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Introduction
The pancreas, esophagus and stomach are part of the foregut, which originates from 
the endoderm during embryotic development. Together with the hepatobiliary system 
and duodenum they form the upper gastro-intestinal tract, responsible for the first 
phase in the digestion and extraction of nutrients from the food we eat. Furthermore, 
the exocrine function of the pancreas plays an important role in blood glucose 
level regulation. External factors and genetic predisposition can cause mutations 
of normal cells and when regulatory processes are no longer able to control cell 
growth and proliferation, neoplasms can form. This process is commonly known as 
cancer. The formation of neoplasms can lead to a loss of normal organ function and 
related symptoms, ultimately leading to death. In general, cancers originating from 
the pancreas, esophagus and stomach are diagnosed in a late stage of the disease due 
to the late presentation of symptoms. Since treatment is most effective in early stage 
disease, overall survival is generally limited. When treatment is given, a great variety 
in the efficacy of treatments between patients is observed. Unfortunately there is a 
lack of clinical markers that can identify which treatment will be effective before or 
early after treatment has started. Therefore, most patients are treated with the same 
therapy based on cancer type, stage and clinical condition. Efficacy of treatment is 
evaluated by tumor size criteria measured on computed tomography (CT) imaging and 
is generally performed after several months of treatment [1]. As a result, some patients 
are treated with ineffective therapy for too long, only experiencing the negative (side) 
effects of that treatment. 

In order to tailor treatment, there is a great clinical demand for (non-invasive) 
methods that can predict or identify treatment response in an early stage and 
provide further insights in the biological processes involved in the progression of 
the disease. Quantitative imaging techniques may provide such methods and aim to 
model imaging data into quantitative values representing specific characteristics of 
the underlying tissue [2, 3]. Ideally the resulting parameters give an objective measure 
of the investigated characteristic, independent of external factors. In theory, such 
parameters could enable treatment response evaluation by monitoring parameter 
changes, reflecting biological therapy effects, over time or predict treatment outcome 
before it has commenced. 

In this introduction the background of pancreatic and esophagogastric cancer 
will be further elaborated on. Furthermore, the basis of several quantitative imaging 
methods will be described and how these techniques could potentially be utilized to 
address the demand for biological and prognostic markers in the clinical work-up of 
these cancers.
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Pancreatic cancer
Acinar-to-ductal metaplasia (ADM), the process where pancreatic acinar cells 
differentiate into ductal cells, is a common process in the pancreas. However, under 
the influence of genetic defects or environmental stress it can lead to neoplasia. This 
most common form of pancreatic cancer, arising from intraepithelial neoplasia of the 
pancreatic ducts, is pathologically classified as ductal adenocarcinoma. Pancreatic 
ductal adenocarcinoma (PDAC) ranked 4th on the list of cancer related deaths in 2018 
[4] and is predicted to rank 2nd by 2030 in the USA [5]. Patients typically present 
with jaundice, abdominal pain, poor appetite, weight loss, nausea, vomiting, and often 
type 2 diabetes [6]. Contrast enhanced CT is the primary diagnostic tool for both 
the diagnosis, staging and follow-up of pancreatic cancer [7]. Endoscopic ultrasound 
can be performed when lesions are conspicuous on CT, with the benefit that fine 
needle aspirations with cytological evaluation can be performed. When there is a high 
suspicion of liver or other metastasis on the CT scan, often ultrasound guided biopsies 
are performed to rule out lesions of other origin. 

Only a small portion of the patients (15-20%) present with, curable, surgically 
resectable disease [8]. Local resectability is based on CT determined disease 
involvement of the superior mesenteric artery, celiac axis, common hepatic artery, 
mesenteric and portal vein (Table 1.1). Resection is considered when involvement 
of these structures is limited and tumor free resection margins can be achieved (R0 
resection). In the Netherlands, median survival after resection is still limited with just 
over 1 year [9, 10]. 

