
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Toward a Logic for Neural Networks

Hornischer, L.

Publication date
2019
Document Version
Author accepted manuscript
Published in
The Logica Yearbook 2018

Link to publication

Citation for published version (APA):
Hornischer, L. (2019). Toward a Logic for Neural Networks. In I. Sedlár, & M. Blicha (Eds.),
The Logica Yearbook 2018 (pp. 133-148). College Publications.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://dare.uva.nl/personal/pure/en/publications/toward-a-logic-for-neural-networks(f33652fa-b8ae-4640-89e4-d8f3ed9dd510).html

Toward a Logic for Neural Networks
LEVIN HORNISCHER1

Abstract: Neural networks and related computing systems suffer from
the notorious black box problem: despite their success, we lack a general
framework or language to reason about the behavior of these systems. We
need a logic with a mathematical semantics for this. In this paper, we sketch
a first such logic: a mathematical structure with a logic that describes the
behavior of possibly non-deterministic, discrete dynamical systems (which
include neural networks).
The mathematical structure is based on domain theory. Domains solved the
‘black box problem’ of (classical) computers by providing a denotational
semantics for computer programs. Can it analogously be used for neural
networks? We show that, under precise conditions, the possible behaviors of
a system form a domain—relating domain theoretic concepts to properties
of the system.
This mathematical structure can interpret the well-behaved logic HYPE

which thus can be used to reason about both the long-term behavior and
the history of the system.

Keywords: Neural networks, dynamical systems, black box problem, do-
main theory, logic, HYPE, unbounded nondeterminism

1 Introduction

Among computing systems, neural networks gained great prominence in
the recent years due to their success in image recognition, natural language
processing, and, more generally, in learning from great amounts of data.
However, despite their success, they suffer from the notorious black box
problem: we don’t fully understand how they do what they do. Making neu-
ral networks and modern artificial intelligence more transparent has been
dubbed ‘explainable AI’. While explainable AI recently made progress in
understanding specific applications of neural networks, we still lack a gen-
eral framework or language to reason about the behavior of these systems.

1For inspiring discussions, I’m grateful to Samson Abramsky, Franz Berto, Jon Michael
Dunn, Michiel van Lambalgen, Hannes Leitgeb, and the audience at Logica 2018.

1

Levin Hornischer

That is, we need a logic together with a mathematical semantics that is able
to describe the behavior of these computing systems. In this paper, we want
to sketch a first such logic.

In section 2, we define the class of computing systems that we’ll con-
sider. In section 3, we define the set of possible behaviors of such a system
and a partial order on this set. In section 4, we present precise conditions
on the system ensuring the behavior poset to be an algebraic domain in the
sense of domain theory. In section 5, we then show how this domain can be
transformed in a structure that interprets the recently developed logic HYPE.
We conclude in section 6.

The aim of the paper is to convey the main idea of this ‘logic plus seman-
tics’ for neural nets. Thus, we (necessarily have to) focus on the intuition
behind it, leaving the details for elsewhere (Hornischer, 2018). We indicate
possible further development of this idea and potentially fruitful connec-
tions to other fields (e.g., automata theory, coalgebra, homology, or general
relativity).

2 Dynamical systems and trajectories

We define the notion of a possibly non-deterministic discrete dynamical sys-
tem that we’ll be working with, and we show that both neural network com-
putation and learning are such systems.

In the most general sense, a possibly non-deterministic discrete dynami-
cal system is a pair (S, f) where S is a non-empty set, called the state space,
and f : S → P(S) \ {∅} is a function mapping each state s to a non-empty
set of states, called the successor states of s. Intuitively, S is the set of states
that the system can be in, and f is the local rule describing which states the
system might evolve to given the current state. (Thus, these systems can
be seen as transition systems known in computer science.) If there always
is exactly one successor state, the system is called deterministic.2 A (finite
or infinite) trajectory is a (finite or infinite) sequence 〈s0, s1, . . .〉 of states
in S such that for each i ≥ 0, si+1 is a successor state of si. We denote
the empty trajectory by ⊥. Intuitively, a trajectory is a possible evolution of
the system (a path through the state space). For brevity we call a possibly
non-deterministic discrete dynamical systems a (non-) deterministic system.

