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1 Introduction

Astrophysical black holes have been observed to be extremal within experimental errors,

spinning at a rate remarkably close to the maximally allowed value set by their mass [1–3].

A universal consequence of Einstein’s equations is that such highly spinning objects develop

a throat near their horizons, which becomes infinitely deep at saturation. Furthermore,

apart from the axial U(1) isometry, the geometry at extremality and deep within the throat

– 1 –
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becomes that of a two-dimensional anti-de Sitter space, where the Killing symmetries are

enhanced to those of the conformal group in (0 + 1)-dimensions: SL(2,R). The generic

appearance of the AdS2 symmetries in extremally rotating black hole geometries gives the

holography of AdS2 a distinguished role in the broader family of correspondences between

anti-de Sitter space and conformal systems [4, 5].

We are therefore motivated to understand the holography of AdS2 living near the hori-

zon of highly spinning black holes. In order to do so, it will be convenient to consider a

wider class of extremal black holes which are also electrically charged and appear as so-

lutions of four-dimensional Einstein-Maxwell theory. At fixed charge Q, Einstein-Maxwell

theory admits a one-parameter family of SL(2,R) × U(1) invariant extremal geometries,

discovered by Bardeen and Horowitz [6], and obtained as a near-horizon limit of the maxi-

mally rotating Kerr-Newman black hole. At a special point in parameter space, where the

black hole no longer rotates, the U(1) symmetry is enhanced to SO(3) and the solution

is the Bertotti-Robinson geometry: AdS2 × S2 [7, 8]. These near-horizon geometries are

obtained by taking a scaling limit of the original Kerr-Newman geometry, which involves

rescaling the asymptotically flat time coordinate. This rescaling offsets the infinite redshift

near the horizon, and what remains is the following solution to Einstein-Maxwell theory:

ds2 =

(
1− a2 sin2 θ

r2
0

)(
−r

2

r2
0

dt2 +
r2

0

r2
dr2 + r2

0dθ
2

)
+

r2
0 sin2 θ(

1− a2

r20
sin2 θ

) (dφ+
2Mar

r4
0

dt

)2

,

(1.1)

where r2
0 ≡ M2 + a2 and M2 = Q2 + a2. The relation between the ADM mass M and

electric charge Q ensures that the horizon has vanishing temperature, but the parameter

a can take any value along the real axis. The horizon is located at r = 0, so the above

coordinates are in a co-rotating frame with respect to the horizon. Summarizing, the

geometry exhibits an SL(2,R)×U(1) isometry for all non-zero a, with the U(1) being the

axial symmetry. When a = 0 these isometries are enhanced to SL(2,R)× SO(3).

When a is small we can view (1.1) as a deformation of the AdS2×S2 geometry, which

gets corrected to leading order in a by

δgµνdx
µdxν =

4ar sin2 θ

Q
dφdt+O(a2) . (1.2)

Notice that the above deformation is invariant under t → λt, r → r/λ, but breaks the

SO(3) symmetry. Our goal will be to model such an SO(3) breaking deformation in a

tractable large N quantum system. The deformation (1.2) depends explicitly on the polar

angle of the two-sphere, but not the azimuthal one. Thus, as mentioned, it breaks the

original SO(3) symmetry down to a U(1) subgroup.

Holographically we might imagine a one-parameter family of SL(2,R) invariant theories

dual to the Bardeen-Horowitz geometries (recent work in this direction includes [6, 9–12]).

We take here the view that the AdS2×S2 point is captured, holographically, by some large

N quantum mechanical system with SL(2,R)×SU(2) symmetry.1 We might then view the

1We distinguish here SO(3) from its double cover, SU(2), since the building blocks of our quantum

system will be fermions transforming under the fundamental of SU(2). This is somewhat analogous to the

R-symmetry group of N = 4 super Yang-Mills being SU(4) and its holographic relation to the bulk S5 with

an SO(6) ∼= SU(4) isometry.

