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Abstract
We investigate synonymy in the strong sense of content identity (and not just meaning
similarity). This notion is central in the philosophy of language and in applications
of logic. We motivate, uniformly axiomatize, and characterize several “benchmark”
notions of synonymy in the messy class of all possible notions of synonymy. This
class is divided by two intuitive principles that are governed by a no-go result. We use
the notion of a scenario to get a logic of synonymy (SF) which is the canonical rep-
resentative of one division. In the other division, the so-called conceptivist logics, we
find, e.g., the well-known system of analytic containment (AC). We axiomatize four
logics of synonymy extending AC, relate them semantically and proof-theoretically
to SF, and characterize them in terms of weak/strong subject matter preservation
and weak/strong logical equivalence. This yields ways out of the no-go result and
novel arguments—independent of a particular semantic framework—for each notion
of synonymy discussed (using, e.g., Hurford disjunctions or homotopy theory). This
points to pluralism about meaning and a certain non-compositionality of truth in logic
programs and neural networks. And it unveils an impossibility for synonymy: if it is
to preserve subject matter, then either conjunction and disjunction lose an essential
property or a very weak absorption law is violated.

Keywords Synonymy · Content identity · Hyperintensionality ·
Truthmaker semantics · Conceptivism · Neural networks

1 Introduction

One of the most important problems in philosophy of language and related disciplines
is to understand synonymy: when do two expressions mean the same thing? Similarly,
in all instances of logical modeling it is crucial to become clear on which sentences
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should be considered to be equivalent: when a fallible cognitive agent is modeled,
this is different from when, say, metaphysical grounding is modeled.

This problem is a persistently hard one since synonymy is such a multifaceted
concept. In everyday language or in thesauri, we find many alleged synonyms that
surely are synonymous in a wide range of contexts (contextual stability). However,
on a less credulous and more critical stance, we usually can find contexts in which
those synonyms differ in meaning (contextual flexibility). Indeed, for any two non-
identical, logically atomic sentences it seems like we can almost always cook up a
weird context in which they differ in meaning [30, 40].

There are more pairs of opposing features of synonymy other than “stability vs.
flexibility”. On the one hand, we think that whether or not two sentences are synony-
mous is objectively and externally settled by the language and the world alone. On
the other hand, there also is the intuitive idea (which is largely discredited in mod-
ern philosophy of language) that whether or not two expressions are synonymous
also depends on subjective and internal attitudes of the speaker. Moreover, on the
one hand, we sometimes think that usually synonymy respects logical equivalence
(rendering it an at most intensional concept). On the other hand, there is reason to
believe that classically equivalent sentences, like p ∨ ¬p and q ∨ ¬q, are not syn-
onymous since they are “about” different things (rendering synonymy a so-called
hyperintensional concept). Furthermore, sometimes we think of two synonyms as
being identical in meaning and sometimes as being only very similar in meaning.
This list of opposing features could be extended much further.

In this paper, we’re concerned with synonymy in the strong sense of meaning (or
content) identity—and not just meaning similarity.1 That is, we’re interested in the
notion of synonymy that we get when we adopt a critical stance and move to the
more discerning side in the pairs of the opposing features. Many different semantic
and proof-theoretic systems have been proposed to explicate such fine notions of
synonymy—just to name a few: [1, 5, 10, 11, 13, 18, 20, 23, 35, 37, 41, 44, 46], and
more will be mentioned below. However, these approaches differ tremendously and
there is practically no consensus on which approach is correct. Because of this, we
want to understand the intuitive notion (or family of notions) of strong synonymy
without committing to a particular framework. To do so, we work with various logics
(or axiomatizations) that attempt to capture the (or a) notion of synonymy. Thus, we’ll
gain insights into synonymy directly and not into a particular framework representing
synonymy.

The main contribution of this paper is to motivate, uniformly axiomatize, and char-
acterize “benchmark” notions of synonymy in the messy class of possible notions of
synonymy (as, e.g., provided by different frameworks). This helps to quickly iden-
tify not only the notion of synonymy of a given framework but also the precise
synonymies that make it different from other frameworks. Moreover, this provides

1But what do we mean by “meaning” or “content”? While we do have some intuitive grasp of these
concepts, it is even more difficult to say precisely what kind of entity content is than saying what its identity
is, that is, when two sentences should have the same content. This is why we focus on understanding the
notion of synonymy rather than the ontology of content.
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novel arguments and impossibility results for the various notions of synonymy that
are independent of a particular conception of semantics.

Summary In Section 2, we show why finding the logical laws governing synonymy
is problematic: Neither the famous possible worlds semantics nor any straightforward
refinement of it can satisfy the fundamental principle of synonymy that being syn-
onymous entails having the same subject matter. To understand this no-go result, we
look, in Section 3, at a well-known logic satisfying that principle: the system of ana-
lytic containment (AC) with a sound and complete truthmaker semantics due to [23].
And in Section 4, we develop a formal notion of a scenario to see just how fine-
grained can get the notion of synonymy in a straightforward refinement of possible
world semantics. We axiomatize this notion as an extension SF of AC. In Section 5,
we see that the two logics AC and SF are related by moving up one set-theoretic
level: If we take sentences not to be true at a scenario but at sets of scenarios, we get
a semantics that is extensionally equivalent to truthmaker semantics.

In Section 6, we investigate the lattice of conceptivist logics, that is, logics where
synonymy (or equivalence) entails having the same atomic sentences—which hence
can be regarded to satisfy the fundamental principle about synonymy. We show the
main formal result of the paper: We identify various extensions of AC that correspond
to the possible combinations of characterizing synonymy by weak/strong subject
matter preservation and weak/strong logical equivalence. In Section 7, we thus can
offer novel arguments for the various notions of synonymy (making use of, e.g., the
Hurford constraint, a “truth plus subject matter” conception of meaning, or homotopy
theory).

In Section 8, we discuss ways out of the no-go result: we identify the exact reason
for the inconsistency and describe possible ways of adding more (intensional) struc-
ture to the notion of scenario that allows them to satisfy the fundamental principle
about synonymy. Moreover, we state some consequences of the paradox: The incon-
sistency and the various arguments point to a pluralistic conception of meaning and
to the non-compositionality of the notion of truth in logic programs or states of a neu-
ral network. In Section 9, we analyze this non-compositionality and generalize it to
the following impossibility result for synonymy: if synonymy preserves subject mat-
ter, either some of our basic intuitions about conjunction and disjunction are violated
or a very weak logical law—satisfied by most logics—is violated. We provide some
linguistic and cognitive evidence against the law. This poses the problem of finding
a logic violating this law and accounting for the evidence.

Most results are proven in an Appendix extending the method of proving com-
pleteness by normal forms. Thus, the characterization of the synonymies is proven
uniformly and constructively. Moreover, it associates to each of these synonymies a
characteristic notion of disjunctive normal form which can be seen as an invariant of
the synonymy (across different, philosophically-laden theories and semantics for this
synonymy).

Notation As common in the field, we only deal with sentences built in the usual way
from a set of propositional letters p0, p1, . . . (called atoms) using the connectives
¬, ∧, ∨. Variables for sentences are ϕ, ψ, χ, . . . and variables for atomic sentences
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are p, q, r, . . .. A statement of the form ϕ ≡ ψ is called equivalential. A logic of
synonymy L is a logic reasoning with equivalential statements: L � ϕ ≡ ψ (respec-
tively, L � ϕ ≡ ψ) means that under the semantics of L, ϕ ≡ ψ is valid (respectively,
is derivable with the rules of L).

To keep the framework as simple as possible, we don’t add further operators like
conditionals, modal operators, or even hyperintensional operators. We leave this to
further research.

2 The Cause of the Problem: a No-go Result About Synonymy

In this section, we show why it is a real problem to find the appropriate axioms or laws
governing synonymy in the strong sense of meaning identity: A fundamental principle
about this notion is that being synonymous entails having the same subject matter.
However, we argue that neither standard possible worlds semantics nor any straight-
forward refinement of it (with the same underlying idea) can satisfy this principle. To
understand synonymy, it arguably is not enough to just provide a particular semantics
with a notion of synonymy that satisfies the subject matter preservation principle.
Rather, we need a systematic understanding of this impossibility result and how to
avoid it—whence we need to analyze and compare different notions of synonymy.

As indicated in the introduction, we explore the possible logical laws of synonymy.
That is, we want to know, for example, is it a general law of synonymy that p is
synonymous to p ∨ (p ∧ q)? Is p ∨ (p ∧ q) synonymous to p ∨ (p ∧ ¬q)? What
about p ∨ (p ∧ q) and p ∧ (p ∨ q)?

Since we’re interested in the general logical laws of synonymy, we’re not so much
interested in when logically atomic sentences are synonymous. Rather, we consider
which logically complex sentences formed with these atomic sentences should be
synonymous as a matter of a general law about synonymy.2 So we assume we’ve fixed
some (or, rather, any) theory about how to map logically atomic natural language sen-
tences (that we’re interested in) to propositional atoms such that atomic sentences with
the same meaning are mapped to the same propositional atom and atomic sentences
with different meaning are mapped to different atoms. Thus, distinct propositional atoms
represent atomic sentences with distinct meaning.3 Whatever theory we’ve picked, our
results can then be applied to see which complex sentences should be synonymous.

Let’s illustrate this in three remarks. First, we could use some of the established
theories to determine when two atomic sentences express the same proposition: pos-
sible world semantics, (exact) truthmaker semantics, two-dimensional semantics,
structured propositions, impossible world semantics, etc. Then different proposi-
tional atoms represent different equivalence classes of atomic sentences (under the

2This is in line with the common conception that logic is topic-neutral and universal—and hence should
be independent of particular interpretations of the atomic sentences.
3A more technical way to make this point is as follows: Map each atomic natural language sentence to
a distinct propositional atom. Then write p ≈ q if p and q represent atomic sentences with the same
meaning according to the theory we’ve fixed. Introduce a new set of propositional atoms p′

0, p
′
1, . . . each

representing a single ≈-equivalence class. Then work with p′
0, p

′
1, . . ..
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equivalence relation of ‘expressing the same atomic proposition’ in the respective
semantics). We’re then investigating what the appropriate notion of synonymy for
complex sentences is—independent of what the respective semantics for atomic
sentences says. Second, assume one is convinced by the view mentioned in the
introduction that no two syntactically non-identical atomic sentences are completely
identical in meaning (except, say, sentences with different allowed spellings or
emphasis, etc.). Then every atomic sentence is assigned to a distinct propositional
atom. Third, assume the meaning of atomic sentences is governed by a set of (defea-
sible) rules describing our semantic knowledge or contextual information (or both).
This may include the rules ‘A sofa is a couch’ or—in a context far away from pen-
guins, ostriches, and the like—‘A bird is an animal that can fly’. We then again assign
every atomic sentence to a distinct propositional atom, but we add the synonymies
‘This is a couch ≡ This is a sofa’ or ‘This is a bird ≡ This is an animal that can fly’
as non-logical axiom to our logical axioms of synonymy. However, since we’re inter-
ested in the logical laws of synonymy, we won’t consider these additional non-logical
axioms.

With these preliminaries at hand, we can get to arguably one of the most funda-
mental principles about synonymy: if two sentences are synonymous, they are about
the same thing. In other words, if two sentences are about different things, there is
a sense in which they are not synonymous—and hence shouldn’t be synonymous in
the strong sense of meaning identity. As a slogan: synonymy entails subject matter
identity.

To formulate this principle precisely, we need to specify what subject matter is.
We could choose one of the reconstructions of this intuitive notion of subject mat-
ter [24, 31, 42, 58]. However, we can remain general and independent of particular
reconstructions by working with the syntactic reflection of the subject matter of a
sentence, that is, with the set of its atomic sentences. This is because we assumed
that distinct propositional atoms represent distinct atomic propositions: so if two
sentences are built from different atoms, one is about a proposition that the other
isn’t about, whence they should have different subject matter. In particular, the most
straightforward counterexample is excluded: we cannot have anymore two atomic
sentences—like ‘The couch is black’ and ‘The sofa is black’—that express the same
atomic proposition, and hence have the same subject matter, but still get assigned to
different propositional atoms. Hence we have the following.

(S1) Completeness of syntactic reflection. If two sentences have the same subject
matter, they have the same atomic sentences.

Alternatively, we can also think of (S1) as a logical—as opposed to a semantic—
principle: if two sentences have different atoms, they have, as far as logic is
concerned, different subject matter. (In Section 7, we also discuss the converse
of (S1), that is, the soundness of syntactic reflection.) Thus, we can work with the
following precise formulation of the fundamental principle that synonymy entails
subject matter identity:

(P1) Subject matter preserving. If two sentences are synonymous, then the sets
of their atomic sentences are identical.
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When we look at the class of possible sets of logical laws governing synonymy
below, this principle is conceptually useful in dividing the class into those sets of
laws (or axioms) that satisfy the principle and those that don’t. In particular, we’ll
consider what it takes to get into the class of subject matter preserving synonymies
and what the benchmark representatives of this class are.

So what are notions of synonymy that satisfy the subject matter preservation prin-
ciple (P1)? We immediately see that it cannot be provided by standard possible
worlds semantics: For any distinct atoms p and q, the sentences p ∧ ¬p and q ∧ ¬q

are equivalent in classical logic and hence not distinguishable by a possible world. So
they are synonymous according to possible worlds semantics but they have different
subject matter.

Thus, an advocate of possible worlds semantics may wonder whether it can
be changed minimally and straightforwardly to obtain a notion of synonymy that
satisfies principle (P1).

To answer this, let’s recall the main idea of possible worlds semantics: Sentences
are evaluated at possible worlds and the meaning of a sentence is its truth-value pro-
file across all possible worlds. As far as semantics are concerned, possible worlds
can be regarded as maximally consistent scenarios: every sentence is either true or
false at a world (maximality) and no sentence is both true and false at a world
(consistency).