2If we want to be even more general, we could allow the local update rule to change over
time, that is, define a system as (S, {fn}n∈N) where each fn maps states to non-empty sets
of states. However, for convenience we stick to the simpler definition.

2

Toward a Logic for Neural Networks

This definition is very general. Depending on the kind of application,
dynamical systems are usually assumed to have additional structure: that
the state space carries a topology and the dynamics is continuous or that
the state carries a measure and the dynamics is measure preserving. How-
ever, we need to work with the general definition if we want to capture all
the different kinds of neural networks and related computing systems. It is
surprising that, as we’ll see, even though this general notion of a dynamical
system has very little structure, a lot of structure will emerge when consid-
ering equivalence classes of trajectories.

Let’s see that computation in neural networks can be regarded as (non-)
deterministic system. Roughly, a neural network is a collection of neu-
rons that are linked via synapses. Each neuron can have an activation that
describes whether and how the neuron is firing. Each synapse connecting
neuron i to neuron j carries a weight describing how much activation can
pass from i to j. A state of the network describes the activation of all the
neurons at a given time. The activation propagates through the synapses
and determines the successor state: if neurons i1, . . . , ik are connected by
synapses to neuron j, then the activation of j at time n+1 is computed from
the activation of i1, . . . , ik at time n. Thus, a neural network is a determin-
istic system (S, f) where S is the set of all possible states of activation of
the neurons and f describes the propagation of activation. Of course, much
more can be said, e.g., about the different kinds of neural nets (feed forward,
recurrent, etc.) or about learning (changing of weights).3 But, again to re-
main as general as needed, we don’t need further details for now. In fact,
many (if not most) computing systems can be seen as (non-) deterministic
systems (Turing machines, automata, etc.).

On this perspective, neural networks are deterministic systems—so why
did we include non-deterministic systems? For two reasons. First, since usu-
ally continuous (rather than binary) activation values are allowed, the state
space is infinite (of size continuum). Thus, to understand the behavior of
the neural net, it is useful to partition the state space into finitely many cells:
e.g., clustering observationally equivalent states together. The dynamics in-
duced on these cells may be non-deterministic: a cell can contain two states
whose successor states are in two different cells. Second, instead of un-
derstanding the computation of a trained neural network, we may also wish
to describe the training of a neural network. That is, instead of sequences

3Details can be found in the many textbooks on neural networks. Albeit older, Rojas (1996)
has a good presentation of the mathematical basics.

3

Levin Hornischer

of neuron-activation given by the propagation rule we consider sequences
of network-weights given by a learning algorithm—and learning might be
non-deterministic.

3 Behavioral equivalence and order

If we want to analyze the behavior of systems, we should have a notion of
what a possible behavior of a system is. A trajectory of a system is an in-
stance of a possible behavior, but two trajectories might exhibit the same
behavior. Thus, a possible behavior is a trajectory modulo behavioral equiv-
alence. So we need to define when two trajectories t and t′ are behaviorally
equivalent. Intuitively, t and t′ should agree on the computationally impor-
tant information. That is, in the case of neural networks,

(i) t and t′ yield the same result: there is a (minimal) point where the two
trajectories meet and continue the same path.

(ii) t and t′ gather the same information along the way: they described
the same cycles and visited the same stable states before reaching the
meeting point.

The second point is motivated by the rule of thumb from dynamical systems
theory that in the stable states and cycles of a system lies the information
computed by the system. For example, a Hopfield neural network retrieves
memorized pictures in its stable states, and the limit cycle in a Hodgkin-
Huxley model of a neuron describes the spiking pattern of the neuron.

Let’s formalize this intuitive idea of behavioral equivalence. Concern-
ing (i), call a pair (i, j) ∈ N a locally minimal coincidence pair of two
trajectories t and t′ if t(i) = t′(j) and, whenever defined,

t(i− 1) 6= t′(j − 1) t(i− 1) 6= t′(j) t(i) 6= t′(j − 1).4

Say t and t′ have the same tail starting in (i, j) (denoted t(i) . . . = t′(j) . . .),
if for all n, t(i+ n) is defined iff t′(j + n) is defined and in both cases they
are equal. Then (i) says that there is a locally minimal coincidence pair (i, j)
starting in which t and t′ have the same tail.