– 2 –
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deformation (1.2) as turning on an SU(2) breaking source in the original SU(2) invariant

quantum mechanics. Crucially, such a deformation must preserve the SL(2,R). In fact,

from the black hole point of view, the coupling measuring the strength of the associated

deformation is the angular velocity of the horizon, Ω. This is the chemical potential for

the angular momentum of the black hole. At finite electric charge, we will show that Ω

cannot take arbitrarily large values for the Kerr-Newman geometry. Consequently, from

the point of view of the dual quantum mechanics, we only require that the deformation

remain marginal for some finite range of the coupling.2

In this paper we take some simple steps in these directions. We study a disordered large

N quantum mechanics invariant under a global SU(2) symmetry. This model resembles

the Sachdev-Ye-Kitaev (SYK) model [14–22] in that it is approximately conformal in the

infrared, with low energy fluctuations controlled by the Schwarzian action. In addition,

this system allows for an SU(2)-breaking deformation which we show is marginal for a finite

range of couplings, mimicking some of the phenomenology of charged, rotating black holes.

Structure of the paper. We begin in section 2 by reviewing the thermodynamics of

Kerr-Newman black holes and show that these black holes exhibit an interesting behavior

as we approach a certain critical value of the angular velocity of the horizon. We then

introduce a simple model of fermions with random masses in section 3, which we proceed

to solve to leading order in the large N limit. The fermionic degrees of freedom are charged

under a global SU(2) symmetry. At low temperatures, the system exhibits an emergent

local symmetry consisting of reparameterizations of time as well as a local SU(2). These are

broken to a global SL(2,R)× SU(2) symmetry by the saddle point solution. In section 3.2

we discuss the soft modes associated with this breaking, whose action is induced by explicit

breaking terms. We proceed to study the thermodynamics of this model in section 4. In

section 5 we introduce a deformation that breaks the SU(2) down to a U(1) subgroup and

establish that this deformation is marginal for a finite range of couplings, beyond which

there is a transition to a gapped phase. In section 6 we study the thermodynamics of the

deformed model and show that the ungapped to gapped transiton is characterized by a

non-analyticity in the partition function. We compare our model to the thermal properties

of near-extremal charged and rotating black holes. We end with a discussion on possible

future directions in section 7.

2 Kerr-Newman thermodynamics

In this section we review some of the thermodynamic features of the Kerr-Newman solution,

stressing the role of the angular velocity of the horizon. This quantity has an analog in

the quantum mechanics models described in the next sections that controls the transition

between different phases of the theory.

2An example of marginal deformations that occur only for a finite range of the coupling at large N is the

case of a (classically marginal) φ6 deformation to the three-dimensional free O(N) model. In this case, one

can compute the β-function at large N and show that it vanishes for small values of λ6 [13]. However, for λ6

above a certain value, the φ2 operator acquires a vacuum expectation value, indicating that the conformal

symmetry is spontaneously broken.

– 3 –
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2.1 Thermodynamic variables

The general solution is labelled by the ADM mass M , the electric charge Q and the ADM

angular momentum J .3 These are conjugate to the temperature T , angular velocity Ω

and electric potential Φ. Depending on our ensemble, we can construct several different

thermodynamic potentials. Of the several ensembles to consider, the one we will be most

interested will have fixed Q, T and Ω. This is partly motivated by the quantum mechanical

perspective we consider in the later sections. There, Q is related to the number of degrees

of freedom, and Ω is a parameter of the model we wish to tune. Equilibrium is achieved

at the minimum of the following thermodynamic function:

G(T,Ω) = M − TS − ΩJ , (2.1)

such that δG = (δM − TδS − ΩδJ) = 0, while keeping Q fixed. A convenient parametriza-

tion of the thermodynamic potentials is obtained by trading (M,Q, J) in favor of (r+, Q, a),

where r+ is the location of the black hole horizon:

r+ ≡M +
√
M2 − a2 −Q2 . (2.2)

It follows that a regular solution only exists for J < M
√
M2 −Q2. In terms of these

variables (in units where G = ~ = c = 1):

S = π
(
r2

+ + a2
)
, M =

a2 +Q2 + r2
+

2r+
, J = aM . (2.3)

Thus, at equilibrium:

T =
r+

(
1− (a2 +Q2)/r2

+

)
4π
(
r2

+ + a2
) , Ω =

a

r2
+ + a2

. (2.4)

Consider the rescaling: a → Qa, r+ → Qr+, M → QM , J → Q2J , S → Q2S,

Ω → Ω/Q and T → T/Q. Using this, we can set Q = 1 in all equations, and reinstate it

whenever necessary. Without loss of generality, we will always take Q > 0.