Thus, arguably the most minimal and straightforward change to possible world
semantics is to relax the minimality and/or consistency assumption. So possible
worlds are relaxed to scenarios (or circumstances) where sentences can be not only (i)
true, or (ii) false; but also (iii) not maximal, i.e., neither true or false, or (iv) not con-
sistent, i.e., both true and false. Let’s abbreviate these truth-values as follows: true t ,
false f , neither true nor false u (for undecided), and both true and false b (for both).
Then there are three possibilities for the new sets of truth-values: {t, f, u}, {t, f, b},
and {t, f, u, b}.4

The meaning of a sentence still is its truth-value profile across all possible scenar-
ios, though now using more than just the two truth-values true and false. For possible
worlds, the truth-value of a complex sentence at a possible world is determined by
the truth-value of its parts at that possible world according to the most straightfor-
ward logic for the set of truth-values {t, f }, i.e., according to classical logic. Thus, to
change possible worlds semantics minimally, the truth-value of a complex sentence
at a possible scenario is determined by the truth-value of its parts at that scenario
according to the most straightforward logic for the chosen set of truth-values. Stan-
dardly, these are the following. For {t, f, u} the truth-functions for the connectives
¬, ∧, ∨ are as in (strong) Kleene 3-valued logic (K3), for {t, f, b} as in the Logic of

4Note that, by this line of thought, there is no reason to add more truth-values and/or interpret u and b dif-
ferently than as ‘neither true nor false’ and ‘both true and false’, respectively. (Though, later we’ll discuss
such other options: for example, using five or more truth-values and interpreting u as meaninglessness [9]
or off-topicness [3].) This is because we’ve added those truth-values (with their intended interpretation)
that have to be added when relaxing one or both of the two conditions on truth-values in classical possi-
ble worlds, but there seems to be no straightforward motivation for further and/or differently interpreted
truth-values.
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Paradox (LP), and for {t, f, u, b} as in First-Degree Entailment (FDE).5 See Section 4
and [49, sec. 7–8] for more details on these logics—though for now that is not needed.

To summarize, the most minimal and straightforward change of possible world
semantics arguably is to relax possible worlds to scenarios where:

(A1) Scenarios are structures where atomic sentences can be evaluated with
truth-values in {t, f, u}, {t, f, b}, or {t, f, u, b}.

(A2) The truth-value of a complex sentence at a scenario is determined by
the truth-value of the sentence’s parts at that scenario according to the
truth-functions for the connectives as in K3, LP, or FDE, respectively.

In Section 4, we provide concrete examples of such scenarios and axiomatize the
notion of synonymy that they provide. For now, let’s consider whether this minimal
change to possible world semantics can provide a notion of synonymy satisfying (P1).

The answer is no: Consider the two propositional sentences ϕ := p and ψ := p ∨
(p ∧ q). Whatever set of truth-values one chooses ({t, f, u}, {t, f, b}, or {t, f, u, b}),
the respective logic will evaluate ϕ and ψ to the same truth-value no matter how p

and q were evaluated (this can easily be checked). Thus, there is no scenario in the
adapted possible worlds semantics that can distinguish the two sentences, so they are
synonymous according to this scenario semantics. However, the two sentences don’t
have the same atoms. Consequently, the adapted possible worlds semantics cannot
provide a notion of synonymy satisfying (P1).

We can summarize the observations of this section as the following impossibility
result. The natural principle about synonymy that is motivating any form of scenario-
or circumstance-based semantics is the following.

(P2) Scenario respecting. If there is no possible scenario or circumstance what-
soever in which two sentences differ in truth-value, then they are synonymous.

The above shows that there is no notion of scenario that satisfies all of (A1), (A2),
(P1), and (P2).

This impossibility result shows that there is a real problem about finding out the
logical laws governing synonymy: Whatever they are, we would like them to render
the subject matter preservation principle (P1) true, but we also see that neither stan-
dard possible world semantics nor a conservatively refined scenario based semantics
can yield such a notion of synonymy.

Thus, to get a subject matter preserving notion of synonymy we need to go a differ-
ent way. There are many possibilities that have been suggested—they fall under the
term conceptivist logics. However, they come in greatly varying intentions, semantic
frameworks, and/or axiomatizations. This makes it hard to compare them and dis-
till out the logical laws for synonymy. This is why we’ll proceed in a different way:
we look directly at possible sets of axioms about synonymy and compare these (e.g.,

5Note that the ‘standardness’ claim only concerns the truth-functions for negation, conjunction, and dis-
junction. It doesn’t concern the truth-value of other connectives (like a conditional) or the correct choice
of designated values to define validity, etc.
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Fig. 1 The system of analytic containment (AC) as presented in [23]

which is an extension of the other). This allows for direct comparison and avoids the
commitments that come with opting for particular semantic systems.

We start in the next section by looking at a logic satisfying (P1) that recently
gained much prominence. In Section 4, we develop and explore how close the sce-
nario approach from this section comes to satisfying (P1). Against this background,
we add and characterize further axiomatizations. Finally, in Section 9, we come full
circle and both analyze and strengthen the impossibility result mentioned here.

3 Truthmaking Synonymy

We recall the logic of synonymy AC that satisfies (P1). Fine [23] provides a sound
and complete truthmaker semantics for a system that aims to axiomatize the notion of
analytic content containment: the content of a sentence ϕ is contained in the content
of a sentence ψ and vice versa. The idea of the system originated in the work of
Angell [1, 2].6 The system AC is given in Fig. 1.

By induction on derivations in AC, we immediately see that if AC � ϕ ≡ ψ , then
ϕ and ψ have the same atoms. Hence AC is a logic of synonymy that satisfies (P1).

As we will need it later on, we very briefly recap the truthmaker semantics of [23].
This semantics can be traced back to [27] and is defined as follows. A state model M

is a triple (S, �, | · |) where � is a complete partial order7 on S and | · | maps atomic
sentences p to pairs (|p|+, |p|−) of non-empty subsets of S. (Elements of |p|+ are
called verifiers of p and elements of |p|− are called falsifiers of p.) We recursively
define when a sentence ϕ is verified/falsified by a state s ∈ S (in signs: s � ϕ /
s �ϕ).

6Also see [20, 23] for a good discussion of AC and similar systems and [28] for a sequent calculus for AC.
7So � is reflexive, transitive, anti-symmetric, and every subset of S has a least upper bound.
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– s � p :iff s ∈ |p|+, and s �ϕ :iff s ∈ |p|−
– s � ¬ϕ :iff s �ϕ, and s �¬ϕ :iff s � ϕ

– s � ϕ ∧ ψ :iff ∃u, t ∈ S : u � ϕ & t � ψ & s = u � t ,8 and
s �ϕ ∧ ψ :iff s �ϕ or s �ψ

– s � ϕ ∨ ψ :iff s � ϕ or s � ψ , and
s �ϕ ∨ ψ :iff ∃u, t ∈ S : u �ϕ & t �ψ & s = u � t

The exact content of ϕ is |ϕ| := {s ∈ S : s � ϕ}, and the (replete) content of ϕ,
denoted [ϕ], is the convex closure of the complete closure of |ϕ|.9 We won’t go into
the philosophical difference between these two notions of content. For this see [23],
and for the notion of synonymy induced by exact content see [25]. The soundness
and completeness result of [23] states that AC � ϕ ≡ ψ if and only if [ϕ] = [ψ] for
all models.

4 Scenarios Synonymy

To get a notion of synonymy satisfying (P2) and the two assumptions from Section 2,
we formally describe scenarios and axiomatize “scenario synonymy”.

In Section 2, we straightforwardly relaxed possible worlds to scenarios in an
attempt to obtain a semantics satisfying the subject matter preservation principle (P1).
The idea behind such a scenario is that it is a (possibly inconsistent) representation
of a part of the world or of a possible world. Before we present examples, let’s first
describe the two assumptions characterizing scenarios in more detail.

By (A1), every scenario s, whatever object it might be, determines a valuation
vs : {p0, p1, . . .} → T , where T is one of the three possible sets of truth-values.
Since we’re interested in just how fine-grained this generalization of possible worlds
semantics can become, we choose T := {t, f u, b} (the other choices will be coarser
or at best equally fine-grained). By (A2), this valuation extends to complex sentences
according to FDE:

– vs �+ p :iff vs(p) ∈ {t, b}, and vs �− p :iff vs(p) ∈ {f, b}.
– vs �+ ¬ϕ :iff vs �− ϕ, and vs �− ¬ϕ :iff vs �+ ϕ.
– vs �+ ϕ ∧ ψ :iff vs �+ ϕ and vs �+ ψ , and

vs �− ϕ ∧ ψ :iff vs �− ϕ or vs �− ψ .
– vs �+ ϕ ∨ ψ :iff vs �+ ϕ or vs �+ ψ , and

vs �− ϕ ∨ ψ :iff vs �− ϕ and vs �− ψ .

Thus, we may define a model of scenario semantics as a pair (S, v) where S is
a nonempty set whose elements are called scenarios and v is a function mapping
scenarios s ∈ S to valuations vs . The positive content of a sentence ϕ is �ϕ�+ := {s :
vs �+ ϕ} and the negative content is �ϕ�− := {s : vs �− ϕ}. The content of ϕ is

8Where u � t denotes the least upper bound of {u, t} which exists by the completeness of the partial order.
9A set T ⊆ S is convex if for all s, t, u ∈ S, if s, t ∈ T and s � u � t , then u ∈ T . And a set T ⊆ S is
complete if for every nonempty T0 ⊆ T the least upper bound of T0 is in T . The complete (resp. convex)
closure of a set T ⊆ S is the smallest set T ∗ ⊆ S such that T ⊆ T ∗ and T ∗ is complete (resp. convex).
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�ϕ� := (
�ϕ�+, �ϕ�−)

. Note that, while there is no restriction on (the set of) scenarios,
their semantically relevant aspect is the valuation that they determine.

Let’s consider two examples of such scenarios: First, if we want to give scenarios a
metaphysical interpretation (also applicable in semantic paradoxes), we can interpret
them as FDE-valuations or worlds [49, ch. 7–8].

Second, if we want to give scenarios a cognitive interpretation, we can take them
to be sets of defeasible rules (i.e. rules that allow for exceptions) with which we
conceptualize (a part of) the world. In other words, these rules are our knowledge base
where we store both factual and semantic knowledge.10 Different knowledge bases
correspond to different conceptualization (or representations). This explains what
kind of object these scenarios are, but how do they determine a valuation? For this we
use that such defeasible knowledge bases are paradigmatically modeled by programs
in logic programming.11 A logic program determines a three-valued model that is
the canonical interpretation of the set of rules provided by the program [26]. Thus, a
logic program s (modeling some knowledge base of a cognitive agent) determines a
valuation (the intended model that the agent forms given her knowledge base).

This idea can be taken further. Logic programming has a neural interpretation: for
every program there is a certain (artificial) neural network that computes the canon-
ical interpretation of the program, that is, after starting in an initial state, the neural
network will eventually reach a stable state that corresponds to the intended interpre-
tation [55]. The idea is that, while the logic program is the symbolic representation
of the knowledge base of the agent, the neural network is the (high-level) neural
implementation of it. Each state of such a network can be described by a four-valued
interpretation and could, roughly, be interpreted as how an agent currently cognizes
the part of the world she is in. Thus, we can model knowledge bases as above as
logic programs and take these as scenarios (determining the valuation given by their
intended interpretation), but we can also model knowledge bases as neural networks
and take their possible states as scenarios.12 See [33] for elaborating this idea of
grounding (cognitive) scenarios (or “worlds”) in states of neural networks (defin-
ing similarity between such scenarios, various modal operators, a counterfactual, and
weaker versions of synonymy).

Let’s now turn to the notion of synonymy provided by scenario semantics. What-
ever instance we consider, scenarios satisfying the two assumptions extensionally
act like FDE-models. (Intensionally they might be more complex than plain FDE-
valuations; we discuss ways to intensionalize scenario semantics in Section 8.) We
define the canonical model of scenario semantics as (Sc, vc) where Sc is the set of

10To give some simple generic examples, factual knowledge might be the fact ‘water is H2O’ or the rule
‘if it rains, the street gets wet’. The rule is defeasible since there might be exceptions: e.g., a roof over the
street. Semantic knowledge might be the rule ‘A sibling is a sister or a brother’.
11Logic programming originated in the late 1960s and early 1970s [38]. It was developed precisely to deal
with data- and knowledge bases in a defeasible way that is—unlike classical logic—more apt when dealing
with real world data. Thus, logic programming also is very suitable to model cognitive and linguistic
phenomena [7, 39, 55].
12Note that these cognitive examples of scenarios can but don’t need to satisfy the second assumption on
scenarios: they interpret atomic sentences but the logic for complex sentences can be chosen freely. In
Section 8, we argue that, in fact, a more complicated logic than the straightforward one should be chosen.

776



Logics of Synonymy

valuations v : {p0, p1, . . .} → T and vc is the identity function. Then the logic of
synonymy obtained by scenario semantics can be characterized as follows (where
ϕ ⇔FDE ψ means that ϕ and ψ are equivalent in the logic FDE in the sense of having
the same value under every valuation).

Theorem 1 Let SF := AC + ϕ ∨ (ϕ ∧ ψ) ≡ ϕ (the name will be explained in
Section 6). Then for all sentences ϕ and ψ , the following are equivalent
(i) �ϕ� = �ψ� in any model of scenario semantics.
(ii) �ϕ� = �ψ� in the canonical model of scenario semantics.
(iii) ϕ ⇔FDE ψ

(iv) SF � ϕ ≡ ψ .