4For a globally minimal coincidence pair we don’t quantify only about the direct precursors
but over all precursors. This doesn’t make sense for non-deterministic systems, and for deter-
ministic systems one can show that the local and the global formulation of the resulting notion
of behavioral equivalence are equivalent.

4

Toward a Logic for Neural Networks

Concerning (ii), we need to additionally formalize that t(0) . . . t(i) and
t′(0) . . . t′(j) are cycle equivalent and stable state equivalent. We do this
first explicitly and then axiomatically.

If s′ is a successor state of s, call the transition from s to s′ a cycle edge
if there is a trajectory from s′ back to s. Say two finite trajectories t and
t′ are cycle equivalent if the cycle edges occurring on t are precisely the
cycle edges occurring on t′, and the respective number of occurrences are
the same, too. The occurrence profile of a stable state s (i.e., s is a succes-
sor of itself) on a finite trajectory t is a finite (possibly empty) sequence of
non-negative integers 〈n1, . . . , nk〉 where there are k-many blocks of unin-
terrupted repetitions of s on t such that ni ≥ 1 is the number of repetitions
of s in the i-th block.5 Say two finite trajectories t and t′ are stable state
equivalent if the stable states occurring on t are precisely the stable states
occurring on t′, and the stable state have the same occurrence profile on t
and t′, respectively.

In fact, we’ll rely only on a few of the properties of these definitions.
Thus, for transparency and to allow our results to be applicable to a range
of possible explicit definitions, we introduce cycle- and stable state equiv-
alence axiomatically. We call equivalence relations ≈c and ≈s on finite
trajectories cycle equivalence and stable state equivalence, respectively, if
they satisfy the following axioms. (For readability we omit the qualifier ‘and
the trajectory is possible in the system’.)

1. Both ta ≈c t
′a iff tat′′ ≈c t

′at′′, and ta ≈s t
′a iff tat′′ ≈s t

′at′′.

2. If a 6= b, then taa 6≈s t
′ba, ta 6≈s taat

′, and ta 6≈c tabt
′a.

3. If aa1 . . . ana occurs on t but no ai on t′, then t 6≈c t
′.

4. If there is no stable state in t and t′, then ta ≈s t
′a.

5. If there is no limit cycles in system, then ≈c is trivial.

6. If t ≈c t
′, then for every occurrence of aa1 . . . ana on t, there is an

occurrence of some ai on t′.

7. If t ≈s t
′, then for every occurrence of stable state a on t, there is an

occurrence of a on t′.
5For example, the occurrence profile of stable state a on trajectory aabab is 〈2, 1〉.

5

Levin Hornischer

The axioms are satisfied by the brute force definition. More elegant defi-
nitions might be found by considering homology on (the simplex graph of)
the system considered as graph.6

For the remainder of the paper, we fix two relations≈c and≈s satisfying
the above axioms. We summarize.

Definition 1 (Behavioral equivalence) Given a (non-) deterministic sys-
tem, two trajectories t and t′ are behaviorally equivalent (t ≡ t′) if t =
⊥ = t′ or there is a locally minimal coincidence pair (i, j) of (t, t′) such
that t(i) . . . = t′(j) . . ., t(0) . . . t(i) ≈c t

′(0) . . . t′(j), and t(0) . . . t(i) ≈s

t′(0) . . . t′(j). We write T := {[t] : t is a trajectory} for the set of equiva-
lence classes of trajectories.

Thus, T is the set of possible behaviors of the given (non-) deterministic
system. We next observe that there is a natural order on T: [t] ≤ [t′] if any
trajectory equivalent to t can be extended to one equivalent to t′, that is,

[t] ≤ [t′] iff ∀t0 ∈ [t] ∃t1 ∈ [t′] : t � t′

(iff, intuitively, behavior [t] can be extended by the system into behavior
[t′]). It follows from the axioms on ≈c and ≈s that (T,≤) is a partial order
(it trivially is a preorder).