2.2 Extreme Kerr-Newman quantum roto-dynamics

The extremal limit T = 0 is obtained when:

r+ = M =
√
a2 + 1 , Ω =

a

(2a2 + 1)
∈
(
− 1

2
√

2
,

1

2
√

2

)
. (2.5)

Notice that, in contrast to when Q = 0, at non-zero but fixed Q the angular velocity of the

horizon Ω is bounded from above and below. We can solve for S(Ω) and J(Ω) at T = 0

obtaining:

S±(Ω) =
2π

1± s
, J±(Ω) = sign(Ω)

√
(1∓ s)(3± s)

2(1± s)
, (2.6)

3One can consider more general classes of four-dimensional charged, rotating black holes. These may

be endowed with additional fields such as a radially dependent dilaton profile, as in [23]. In that case the

thermodynamics will also depend on the value of the dilaton at the horizon.
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Figure 1. Left : J(Ω) vs. Ω. The blue curve represents the J+(Ω) branch and the orange curve the

J−(Ω) one. Right : J ′(Ω) displaying the divergent derivatives at Ω = ±1/
√

8.

where we have defined:

s ≡
√

1− 8Ω2 . (2.7)

The positive branch is continuously connected to the non-rotating extremally charge black

hole. For small Ω (s ≈ 1), the solution J+(Ω) ≈ Ω and for Ω2 > 1/8 J+(Ω) becomes

complex. We present this in figure 1. Along the other branch, J− and S− both diverge at

small Ω. These branches meet at Ω = ±1/
√

8. Further note that:

∂Ω (J±(Ω))2 = 4
√

2 sign(Ω)

√
(1− s)(1 + s)

(s± 1)3

1

s
, (2.8)

which diverges at s = 0, i.e. Ω2 = 1/8. Note that the angular momentum does not diverge

at these values of Ω, only its derivative does. Indeed, Ω(J) is extremized for these values

of J and therefore the derivative ∂JΩ vanishes at these points. It follows that the inverse

function must have corresponding derivatives that blow up. The extremal ADM mass is

given by:

M2
± =

1

2

(s± 3)

(s± 1)
. (2.9)

Notice that M+ = 1 when s = 1, which upon reinstating Q is precisely the mass of an

extremally charged Reissner-Nordström black hole. It is also the case that ∂ΩM+ diverges

like 1/s in the limit s→ 0.

2.3 Small temperature expansion of the free energy

At finite temperature, it is difficult to write the free energy as a function of Ω, T and

Q. However, we will mostly be interested in this function to leading order in a small

temperature expansion. First it is convenient to express a as a function of r+ and Ω along

the positive branch of the previous section:

a =
1−

√
1− 4r2

+Ω2

2Ω
. (2.10)

– 5 –
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The temperature, as measured by an observer in the asymptotically flat region, can also

be written as a function of r+ and Ω:

T =
2r2

+

√
1− 4r2

+Ω2 −
(

1 +
√

1− 4r2
+Ω2

)
8πr3

+

. (2.11)

We can parameterize (2.11) by:

r+ =
1√
2

√
s+ 3

s+ 1
+ δr+ (2.12)

where extremality occurs at δr+ = 0. By inverting (2.11) order by order for δr+ in a small

T expansion, we can thus express the free energy G at low temperatures:

G =
Q

s+ 1

[√
(s+ 1)(s+ 3)3

32
− 2πQT − (2πQT )2

s
√

2

√
s+ 3

s+ 1
+ . . .