Thus we can see that the two sentences ϕ and ϕ∨(ϕ∧ψ) that we used to show the
inconsistency of the principles (P1), (P2), (A1), and (A2) really are the only source of
the inconsistency. In Section 7, we present a possible argument in favor of scenario
synonymy.

The first three items of the theorem are immediate, and the last one, which axio-
matizes this logic of synonymy as an extension of AC, will be proven in the Appendix.

5 Move-on Up: From Scenario to Truthmaking Synonymy

We show that truthmaking synonymy and scenario synonymy are related by moving
up one set-theoretic level: moving from scenarios to sets of scenarios (as the enti-
ties at which sentences are evaluated) fine-grains scenario semantics to the level of
truthmaking semantics.

By now, we know the proof-theoretic relationship between truthmaker synonymy
(AC) and scenario synonymy (SF = AC + ϕ ≡ ϕ ∨ (ϕ ∧ ψ)). We now want to see
how the two are semantically related.

Analogous to the canonical model of [23], we define the canonical scenario-based
state model C as follows.

Definition 1 In the canonical model of scenario semantics, the scenarios are
the valuations which, in turn, correspond exactly to the subsets s of L :=
{p0, ¬p0, p1, ¬p1, . . .}.13 Thus, write S := P(L) (where P is the powerset opera-
tor). Write sp := {p} ∈ S, which is the scenario that makes p true and leaves anything
else undetermined, and write s¬p := {¬p} ∈ S. Define C := (P(S), ⊆, | · |C), where
|p|C := {

(V , F ) | V = {{sp}}, F = {{s¬p}}}. It’s easily verified that C indeed is a
state model.

It’s straightforwardly checked that [p ∨ (p ∧ q)]C = {{sp}, {sp, sq}} and [p]C ={{sp}}. So the set of scenarios {sp, sq} ∈ P(S) verifies or makes true p ∨ (p ∧ q) but
not p. Thus, if we move from scenarios making sentences true to sets of scenarios

13The correspondence between v and s is given by: p ∈ s & ¬p �∈ s iff v(p) = t ; p �∈ s & ¬p �∈
s iff v(p) = u; etc.
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making sentences true, then we get a semantics that can distinguish between the
scenario-synonymous sentences p and p ∨ (p ∧ q). In the Appendix, we prove—
analogously to [23]—the following result.

Corollary 1 The following are equivalent:
(i) AC � ϕ ≡ ψ .
(ii) For every state model M , we have [ϕ]M = [ψ]M .
(iii) [ϕ]C = [ψ]C where C is the canonical scenario-based state model.

In other words, while scenario semantics can never get to the level of granularity
achieved by truthmaking synonymy, any semantics that individuates content accord-
ing to AC is equivalent—in terms of content individuation—to the sets-of-scenarios
semantics.14 We’ll next get to investigating the “space” between SF and AC.

6 Characterizing Benchmark Synonymies

So far, we’ve motivated and described two benchmarks, SF and AC, among the pos-
sible notions of synonymy. Now, we’ll add more and thus get to the main formal
result: We identify and uniformly axiomatize various logics of synonymy and char-
acterize them by possible combinations of weak/strong subject matter preservation
and weak/strong logical equivalence.

We first state the logics and the characterization, and then we’ll put them into
context. In the next section, we give arguments for the various benchmark notions of
synonymy.

We first need some terminology. Recall that the set of atoms At(ϕ) occurring in
a sentence provides some information about the subject matter of the sentence. Now,
we not only want to record which atoms occur in ϕ, but also whether they occur
positively or negatively in ϕ. This is standardly done as follows.15

Definition 2 (Valence) The valence (positive or negative) of an atom p in a sentence
ϕ is defined recursively by:

(i) Only p occurs positively in p, and no atom occurs negatively in p.
(ii) p occurs positively (negatively) in ¬ϕ iff p occurs negatively (positively)

in ϕ.
(iii) p occurs positively (negatively) in ϕ ◦ ψ (for ◦ ∈ {∧, ∨}) iff p occurs

positively (negatively) in ϕ or ψ .
Note that p can occur in ϕ either not at all, or positively, or negatively, or both
positively and negatively. We define

L(ϕ) := {
p : p occurs positively in ϕ

} ∪ {¬p : p occurs negatively in ϕ
}
.

14This yields an intuitive two-level picture of content where the dividing line lies somewhere between
SF and AC. On the first granularity level, content can be modeled by first-order objects like scenarios or
possible worlds. And on the second granularity level, content is modeled by second-order objects like sets
of scenarios.
15See e.g. [23] or [21].
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Thus, L(ϕ) not only records which atoms occur in ϕ, but also whether they occur
positively or negatively.

Next, we provide an equivalent perspective on valence that will be central to the
proof of our characterization result. Again, we need some terminology. A literal is
an atom or a negated atom. A sentence ϕ is in disjunctive form if it is a disjunction
of conjunctions of literals. It is standard if the conjuncts and disjuncts are ordered
according to a fixed order.16 Following [23], ϕ is maximal if whenever it contains a
disjunct ϕ0 and literal l (appearing as a conjunct of some disjunct), then it contains a
disjunct ϕ1 whose literals are exactly those of ϕ0∧l (that is, ϕ1 and ϕ0∧l are identical
modulo order and repeats). Fine [23] shows that every sentence ϕ is AC-provably
equivalent to a unique standard maximal disjunctive form ϕmax.

Lemma 1 For every sentence ϕ, L(ϕ) is the set of literals that occur in ϕmax.17

Thus, the definition of L(ϕ) via valence or via the literals in ϕmax are equivalent.
The former might be conceptually more useful (so we’ll use it in the main text), while
the later is more useful in proofs (so we’ll use it in the Appendix).

Definition 3 The logics that we’ll consider are axiomatized as follows.

SFL := AC

SF := AC + ϕ ∨ (ϕ ∧ ψ) ≡ ϕ

SFA := AC + ϕ ∨ (ϕ ∧ ψ) ≡ ϕ ∨ (ϕ ∧ ¬ψ)

SCL := AC + ϕ ≡ ϕ ∨ (p ∧ ¬p) if p, ¬p ∈ L(ϕ)

SCA := AC + ϕ ≡ ϕ ∨ (p ∧ ¬p) if p ∈ At(ϕ)

Their relationship is described in Fig. 2: all indicated containments are strict, and
SF is incomparable to both SCA and SCL. We leave the search for the required
counterexamples to the reader.

Their names come from the characterization theorem that we’ll show next: each
logic represents one combination of weak (Classical) or strong (FDE) logical equiv-
alence and weak (Atomic) or strong (Literal) subject matter identity. So the first
letter S stands for Synonymy, the second letter (F or C) abbreviates the kind of
logical equivalence that the synonymy requires, and the third letter (L or A), if exist-
ing, abbreviates the kind of subject matter identity that the synonymy requires. This
then explains the—perhaps surprising—axiomatization. (Recall, ϕ ⇔FDE ψ denotes
FDE-equivalence; similarly, ϕ ⇔C ψ denotes classical equivalence.)

16More precisely, we fix a bijective enumeration e of literals, and we say that a conjunctive form ϕ =
l1 ∧ . . . ∧ ln is standard if its literals occur from left to right in e-increasing order without repeats, that is,
e(l1) < . . . < e(ln). We fix a bijective enumeration f of standard conjunctive forms, and we say that a
disjunctive form ϕ = ϕ1 ∨ . . . ∨ ϕm is standard if its disjuncts are standard and f -increasing from left to
right without repeats, that is, f (ϕ1) < . . . < f (ϕm).
17Proof: As [23] shows, AC-equivalence implies valence preservation, so, since AC � ϕ ≡ ϕmax, we have
for all p that p occurs positively (negatively) in ϕ iff p occurs positively (negatively) in ϕmax. The latter,
by definition of valence and normal form, is equivalent to: p occurs in ϕmax (¬p occurs in ϕmax), and the
claim follows.
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Fig. 2 The discussed benchmark logics of synonymy and the lattice of conceptivist logics

Theorem 2 (Characterization theorem) We have for all sentences ϕ and ψ that
(i) SF � ϕ ≡ ψ iff ϕ ⇔FDE ψ

(ii) AC = SFL � ϕ ≡ ψ iff ϕ ⇔FDE ψ and L(ϕ) = L(ψ)

(iii) SFA � ϕ ≡ ψ iff ϕ ⇔FDE ψ and At(ϕ) = At(ψ)

(iv) SCL � ϕ ≡ ψ iff ϕ ⇔C ψ and L(ϕ) = L(ψ)

(v) SCA � ϕ ≡ ψ iff ϕ ⇔C ψ and At(ϕ) = At(ψ).

We end this section with several remarks putting this result into context.
First, with scenario synonymy, we developed a logic of synonymy that exactly

satisfies the principle (P2) under the two assumptions (A1) and (A2). To get a simi-
lar understanding for the class of logics satisfying (P1), we look at the newly added
logics which all satisfy (P1). Such logics, where equivalence entails having the same
atoms, have been called conceptivist logics by [53]. (For a short history and refer-
ences see, e.g., [20].) The first such system has been suggested by [45, 47] to capture
the idea that in many cases a valid inference shouldn’t only preserve truth, but the
conclusion should also be conceptually contained in the premises. The lattice of con-
ceptivist equivalences is marked in gray in Fig. 2. The top element is the identity
relation and the bottom element is the logic ⊥C where any two sentences with the
same atoms are equivalent.18

Second, there are various related results. Part (i) is Theorem 1. Part (ii) is a charac-
terization of AC proven by [21] and [23] formulated in terms of valence preservation.
As we’ll discuss below, we’ll provide a novel proof. Concerning (iii), there are
various logical systems whose notion of equivalence is characterized by SFA. One is

18Of course, this is not a serious notion of synonymy since, for example, the contradiction p ∧ ¬p is
synonymous to the tautology p ∨ ¬p.
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the first-degree fragment of the system of [16] with the “story semantics”. Another
one is the formalization of Buddhist dialectics of [50] given by adding a fifth
truth-value to the semantics of FDE that represents “emptyness” ([21] shows that
equivalence in this system is FDE-equivalence plus having the same atoms). Concern-
ing (iv), [52] shows that an equivalent characterization is that ϕ and ψ Mx-match in
the category of classical proofs. We’ll come back to this below. Concerning (v), [53]
shows that for all sentences ϕ and ψ that don’t contain the conditional →, the sen-
tence ϕ ↔ ψ is provable in Parry’s logic of analytic containment iff ϕ and ψ are
classically equivalent and have the same atoms.

Third, the proof of the theorem will take up most of the Appendix. It defines,
for each of the logics, a notion of a unique normal form and shows that two such
forms are identical iff they have the properties of the characterization. This method
is not only uniform across these logics, but it also is constructive since it provides
an algorithm to decide equivalence. Moreover, it associates to each notion of syn-
onymy a characteristic notion of normal form. In particular, the proof doesn’t require
any (philosophically laden) ideas about semantics. (Because of these advantages we
include our proof of (ii).)

Fourth, an intuitive conception of meaning takes the meaning of a sentence to
consist of two components: a “truth component” that specifies the truth-conditions
of the sentence, and an “aboutness component” that specifies what the sentence is
about. Thus, synonymy according to this intuitive conception is given by “truth-based
equivalence” plus “subject matter identity”. (Note how the two intuitive principles
about synonymy mirror this distinction: (P2) is concerned with truth, while (P1) is
concerned with subject matter.) Thus, the theorem provides the axiomatization for
various choices of these two components.19

Fifth, this also provides an interpretation for the dotted lines in Fig. 2. We get from
logics above the dotted line labeled “add classicality” to the logics below by replac-
ing the stricter truth-component of FDE-equivalence with the looser one of classical
equivalence. Similarly, we get from logics above the “add transparancy” line to the
logics below by moving from having the same literals to the weaker requirement of
having the same atoms. That is, we postulate that ϕ has the same subject matter as ¬ϕ.
In other words, negation is subject matter transparent. This is a common principle if
subject matter is understood as topic [31, 48].

Sixth, what’s beyond AC? There is, for example, isomorphism in the category of
classical proofs which coincides with equivalence in multiplicative linear logic [17,
52], factual equivalence [15], equivalence in exact entailment [25], equivalence in
some impossible world semantics [6], or syntactic identity. However, for reasons of
space, we won’t further investigate those.

19In fact, not only our but also most other conceptivist logics eventually received an analysis in terms of
a truth and a subject matter condition [20, 21]. This corroborates the two-component analysis of mean-
ing: Any available notion of meaning identity that respects subject matter or topicality intuitions can be
analyzed as having two components. (Of course this doesn’t mean the this is the only analysis as Priest’s
formalization of Buddhist dialectics shows: it has a semantics with only truth-components but it also can
be regarded under the two component analysis.)
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7 Arguments for Various Notions of Synonymy

In this section, we present novel arguments for the various notions of synonymy
discussed so far.

Argument for SF A reasonable notion of synonymy is to say that two sentences are
synonymous if they, when uttered, always communicate the same thing. Denote this
by ≡c. The argument claims that the intuitively correct notion of synonymy ≡c is, in
fact, scenario synonymy.

Let’s recap Hurford’s constraint [34] which says that disjunctions where one dis-
junct entails the other are infelicitous—an often cited example is “John is American
or Californian”.20 Call such disjunctions Hurford disjunctions. An intuitive explana-
tion for this constraint is the following. A Hurford disjunction ϕ ∨ ψ is equivalent
to one of the disjuncts, say, ϕ. It’s a pragmatic principle that you hence should utter
the simpler ϕ and not the equivalent but more complicated ϕ ∨ ψ . Hence ϕ ∨ ψ is
infelicitous, while ϕ is not.