In the next sections, we’ll investigate the order of behaviors (T,≤).

4 Long-term behavior and history as a domain

We’ll provide precise conditions on the system such that the order of behav-
iors (T,≤), capturing the long-term behavior of the system, and its dual,
capturing the history of the system, are algebraic domains.

We start with a very brief recap of domain-theory. Domain theory was
originated by Dana Scott and others in the late 1960’s (Scott, 1970). Since
then, it developed into a rich logico-mathematical framework to understand
computation (Abramsky & Jung, 1994). Roughly, domain theory studies
particular partial orders that can be regarded as “information orderings”: the
elements represent pieces of information or partially known objects. As one
moves up in the order, one gains more information (about the objects). The
important formal concepts are the following. Let (P,≤) be a partial order.

6Generally speaking, a homological perspective on neural networks is fruitful: see e.g.
Reimann et al. (2017).

6

Toward a Logic for Neural Networks

A subset D ⊆ P is directed if D 6= ∅ and any two elements of D have an
upper bound in D. Moreover, P is a directed-complete partial order (dcpo)
if every directed subset of P has a least upper bound. Thus, intuitively,
chains of ever increasing information converge to a limit. If P is a dcpo,
we say that x is way below y (x � y) if if any directed set whose least
upper bound is above y already contains an element above x. An element
x ∈ P is compact if x � x, so x is, in a sense, finitary. An algebraic
domain is a dcpo where, for every element x, the compact elements below
x form a directed set whose least upper bound is x. Algebraic domains
are particularly well behaved since their important properties are already
determined by the compact elements.

Most importantly, domain theory developed denotational semantics for
computer programs (of various programming languages). So it provides
mathematical objects explaining what a program is computing. Can it also
be used to analogously analyze the behavior of computing systems? Yes, as
we’ll now show: for appropriate systems, the set of behaviors is an algebraic
domain.

Theorem 1 (Upward trajectory domain) Let (T,≤) be the set of behaviors
of a (non-) deterministic system. (T,≤) is an algebraic domain if the state
space doesn’t contain the subsystems in figure 1 (arrows indicate paths and
not necessarily direct successors).7 We then refer to (T,≤) as upward tra-
jectory domain. (The converse holds under some more assumptions on ≈c

and ≈s.)

Intuitively, what the forbidden subsystems have in common is that there
are infinitely many choices: In the left-most one, there are infinitely many
ways to go from a1 to b. In the middle one, there are infinitely many ways
of changing from the a-path to the b-path. In the right-most system, there
are infinitely many choices between doing the b-cycle or the c-cycle. Thus,

7The following side conditions are imposed: In the left-most subsystem, (i) all indicated
states are distinct. (ii) There is no state that is both reachable from all an’s and reaches some
an. And (iii) there is an infinite trajectory t through all an’s and a finite trajectory t′ ending in
b such that [t′] is an upper bound of [t � 1] ≤ [t � 2] ≤

In the middle subsystem, (i) none of the an’s is identical to another one, but arbitrarily many
bn’s might be identical and some bn’s might be equal to some an. (ii) If t is a trajectory
through all an’s, then [t � 1] ≤ [t � 2] ≤ . . . doesn’t have a finite upper bound. And (iii) there
is an infinite trajectory t through all an’s and an infinite trajectory t′ through all bn’s such that
[t′] is an upper bound of [t � 1] ≤ [t � 2] ≤ . . . and t′ 6≡ t.

In the right-most subsystem, either a 6= b or a 6= c (or both).

7

Levin Hornischer

b

a1

a2

a3

a4

a5

· ·
·

b1

b2

b3

b4
· ·
·

a1

a2

a3

a4

· ·
·

a

b

c

Figure 1: Forbidden subsystems (upward)

if this ‘infinite non-determinism’8 is excluded, the set of behaviors is an
algebraic domain.