]
, (2.13)

where we have reintroduced Q 6= 1. The first term in (2.13) is simply (M+ − ΩJ+) at

exactly zero temperature. The term linear in T has a coefficient given by the extremal

entropy S+ of the Kerr-Newman black hole. The term quadratic in T , measures certain

thermodynamic fluctuations. Namely,

− ∂2
TG =

1

T
C = Q3 4

√
2π2

s(s+ 1)

√
s+ 3

s+ 1
. (2.14)

This implies a positive specific heat linear in the temperature, characteristic of near ex-

tremal black holes. Finally, we note that the leading small temperature correction to the

zero-temperature angular momentum (2.6) is given by:

δJ+ = sign(Ω)Q3 T
4π
√

2

s

√
1− s

(1 + s)3
. (2.15)

Note that the sign of δJ+ is correlated with the sign of (2.6) and grows in magnitude in

the s→ 0 limit.

2.4 Critical behavior

Several of the thermodynamic quantities exhibit a non-analytic behavior at zero tempera-

ture in the limit s → 0. For example the derivative of the angular momentum has a non-

analytic divergence ∂ΩJ(Ω) ∼ 1/
√

1− 8Q2Ω2. Viewing Ω as a tunable chemical potential

in some putative dual large N quantum system, the non-analytic behavior is suggestive

of (quantum) critical behavior.4 We are going to observe this in our quantum mechanical

models, where the role of Ω is played by the chemical potential of a global SU(2) charge.

We can also consider non-analyticities in the s → 0 limit at small but non-vanishing

temperatures. This is subtle since a configuration with s = 0 must also have exactly zero

4In the appendix we present a related non-analyticity of the zero-temperature partition function, ex-

pressed in terms of the Frolov-Thorne temperature [24].

– 6 –
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temperature. In other words, there is an order of limits that we need to specify — either we

first take the zero temperature limit or the s → 0 limit. In (2.13) we explicitly expanded

in T at fixed s.

From the near horizon point of view, we also need to specify the frame (and in particular

the clock) that we pick to measure the temperature. Recall that when taking the near-

horizon limit we had to redshift the clock in order to measure finite quantities. In view

of this, we might imagine a rescaled near-horizon clock giving rise to a less singular low

temperature expansion in the s→ 0 limit. In the near extremal case, this ambiguity in the

choice of clock is related to where we glue the near-horizon region to the asymptotically

flat region. In the language of AdS2 dilaton gravity [25], this is the choice of the boundary

value for the dilaton. If we rescale the clock by some factor λ, then T → T/λ and Ω→ Ω/λ.

For s to remain fixed we should also rescale Q→ λQ. This has the effect of taking G → λG
and C → λ2C. Picking λ = s, for example, leads to a non-singular G in the limit s → 0,

but we still have critical behavior at low temperatures C ∼
√

1− 8Q2Ω2.

As a final note, it would be interesting to understand what happens above the critical

value Q2Ω2 = 1/8. This ‘phase’ is no longer described by an axisymmetric single-centered

black hole, so if a solution exists, it may well be far more involved.

In the next two sections we introduce and solve a quantum mechanical model that cap-

tures some of the qualitative features of Kerr-Newman thermodynamics. Parallels between

the critical behavior described here and the phase structure of the quantum mechanical

model are drawn in section 6.

3 Quenched disordered model

To set the notation we first consider a supersymmetric quantum mechanics with a global

SU(2) R-symmetry group5 that was already studied in [20, 22]. In section 5 we break this

R-symmetry by introducing a deformation, in order to make contact with rotating black

holes.

The field content is given by N chiral supermultiplets {φα, ψaα, Fα} containing a com-

plex scalar φα, a two-component spinor ψaα, and an auxiliary complex scalar Fα. The index

a = 1, 2 is a fundamental SU(2) index, and α = 1, . . . , N . The model has a quadratic

superpotential:

W (φ) = Γαβφαφβ , (3.1)

where the Γαβ are N × N complex numbers which we take to be distributed randomly,

following a zero-mean Gaussian distribution:

P (Γαβ) =
N

πγ2
e−NΓαβ Γ̄αβ/γ

2
. (3.2)

5This system is a simple toy model for the kind of systems related to the low energy open string sector of

wrapped intersecting branes [26]. However, none of what follows relies on the string theoretic interpretation

of this system and we will keep the discussion general. Generalizations of Sachdev-Ye-Kitaev systems with

global symmetries were considered in [18, 27].