This has to be stated more carefully. The pragmatic principle can only be invoked
when ϕ and ϕ ∨ ψ communicate the same thing: The principle works because you
could have used either ϕ or ϕ∨ψ to communicate what you wanted to communicate,
but you should choose ϕ over ϕ ∨ ψ on the grounds that ϕ is more concise. But if ϕ

and ϕ ∨ψ should communicate the same thing, the implication from ψ to ϕ needs to
be “obvious”, because if the implication would require a very complicated classical
logic computation, ϕ and ϕ ∨ ψ wouldn’t communicate the same thing. Thus, the
refined Hurford constraint with its explanation states the following.21 Assume ϕ ∨ψ

is a disjunction where ψ obviously implies ϕ. Then ϕ ∨ ψ is infelicitous because ϕ

and ϕ ∨ ψ communicate the same thing, whence you should choose the simpler ϕ

over the complicated ϕ ∨ ψ .
Now for the argument. Assume the refined Hurford constraint with its explana-

tion is correct. The sentence ϕ ∨ (ϕ ∧ ψ) is a disjunction where (ϕ ∧ ψ) obviously
implies ϕ (in the sense of the preceding paragraph) since it infers the conjunct from
a conjunction. Hence, by assumption, ϕ and ϕ ∨ (ϕ ∧ ψ) need to communicate the
same thing, whence ϕ ≡c ϕ ∨ (ϕ ∧ ψ). (So the Hurford constraint can be seen
as a reason for coarse-graining synonymy.) Moreover, the axioms of AC represent
necessary properties of ≡c, and there is no other reason to make more sentences ≡c-
synonymous. Thus, ≡c is axiomatized by SF, and hence scenario synonymy is the
intuitively correct notion of synonymy ≡c.

Argument forSFA Assume the two components conception of meaning, and assume
the truth component is correctly spelled out as FDE-equivalence (motivated by
scenarios). Moreover, assume that the aboutness component is given by some atom-
based approach to subject matter which, as mentioned, is particularly well-suited if

20For a discussion see e.g. [12, 14, 29, 36, 43, 54].
21 Another refinement (which is not relevant to the present argument) is that the weaker disjunct ϕ

shouldn’t get an exhaustive reading as ϕ ∧ ¬ψ [12, 29]. Otherwise the disjunction is felicitous—an often
cited example is “Mary read most or all of the books”.
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subject matter is understood as topic [31]. That is, the subject matter of a complex
sentence is given by merging the subject matter of the atoms of the sentence. For this
notion of subject matter, the following is true.

(S2) Soundness of syntactic reflection. If two sentences have the same atomic
sentences, they have the same subject matter.

Thus, by (S1), which we discussed in Section 2, two sentences have the same subject
matter if and only if they have the same atoms. Hence, by the characterization the-
orem, synonymy in this intuitively correct conception of meaning is axiomatized by
SFA.

Argument forAC The flip side of the argument just given is that subject matter iden-
tity has to be stronger than having the same atoms (which is in favor of AC): Assume
one could argue that ϕ ∨ (ϕ ∧ ψ) is not synonymous to ϕ ∨ (ϕ ∧ ¬ψ) (as, for
example, in truthmaker semantics). Then, by the characterization theorem, having the
same atoms and FDE-equivalence are not enough for synonymy. Assume one sticks
to the idea of two components semantics where truth-component identity shouldn’t
be spelled out in a way more fine-grained than FDE-equivalence. Then subject mat-
ter identity involves more than just having the same atoms (that is, the soundness
of syntactic reflection (S2) fails). Since the two sentences differ only by a negation
sign, this then seems to suggest that negation is not topic transparent, that is, that the
subject matter of a statement and that of its negation may differ.22

Argument forSCA We can take the same argument as for SFA but replace the choice
for the truth-component: instead of FDE motivated by scenarios, take classical equiv-
alence motivated as the conservative choice. Thus, SCA axiomatizes synonymy in the
minimal modification of standard possible world semantics where synonymy entails
subject matter identity.

Another way to bring this about is as follows. The semantics for weak Kleene
logic uses three truth-values t, f, u, but u is interpreted as meaninglessness or off-
topicness [3, 9]. Thus, when all atoms of a sentence ϕ have a classical truth-value
(t or f ), the whole sentence has a classical truth-value, but as soon as one atom
of ϕ is u, the whole sentence is u. Hence two sentences ϕ and ψ are equivalent in
weak Kleene logic iff they are classically equivalent and have the same atoms iff
they are SCA-equivalent. So if we take weak Kleene to correctly describe reasoning
preserving both truth and topic and adopt a two component view of meaning, then
SCA is the correct logic of synonymy.

Taking up on footnote 21, a possible counterargument to SCA as the correct
axiomatization of synonymy is as follows. The non-exhaustive reading of a Hurford
disjunction is infelicitious, while the exhaustive reading is felicitous. So the two read-
ings shouldn’t be synonymous. In particular, ϕ ∨ (ϕ ∧ ψ) shouldn’t be synonymous
to (ϕ ∧¬ψ)∨ (ϕ ∧ψ). However, since these two sentences are classically equivalent
and have the same atoms, they are equivalent according to SCA.

22Unless conjunctions (or disjunctions) create opaque contexts which is not implausible as conjunction
acts like a modal operator in truthmaker semantics (cf. the semantic clause for ∧ in Section 3).
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Argument for AC and SCL An intuitive notion of synonymy is explanational equiv-
alence: any explanation for why ϕ is true can be “obviously” transformed into an
explanation for why ψ is true. In other words, the two sentences don’t just agree on
truth-conditions but also on how they are explained or proven. Inspired by the concept
of a homotopy and the well-known idea that a logic yields a category where formu-
las are objects and proofs are morphisms, we may formalize this by two conditions:
First, there is a proof from ϕ to ψ and a proof from ψ to ϕ (this allows transformation
of an explanation for ϕ into one of ψ , and vice versa). Second, if we concatenate the
proofs and move from ϕ to ψ and back to ϕ, we obtain a proof that is “essentially”
like the identity proof that obtains ϕ from ϕ; and similarly for ψ (this captures that
the transformation is “obvious”).23 Now, following [52], “essentially” can be spelled
out in different ways: roughly, it could be exact identity or it could allow treating
equally occurrences of the same atom (either all or only those of the same polarity).
If we choose identity, the resulting notion of synonymy is that of isomorphism in the
category of classical proofs as mentioned above [17, 52]. If we choose same-polarity
occurrences, we get a notion of synonymy equivalent to AC [52]. If we choose all
occurrences, we get a notion of synonymy with the same characterization as (and
hence axiomatized by) SCL [52]. Thus, AC and SCL can be seen as two possible
axiomatizations of explanational synonymy.

8 Ways Out of the No-go Result and its Consequences

We mention ways out of the no-go result about synonymy from Section 2, and we
state some of its consequences concerning a pluralistic conception of synonymy and
the principle of compositionality in logic programs and neural networks.

Ways out We’ve started with two intuitive principles about synonymy in the strong
sense of content identity: (P1) demanding synonymy to preserve having the same
atoms, and (P2) demanding synonymy to respect scenarios. The two principles
are inconsistent under the two assumptions (A1) and (A2) on scenarios (which a
straightforward refinement of possible worlds semantics should satisfy). With the last
sections, we can now understand this contradiction by identifying it and consider-
ing ways out. Indeed, we can precisely locate the inconsistency: Scenario synonymy
exactly satisfies (P2), (A1), and (A2), and the instances of sentences violating (P1)
can be traced back to exactly one axiom: ϕ ≡ ϕ ∨ (ψ ∧ ϕ).

So let’s wonder what modifications of (P1), (P2), (A1), or (A2) would render them
consistent. We’ll consider three related options.

First, we weaken (P2): The conceptivist logics SCA,SCL,SFA,AC all satisfy (P1)
and, as extensions of AC, they satisfy a weaker version of (P2): If there is no set

23Figuratively speaking, the homotopy idea arises by thinking of proofs as paths through the space of for-
mulas and demanding that the loop going from ϕ through ψ back to ϕ can be “continuously” deformed
into the point ϕ (and similarly for ψ). Thus, various notions of continuity (i.e., of proof identity) corre-
spond to various notions of “obviousness” and subject matter. We leave it to future research to explore
these connections to homotopy theory.
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of scenarios that verifies one sentence but not the other, then the sentences are
synonymous (cf. Section 5).

Second, we keep (P1) and (P2) but change the notion of scenario whence modi-
fying (A1) and/or (A2). This is done by most semantics for conceptivist logics. We
consider three kinds of examples: (a) As mentioned, weak Kleene semantics uses
three truth-values t, f, u—so validates (A1)—but u is interpreted as meaninglessness
or off-topicness. Hence conjunction and disjunction cannot be interpreted as lattice-
like operations on the truth-values, whence (A2) is not satisfied.24 (b) The truthmaker
semantics for AC uses the four truth-values t, f, u, b—so, too, validates (A1)—but
there can be states neither making ϕ nor ψ true while making ϕ∧ψ true, whence (A2)
is not satisfied. (c) The NC semantics for AC by [21] uses nine truth-values—so
violates (A1)—but the truth-functions of the connectives on these truth-values is
straightforward, whence it in spirit satisfies (A2).

Third, the general idea behind the preceding approach is to add more structure
to the notion of a scenario and use this to make more fine-grained distinctions: in
(a) the information what’s on topic in a given scenario is added, in (b) mereological
structure is added to the set of states, and in (c) more truth-values are added. Note an
important difference: in (a) and (c) the scenarios themselves are ‘locally’ enriched by
more structure while in (b) the set of scenarios is ‘globally’ enriched.

Let’s consider more explicit ways of enriching scenarios and thus “intensional-
ize” scenario semantics. In Section 4, we described scenarios as representations of
the world that extensionally act like FDE-models. So it could be that two scenarios
determine the same valuation (extensionally identical) but they still differ in their
representational or internal structure (intensionally different). Using this additional
intensional structure, we could then weaken (P2) to demanding intensionally indis-
tinguishable sentences to be synonymous. That is, if no scenario can find a difference
between two sentences—neither based on its internal structure nor on the induced
valuation—then they are synonymous. Here are three examples.

(a) As just indicated, a scenario might consist of a valuation plus a set of atomic
sentences which are considered to be on topic in that scenario (or something similar
to that effect). Then (intensional) scenario indistinguishability amounts to SFA.

(b) Two FDE-equivalent sentences ϕ and ψ might still be intensionally dis-
tinguished since the explanation for why ϕ is true according to the scenario or
representation is different from why ψ is true.25 Thus, two sentences are intension-
ally indistinguishable if they are FDE-equivalent and explanational synonymous as
described in Section 6, whence this version of intensional scenario synonymy is
axiomatized by AC or an even more fine-grained logic.

(c) Another, even more cognitive approach to weakening (P2) by intensionalizing
scenario semantics is to read (P2) as “if no scenario can be imagined in which the
two sentences differ, they are synonymous”. Then scenario synonymy is moved from

24Otherwise, since t ∨ u = u and t ∧ u = u, we’d have u ≤ t ≤ u, so t = u, contradiction.
25Consider ϕ = p and ψ = p ∨ (p ∧ q). Then the explanation for ψ might be: there is a fact p0 that,
according to the representation, implies p ∧ q, whence p ∨ (p ∧ q). And this is a different explanation
from why ϕ is true: from the fact p0 we get p ∧ q, whence p.
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an extensional into an hyperintensional context, whence more is required for it to
obtain. Using the logic of imagination of [4, 5], this can formally be spelled out as:
for all sentences χ , [χ]ϕ is equivalent to [χ]ψ . This roughly means that whenever
we imagine a scenario constructed around making χ true, if ϕ will turn out to be true
there, too, then also ψ will be true (and vice versa). What is the resulting notion of
synonymy? If only possible worlds are used [5], it coincides with SCA (given same
content implies having the same atoms). If also non-normal worlds are allowed [4], it
depends on the assumptions about imagination but the resulting notion of synonymy
will generally be very fine-grained. Thus, in line with the previous version, this ver-
sion of intensionalized scenario synonymy, too, will be rather high up in the lattice
of logics of synonymy.

Let’s turn to the consequences of our results and the paradoxical nature of
synonymy.

Pluralism According to pluralism about meaning, there are various, equally justified
notions of meaning and thus logics of synonymy. Here are two ways how our results
point in this direction.

First, assume that, despite the attempted reconciliation, it is not an option to give
up on any of (P1), (P2), (A1), and (A2) in their original, non-weakened formulations.
Say, because one is convinced that (P1) is a necessary truth and (P2) together with
the two assumptions is key to how we evaluate complex sentences and use scenarios
in our thinking (e.g. in counterfactual reasoning). Then, scenario synonymy and one
of the conceptivist logics are equally justified notions of synonymy. Our intuitions in
favor of the principles then come from distinct notions of meaning.

Second, and more importantly, we’ve seen several arguments motivating distinct
notions of synonymy. That is, as soon as at least two of these arguments are accepted,
pluralism holds. The characterization theorem associates these notions of synonymy
to different choices of logic and subject matter. For example, the ‘communicational
synonymy’ in the argument for SF is distinct from the ‘explanational synonymy’ in
the argument for AC and SCL. That there is no universally correct choice can be made
plausible by the fact that different domains of reasoning might demand different
choices. For example, in some domains, maybe metaphysics or mathematics, it might
be plausible to adopt a classical logic, while in other domains, maybe cognition or
databases, it might be plausible to go four-valued. And in some domains, maybe
topics of a discourse, it might be plausible that negation is transparent and hence same
atoms should mean same subject matter, while in other domains, maybe epistemic
notions of content, it might be that having the same literals is the right choice for
tracking subject matter identity.