The upward trajectory domain describes the long-term behavior of the
system: the further one moves up in the order starting at a finite [t], the
further the continuation of behavior of [t] one considers. Since it is a do-
main, it can then be analyzed with the tools of domain theory (Abramsky
& Jung, 1994). For example, all finite behaviors are compact, whence alge-
braicity entails that the global (i.e., infinite) behavior of the system can be
completely described from observing finite behavior.9 Moreover, domain
theoretic concepts can be related to properties of the system. The theorem
indicates such a connection between algebraicity and ‘finite nondetermin-
isim.’ One could conjecture other connections: (T,≤) is a Scott domain or
a bifinite domain if additionally the left-most and, respectively, the middle
subsystem of figure 2 is excluded.

While the upward trajectory domain (T,≤) describes the structure of
the long-term behavior of the system – that is, the effects of certain states –,
we’re also often interested in the causes of a state. Then we need to look
at the history of the system: the order-dual ≤op of ≤. We can again find
conditions on the system guaranteeing this partial order to be an algebraic
domain, too.

Theorem 2 (Downward trajectory domain) For a (non-) deterministic sys-

8This is not the exactly the same as the well-known term ‘unbounded non-determinism’
which usually means that some state contains infinitely many successor states (as, e.g., in the
diamond of figure 2).

9Formally, an algebraic domain is isomorphic to the ideal completion of its compact ele-
ments.

8

Toward a Logic for Neural Networks

· · ·

a

· · · · · ·

b

Figure 2: Forbidden subsystems related to bounded completeness, bifinite-
ness, and interval-compactness.

b

a1

a2

a3

.

.

.

a

b

c

b

a1

a2

a3

.

.

.

Figure 3: Forbidden subsystem (downward)

tem, (T,≤op) is an algebraic domain if the state space doesn’t contain the
subsystems in figure 3 (again, arrows indicate paths and not necessarily di-
rect successors).10 We then refer to (T,≤) as downward trajectory domain.

We’ll next consider how to combine the upward and downward order
into a new structure that can interpret the logic HYPE.

5 The combined trajectory domain and a logic

As mentioned, when we investigate a system, we’re both interested in the
limit-behavior (effects) and the history (causes). Thus, in particular, when
we reason about the limit-behavior of the system, we thus should also take
into account from where the limit was reached. This suggests to replace

10The following side conditions are imposed: In the right-most subsystem, there are trajec-
tories t′, t1, t2, . . . ending in b, a1, a2, . . ., respectively, such that [t1] > [t2] > . . . and, for
all n, [tn] 6≤ [t′].

9

Levin Hornischer

(infinite) limit-behaviors by new elements representing the different possi-
bilities from where these limit-behaviors can be reached. We achieve this
by essentially mirroring T at the infinite trajectories. To be precise, let t be
a trajectory. Then the set

JtK :=
{

[t′] : t′ infinite trajectory and t � t′
}

records the possible limit behavior of t. If t is infinite, JtK = {[t]}, whence
we identify it with [t]. To get the refined limit states that keep track of the
origin from where they were reached, we add the new elements (JtK, [t])
to T for all finite [t]. Qua refined limits, the new elements are above the
respective old ones: If [t′] ∈ T, then [t′] ≤ (JtK, [t]) iff [t′] and [t] share a
common limit-behavior, that is, there is [tm] ∈ JtK such that [t′] ≤ [tm]. The
new elements are ordered among each other as follows: the further away the
origin from which the limit (represented by the new element) was reached,
the further up is the new element. That is, (JtK, [t]) ≤ (Jt′K, [t′]) iff [t′] ≤ [t].
For reasons of symmetry, we can also think of the old elements [t] as really
being of the form ([t], JtK). We summarize.

Definition 2 (Combined trajectory domain) For a (non-) deterministic sys-
tem, define Tc as the union of {⊥,>} and

L :=
{

([t], JtK) : ⊥ 6= t finite trajectory
}
,

U :=
{

(JtK, [t]) : ⊥ 6= t finite trajectory
}
,

M :=
{

(JtK, JtK) : t infinite trajectory
}
,

called the lower half, upper half, and the limit trajectories respectively. De-
fine the order ≤c on Tc as follows (≤ is the order on T):

([t], JtK) ≤c ([t′], Jt′K) if [t] ≤ [t′]

(JtK, [t]) ≤c (Jt′K, [t′]) if [t] ≥ [t′]

([t], JtK) ≤c (Jt′K, [t′]) if ∃[tm] ∈ Jt′K : [t] ≤ [tm],

and ⊥ and > are the ≤c-least and biggest element, respectively. The order
for limit trajectories [t] is given via the above by the identification JtK = [t].
We call (Tc,≤c) the combined trajectory domain of the system.