Table 1.1 Dutch Pancreatic Cancer group definition of local resectability of pancreatic adenocarcinoma [11]

SMA Celiac axis CHA SMV-PV

Resectable 
(all four required)

no contact no contact no contact ≤90° contact

Borderline resectable 
(minimally one required)

≤90° contact ≤90° contact ≤90° contact 90°-270° contact
& no occlusion

Irresectable 
(minimally one required)

>90° contact >90° contact >90° contact >270° contact 
or occlusion

SMA superior mesenteric artery, CHA common hepatic artery, SMV superior mesenteric vein, PV 
portal vein

The group of patients that present with resectable, but already limited locally advanced 
disease is often referred to as borderline resectable (Table 1.1). To improve outcome 
of this patient group, treatment regimens involving (neo-adjuvant) chemotherapy, 
radiotherapy or a combination of the two have been proposed [12]. The rationale 
behind these treatments is to induce local response before resection and treat micro-
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metastases before they manifest. Selection of patients for these treatments is difficult. 
Results from trials incorporating neo-adjuvant treatment have shown mixed outcomes 
[13] and there are no known factors that can indicate a response to treatment forehand. 

The majority of the patients however present with either irresectable locally 
advanced (35%) or metastatic (50%) disease [14]. Surgical treatment of locally advanced 
disease, leaving macroscopic tumor margins around important anatomical structures 
(R2-resection), results in similar outcome as no resection [15]. Patients with locally 
advanced diseased are therefore generally considered incurable and treated in the 
same way as patients with metastatic disease. Treatment of these patients most 
commonly involves either gemcitabine based (whether or not in combination with 
capecitabine or nab-paclitaxel) [16, 17] or FOLFIRINOX (leucovorin and fluorouracil 
combined with irinotecan and oxaliplatin) [18] chemotherapy to extend life or improve 
its quality. Although these treatment regimens in general do increase overall survival, 
efficacy varies greatly between patients and overall survival remains limited with a 
median of just 6-11 months. 

Esophageal & Gastric Cancer
The esophagus and stomach together form the first part of the digestive system. 
Esophageal cancer can be divided in two main entities, originating from two different 
cell types; the squamous cell carcinomas and the adenocarcinomas [19]. Squamous 
cell carcinomas are more prone to form in the proximal part of the esophagus under 
the influence of external factors as alcohol intake and smoking [20]. Esophageal 
adenocarcinomas are more often formed in the distal part of the esophagus and can 
be preceded by Barrett’s esophagus where acid reflux from the stomach damages 
the epithelial lining of the esophagus [21]. Gastric cancers are almost always 
adenocarcinomas. The biggest risk factors to form gastric adenocarcinoma are 
infections from Helicobacter pylori or the Epstein-Barr virus and smoking [22].

In general, the outcome of both esophageal and gastric cancer is poor, with an overall 
5-year survival rate of 10% worldwide [23, 24]. For most patients the development of 
the disease is asymptomatic, most commonly presenting with dysphagia or indigestion 
in a later stage of the disease. As a result, only approximately 30% of the patients are 
diagnosed with regional, curable, disease [25]. Similar to pancreatic cancer, the primary 
diagnostic tool for the diagnosis, staging and follow-up of esophageal cancer is contrast 
enhanced CT imaging [19]. Although endoscopy and endoscopic ultrasound also play 
a key role in determining local boundaries of the esophageal or gastric lesion and 
targeting of suspected lymph nodes for biopsy. Suspicion of liver or other metastasis 
on the CT scan is often confirmed by ultrasound guided biopsies. 
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In resectable esophageal cancer, outcome can be improved by multimodality 
treatment [26]. The current standard treatment of resectable esophageal cancer 
consists of neo-adjuvant chemoradiation followed by resection. In the Netherlands, 
the preferred chemoradiation regimen consists of carboplatin plus paclitaxel with 
concurrent radiotherapy in 23 fractions of 1.8 Gray targeted on the primary tumor [27]. 
An FDG PET/CT scan is often performed when neo-adjuvant therapy is considered and 
after completion of the neo-adjuvant treatment to rule out distant metastasis. 