Non-compositionality Another consequence of our results is that synonymy cannot
be spelled out via scenarios in what may be called a straightforwardly composition-
al way: Assume we take the common starting point and work with scenarios that
assign (at most) four truth-values to atomic sentences—that is, we satisfy (A1). If we
then build a semantics for complex sentences with these scenarios that satisfies the
principles of synonymy (P1) and (P2), then (A2) fails: The truth-values of complex
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sentences at scenarios are not determined by the truth-value of the sentences’ parts at
that scenario according to the straightforward truth-functions for the connectives.

Thus, there is a sense—namely that of violating (A2)—in which synonymy or
content identity is not compositional. Let’s now discuss the value of this insight.

On a positive note, this can be seen as an extension of a result from [40] show-
ing that synonymy in the weaker sense of meaning similarity or resemblance is not
compositional.

Moreover, we see that the above abstractly described failure of (A2) is found in
many concrete examples: This applies, for instance, to the examples of scenarios
mentioned in Section 4, that is, logic programs and their implementation in appropri-
ate neural networks. But it also applies much more generally when we assign—e.g.,
in the quest for explainable artificial intelligence—to each activation state (or weight-
setting) of a given neural network some human-interpretable atomic properties (e.g.,
“in this this activation state, the network recognizes a dog” or “in this weight-setting,
the network accurately identifies stop signs”). In all these examples, we assign at
most four truth-values to atoms, but to fully query logic programs or explain the net-
work, we, at the very least, also need to understand when complex properties (formed
from the atomic ones) are true according to a program or state. For this, it is natu-
ral to demand that programs and states can individuate complex properties built from
different atomic properties: For example, when we consider the two complex prop-
erties ‘there is a dog’ and ‘there is a dog or there is both a dog and a cat’, we’d
intuitively expect that in an activation state with the latter property the concept ‘cat’
is somehow “present”, while this is not necessary for states with the former property,
whence the two properties intuitively should be distinguishable by some state. But
then the notion of truth according to a logic program or (activation or weight) state of
a neural network cannot be straightforwardly compositional: we cannot just use the
straightforward truth-functions to determine the truth-value of a complex sentence.
For example, to determine the truth-value of a conjunction we might have to take
other states and programs into account—rendering ‘and’ a modal operator as in truth-
maker semantics (also see the discussion at the end of Section 9). This is, to the best
of our knowledge, a fresh perspective—that seems worth pursuing—on the correct
logic and semantics for complex properties of logic programs and network states.

On a negative note, we may wonder: what good is the insight that there is no
straightforwardly compositional semantics if we could still find a compositional
semantics that is, if at all, only slightly less straightforward but satisfies (A1), (P1)
and (P2). The following two examples exemplify two ways how this can be achieved.
However, they show that the resulting compositionality is different from a straight-
forwardly compositional semantics in that it is not, what we may call, ‘purely
extensional’.

First, assume scenarios use the three truth-values t, f, u and as truth-functions we
don’t use the straightforward ones of strong Kleene logic but rather the, if at all,
slightly less straightforward ones of weak Kleene logic. As discussed above, this still
satisfies (A1), (P1) and (P2), however, now the truth-values aren’t ‘pure’ truth-values
anymore but rather ‘composites’ of truth and topic (t is interpreted as true and on
topic, f is interpreted as false and on topic, and u is interpreted as off topic). So,
really, we added additional intensional structure—namely, topic—to the scenarios
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and used this to satisfy the principles of synonymy. As described above, this is a
promising way out of the inconsistency, but compositionality is restored by (covertly)
intensional means. The semantics is not ‘purely extensionally’ compositional in the
following sense: it uses extensional truth-functions but it interprets the truth-values
as truth-topic composites which provide intensional structure.

Second, consider truthmaker semantics. Scenarios assign four truth-values to
atomic sentences, but the truth-value of a complex sentence ϕ at a scenario s is not
determined by a truth-function and the truth-values of ϕ’s parts at s anymore (as it
still was the case in the preceding example). Rather, the truth-value of complex sen-
tences is determined modally, that is, by also taking into account scenarios other
than s.26 So, again as described above, this is a promising way out of the inconsi-
tency, but compositionality is restored by the intensional means of using a modal
semantics for conjunction and disjunction. Again the semantics is not ‘purely exten-
sionally’ compositional: the truth-values are ‘pure’ but the connectives are modal and
not extensional.

9 Impossibility Results for Subject Matter Preserving Synonymy

As just seen, a likely conclusion of the no-go result is that truth at scenarios is not
straightforwardly compositional: the truth-value of a formula at a scenario cannot
be determined from the truth-value of its atoms at the scenario alone in the straight-
forward way. We first analyze and then generalize this to an impossibility result for
synonymy.

Analysis So what feature of a straightforwardly compositional semantics is the rea-
son for the violation of the subject matter preservation principle? There are two
evident potential reasons.
(1) To determine the truth-value of a formula at a scenario one only needs to consider

that scenario and no other scenarios. That is, the connectives have an extensional,
non-modal semantics.27

(2) The truth-values can sensibly be ordered and conjunction and disjunction respect
this order: the truth-value of a conjunction is the minimum of the truth-values of
the conjuncts, and similarly the maximum for disjunctions.28

We now formulate these ideas more formally, and then we argue that—maybe
contrary to one’s first guess—(1) is not the real reason, but (2) is.

26For example, the truth-value of ϕ ∧ψ at s is in {t, b} if there are scenarios s′ and s′′ such that s = s′ � s′′
and the truth-value of ϕ at s′ is in {t, b} and the truth-value of ψ at s′′ is in {t, b}.
27This is what the logics used in (A2) satisfy (they have a straightforwardly compositional semantics).
As already noted, truthmaker semantics doesn’t satisfy this (and it cannot be given a straightforwardly
compositional semantics).
28Again, this is what the logics used in (A2) satisfy (they have a straightforwardly compositional seman-
tics). As already noted, weak Kleene logic doesn’t satisfy this (and it cannot be given a straightforwardly
compositional semantics). Coming back to the weak Kleene logic example at the end of the previ-
ous section, one could speculate that an important feature of a ‘pure’ truth-value—as opposed to the
‘truth-topic composites’—is that it makes sense to order ‘pure’ truth-values.
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Let’s define a simple but general framework to formulate the discussion. We work
in the general semantic framework where formulas (here built from ¬, ∧, ∨) get
truth-values at states. So a semantic model is a triple M = (SM, TM, VM) where SM

is a non-empty set of states (with possible further structure) and TM is a non-empty
set of truth-values (with possible further structure), and for every formula ϕ and state
s ∈ SM , the semantic model determines the truth-value VM(ϕ, s) ∈ TM . A semantics
S is a non-empty class of semantic models. For example, truthmaker semantics is the
class of semantic models (SM, TM, VM) where SM is a state space (in the sense of
truthmaker semantics), TM is the usual set of four truth-values, and VM is recursively
given by the clauses of truthmaker semantics.

We define a semantics S to be extensionally compositional if, for all M =
(SM, TM, VM) ∈ S there is a function f such that for all formulas ϕ with atoms
p1, . . . , pn and all states s ∈ SM ,

VM(ϕ, s) = f
(
ϕ, VM(p1, s), . . . , VM(pn, s)

)
.

This is the formalization of (1): The truth-value of ϕ at s is determined by the truth-
value of ϕ’s atoms at s, and no other state s′ �= s is required for this.29 (We might
additionally demand that f can be chosen uniformly, but this weaker version will
already be sufficient.)

We say that a semantics S is conjunction and disjunction conservative if, for all
M = (SM, TM, VM) ∈ S, the set TM is a lattice (with operations ∧ and ∨) and for
all states s ∈ SM ,

VM(ϕ ∧ ψ, s) = VM(ϕ, s) ∧ VM(ψ, s) and

VM(ϕ ∨ ψ, s) = VM(ϕ, s) ∨ VM(ψ, s).

This is the formalization of (2): Conjunction and disjunction of the language get
interpreted by the corresponding standard functions on the truth-values.

Finally, we say that a semantics S satisfies subject matter preservation, if for all
formulas ϕ and ψ ,

(
∀M ∈ S ∀s ∈ SM : VM(ϕ, s) = VM(ψ, s)

)
implies At(ϕ) = At(ψ).

We now show that (1) is not the reason for the inconsistency: We show that
an extensionally compositional semantics doesn’t necessarily violate subject mat-
ter preservation (which it had to, if it were the reason). (This is unlike scenario
semantics which is extensionally compositional and violates subject matter preserva-
tion.) Indeed, consider the trivial semantics consisting of only one semantic model
M0 = (S0, T0, V0) where S0 consists of just one state s0, T0 is simply the set of
formulas, and V0(ϕ, s0) = ϕ. It is easily seen that this semantics is extensionally
compositional and doesn’t violate (i.e., satisfies) the subject matter preservation. Of
course, this semantics is no “serious” semantics, but it shows that being extensionally
compositional doesn’t imply a violation of subject matter preservation.

Next we show that (2) is a reason for the inconsistency: We claim that synonymy
in a conjunction and disjunction conservative semantics S does not preserve subject

29See [32] for a good discussion of compositionality at such a general level.
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matter. Indeed, by the absorption laws that any lattice satisfies,30 we have for any
M ∈ S and s ∈ SM ,

VM

(
p ∨ (p ∧ q), s

) = VM(p, s) ∨ (
VM(p, s) ∧ VM(q, s)

) = VM(p, s),

but At
(
p ∨ (p ∧ q)

) �= At
(
p
)
, so S doesn’t preserve subject matter.

Generalization In fact, a much weaker condition is enough to violate subject matter
preservation. We say a semantics S is weakly absorptive if for all formulas ϕ and ψ

and all M ∈ S we have for all s ∈ SM ,

VM

(
ϕ ∧ (ϕ ∨ ψ), s

) = VM

(
ϕ ∨ (ϕ ∧ ψ), s

)
.

The name is to indicate that this is a weak version of the just mentioned absorp-
tion law of lattices. As lattice (-like) structures are so fundamental to logic, it’s not
surprising that most logics validate weak absorption. For example, even exact truth-
maker semantics, which is much higher up than AC in the lattice of conceptivist
synonymies, still is weakly absorptive.31 Hence all conceptivist logics containing
AC—which includes all synonymies discussed so far—satisfy weak absorption.32

We say a semantics S is order conservative, if, for all M ∈ S, the set of truth-
values TM has a partial order ≤ and for all ϕ and ψ ,

VM

(
ϕ ∧ ψ, s

) ≤ VM

(
ϕ, s

)
and VM

(
ϕ, s

) ≤ VM

(
ϕ ∨ ψ, s

)
.

Note that this is much weaker than being conjunction and disjunction conservative,
since no lattice structure on the set of truth-values is assumed, let alone a homomor-
phism from formulas to truth-values. So this can be considered as a much weaker
version of (2).

Still, these two weak properties yield the following simple but far-reaching
impossibility result.

Theorem 3 (Impossibility result) Synonymy in a weakly absorptive and order
conservative semantics S does not preserve subject matter.

Proof For any M ∈ S and s ∈ SM we have by order conservativity:

VM

(
p ∧ (p ∨ q), s

) ≤ VM

(
p, s

) ≤ VM

(
p ∨ (p ∧ q), s

)
.

By weak absorption, VM

(
p ∧ (p ∨ q), s

) = VM

(
p ∨ (p ∧ q), s

)
, whence VM

(
p ∧

(p ∨ q), s
) = VM

(
p, s

)
. But this violates subject matter preservation.

30That is, a ∨ (a ∧ b) = a = a ∧ (a ∨ b) for all elements a and b of the lattice.
31It is readily shown that for any state s in a state model M , we have s � ϕ ∧ (ϕ ∨ψ) iff s � ϕ ∨ (ϕ ∧ψ).
(Contrast this with the fact that exact truthmaking doesn’t satisfy the distributivity law [25].)
32 One logic that provides an exception is multiplicative linear logic: Conjunction (commonly written ⊗)
can intuitively be interpreted, roughly, as there being enough resources to realize any of the disjuncts.
Disjunction (commonly written

&

) can intuitively be interpreted, roughly, as there being enough resources
to realize any of the disjuncts. So ϕ⊗(ϕ

&

ψ) requires at least two times ϕ, while ϕ

&

(ϕ⊗ψ) only requires
at least one ϕ and one ψ (which is less if ψ requires less than ϕ). As mentioned, [17, 52] show that
equivalence in multiplicative linear logic coincides with isomorphism in the category of classical proofs,
and, in fact, [52] even explicitly mentions that ϕ ∧ (ϕ ∨ ψ) is not isomorphic to ϕ ∨ (ϕ ∧ ψ).
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Thus, any subject matter preserving semantics either fails to be weakly absorptive
or order conservative (or both). Let’s consider both options.

Giving up order conservativeness: For example, truthmaker semantics (either exact
or as for AC) is a subject matter preserving semantics and it indeed fails to be order
preserving.33 In contrast, as noted, any conceptivist logic containing AC (or exact
equivalence) satisfies weak absorption. So any subject matter preserving semantics
for these conceptivist logics is not order conservative, whence doesn’t respect an
essential property of conjunction and disjunction. This corollary can be summarized
in the following slogan: Any subject matter preserving semantics that makes synony-
mous the few sentences dictated by exact equivalence, violates our intuitions about
conjunction and disjunction.

Giving up weak absorption: If the impossibility result forces us to choose between
giving up weak absorption or changing an essential property of conjunction and dis-
junction, it seems natural to, at the very least, consider giving up weak absorption (in
contrast to what most logics do). Indeed, we’ll present some linguistic and cognitive
evidence against weak absorption.