An involution poset (P,≤,′) is a poset (P,≤) with a function ·′ : P →
P such that x′′ = x and x ≤ y implies y′ ≤ x′. We observe that it is
an involution to switch perspectives from regarding a trajectory as finite
trajectory to regarding some of its limit behavior as being reached from that
trajectory.

10

Toward a Logic for Neural Networks

Proposition 1 Let (Tc,≤c) be the combined trajectory domain of a (non-)
deterministic system. Define a mapping ·∗ : Tc → Tc by(

(t, JtK)
)∗

:= (JtK, t) and
(
(JtK, t)

)∗
:= (t, JtK).

Then ·∗ is an involution. Moreover, if τ is finite, τ ≤c τ
∗, and if τ is infinite,

τ∗ = τ .

We now can get to the logic. Leitgeb (2018) recently developed a general
logical system called HYPE. Although not originally intended, we show that
this logic can, in fact, be interpreted by dynamical systems.11

We first recap HYPE (Leitgeb, 2018). Fix a propositional language with
variables p1, p2, . . . and connectives ¬,∧,∨,→. Let Lit be the set of lit-
erals (negated or non-negated propositional variables). Given a literal l,
its dual is denoted l.12 A valuation on a nonempty set M is a function
V : M → P(Lit). A HYPE model M (for our fixed propositional language)
is a quadrupel (M,V, ◦,⊥) where M is a nonempty set, V a valuation on
M , and the following axioms hold—for the detailed formulation of the ax-
ioms see Leitgeb (2018).

• ◦ is a partial binary function from M × M to M (the fusion func-
tion) such that V is ◦-monotone and ◦ is reflexive, commutative, and
weakly associative.

• ⊥ is a binary symmetric relation on M (the incompatibility relation)
such that literal incompatibility entails ⊥, and s ⊥ s′ entails s ◦ s′′ ⊥
s′, whenever defined.

• For every s ∈M there is a unique s∗ ∈M (the star image of s) such
that V (s∗) = {v̄ : v 6∈ V (s)}, s∗∗ = s, s 6⊥ s∗, and s∗ is the ◦-largest
state compatible with s.

We define s ≤ s′ if s ◦ s′ exists and s′ = s ◦ s′. Formula satisfaction and
logical consequence in HYPE models are defined as follows Leitgeb (2018).

• s |= v iff l ∈ V (s) (where l is a literal).

• s |= ¬ϕ iff for all s′, if s′ |= ϕ, then s ⊥ s′.
11A hint that such an interpretation is possible is the HYPE model consisting of fixed-points

of the untyped truth-prediacte (Leitgeb, 2018)—and fixed-point operators are a general form
of computation.

12So if l = p, then l = ¬p, and if l = ¬p, then l = p.

11

Levin Hornischer

(A1) ` >

(A2) ` A→ A

(A3) ` A→ (B → A)

(A4) ` A→ (B → C)→
((A→ B)→ (A→ C))

(A5) ` A ∧ B → A

(A6) ` A ∧ B → B

(A7) ` A→ A ∨ B

(A8) ` B → A ∨ B

(A9) ` A→ (B → A ∧ B)

(A10) ` (A→ C)→ ((B → C)
→ (A ∨ B → C))

(A11) ` A ∧ (B ∨ C)↔ (A ∧ B) ∨ (A ∧ C)

(A12) ` A ∨ (B ∧ C)↔ (A ∨ B) ∧ (A ∨ C)

(A13) ` A↔ ¬¬A

(A14) ` ¬(A ∧ B)↔ ¬A ∨ ¬B

(A15) ` ¬(A ∨ B)↔ ¬A ∧ ¬B

(A16)
` A→ B

` ¬B → ¬A
(A17) A,A→ B ` B

Figure 4: The system HYPE as presented by Leitgeb (2018).