– 7 –
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The Euclidean action for this superpotential reads:

SE =

∫
dτ
[
ψ̄ȧαψ̇

a
α + ˙̄φαφ̇α − F̄αFα +

(
Γαβ(Fαφβ + Fβφα) + Γαβ ψ

a
αεabψ

b
β + h.c.

)]
, (3.3)

where εab = −iσy = −εȧḃ is the Levi-Civita symbol. The SU(2) symmetry acts only on

the fermions:

ψa → Uabψ
b , ψ̄ȧ = ψ̄ḃU †ḃ

ȧ
, (3.4)

where

Uab =

(
e−i(ξ+φ) cos θ −e−i(ξ−φ) sin θ

ei(ξ−φ) sin θ ei(ξ+φ) cos θ

)
(3.5)

is a group element of SU(2) in the fundamental representation. Consequently, the fermions

will play the main role in the physics that we discuss. It is worth emphasizing that the U(1)

fermion number generator is not conserved in this model due to the quadratic couplings in

the action, and therefore our action is not U(2) invariant. In Fourier space we have

SE =

∫
dω

2π

[
iω ψ̄ȧα(ω)ψaα(−ω) + ω2 φ̄α(ω)φα(−ω)− F̄α(ω)Fα(−ω)

+
(

Γαβ(Fα(ω)φβ(−ω) + Fβ(ω)φα(−ω)) + Γαβ ψ
a
α(ω)εabψ

b
β(−ω) + h.c.

)]
. (3.6)

Since we assume the Γαβ are drawn from a random Gaussian ensemble with variance γ2/N ,

at large N we can work in the disorder-averaged theory. Along the lines of [14–22], we take

the average using the replica trick. This entails introducing n copies of the system and

exploiting the simple formula,

logZΓαβ [β] = lim
n→0

∂n
(
ZΓαβ [β]

)n
, (3.7)

such that the disorder averaging can be performed on ZnΓαβ as opposed to logZΓαβ . We

use a replica symmetric ansatz in what follows, since it was shown in [20], that this is

the dominant saddle. This ansatz implies that the number of replicas, n, does not play a

crucial role and simply appears as an overall factor of the on-shell action.

Notice that the scalars and fermions are completely decoupled in (3.3), and hence

any mixed correlator between them vanishes on shell. Furthermore, the SU(2) invariance

guarantees that 〈ψ̄ȧα(τ) ψbα(τ ′)〉 for a 6= b also vanish on-shell. Thus we need only introduce

the following bi-local variables:

Q(τ, τ ′) =
1

N
〈φ̄α(τ)φα(τ ′)〉 , Sa(τ, τ ′) =

1

N
〈ψ̄ȧα(τ) ψaα(τ ′)〉 , (3.8)

in terms of which the disorder averaged effective action is found to be:

Seff

Nn
=

∫
dτdτ ′

[(
−∂2

τQ(τ, τ ′) +
∑
a

∂τ ′S
a(τ, τ ′)

)
δ(τ − τ ′)− γ2S1(τ, τ ′)S2(τ, τ ′)

]
+ tr log(1 + γ2Q(τ, τ ′))− tr logQ(τ, τ ′) +

∑
a

tr logSa(τ, τ ′) . (3.9)

– 8 –



J
H
E
P
1
2
(
2
0
1
7
)
0
9
5

In Fourier space this reads

Seff

Nn
=

∫
dω

2π

[
ω2Q(ω) + log(1 + γ2Q(ω))− logQ(ω)

+
∑
a

(iωSa(ω) + logSa(ω))− γ2S1(ω)S2(−ω)

]
, (3.10)

where

Q(ω) =
1

N
〈φ̄α(ω)φα(−ω)〉 , Sa(ω) =

1

N
〈ψ̄ȧα(ω) ψaα(−ω)〉 . (3.11)

To derive the above action we have assumed time translation invariance, Q(τ, τ ′) = Q(τ−τ ′)
and Sa(τ, τ ′) = Sa(τ − τ ′). Since certain correlators are guaranteed to vanish on-shell we

have set them to zero in (3.9)–(3.10). These streamlined expressions are obtained at the

expense of having a bi-local effective action (3.9) which is not manifestly SU(2) invariant.