Concerning the linguistic evidence, consider the following two sentences adapted
from the famous Linda problem [57]:
(a) Linda is a bank teller or (Linda is a bank teller and an activist).
(b) Linda is a bank teller and (Linda is a bank teller or an activist).
Albeit a Hurford disjunction (cf. Section 4), sentence (a) seems to be a legitimate sen-
tence in the context of the “Linda experiment” [57]: participants might ponder about
it when they judge which of the two disjuncts is more likely. In contrast, sentence (b) is
pragmatically very ill-behaved: it first makes a claim (that Linda is a bank teller) and
then makes a second claim which is weaker than the first. Pragmatically, this doesn’t
make sense: a hearer will think that either the speaker shouldn’t have made the first
claim since it was false, or that the speaker shouldn’t make the weaker claim to not be
redundant. So it seems that while (a) is sometimes pragmatically legitimate, (b) never
is, even though these two sentences are synonymous if weak absorption holds.34

Here is some cognitive evidence against weak absorption. Very roughly, our cog-
nition recognizes conjunctive features in a serial manner and disjunctive features in
a parallel manner [56]. This suggests that ϕ ∧ (ϕ ∨ ψ) and ϕ ∨ (ϕ ∧ ψ) should
play different cognitive roles: Assume we’re presented with a few objects one of
which has property P(x). If we’re asked whether there is an object x with the feature

33A state can (exactly) make true a conjunction without (exactly) making true any of the conjuncts: con-
sider three states s �� p, q and s′ � p and s′′ � q such that s = s′ � s′′, whence s � p ∧ q. So
{1, b} � V (p ∧ q, s) �≤ V (p) ∈ {0, n}.
34Note that we only claim that the concrete sentences (a) and (b) provide counter-evidence to weak absorp-
tion. We don’t claim that the following general principle is true: If ϕ and ψ are synonymous (in a given
sense), then if ϕ makes sense in some context, also ψ makes sense in this context. If sentences (a) and (b)
are inserted to this principle, it could of course be used (contrapositively) to argue against weak absorp-
tion. Though, it is doubtful whether this general principle is true. I’m grateful to an anonymous referee
who pointed out that ϕ is synonymous to ϕ ∨ ϕ (even on very fine-grained notions of synonymy) but
‘Which is true: ϕ or ϕ?’ makes sense while ‘Which is true: ϕ?’ doesn’t. We leave it as an open question
to figure out which refined version of this principle can be used as an argument schema against acclaimed
synonymyies.
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P(x)∧(
P(x)∨Q(x)

)
, then the prediction is that we should—by default, i.e., without

further reflecting on the question—serially go though the objects and for each check
whether it has P(x) and P(x) ∨ Q(x). If, on the other hand, we’re asked whether
there is an object x with the feature P(x)∨ (

P(x)∧Q(x)
)
, we would—by default—

scan the scene in parallel and find the object with P(x) from which we’d immediately
conclude that P(x) ∨ (

P(x) ∧ Q(x)
)

holds since the first disjunct was confirmed.
Thus, in this exceedingly idealized setting, the response times for these two sentences
should be different, although they are equivalent according to weak absorption.35

This poses some interesting, though highly speculative further questions. On the
neural level, conjunctive features are realized by binding [19]: very roughly, a state
where the neural network cognized that an object has two features P and Q some-
how contains two parts—one signaling P and one signaling Q—that are bound
together. So conjunction is much like the modal truthmaker conjunctions. However,
since truthmaker semantics is weakly absorptive, this suggests that binding is more
complicated than just ‘merging’ two states. What is this additional structure on the
state space of the network? Or does disjunction also behave in a more complicated
way—as, e.g., via a closure operator [51, ch. 12]?

We leave it to future research to answer these questions and to develop a logic that
can account for the above linguistic and cognitive intuitions against weak absorption.
(In light of footnote 32, multiplicative linear logic seems like a promising starting
point.) If the outcome is order conservative and subject matter preserving, it would
be a novel answer to the impossibility result.

Appendix : Proofs

In this appendix, we prove the theorems stated in the main text which essentially
amounts to proving the characterization theorem (Theorem 2).

All our proofs are elementary. As mentioned, a methodological novelty is that we
extend a technique used by [22, 23]: proving completeness results by developing an
appropriate notion of a disjunctive normal form. That is, the idea of the proof is as fol-
lows: For each notion of synonymy, we find a corresponding notion of normal form
that is (i) provably equivalent according to the synonymy and (ii) if two such forms
satisfy the two characterizing properties, they are identical (modulo the order of liter-
als and disjuncts). The theorems then follow: soundness is easy, and for completeness
we move to the normal form of the two given sentences with the two properties; these
normal forms hence have to be the identical, whence the original sentences are prov-
ably equivalent. The unifying, constructive, and theory-independent character of this
proof has been discussed in Section 6.

35Although, given the special logical character of the sentences, it is not clear whether the “weirdness” of
the sentence overrides the default response. Also note that, if at all, this can only work for sentences with
small syntactic complexity: It couldn’t be used to check whether or not two sentences involving, say, 100
disjunctions and/or conjunctions should be equivalent. For otherwise we wouldn’t be able to immediately
see whether we should go into ‘conjunction/serial’ mode or ‘disjunction/parallel’ mode when checking
the sentence. This is analogous to why conjunctive/disjunctive feature detection also only works when
presented with a small number of objects.
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Recall Definition 3 collecting the logics that we’ll be working with. If L is one of
these logic obtained from AC by adding an axiom ϕ ≡ ψ , then we refer to ϕ ≡ ψ as
the L-axiom. Also note, by construction (see Definition 2), if ϕ is in disjunctive form,
then L(ϕ) = {l : l literal in ϕ}. So, by Lemma 1, for any ϕ, L(ϕ) = L(ϕmax). Thus,
we can—as we find it more convenient in this appendix—work with the conception
of L(ϕ) as the set of literals of ϕ when ϕ is a disjunctive form, or as the set of literals
of ϕmax when ϕ is arbitrary.

Step 1: Disjunctive Normal Forms

In this section, we do the first step: providing provably equivalent notions of normal
form. In Section 6, we defined standard disjunctive normal forms. Now we define
such a normal form for each logic. (Item (i) is due to [23].)

Definition 4 (Disjunctive forms) Let ϕ = ϕ1 ∨ . . . ∨ ϕn be in standard disjunctive
normal form. We say

(i) ϕ is maximal if for all i ∈ {1, . . . , n}, and for all literals l occurring in ϕ, there
is a j ∈ {1, . . . , n} such that L(ϕi ∧ l) = L(ϕj ). In other words, ϕi ∧ l and
ϕj have the same literals, that is, they are identical modulo order and repeats of
the literals. (Roughly, this means that the set of disjuncts of ϕ is closed under
adding literals of ϕ.) This will be the normal form of AC.

(ii) ϕ is minimal if for all i, j ∈ {1, . . . , n} with i �= j ,

L(ϕi) �⊆ L(ϕj ) and L(ϕj ) �⊆ L(ϕi).

This will be the normal form of SF.
(iii) ϕ is maximal positive if

(a) For every disjunct ϕi of ϕ, there is an A ⊆ At(ϕ) and a minimal disjunct
ϕ0 of ϕ (i.e., there is no disjunct ϕ′

0 of ϕ such that L(ϕ′
0) � L(ϕ)) such that

L(ϕi) = L(ϕ0) ∪ A, and
(b) if ϕi is a disjunct of ϕ and p ∈ At(ϕ), then ϕi ∧p is a disjunct of ϕ (modulo

the order of the literals).
This will be the normal form of SFA.

(iv) ϕ is maximal literal-contradiction closed if ϕ is maximal and if p, ¬p ∈ L(ϕ),
then p ∧ ¬p is a disjunct of ϕ. This will be the normal form of SCL.

(v) ϕ is maximal atom-contradiction closed if ϕ is maximal and if p ∈ At(ϕ), then
p ∧ ¬p is a disjunct of ϕ. This will be the normal form of SCA.

As mentioned, [23] shows that every formula ϕ is AC-provably equivalent to a
standard maximal disjunctive normal form ϕmax. We show the analogue for the new
normal forms and extensions of AC. For this, we’ll need the following replacement
rule.

Lemma 2 (Replacement) For C ∈ {AC,SF,SFA}, the following rule is C-
admissible, that is, if the premise is C-derivable, then the conclusion is C-derivable.
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(When χ[ϕ] is a formula containing occurrences of ϕ, then χ[ψ] is the result of
replacing all occurrences of ϕ by ψ .)

ϕ ≡ ψ

χ[ϕ] ≡ χ[ψ] (R)

Proof Most of the work has been done in [23]. It suffices to show that the following
two rules are admissible.

ϕ ≡ ψ

χ[ϕ] ≡ χ[ψ] (PR)
ϕ ≡ ψ

¬ϕ ≡ ¬ψ
(NR)

where in (PR) the occurrences of ϕ in χ[ϕ] are not in the scope of ¬. The admissi-
bility of (PR) is shown for AC by [23] and the proof also works for SF and SFA. For
(NR), the proof is by induction on the proof of ϕ ≡ ψ . All the cases corresponding
to the axioms and rules of AC are dealt with in [23]. So we only need to consider the
cases where ϕ ≡ ψ is ϕ0 ∨ (ϕ0 ∧ ψ0) ≡ ϕ0 or ϕ0 ∨ (ϕ0 ∧ ψ0) ≡ ϕ0 ∨ (ϕ0 ∧ ¬ψ0).
In these two cases we have to show that ¬ϕ ≡ ¬ψ is derivable. Indeed, it is easy to
check that we have

SF � ¬(ϕ0 ∨ (ϕ0 ∧ ψ0)) ≡ ¬ϕ0

SFA � ¬(ϕ0 ∨ (ϕ0 ∧ ψ0)) ≡ ¬(ϕ0 ∨ (ϕ0 ∧ ¬ψ0))

using the distributivity and de Morgan axioms.

This also holds for SCL and SCA, but this will follow immediately from the char-
acterization theorem for these logics and we won’t need replacement for these logics
in the proof. This is why we don’t prove it directly here, although it’s not too hard
either.

Proposition 1 (Normal form for SF) Every formula ϕ is SF-provably equivalent to
a standard minimal disjunctive normal form ϕmin.

Proof As mentioned, there is a formula ϕ′ in standard disjunctive normal form that
is AC-provably equivalent to ϕ and hence in particular SF-provably equivalent.

Next, we can delete—while preserving SF-provability—any disjunct ϕj occurring
in ϕ′ if there already is a disjunct ϕi in ϕ′ with L(ϕi) ⊆ L(ϕj ). This is because if
there are such ϕj and ϕi , then, without loss of generality, ϕj = ϕi ∧ χ and (using the
underlining to increase readability)

ϕ′ = ϕ1 ∨ . . . ∨ ϕi ∨ . . . ∨ ϕj ∨ . . . ∨ ϕn

= ϕ1 ∨ . . . ∨ ϕi−1 ∨ ϕi ∨ ϕi+1 ∨ . . . ∨ ϕj−1 ∨ (ϕi ∧ χ) ∨ ϕj+1 ∨ . . . ∨ ϕn

≡ ϕi ∨ (ϕi ∧ χ) ∨ ϕ1 ∨ . . . ∨ ϕi−1 ∨ ϕi+1 . . . ∨ ϕj−1 ∨ ϕj+1 ∨ . . . ∨ ϕn

≡ ϕi ∨ ϕ1 ∨ . . . ∨ ϕi−1 ∨ ϕi+1 . . . ∨ ϕj−1 ∨ ϕj+1 ∨ . . . ∨ ϕn

≡ ϕ1 ∨ . . . ∨ ϕi ∨ . . . ∨ ϕj−1 ∨ ϕj+1 ∨ . . . ∨ ϕn,

where we essentially used commutativity and the axiom ϕ ∨ (ϕ ∧ ψ) ≡ ϕ. Thus, we
can reduce ϕ′ to a provably equivalent formula ϕ∗ in minimal disjunctive form.
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Finally, by commutativity, associativity, and idempotence we can reorder ϕ∗ to
make it standard (without changing minimality). Thus, we get a formula ϕmin that is
provably equivalent to ϕ and in standard minimal disjunctive form.

Proposition 2 (Normal form for SFA) Every formula ϕ is SFA-provably equivalent
to a standard maximal positive disjunctive normal form ϕpos.

Proof As mentioned, ϕ is AC-provably (and hence SFA-provably) equivalent to a
formula ϕmax in maximal disjunctive normal form. Let ϕ1, . . . , ϕr be the minimal
disjuncts of ϕmax. Then every disjunct ϕ′ of ϕmax is of the form ϕ′ = ϕi ∧L (modulo
ordering) for an i ≤ r and a (possibly empty) set L of literals occurring in ϕ. By
using replacement (Lemma 2), the SFA-axiom, and idempotence several times, we
can SFA-provably replace each ϕi ∨ ϕ′ by ϕi ∨ (ϕi ∧ At(L)) and thus end up with a
formula ϕ∗ that still is SFA-provably equivalent to ϕ.36 Clearly, ϕ∗ satisfies (a), and
it also satisfies (b): Let ϕ′ be a disjunct of ϕ∗ and p ∈ At(ϕ∗). Then ϕ′ = ϕi ∧At(L)

for an i ≤ r and a set L of literals occurring in ϕmax, and p occurs in a literal lp of
ϕmax (since At(ϕ∗) = At(ϕmax). Then, by the maximality of ϕmax, ϕi ∧ (L ∪ {lp}) is
(modulo order) a disjunct of ϕmax. By our replacement process, ϕi ∧ At(L ∪ {lp}) =
ϕi ∧ (At(L) ∪ {p}) = ϕ′ ∧ p is a disjunct of ϕ∗. Consequently, ϕ∗ is a maximal
positive normal form of ϕ.

Proposition 3 (Normal form for SCL) Every formula ϕ is SCL-provably equivalent
to a maximal literal-contradiction closed disjunctive normal form ϕlcl.