• s |= ϕ ∧ ψ and s |= ϕ ∨ ψ as usual.

• s |= ϕ→ ψ iff for all s′, if s′ |= ϕ and s◦s′ is defined, then s◦s′ |= ψ.

Given a set Γ of formulas and a formula ψ, Γ |= ψ iff for all HYPE models
M and states s of M, if s |= ϕ for all ϕ ∈ Γ, then s |= ψ.

Leitgeb (2018) provides a sound and complete logic for HYPE models
with this semantics. We’ll refer to this logic as HYPE which we repeat
for convenience in figure 4. The logic HYPE is well-understood and well-
behaved. It not only is sound and complete (via a canonical model construc-
tion) with respect to the HYPE models, it also has the deduction theorem,
the disjunction property, the finite model property, and is decidable. More-
over, it contains first-degree entailment, conservatively extends intuitionis-
tic logic, and the structures of HYPE models are well-known from ordinary
mathematics. (For all these results see Leitgeb (2018).)

To show that the combined trajectory domain carries the structure of a
HYPE model, we’ll make use of the fact that it has an involution (proposi-
tion 1).

Proposition 2 (Involution posets as HYPE models) Let (M,≤,∗) be a non-
empty involution poset. Let V : M → P(Lit) be a valuation such that

(i) V is monotone (s ≤ s′ implies V (s) ⊆ V (s′)),

(ii) If l ∈ V (s) and l ∈ V (s′), then s 6≤ s′∗, and

(iii) V (s∗) = {l : l 6∈ V (s)}.

12

Toward a Logic for Neural Networks

Then (M,V, ◦,⊥) is a HYPE model where s ◦ s′ is the least ≤-upper bound
of {s, s′}, if it exits, and s ⊥ s′ iff s 6≤ s′∗ (so ⊥ is orthogonality in the
involution poset).

So it remains to find appropriate valuations on the combined trajectory
domain (Tc,≤c). We do so by lifting a valuation on the state space to a
valuation of trajectories as follows.

We start with a valuation W : S → P(Lit) of the state space of the
system. This captures the idea that we can measure the system with respect
to the properties p1,¬p1, p2,¬p2, That is, any state of the system carries
the information of which properties certainly obtain and which certainly do
not obtain at that current state of the system. So JlKW := {s : l ∈ W (s)}
describes an area of the state space where l holds (or is made true).13

We say that W is separated if for all p, there is no state that is reachable
from some state in JpKW and from some state in J¬pKW .14 We say that W
is bifurcating if for all p and trajectories t, if t is undecided on p, then both
p and ¬p can be forced. That is, if no trajectory equivalent to t contains
a p- or ¬p-state, then t can be extended to trajectories t0 and t1 such that
t0 is equivalent to a trajectory containing a p-state and t1 is equivalent to a
trajectory containing a ¬p-state.

How do we get from a valuation W of the state space to the valuation V
of trajectories? The most straightforward idea is to take the valuation of a
(lower half) trajectory as collecting all the properties of the states that it has
visited. For a limit behavior we collect all the properties that can occur in
that limit-behavior.

VW
(
[t], JtK

)
:=

⋃
t0∈[t]

⋃
n∈N

W
(
t0(n)

)
VW
(
JtK, [t]

)
:=

⋃
[t0]∈JtK

⋃
n∈N

W
(
t0(n)

)
.

We call the valuation VW : Tc → P(Lit) defined in this way the valuation
induced by W . We now have the promised result.

Theorem 3 (Logic of Tc) Let (Tc,≤c) be the combined trajectory domain
of a (non-) deterministic system. Let W : S → P(Lit) be a separated and

13If the state space S carries a topology, it is natural to demand JlKW to be open—this
captures the idea that l is verifiable by finitary measurements (Vickers, 1989).

14In other words, if from a state s it is possible that the system develops into a state that
is also reached from a ¬p state, then p doesn’t “certainly” obtain at s. Rather, p cannot be
conclusively decided at state s.

13

Levin Hornischer

bifurcating valuation of the state space. Then (Tc, VW , ◦,⊥) is a HYPE
model where VW the valuation induced by W , τ ◦ τ ′ = τ ∨ τ ′, if it exits,
and τ ⊥ τ ′ ⇔ τ 6≤ τ ′∗.

