes an increase in the nodes followed
by an decrease can be chosen. For simplicity, we define a
symmetric growth by

Phourglass(g) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2 for g = 1

P(g) for 1 < g < G
2

1
2 for g = G+1

2 if G odd

1 − P(G − g) for G
2 < g < G

1
2 for g = G.

(31)

For monomial growth P(g) = Pmonomial(g) with dimensional-
ity d as depicted in Fig. 3(b). Depending on the choice of
P(g), Phourglass(g) exhibits the shape of an hourglass or inverted
hourglass.

III. RESULTS

In this section we compare results of the analytic predic-
tions of the theory to stochastic simulations for various global
properties of the generation model. Stochastic simulations
allow us to recover various global properties of the network
from the adjacency matrix A, e.g., the largest component, the
percolation threshold, the cyclomatic number, the node neigh-
borhood size, and the average shortest path. For simplicity,
in the current section only regular graphs with functionality F
are considered, i.e., systems that satisfy the degree distribution
u(k) with u(F ) = 1 and u(k) = 0 otherwise.

In Fig. 4, generated regular graphs with F = 3 and various
volume growth functions are studied. The shown topologies
depict the spanning tree of the full network, i.e., no cycles are
depicted in the illustration. Figure 4(a i) illustrates the unicol-
ored random graph without generations exhibiting a different
topology with edges being highly stretched when embedded
in the Euclidean two-dimensional plane with the ForceAtlas
algorithm. Figures 4(a ii)–4(a iv) show generated network
topologies with monomial volume growth Pmonomial(g) with

d = 1, 2, 3. The color gradient from blue to red indicates
increasing generations. For d = 1, the obtained topology re-
sembles a snakelike structure with the number of nodes per
generation fluctuating around a constant and the number of
nodes in the first generation n(1) = 20. For d = 2, the topol-
ogy uniformly fills the two-dimensional plane. For d = 3, the
nodes become more crowded on the plane with increasing
generations forming a boundary.

The neighborhood size is the cumulative sum of the num-
ber of ith-order neighbors around a reference node. This
quantity describes the local volume growth behavior as a
function of a distance to a uniformly selected reference node.
One observes a crossover between different behavior of the
volume growth function for the small and large distances.
Figure 4(b) reports the number of nodes at a distance less
than or equal to the one given for a generated network
with F = 3. As the measure of distance we use the undi-
rected shortest path between two given nodes, which is the
shortest path irrespective of the orientation of the edges. In
Figs. 4(b ii)–4(b iv) the observed neighborhood size grows
monomially with the shortest path, in line with the underlying
volume growth function in the generation model that imposes
(ii) one-dimensional, (iii) two-dimensional, and (iv) three-
dimensional growth. Figure 4(b i) illustrates the same quantity
for the regular network without generations, which exhibits
exponential growth. In the case of one-dimensional monomial
growth, deviations from the expected neighborhood growth
are observed for small l , which are explained as follows.
Initially, the neighborhood of a node grows exponentially with
V (l ) ∝ αl , with α = F − 1. Once the neighborhood size V (l )
of a node in generation g is similar to that of the expected
number of nodes in the generation n(g), the growth behavior
changes from the exponential growth to the one imposed by
the growth function. The one-dimensional network is obtained
from a generation network with n(1) = 50, whereas the two-
and three-dimensional networks are obtained from the gener-
ation networks with n(1) = 5 and n(1) = 1, respectively.

Figure 4(c) illustrates the neighborhood sizes for nodes
that lie in higher generations. Here all subplots exhibit initial
exponential growth, which eventually changes to monomial
growth for the networks with monomial volume growth func-
tion. In the case of d = 3, the regime with monomial growth
behavior is relatively short due the finite size of the stochastic
network. The behavior of the neighborhood size of the regular
network without generations as shown in Figs. 4(b i) and 4(c i)
is identical, as the nodes in the network are indistinguishable.

Figure 5 illustrates the average shortest path of all pairs
of nodes for networks with distinct volume growth functions.
The data points are obtained for five independent networks for
every volume growth function. Small-world networks exhibit
〈l〉 ∝ log(N ) behavior, whereas the average shortest path in
spatial networks with monomial growth exhibits 〈l〉 ∝ N1/d

behavior. For small system sizes we observe that the studied
networks exhibit 〈l〉 ∝ log(N ) growth. However, for larger
systems the behavior switches to 〈l〉 ∝ N1/d for d = 1, 2.
For d = 3, it is not clear if an actual change in the slope is
observed or if the considered system size is still too small.