Proof Given ϕ, form ϕmax (which can be done in AC which is contained in SCL).
Then, for all p, ¬p ∈ L(ϕmax), add the disjunct p ∧ ¬p to ϕmax. Call the result
ϕ′ which is still SCL-provably equivalent to ϕ by iterated application of the SCL-
axiom (and applying the transitivity rule of AC). Then, again, form ϕ′

max which is the
required ϕlcl.

Proposition 4 (Normal form for SCA) Every formula ϕ is SCA-provably equivalent
to a maximal atom-contradiction closed disjunctive normal form ϕacl.

36To be a bit more precise: Say ϕ′ = ϕi ∧ p ∧ ¬q1 ∧ . . . ∧ ¬qm. Then, by maximality, ϕi ∧ p ∧ ¬q1 ∧
. . . ∧ ¬qm−1 is a disjunct of ϕmax, too. By the SFA-axiom, SFA proves that

(ϕi ∧ p ∧ ¬q1 ∧ . . . ∧ ¬qm−1) ∨ ((ϕi ∧ p ∧ ¬q1 ∧ . . . ∧ ¬qm−1) ∧ ¬qm)

≡ (ϕi ∧ p ∧ ¬q1 ∧ . . . ∧ ¬qm−1) ∨ ((ϕi ∧ p ∧ ¬q1 ∧ . . . ∧ ¬qm−1) ∧ qm),

so we can replace the formula to the left of ≡, which is modulo order a subformula of ϕmax, by the formula
to the right and obtain an SFA-equivalent formula ϕ1.

We continue this process with ϕi ∧ (p ∧qm)∧¬q1 ∧ . . .∧¬qm−1 by using the disjunct ϕi ∧ (p ∧qm)∧
¬q1 ∧ . . .∧¬qm−2 that was in the original ϕmax and still is in ϕ1. So we can SFA-provably replace ¬qm−1
by qm−1 and obtain ϕ2. We continue until we replaced all the ¬qj ’s by qj ’s.

And if this replacement process applied to another ϕ′′ = ϕi ∧ p ∧ ¬r also requires a disjunct ϕi ∧ p ∧
¬q1 ∧ . . . ∧ ¬qk , then we first add a copy of this disjunct to the current ϕj (which we SFA-provably can
do by idempotence) and then use one of them to replace ¬qk with qk .

To not be overly tedious, we omit a fully detailed proof of this fact.
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Proof As in Proposition 3 except for adding the disjunct p ∧ ¬p already if p ∈
At(ϕ).

In Corollary 2 below, we prove that all of these normal forms are unique. (In the
case of AC this was, as mentioned, already proven by [23].)

Step 2: Characterizing Normal Forms

In this section, we do the second step of the proof: showing that if two normal forms
of a synonymy satisfy the two characterizing properties of that synonymy, they are
identical (modulo the order and repeats of literals and disjuncts).

We first prove a lemma that we’ll need several times. Recall that ϕ ⇔FDE ψ was
defined as: for all four-valued valuations v, v(ϕ) = v(ψ).

Lemma 3 Let ϕ and ψ be two sentences in disjunctive normal form such that
ϕ ⇔FDE ψ . Then:
(i) For all disjuncts ϕ0 of ϕ there is a disjunct ψ∗ of ψ such that L(ψ∗) ⊆ L(ϕ0).
(ii) For all disjuncts ϕi of ϕ that are not disjuncts of ψ , there are disjuncts ϕj and

ψk such that L(ϕj ) = L(ψk) ⊆ L(ϕi) and ϕj is minimal in ϕ (i.e. no disjunct of
ϕ is properly contained in ϕj ).

Proof Ad (i). Assume there is a disjunct ϕ0 of ϕ such that for all disjuncts ψ∗ of ψ

we have L(ψ∗) �⊆ L(ϕ0). We show ϕ �⇔FDE ψ .
Indeed, consider the four-valued valuation v defined by

v(p) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 , if p ∈ L(ϕ0) and ¬p �∈ L(ϕ0)

0 , if p �∈ L(ϕ0) and ¬p ∈ L(ϕ0)

b , if p ∈ L(ϕ0) and ¬p ∈ L(ϕ0)

u , if p �∈ L(ϕ0) and ¬p �∈ L(ϕ0).

(Cf. the correspondence between valuations and sets of literals introduced in
Section 5.) Then v(ϕ0) ∈ {1, b} since each literal in ϕ0 is either 1 or b under v. Hence
v(ϕ) ∈ {1, b} since ϕ is a disjunction with disjunct ϕ0.

Moreover, we claim that v(ψ) ∈ {0, u}. It suffices to show that for each disjunct
ψ∗ of ψ we have v(ψ∗) ∈ {0, u}. Indeed, pick such a ψ∗. By our assumption, there
is a literal l in ψ∗ that is not in ϕ0. If l = q for an atomic sentence q, then q �∈
L(ϕ0). So if ¬q ∈ L(ϕ0), then v(q) = 0, and if ¬q �∈ L(ϕ0), then v(q) = u.
Hence v(q) = v(l) ∈ {0, u}. Dually, if l = ¬q for an atomic q, then v(¬q) =
v(l) ∈ {0, u}. Since v(l) ∈ {0, u}, also v(ψ∗) ∈ {0, u} since ψ∗ is a conjunction with
conjunct l.

Ad (ii). Fix a ϕi that is not disjunct of ψ . Consider the disjuncts ϕ∗ of ϕ such that
L(ϕ∗) ⊆ L(ϕi) and ϕ∗ is not a disjunct of ψ . Since there are finitely many, we can
pick a ⊆-minimal one, say ϕ∗

i , that is, L(ϕ∗
i ) ⊆ L(ϕi) and ϕ∗

i is not a disjunct of ψ

and

∀j ≤ n : L(ϕj ) � L(ϕ∗
i ) ⇒ L(ϕj ) ∈ C(ψ), (1)
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where C(ψ) is the set of L(ψ0)’s of disjuncts ψ0 of ψ . Since ϕ ⇔FDE ψ , we have
by (i) that there is a ψk (k ≤ m) such that L(ψk) ⊆ L(ϕ∗

i ). Among the disjuncts of
ψ with this property, we can choose a minimal one L(ψ∗

k ) ⊆ L(ψk), that is,

∀j ≤ m : L(ψj ) ⊆ L(ψ∗
k ) and L(ψj ) ⊆ L(ϕ∗

i ) ⇒ L(ψj ) = L(ψ∗
k ). (2)

Since ψ ⇔FDE ϕ, we have by (i) that there is a ϕr such that L(ϕr) ⊆ L(ψ∗
k ). Again,

there is a minimal disjunct L(ϕ∗
r ) ⊆ L(ϕr) (so no disjunct of ϕ is properly contained

in ϕ∗
r ). Since L(ϕ∗

i ) �= L(ψk) (otherwise ϕ∗
i would be in ψ), we have

L(ϕ∗
r ) ⊆ L(ϕr) ⊆ L(ψ∗

k ) ⊆ L(ψk) � L(ϕ∗
i ),

so by (1) we have L(ϕ∗
r ) ∈ C(ψ). So by (2), L(ϕ∗

r ) = L(ψ∗
k ) ⊆ L(ϕi).

Proposition 5 (Identity of SF-normal form) Let ϕ and ψ be two sentences in
standard minimal disjunctive normal form. Then

ϕ ⇔FDE ψ iff ϕ = ψ .

Proof For the non-trivial direction, write

ϕ = ϕ1 ∨ . . . ∨ ϕr ∨ ϕ′
1 ∨ . . . ∨ ϕ′

s

ψ = ψ1 ∨ . . . ∨ ψu ∨ ψ ′
1 ∨ . . . ∨ ψ ′

v,

where ϕ1, . . . , ϕr are exactly those disjuncts of ϕ that are—modulo ordering—also
disjuncts of ψ (so the remaining ϕ′

1, . . . , ϕ
′
s aren’t disjuncts of ψ). Analogously, the

unprimed disjuncts of ψ occur in ϕ, and the primed ones don’t.
We claim that primed disjuncts are extensions of unprimed ones, that is, for all

j ≤ s, ϕ′
j = ϕi ∧ L (modulo ordering) for an i ≤ r and a set of literals L (hence L

is a subset of the literals occurring in ϕ). Analogously for ψ .
Indeed, fix a ϕ′

j . Since ϕ ⇔FDE ψ and ϕ′
j is not in ψ , we have by Lemma 3(ii)

that there are disjuncts ϕ0 and ψ∗ (primed or unprimed) such that L(ϕ0) = L(ψ∗) ⊆
L(ϕ′

j ). Hence ϕ0 is in ψ and ϕ′
j = ϕ0 ∧ L for L := L(ϕ′

j ) \ L(ϕ0), which shows the
claim.

Now, since ϕ is minimal, no disjunct can be the extension of another one, hence
the set of primed disjuncts is empty. The same goes for ψ . Thus, ϕ and ψ really look
like this:

ϕ = ϕ1 ∨ . . . ∨ ϕr and ψ = ψ1 ∨ . . . ∨ ψu,

and recall that the ϕi’s also occur as disjuncts in ψ and vice versa. Hence
{L(ϕ1), . . . , L(ϕr)} = {L(ψ1), . . . , L(ψu)}. Since ϕ and ψ are standard, their order
is fixed, so ϕ = ψ , as wanted.

Proposition 6 (Identity of AC-normal form) Let ϕ and ψ be two sentences in
standard maximal disjunctive normal form. Then

L(ϕ) = L(ψ) and ϕ ⇔FDE ψ iff ϕ = ψ .
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Proof For the non-trivial direction, write ϕ = ϕ1 ∨ . . .∨ϕn and ψ = ψ1 ∨ . . .∨ψm.
By standardness, it suffices to show that

C(ϕ) := {L(ϕ1), . . . , L(ϕn)} = {L(ψ1), . . . , L(ψm)} =: C(ψ).

Assume for contradiction that there is a ϕi (for i ≤ n) such that L(ϕi) �∈ C(ψ) (the
other case is analogous). Since ϕ ⇔FDE ψ , we have by Lemma 3(ii) that there are
L(ϕj ) = L(ψk) ⊆ L(ϕi). Write L := L(ϕi) \ L(ϕj ), so L(ϕi) = L(ϕj ) ∪ L. Since
ϕ and ψ have the same literals, the literals in L also occur in ψ . So, since ϕj is a
disjunct of ψ and ψ is in maximal normal form, L(ϕj ) ∪ L is a disjunct of ψ , in
contradiction to L(ϕi) �∈ C(ψ).

Proposition 7 (Identity of SFA-normal form) Let ϕ and ψ be two sentences in
standard maximal positive disjunctive normal form. Then

At(ϕ) = At(ψ) and ϕ ⇔FDE ψ iff ϕ = ψ .

Proof For the non-trivial direction, write ϕ = ϕ1 ∨ . . . ∨ ϕn and ψ = ψ1 ∨ . . . ∨
ψm. As in Proposition 6 before, it suffices to show that C(ϕ) = C(ψ). Assume for
contradiction that L(ϕi) violates this claim. Since ϕ is maximally positive we have,
by clause (iii)(a) of Definition 4, that ϕi = ϕ0 ∧A for a minimal disjunct ϕ0 of ϕ and
an A ⊆ At(ϕ).

We claim that L(ϕ0) ∈ C(ψ). If not, then by Lemma 3(ii) there are L(ϕj ) =
L(ψk) ⊆ L(ϕ0) with ϕj being minimal in ϕ. By minimality of ϕ0, L(ϕ0) = L(ϕj ) =
L(ψk) ∈ C(ψ).

Since ϕi = ϕ0 ∧ A with ϕ0 being a disjunct of ψ and A ⊆ At(ϕ) = At(ψ), we
have, by clause (iii)(b) of Definition 4, that ϕi ∈ C(ψ), contradiction.

Proposition 8 (Identity of SCL-normal form) Let ϕ and ψ be two sentences in
standard maximal literal-contradiction closed disjunctive normal form. Then

L(ϕ) = L(ψ) and ϕ ⇔C ψ iff ϕ = ψ .

Proof For the non-trivial direction, assume L(ϕ) = L(ψ) and ϕ ⇔C ψ . As before,
given a disjunct ϕ0 of ϕ = ϕ1 ∨ . . . ∨ ϕn, we need to show that ϕ0 also is a disjunct
of ψ = ψ1 ∨ . . . ∨ ψm. For contradiction, assume otherwise. Note that,

for all i ≤ m, L(ψi) �⊆ L(ϕ0), (3)

because otherwise, by maximality and L(ϕ) = L(ψ), ϕ0 already is a disjunct of ψ .
We consider two cases.

Case 1: ϕ0 is not classically satisfiable. Then, since ϕ0 is a conjunction of liter-
als, there is p ∈ At(ϕ0) such that p, ¬p ∈ ϕ0. Hence p, ¬p ∈ L(ϕ) = L(ψ).
Hence, since ψ is closed under literal-contradictions, p ∧ ¬p is a disjunct of ψ that
is contained in ϕ0, in contradiction to (3).

Case 2: ϕ0 is classically satisfiable. We construct a classical valuation v :
{p0, p1, . . .} → {0, 1} making ϕ0 true (in signs, v |= ϕ0) and every ψi false (in signs,
v �|= ψi), in contradiction to ϕ ⇔C ψ .
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Since ϕ0 is assumed to be satisfiable, fix a valuation v0 making it true. We con-
struct v inductively: We perform m steps (corresponding to ψ1, . . . , ψm) such that at
the end of step i we have a valuation vi making ϕ0 true and ψ1 ∨ . . . ∨ ψi false. We
can then choose v := vm.

Step 1. Find a literal l in ψ1 which is not in ϕ0—which must exists since, by (3),
L(ψ1) �⊆ L(ϕ0). Define v1 to be like v0 except that it makes l false (then v1 |= ϕ0
and v1 �|= ψ1, as required).