In patients presenting with metastatic disease curative treatment is no longer 
feasible, resulting in an even dismal prognosis with a median survival of less than a 
year [28–30]. Standard treatment for these patients consists of chemotherapy with a 
combination of capecitabine and oxaliplatin (CAPOX) [31, 32]. Because of their overlap 
in dysregulation of oncogenic pathways, patients with metastatic adenocarcinoma 
of the esophagus and stomach are often studied collectively and referred to as 
esophagogastric cancer patients [33].

Tumor microenvironment
Solid tumors, as pancreatic and esophageal cancer, do not solely consist of cancer cells. 
The microenvironment of the tumor is characterized by a desmoplastic transformation 
involving severe fibrosis, high levels of immune cell infiltration and hypovascularization 
often referred to as stroma. A large part of the tumor volume consists of this stroma, 
surrounding the actual tumor cells [34]. 

Cancer associated fibroblasts (CAF) play a key role in the formation of the tumor 
microenvironment. They have been found to harbor tumor promoting activities and 
exert an extensive mechanical influence on the stroma [35, 36]. By the activation of the 
CAFs, large amounts of fibrosis and extra cellular matrix consisting of, amongst others, 
collagen fibers are deposited. Another important step in the development of pancreatic 
cancer is the activation of pancreatic stellate cells (PSC). These PSC are activated 
by the tumor cells or the inflammatory response of the pancreatic cells to ductal 
obstruction caused by tumor growth. When activated PSCs undergo morphological 
changes, transforming into an activated myofibroblast-like cell. On activation, PSC 
demonstrate increased expression of α Smooth Muscle Actin (α-SMA) and formation 
of collagen, contributing to the extracellular matrix of the pancreatic tumor [37]. The 
activation of PSCs, CAFs and the extent of the extra cellular component varies greatly 
between patients and has been associated with patient outcome [38–40]. 

The formation of blood vessels, or angiogenesis, can be upregulated in malignancies 
to suffice in the demand for nutrients and oxygen. However, since this process is less 
well-regulated compared to normal vascular formation, the resulting vascular bed is 
highly abnormal. Vessels are leaky, dilated or constricted and form interconnections in 
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inefficient ways [41]. As a result, the formed vasculature is far less efficient in providing 
nutrients and oxygen to the surrounding tissue. This, in combination with the increased 
interstitial pressure induced by dense fibrosis, make that the tumor microenvironment 
can become hypoxic [42]. In this hypoxic environment, cancer cells can undergo 
epithelial-to-mesenchymal transition, demonstrate a more aggressive phenotype and 
becoming more prone to migrate and form metastasis [43]. Furthermore, radiation 
therapy is less effective in hypoxic areas due to a lack of oxygen free radical formation 
[44] and tumor cells located further away from blood vessels are less effected by 
chemotherapy due to a longer diffusion distance of the therapeutic agent [45]. Tumor 
hypoxia has therefore been associated with rapid progression, increased metastatic 
potential, therapy resistance and as a result dismal prognosis in both pancreatic and 
esophageal cancer [46–50].

The composition of the tumor microenvironment has been associated with tumor 
progression, treatment resistance and patient outcome. Understanding the tumor-
promoting properties would potentially allow for targeted therapies and better 
patient stratification for treatment [51]. However, characterization of the key features 
describing the tumor microenvironment is difficult in patients. Often only small tissue 
samples are available after invasive procedures involving (endoscopic) ultrasound or 
CT guided biopsies that do not reflect the properties of the tumor in its entirety [52]. 
Furthermore, longitudinal measurements of these characteristics and monitoring of 
possible treatment induced changes would involve repeated interventions with high 
patient burden as one of the costs. To enable for tailor treatment, there is therefore a 
great clinical demand for non-invasive markers describing the entire tumor, including 
its microenvironmental properties. 

Imaging techniques
In this thesis several quantitative imaging techniques are investigated in the context of 
pancreatic and esophageal cancer characterization, treatment evaluation and response 
prediction. In the following sections these techniques will be further elaborated on.

Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) exploits the ability to manipulate proton spins in 
a magnetic field to generate images. Using a strong magnetic field of typically 1.5 – 3 
Tesla, proton spins can be synchronized. Magnetic gradients and radiofrequency pulses 
can then be applied to manipulate the spins and generate images. Different settings 
for gradients and pulses can be used in a pulse sequence to generate different image 
contrasts.
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Thus far the role of MRI is limited in the diagnostic work-up of pancreatic and 
esophageal cancer, offering limited advantages over CT imaging [7, 53]. If MRI is 
utilized in the clinical work-up, typically only T1-weighted, after contrast injection, 
and T2-weighted images are acquired for anatomical localization of lesions. However, 
by applying different acquisition techniques, MRI has the ability to quantify complex 
tissue properties. 

Dynamic Contrast Enhanced MRI
With dynamic contrast enhanced (DCE) MRI T1-weighted images are continuously 
acquired during and after the intra-venous injection of a contrast agent. Most used 
MRI contrast agents are gadolinium-based complexes, where the gadolinium alters 
the T1-relaxation of the tissue. This change in T1 over time can be measured and, 
when compared to the baseline T1 of the tissue, quantified in tissue uptake curves. 
Kinetic modelling can be used to retrieve the underlying tissue properties from these 
uptake curves. The most used model to quantify DCE data is the Tofts model [54]. In 
this model the rate of exchange (kep) of contrast from the vascular compartment to 
the extracellular extravascular space (ve) is modelled along with the volume transfer 
constant (Ktrans). An additional parameter vp can be added to model the tissue vascular 
compartment. DCE MRI has been broadly applied to characterize tumor vascularization 
[55–59] and to monitor effects of treatment in PDAC [60]. Furthermore, it has shown 
potential in esophageal cancer response prediction to neo-adjuvant chemoradiotherapy 
[61]. 

A more advanced approach to DCE MRI is multi-contrast DCE MRI. In this approach 
multiple contrast injections are given consecutively during the same acquisition, each 
with another sized contrast agent. The size of each contrast agent determines its ability 
to diffuse out of the blood vessel into the interstitial space. By fitting a single model to 
the combined contrast uptake curve, this approach can give additional information on 
vascular permeability and blood volume [62]. Multi-contrast DCE has been employed 
to give insights into the effects of anti-vascular treatment on tumor vasculature and 
permeability [63]. Given that most of the macro-molecular contrast agents are not 
clinically approved, most multi-agent DCE MRI studies are performed in animal models. 

Diffusion Weighted Imaging MRI
With Diffusion Weighted Imaging (DWI), gradients placed prior to the signal readout 
are used to sensitize the MRI signal to the diffusivity of water molecules in the tissue. 
Due to kinetic energy, water molecules exhibit a continuous random motion. However, 
in tissue the intra and extracellular structures hamper this free diffusivity of water. By 
acquiring images with different diffusion weighting (b-values), quantitative information 
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about the diffusivity of water can be acquired. By fitting a mono-exponential function 
to the signal decay as function of diffusion-weighting, the Apparent Diffusion 
Coefficient (ADC) of the tissue can be determined. The ADC is a measure of how freely 
the water can move in the tissue, with higher ADC representing more freely moving 
water molecules. DWI has been widely applied in cancer imaging to determine tissue 
properties, treatment induced tissue changes and as prognostic marker. In PDAC, DWI 
has been used to describe and detect lesions [64, 65] and has been associated with 
tumor cellularity and patient outcome [66]. In esophageal cancer DWI is gaining more 
and more interest in detecting lesions and predicting and evaluating response to 
therapy [67].

Besides random motion, bulk movement of water molecules is present in the tissue 
microcirculation. This movement of water molecules in the microcirculation is generally 
faster than that of the random motion in the surrounding tissue. By adding images 
acquired at very low b-values, (0-200 mm/s2) a second exponent can be added to the 
diffusion model, describing the faster movement of water molecules in small blood 
vessels. The most used bi-exponential diffusion model is the intra-voxel incoherent 
motion (IVIM) model, which has shown value in characterizing PDAC lesions [68–72] 
and esophageal cancer [73]. Although the IVIM model is the most used model to 
describe multiple b-value DWI data, there are many models that can be used to fit the 
data. For most of these models a basis can be found in physiological properties of the 
tissue [74]. However, not all models have a clear underlying physiological basis, which 
is especially important in understanding tumor biology, where standard hypothesis 
about biological function do not hold anymore [75].