Figure 6 illustrates percolated networks with the func-
tionalities F = 3, 4, 5, monomial growth d = 1, 2, 3, and the
total number of nodes N = 20 000. Figure 6(a) shows that
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FIG. 4. Regular networks with degree F = 3 (no cycles) with various types of growth behavior: (i) exponential growth, (ii) one-dimensional
monomial growth, (iii) two-dimensional monomial growth, and (iv) three-dimensional monomial growth. (a) Spanning trees (no cycles). The
color gradient indicates the generations. (b) and (c) Node neighborhood size V (l ) with shortest path l for (b) nodes in first generations and
(c) nodes in higher generations. The data (dots) are obtained from stochastic generation networks of size N = 20 000. The dash-dotted lines
in (b ii)–(b iv) illustrate the expected neighborhood size for monomial growth and in (b i) and (c i)–(c iv) the expected neighborhood size
for exponential growth. In (c ii)–(c iv) the neighborhood first growths exponentially until it switches to monomial growth independent of the
volume growth function.

for all considered F the normalized sizes of the largest
components collapse to one line for various d . This fig-
ure confirms the proof in Sec. II A 2 that the percolation
threshold of the generation model with degree distribution
u(k) indeed coincides with the percolation threshold of the
random graph with the corresponding monovariate degree
distribution u(k) with k = ∑2G

i=1 ki. Moreover, we observe

that also the relative largest-component sizes coincide with
the predicted giant-component size for the random regular
graph. Only close to the transition point pcrit we notice
small deviations, which are most probably due to finite-size
effects.

In Fig. 6(b) the normalized cyclomatic number of the
largest component (circles) obtained from the stochastic
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FIG. 5. Average shortest path as a function of system size for
regular networks with degree F = 3. Networks with different volume
growth functions are studied: one dimensional (circles), two dimen-
sional (stars), and three dimensional (crosses). The dash-dotted lines
indicate the expected growth of the average path.

simulation is illustrated for F = 3, 4, 5 and d = 1, 2, 3. The
normalized cyclomatic number is a measure for the fraction of
edges that can be removed without breaking the network. The
observations from generated networks are in good agreement
with the theoretical predictions of the normalized cyclomatic
number of the giant component.

IV. CONCLUSION

Spatial networks exhibit a variety of peculiar properties
such as clustering, sparsity, degree-degree correlations, vol-
ume growth, and percolation thresholds. It is not clear if
biasing or constraining a random network to reproduce one
of these features would imply emergence of the other. One
of the most characteristic properties of spatial networks is
that their volume scaling is related to the underlying metrical
space. The other peculiarity is that the percolation thresholds
in spatial networks tend to be larger than the threshold in the
configuration model with the same degree sequence. In this
paper we asked the following question: Is the delay of the
percolation threshold observed in spatial networks related to
the volume growth function of the underlying space or it is a
consequence of other network properties that occur in spatial
networks? The answer is negative: We proved analytically and
demonstrated in numerical experiments that for a G-layered
network with a given degree distribution neither the volume
growth function nor the number of generations has an effect
on the percolation threshold.

These findings contribute to the long-standing discussion
on the effect of volume growth on the network’s topology.
An earlier study by Eichinger [2] proposed a model with
a substantial shift in the percolation threshold due to the
monomial volume growth, to the extent that no percolation
was observed for random regular graphs with F = 3. The
model did not consider weakly connected components, i.e.,
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FIG. 6. Percolation on regular graphs with various types of
monomial growth behavior with functionalities F = 3, 4, 5: (a) size
of the largest or giant component and (b) cyclomatic number. The
different types of growth behavior are indicated by markers: one
dimensional (circles), two dimensional (stars), and three dimensional
(crosses). The percolation points for the different functionalities are
indicated by the dashed, dash-dotted, and dotted line for F = 3, 4, 5,
respectively. The data points are obtained from networks of size
N = 20 000 and compared to the percolation on a random regular
graph (solid lines).

all connected components had one distinct root node that is
connected to every node of the connected component by a
directed path. The present paper dissolves this restriction by
allowing weak connectivity and thus an arbitrary number of
root nodes of one connected component.

The presented findings shed light on at least one of the
reasons why the Molloy-Reed criterion [37,38] and the con-
figuration model predict the percolation threshold reasonably
well even for networks with nonexponential volume growth,
such as the polymer networks [1,10]. This indicates that
predicting emergent properties of real-world networks does
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not necessarily require network models to satisfy a consistent
volume growth function and therefore extends the number of
application areas for simple network models, such as the con-
figuration model, especially in the field of polymer science.

It is important to note that we only studied the emergent
properties under volume growth in a maximum entropy graph
with given degree distribution. We did not study the effect of
volume growth in the presence of other topological features
such as degree-degree correlations or clustering, which are
known to strongly alter the percolation threshold. Further-
more, as volume growth and other topological features might
interfere, they cannot be studied separately. The combined
effects of the volume growth and local topological features
still need extensive study and we hope that this work will
encourage the exploration of such effects more thoroughly in
the future.