What do the logical operations mean? For example, a finite trajectory
makes ¬ϕ true iff ϕ is false in the limit (as reached from this trajectory).
And ϕ→ ψ is true at a finite trajectory [t] if any future state that is reachable
through a ϕ-area of the state space is also reachable through a ψ-area. (This
is equivalent to any infinite tm ∈ JtK making the classical conditional¬ϕ∨ψ
true.) An interesting open question is whether HYPE is also complete for this
trajectory domain interpretation (and, if not, which extension of HYPE is).

6 Conclusion and further developments

We started with the aim of developing a logic together with a mathematical
semantics to reason about both the long-term behavior and the history of
a system. We provided a first such instance with the trajectory domain as
mathematical structure and HYPE as logic.

We end with three areas of further development. First, since the general
notion of a (non-) deterministic system that we’ve worked with is a transition
system, it’s natural to exploit their coalgebraic character. In addition to
the homological considerations mentioned above, this might also provide
more structural definitions of behavioral equivalence (bisimulation). More
generally, it seems worth further exploring the link between the two classical
subjects of computer science – transition systems and domain theory – that
our results provide.

Second, in the spirit of explainable AI, we might wish to show that for
every computing system there is a ‘transparent’ system with the same behav-
ior. In our framework, this would translate into the following—so to speak
the Hauptvermutung of the project. For every appropriate (non-) determin-
istic system S, there is another ‘transparent’ system S′ whose trajectory
domain is isomorphic (or otherwise closely related) to that of S. (Note the
analogy to DFA minimization in automata theory.)

Third, the order structures found in the trajectory domains are, surpris-
ingly, similar to order structures found in the causality order of spacetimes
(in general relativity). This can be seen as follows. Define Tfin as the
finite and nonempty elements of T end exclude the subsystems of theo-
rems 1 and 2, and exclude the ‘infinite diamond’ of figure 2. Then (Tfin,≤)
is a causal set in the sense of the causal set approach to quantum grav-

14

Toward a Logic for Neural Networks

ity (Bombelli, Lee, Meyer, & Sorkin, 1987). Do the excluded subsystems
have physical meaning under this interpretation? Moreover, (Tfin,≤) then
also is a globally hyperbolic poset in the sense of Martin and Panangaden
(2006) and thus in the same category as the causality order of globally hy-
perbolic spacetimes. Does this relate cosmic censorship (valid on globally
hyperbolic spacetimes) to bounded non-determinisim (valid when diamond
excluded)?

References

Abramsky, S., & Jung, A. (1994). Domain theory. In S. Abramsky,
D. M. Gabbay, & T. S. E. Maibaum (Eds.), Handbook of Logic in
Computer Science. Oxford: Clarendon Press.

Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. (1987). Space-time as a
causal set. Physical Review Letters, 59(5), 521-524.

Hornischer, L. (2018). Trajectory domains: describing the behavior of
computing systems. (Unpublished manuscript.)

Leitgeb, H. (2018). Hype: A system of hyperintensional logic (with an
application to semantic paradoxes). Journal of Philosophical Logic.
doi: 10.1007/s10992-018-9467-0

Martin, K., & Panangaden, P. (2006). A domain of space-time intervals
in general relativity. Communications in Mathematical Physics, 267,
563-586.

Reimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chin-
demi, G., . . . Markram, H. (2017). Cliques of neurons bound
into cavities provide a missing link between structure and function.
Frontiers in Computational Neuroscience, 11, 48. doi: 10.3389/fn-
com.2017.00048

Rojas, R. (1996). Neural Networks: A Systematic Introduction. Berlin:
Springer.

Scott, D. (1970). Outline of a Mathematical Theory of Computation (Tech.
Rep. No. PRG02). Oxford University Computing Laboratory.

Vickers, S. (1989). Topology via Logic. Cambridge: Cambridge University
Press.

Levin Hornischer
University of Amsterdam, Institute for Logic, Language and Computation
The Netherlands
E-mail: l.a.hornischer@uva.nl

15