T2* MRI
T2* or R2* (=1/T2*) imaging can be used to generate an image contrast based on the 
magnetic properties of hemoglobin present in the blood vessels of the tissue. The 
paramagnetic properties of deoxy-hemoglobin [76] distorts the local magnetic field, 
resulting in a decrease in T2* relaxation time compared to areas containing more 
oxygenated, diamagnetic, hemoglobin. This technique is also referred to as blood 
oxygen level dependent (BOLD) imaging and is most often used in functional brain 
imaging. However, since hypoxic areas are prone to have more deoxygenated blood, the 
T2* of hypoxic areas can also be expected to be lowered compared to the surrounding 
well oxygenated tissue. Several studies have shown the relation, or the lack of it, 
between tissue oxygenation and T2* MRI in cancers [77–79].
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Positron Emission Tomography
Positron emission tomography (PET) is an imaging modality where images are 
generated based on positron emitting radionuclides. The radionuclides are coupled 
to molecules with a specific biological or therapeutic function that act as carrier. The 
so formed tracers are injected into the body and accumulate at specific targets in the 
body based on the tracer properties. Meanwhile the radionuclide is emitting positrons, 
which when annihilating with an electron emit two photons in opposite direction. 
These photons can be detected by a ring of detectors surrounding the patients. Making 
use of the fact that the photons travel and are detected at opposite directions, the 
localization of the positron-electron annihilation can be reconstructed. This way an 
image can be reconstructed that shows the amount of tracer accumulating at a specific 
location in the body as contrast. These images are combined with CT, and more recently 
MRI, scans for anatomical information and attenuation correction. The most used PET-
tracer in the clinic is fluor-18 labelled fluorodeoxyglucose or 18F-FDG. With FDG PET 
glucose metabolism can be visualized, which is often elevated in highly proliferating 
tumors and therefore highly applicable in tumor detection and staging [80]. 

Hypoxia PET
Besides metabolism, PET tracers can be developed to target other cellular processes, 
such as cellular hypoxia. [21] The majority of hypoxia PET tracers are based on 
2-nitroimidazoles. 2-Nitroimidazoles are able to freely diffuse across the cell membrane, 
where an oxygen-reduction reaction takes place immediately after entering the cell. 
The now formed reactive radicals can be re-oxidized in the presence of oxygen, 
enabling them to leave the cell again. However, in the absence of oxygen, the formed 
radicals are further reduced and react with macromolecules, trapping them within the 
cell [81]. This way the radioactive labelled material gets trapped in the hypoxic cells. 
In order to generate a contrast to the surrounding tissue the un-trapped activity must 
be cleared from the body, which takes place via the blood and kidneys. Examples of 
nitroimidazole based PET tracers are 18F-FAZA, 18F-MISO, 18F-FETNIM, and 18F-HX4, 
which have shown promising results in detecting hypoxia in both pancreatic and 
esophageal cancer [50, 82–84]. 

Advanced post-processing
Contrast enhanced CT imaging is the current standard for initial staging and follow-
up of both pancreatic and esophageal cancer. Although this technique is valuable to 
determine tumor location and possible distant metastases, CT data is not typically 
used to determine tumor heterogeneity or disease prognosis. Advanced post-processing 
methods allow to extract quantitative imaging biomarkers from standard medical 

1



16

Chapter 1

images, as CT, MRI and PET [85]. By applying these methods, lesion features are 
extracted describing its intensity, shape and texture. Furthermore, a combination 
of advanced image filtering methods can be applied to these image intensity and 
structure parameters to further stratify heterogeneity. This way, several thousands of 
features can be extracted from a single tumor. By combining these features, prognostic 
phenotypes of individual lesions can be determined, which is often referred to as 
radiomics [86]. 