It is noteworthy that the discussed network model charac-
terizes an infinite random directed acyclic graph. Thus, it has
high potential to be utilized in the research fields of directed
acyclic graphs in the future.
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APPENDIX A: STOCHASTIC SIMULATION

In order to test the theoretical predictions, we developed
a stochastic algorithm for generating samples of random net-
works with a given growth function and degree distribution.
In the simulation, the network is constructed generation by
generation in a consecutive manner. Here we only consider
network without edges between the last and first generations,
meaning that P(1) = 1 − P(G) = 0. Starting at generation
g = 1, the number of nodes is given by n(1)N . The number
of out-edges for every node in the first generation is sampled
from the degree distribution u[1](0, k) = u(k). The out-edges
are than partitioned into sets of k1 = 1, 2, 3, . . . edges ac-
cording to the probability distribution

∑
k2

u[2](k1, k2). The
number of sets defines the number of nodes in generation
g = 2, n(2), and the sets themselves define the number of
in-edges for every node. Having the nodes of generation
g = 2 and their in-edges in hand, the number of out-edges
for the nodes is drawn from u[g](k1, k2), in this case with
g = 2, k1 being the number of in-edges of the individual
node.

The topology of the network is stored as an adjacency
matrix A. All nodes are assigned indices. An edge between
node n1 in generation g and node n2 in generation g + 1 is
recorded as A(n1, n2) = g, and A(n1, n2) = 0 if no edge is
present. In this way the information on the generation of
origin and the orientation of the edge is stored. The process of
percolation is studied by randomly deleting nonzero elements
of A with probability 1 − p, with p the percolation parameter,
and monitoring the size of the largest component.

In a finite system, the cyclomatic number is defined as
the maximum number of edges that can be removed from a

network without breaking it. It is defined as

c = e − n + z, (A1)

with e the number of edges, n the number of nodes, and z the
number of components. We define the normalized cyclomatic
number of the largest component as

c∗ = c

e
= 1 − n

e
+ 1

e
, (A2)

with e the number of edges and c the cyclomatic number of
the largest component, and z = 1.

APPENDIX B: UNDIRECTED UNICOLORED RANDOM
GRAPH WITH ARBITRARY DEGREE DISTRIBUTION:

PERCOLATION, GIANT COMPONENT, AND
CYCLOMATIC NUMBER

This Appendix gives a brief summery of the undirected
random graph with arbitrary degree distribution [39], as we
derive an expression for the cyclomatic number from this
theory. This random graph, only constrained by the degree
distribution, is equivalent to the configuration model in the
thermodynamic limit (N → ∞). We discuss the size of the
giant component g f , the probability of an edge being part
of the giant component gedges

f , and the derived normalized
cyclomatic number c∗.

The random graph satisfies an arbitrary one-variate degree
distribution u(k) with the node degree k ∈ {0, 1, 2, . . . }. The
moments of the degree distribution are defined according to
Eq. (4). The percolation process on the random graph is equiv-
alent to the random removal of edges with probability 1 − p
or an edge being present with probability p, respectively. The
probability p is referred to as the percolation parameter. Thus,
the degree distribution with percolation is described by the
binomial distribution

u′(k′) =
∑
k�0

(
k

k′

)
pk (1 − p)k−k′

u(k). (B1)

Any property derived from the arbitrary degree distribution
u(k) can also be derived from the percolation degree distribu-
tion u′(k′).

In order to derive the size of the giant component,
we introduce the generating function of the degree distri-
bution as

U (x) =
∑
k�0

xku(k). (B2)

Let us define the generating function of the excess degree
distribution as

U1(x) = 1

μ1

d

dx
U (x), (B3)

with μ1 the first moment of the degree distribution. Solving
the system of equations

W1(x) = U1(W1(x)),

W (x) = U (W1(x)),
(B4)

we obtain the size of the giant component by

gnodes
f = 1 − W (1). (B5)
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The normalized size of the giant component is equivalent
to the probability of a node to be part of the giant component.
In order for an edge to be part of the giant component, it has
to be connected to the giant component only on its right end,
only on its left end, or on both ends. The probability of an
edge to be connected to the giant component on its right end
is given by pgc = 1 − W1(1), which is equal to the probability
to be connected on it left end. Thus, the probability that the
edges is connected to the giant component at least on one
of its ends is given by gedges

f = 2pgc(1 − pgc) + p2
gc, which

simplifies to

gedges
f = 1 − W1(1)2. (B6)

In infinite networks, the normalized cyclomatic number of
the giant component is defined as the fraction of edges that
can be removed from the giant component without breaking
it. As the systems size is infinite and thus also the number of
edges, the term 1

e of Eq. (A2) vanishes. The second term n
e is

rewritten as

n

e
=

n
N

e
E

E
N

, (B7)

with
n

N
= g f ,

e

E
= gedges

f ,
E

N
= 1

2
μ1. (B8)

The expressions n
N and e

E denote, respectively, the node and
edge fractions of the system that are part of the giant compo-
nent and E

N is the ratio of edges versus nodes in the system.
The following definitions are introduced: g f denotes the size
fraction of the giant component, gedges

f defines the fraction of
edges of the system that are part of the giant component as
given in Eq. (B6), and μ1 is the expected degree according to
Eq. (4). Thus, the normalized cyclomatic number of the giant
component is given as

c∗ = c

e
= 1 − g f

1
2μ1gedges

f

. (B9)
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