Step i + 1. Assume vi has been constructed such that vi |= ϕ0 and vi �|= ψ1 ∨
. . . ∨ ψi . We build vi+1. We consider two cases.37

Case (a). There is a literal l in L(ψi+1) \ (
L(ϕ0) ∪ L(ψ1) ∪ . . . ∪ L(ψi)

)
. Then,

as in step 1, define vi+1 to be like vi except that it makes l false (then vi+1 |= ϕ0 and
vi+1 �|= ψ1 ∨ . . . ∨ ψi and vi+1 �|= ψi+1, as required).

Case (b). L(ψi+1) ⊆ L(ϕ0)∪L(ψ1)∪ . . .∪L(ψi). For the remainder of the proof,
we abuse notation and write the conjunctive normal form χ for the set L(χ). Thus,
we have (where ϕc

0 denotes all literals not in ϕ0):

ψi+1 = (ψi+1 ∩ ϕ0) ∪ (ψi+1 ∩ ψ1 ∩ ϕc
0) ∪ . . . ∪ (ψi+1 ∩ ψi ∩ ϕc

0).

Since ψi+1 �⊆ ϕ0, at least one of the sets ψi+1 ∩ ψj ∩ ϕc
0 (for j ≤ i) is non-empty.

Let j1, . . . , jr ≤ i be those j for which there is a literal lj ∈ ψi+1 ∩ ψj ∩ ϕc
0 �= ∅.

Now, either there is a valuation w making all literals of the set L := {lj1 , . . . , ljr }
false, or there isn’t.

If there isn’t, lj1 ∨ . . . ∨ ljr is a tautology, whence there is a p such that p, ¬p ∈
L ⊆ ψi+1. Hence, any valuation makes ψi+1 false. Thus, we choose vi+1 := vi and
we have vi+1 |= ϕ0 and vi+1 �|= ψ1 ∨ . . . ∨ ψi and vi+1 �|= ψi+1, as required.

So assume there is a valuation w |= ¬lj1 ∧ . . . ∧ ¬ljr . Define vi+1 to be like
vi except that on L it is like w. We claim vi+1 has the required properties. Indeed,
vi+1 |= ϕ0 because vi |= ϕ0 and vi+1 only differs from vi on the set L which is
disjoint from At(ϕ0) (since each l ∈ L is in ϕc

0). Moreover, vi+1 �|= ψi+1 since for
lj1 ∈ L we have lj1 ∈ ψi+1 (by construction of L) and vi+1(lj1) = w(lj1) = 0.
Finally, we fix an j ≤ i and show that vi+1 �|= ψj . If ψi+1 ∩ ψj ∩ ϕc

0 �= ∅. Then,
by construction, lj ∈ L, so vi+1(lj ) = w(lj ) = 0, whence vi+1 �|= ψj . So assume
ψi+1 ∩ ψj ∩ ϕc

0 = ∅. Since vi �|= ψj , there is a literal l ∈ ψj such that vi(l) = 0.
Moreover, l �∈ ϕ0 since vi |= ϕ0. Since ψi+1 ∩ ψj ∩ ϕc

0 = ∅ we hence have l �∈
ψi+1 ⊇ L. Hence vi+1(l) = vi(l) = 0, so vi+1 �|= ψj .

Proposition 9 (Identity of SCA-normal form) Let ϕ and ψ be two sentences in
standard maximal atom-contradiction closed disjunctive normal form. Then

At(ϕ) = At(ψ) and ϕ ⇔C ψ iff ϕ = ψ .

Proof For the non-trivial direction, assume At(ϕ) = At(ψ) and ϕ ⇔C ψ .
We claim that L(ϕ) = At(ϕ) ∪ ¬At(ϕ) (where ¬At(ϕ) := {¬p : p ∈ At(ϕ)}).

Indeed, “⊆” is trivial, so assume l ∈ At(ϕ) ∪ ¬At(ϕ). Write p for the atom of the

37We’ll see below that it is not necessary, but we could consider separately the trivial case where already
vi �|= ψi+1. There we set vi+1 := vi . By assumption, we have vi+1 |= ϕ0 and vi+1 �|= ψ1 ∨. . .∨ψi ∨ψi+1,
as required.
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literal l. Then p ∈ At(ϕ). Since ϕ is closed under atom-contradictions, p ∧ ¬p is a
disjunct of ϕ. Hence p, ¬p ∈ L(ϕ), whence l ∈ L(ϕ).

Hence L(ϕ) = At(ϕ)∪¬At(ϕ) = At(ψ)∪¬At(ψ) = L(ψ). So by Proposition 8
(which applies since ϕ and ψ are atom- and, hence in particular, literal-contradiction
closed), ϕ = ψ .

Proofs of the Theorems

In this section, we put everything together and prove the theorems.
Theorem 2 (i). For all sentences ϕ and ψ , SF � ϕ ≡ ψ iff �ϕ� = �ψ� (iff ϕ ⇔FDE

ψ).

Proof Soundness (left to right). It is readily checked that if ϕ ≡ ψ is an axiom of
SF, then ϕ ⇔FDE ψ . Moreover, it is also readily checked that if ϕ′ ≡ ψ ′ is the result
of applying one of the rules to ϕ ≡ ψ , and if ϕ ⇔FDE ψ , that then also ϕ′ ⇔FDE ψ ′.

Completeness (right to left). Assume ϕ ⇔FDE ψ . By Proposition 1, there are
normal forms ϕmin and ψmin of ϕ and ψ , respectively. By soundness,

ϕmin ⇔FDE ϕ ⇔FDE ψ ⇔FDE ψmin,

so, by Proposition 5, ϕmin = ψmin, so we can prove in SF that

ϕ ≡ ϕmin ≡ ψmin ≡ ψ,

so �SF ϕ ≡ ψ .

Curiously, while maximal disjunctive forms were needed for the complete-
ness of truthmaker semantics for AC, we need minimal disjunctive forms for the
completeness of scenario semantics for SF.
Theorem 2 (ii). For all sentences ϕ and ψ , we have

AC � ϕ ≡ ψ iff

{
L(ϕmax) = L(ψmax) , and
ϕ ⇔FDE ψ .

Proof Let’s start with the left-to-right direction. We show AC � ϕ ≡ ψ implies
⇔FDE ψ by contraposition (though it could also be shown directly by induction): If
ϕ �⇔FDE ψ , then, by Theorem 1, SF �� ϕ ≡ ψ , so in particular AC �� ϕ ≡ ψ (since
SF is an extension of AC). And AC � ϕ ≡ ψ implies L(ϕmax) = L(ψmax) because of
the following. If AC � ϕ ≡ ψ , then AC � ϕmax ≡ ϕ ≡ ψ ≡ ψmax. So ϕmax and ψmax
are two sentences in standard maximal normal form that are AC-equivalent to ϕ. We
know that a sentence’s standard maximal normal form is unique in AC. (A purely
syntactic proof of this fact was given in [2], and [23] gave a semantic proof using his
truthmaker semantics.) Hence ϕmax = ψmax, and, in particular, L(ϕmax) = L(ψmax).
(Of course, this could also be shown directly by induction on AC-proofs.)

For the other direction, assume L(ϕmax) = L(ψmax) and ϕ ⇔FDE ψ . We have
AC � ϕmax ≡ ϕ and AC � ψmax ≡ ψ . Moreover, we’ve seen in the left-to-right
direction that AC-equivalence entails FDE-equivalence, so we have

ϕmax ⇔FDE ϕ ⇔FDE ψ ⇔FDE ψmax.
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Hence, applying Proposition 6 to ϕmax and ψmax we get that ϕmax = ψmax, whence
AC indeed proves ϕ ≡ ϕmax ≡ ψmax ≡ ψ .

Further equivalences are given by the following.
Corollary 1. The following are equivalent:

(i) AC � ϕ ≡ ψ .
(ii) For every state model M , we have [ϕ]M = [ψ]M .

(iii) [ϕ]C = [ψ]C where C is the canonical scenario model based on sets of
scenarios.

Proof (Sketch) (i)⇒(ii) is the soundness theorem of [23]. (ii)⇒(iii) is trivial. So it
remains to show (iii)⇒(i).

Indeed, assume [ϕ]C = [ψ]C . Since ϕ is AC-provably equivalent to its standard
maximal disjunctive form ϕmax, and ψ to ψmax, we have, by the just mentioned
soundness, that [ϕmax]C = [ψmax]C .

Analogous to [23], it is straightforward to show the following. (a) For a conjunc-
tive form ϕ = l1 ∧ . . .∧ ln we have, by induction on n, that |ϕ|C = {Lϕ} where Lϕ =
{sl1 , . . . , sln}.38 (b) For a disjunctive form ϕ = ϕ1 ∨ . . .∨ϕn, |ϕ|C = {Lϕ1, . . . , Lϕn}.
(c) If ϕ is a maximal disjunctive normal form, then |ϕ|C = [ϕ]C . (d) If ϕ and ψ are
maximal standard disjunctive forms, then [ϕ]C = [ψ]C iff ϕ = ψ .

Hence ϕmax = ψmax. Whence AC proves ϕ ≡ ϕmax ≡ ψmax ≡ ψ .

Theorem 2 (iii). For all sentences ϕ and ψ , we have

SFA � ϕ ≡ ψ iff

{
At(ϕ) = At(ψ) , and
ϕ ⇔FDE ψ .

Proof The left-to-right direction is immediate by induction on SFA-proofs: For SFA-
axioms ϕ ≡ ψ we have that At(ϕ) = At(ψ) and ϕ ⇔FDE ψ , and these two
properties are preserved by the SFA-rules.

For the other direction, assume At(ϕ) = At(ψ) and ϕ ⇔FDE ψ . By Proposition 2,
there are ϕpos and ψpos in standard maximal positive disjunctive form such that SFA �
ϕpos ≡ ϕ and SFA � ψpos ≡ ψ . Moreover, we’ve seen in the left-to-right direction
that SFA-equivalence entails having the same atoms and FDE-equivalence, so we
have

At(ϕpos) = At(ϕ) = At(ψ) = At(ψpos), and

ϕpos ⇔FDE ϕ ⇔FDE ψ ⇔FDE ψpos.

Hence we have by Proposition 7 that ϕpos = ψpos. Hence SFA indeed proves ϕ ≡
ϕpos ≡ ψpos ≡ ψ .

Theorem 2 (iv). For all sentences ϕ and ψ , we have

SCL � ϕ ≡ ψ iff

{
L(ϕmax) = L(ψmax) , and
ϕ ⇔C ψ .

38Recall from Section 5 that in the canonical scenario model we defined sl := {l} for literals l.
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Proof The left-to-right direction is shown by induction on SCL-proofs: That SCL �
ϕ ≡ ψ implies ϕ ⇔C is immediate, so let’s consider the subject matter condition.
Concerning the axioms, we only need to check the new SCL-axiom. So given ϕ and
p, ¬p ∈ L(ϕ) = L(ϕmax) we need to show L(ϕ) = L(ϕ ∨ (p ∧ ¬p)), that is,
L(ϕmax) = L([ϕ ∨ (p ∧ ¬p)]max). Indeed, we have AC � ϕ ≡ ϕmax, so by AC’s
rule for disjunction AC � ϕ ∨ (p ∧ ¬p) ≡ ϕmax ∨ (p ∧ ¬p). Hence AC proves
[ϕ ∨ (p∧¬p)]max ≡ ϕ ∨ (p∧¬p) ≡ ϕmax ∨ (p∧¬p). Since AC-synonymy implies
L-identity, L([ϕ ∨ (p ∧ ¬p)]max) = L(ϕmax ∨ (p ∧ ¬p)) = L(ϕmax) ∪ {p, ¬p} =
L(ϕmax). Concerning the rules, we only have the rules of AC of which we know that
they preserve L-identity.

For the other direction, assume L(ϕmax) = L(ψmax) and ϕ ⇔C ψ . By Propo-
sition 3, there are ϕlcl and ψlcl in standard maximal literal-contradiction closed
disjunctive form such that SCL � ϕlcl ≡ ϕ and SCL � ψlcl ≡ ψ . Moreover, from the
left-to-right direction we know

L(ϕlcl) = L(ϕ) = L(ψ) = L(ψlcl), and

ϕlcl ⇔C ϕ ⇔C ψ ⇔C ψlcl.

Hence we have by Proposition 8 that ϕlcl = ψlcl. So SCL indeed proves ϕ ≡ ϕlcl ≡
ψlcl ≡ ψ .

Theorem 2 (v). For all sentences ϕ and ψ , we have

SCA � ϕ ≡ ψ iff

{
At(ϕ) = At(ψ) , and
ϕ ⇔C ψ .

Proof The left-to-right direction is immediate by induction on SCA-proofs.
For the other direction, assume At(ϕ) = At(ψ) and ϕ ⇔C ψ . By Proposition 4,

there are ϕacl and ψacl in standard maximal atom-contradiction closed disjunctive
form such that SCA � ϕacl ≡ ϕ and SCA � ψacl ≡ ψ . Moreover, from the left-to-
right direction we know

At(ϕacl) = At(ϕ) = At(ψ) = At(ψacl), and

ϕacl ⇔C ϕ ⇔C ψ ⇔C ψacl.

Hence we have by Proposition 9 that ϕacl = ψacl. So SCA indeed proves ϕ ≡ ϕacl ≡
ψacl ≡ ψ .

Corollary 2 (Uniqueness of normal form) Let C be one of the systems AC, SFA,
SCL, SCA, or SF. Then every sentence ϕ has a unique standard disjunctive normal
form ϕC with the properties corresponding to the system C (e.g. maximal, maximal
positive, etc.).

Proof Assume ϕC and ϕ′
C are standard normal forms of ϕ in the system C. Then C �

ϕC ≡ ϕ′
C . Apply the C-soundness theorem and then the C-characterization lemma to

get ϕC = ϕ′
C .
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