Aim & Outline
The general aim of this thesis is to characterize the tumor microenvironment of 
pancreatic and esophagogastric cancer by quantitative imaging and to investigate 
if these methods enable to monitor treatment and predict patient outcome in these 
cancers. We develop, validate and apply multiple imaging techniques and processing 
methods on multiple imaging modalities in both a clinical and pre-clinical setting to 
investigate the potential of imaging biomarkers in the clinical work-up of pancreatic 
and esophagogastric cancer.

Ideally treatment strategy is not only determined beforehand, but also adapted 
during its course. Early treatment evaluation could help to reduce continuing of 
unnecessary treatments, reducing both patient burden and costs. An important factor 
for faithful interpretation of longitudinal imaging data is the underlying repeatability 
of the technique. Changes in parameter values induced by treatment should at least 
be able to exceed the day-to-day changes measured when no treatment is given in 
order to be of any value. For most quantitative imaging techniques this information is 
unknown. Furthermore, besides physiological variations repeatability can be influenced 
by acquisition technique and hardware and post-processing methods. To get a full 
understanding of a methods repeatability, the entire pipeline should therefore be 
evaluated for each specific application. In Chapter 2 the feasibility and repeatability to 
image tumor hypoxia using HX4 PET is investigated in both patients with esophageal 
and pancreatic cancer. Chapter 3 describes the repeatability of both DCE and T2* 
imaging in PDAC patients and how the parameters from these two MRI methods are 
correlated. Next, IVIM MRI is further explored by using different methods to fit the IVIM 
model to DWI data and how this effects the repeatability of the resulting parameters 
in Chapter 4.

For both pancreatic and esophageal cancer it is know that neo-adjuvant response 
rates vary greatly and that some patients are even cured by it alone. Identifying 
response to neo-adjuvant therapy in an early stage of treatment would enable early 
adaptation of treatment. Quantitative imaging could be utilized to extract parameters 
that can help to facilitate this. In Chapter 5 we aim to evaluate different models 
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to describe DWI data of pancreatic cancer to extract the most relevant parameters 
to detect the effects of treatment in patients with pancreatic cancer receiving neo-
adjuvant chemoradiotherapy.

In order to enable a successful translation of these imaging methods into clinical 
practice, understanding of the biological processes reflected by quantitative imaging 
parameters is vital. Especially in cancers, where biology is disrupted, hypothesis 
about how imaging parameters reflect tumor biology are difficult to test. One way 
to achieve this is to directly compare imaging parameters to immunohistochemistry 
derived tissue properties from the same tissue sample. In Chapter 6 and Chapter 7 we 
utilize DCE, IVIM, T2* MRI and HX4 PET to investigate whether these techniques can 
be used to non-invasively characterize three important hallmarks in the development 
of pancreatic cancer; desmoplastic transition in the form of collagen deposition, (hypo) 
vascularization and the subsequent development of cellular hypoxia. Furthermore, 
we investigate if these quantitative imaging parameters can be used as biomarkers to 
predict patient outcome. 

Esophageal cancer metastasis often manifests in one of the largest abdominal 
organs, the liver. In this phase of the disease, oncological treatment shifts from curative 
intent to palliative, intending to extend life or improve its quality instead of curing the 
patient. The effects of palliative treatment however vary greatly between patients. 
In Chapter 8 we investigate the feasibility to use a CT based radiomics approach 
to predict response of individual liver metastasis to an often used chemotherapy in 
patients with advanced esophagogastric cancer. In Chapter 9 we investigate the effects 
of anti-angiogenetic treatment in an esophageal cancer liver metastasis mouse model 
using a multi-contrast DCE MRI approach. Using these methods we intend to better 
understand the effects of the treatment enabling better timing of the treatment for 
an optimal effect.

In Chapter 10 a general discussion and future outlook on quantitative imaging in 
the oncological practice of pancreatic and esophagogastric cancer are given. 
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