3.1 Saddle point solutions

The original action (3.10) has a CT (complex conjugation and time reversal) invariance

which acts on the fields as

ω → −ω , ψ̄ȧα(ω)→ ψaα(−ω) , φα(ω)→ φ̄α(−ω) , Γαβ → Γ̄αβ . (3.12)

So Sa(ω) = −Sa(−ω) = Sa(−ω) for CT invariant states. The saddle point equations for

Sa and Q are found to be

1

S1(ω)
= −iω + γ2S2(−ω) , (3.13)

1

S2(ω)
= −iω + γ2S1(−ω) , (3.14)

1

Q(ω)
= ω2 +

γ2

1 + γ2Q(ω)
, (3.15)

and the solutions are

Q(ω) =
2ω−2

1 +

√
1 +

(
ω
2γ

)−2
, Sa(ω) =

i

γ

− ω

2γ
+ sign(ω)

√
1 +

(
ω

2γ

)2
 . (3.16)

Note that they obey the supersymmetric Ward identity Sa(ω) = iωQ(ω). At high frequen-

cies, they reproduce the free correlators of a scalar and a fermion. At low frequencies, they

become

Qlow(ω) =
1

γ|ω|
, Salow(ω) = i

sign(ω)

γ
. (3.17)

These are conformally invariant two-point functions. We can Fourier transform (3.16) back

to Euclidean time and obtain the exact correlator:

Sa(u) =
I1(2|u|γ)−LLL1(2|u|γ)

2uγ
, u ≡ τ − τ ′ , (3.18)
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Figure 2. The solid blue curve is the exact result for Sa(u), while the dashed orange curve is the

large time separation approximation Salow(u) = 1/πγu.

where LLL1(z) is the modified Struve function and I1(z) is the modified Bessel function. At

large time separations this simplifies to

Salow(u) =
1

πγu
. (3.19)

Thus, at low energies, we observe that the correlation functions exhibit an emergent scale

invariance, as shown in figure 2. Using the integral representation of the Struve and Bessel

functions we can write:

I1(2|u|γ)−LLL1(2|u|γ)

2uγ
=


1
πγ

∫ 2γ
0 dE

√
1−

(
E
2γ

)2
e−Eu , u > 0

− 1
πγ

∫ 2γ
0 dE

√
1−

(
E
2γ

)2
eEu , u < 0 .

(3.20)

From this expression we can read off the spectral density (see e.g. [28] or appendix A

of [29]):

ρ1(E) = ρ2(E) =
1

γ

√
1−

(
E

2γ

)2

, |E| < 2γ , (3.21)

which vanishes for |E| > 2γ. The spectral density can also be obtained from (3.16) via:

ρa(E) = ImSa
(
−i
(
E + i0+

))
, (3.22)

which requires us to define sign(ω) for complex frequencies, which we do by taking sign(ω)→
ω/
√
ω2. The spectral density is non-negative, as required by unitarity [28]. Furthermore

ρ(E) is a semi-circle, reminiscent of Wigner’s semi-circle for the eigenvalues of random

Gaussian matrices. This stems from the fact that our model is quadratic in the fermions,

with the mass matrix drawn from a random Gaussian ensemble.
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We would also like to emphasize that the SU(2) generators, Ĵ = ψ̄ȧσȧaψa, have van-

ishing expectation values in this state. We think of this as analogous to the fact that

AdS2×S2 has an SO(3) ∼= SU(2) isometry. In fact, correlators of increasingly complicated

operators charged under SU(2) decay increasingly fast at late times. This is similar to the

no hair theorem causing the redshift of any features on the two-sphere horizon of AdS2×S2.

3.2 Low energy effective action

The emergence of an SL(2,R) implies that at low frequencies, or equivalently large time

separations, the action exhibits an enhanced group of symmetries [14, 15, 30, 31]:

τ → f(τ) , Sa(τ, τ ′)→ f ′(τ)1/2Sa(f(τ), f(τ ′))f ′(τ ′)1/2 , Q(τ, τ ′)→ Q(f(τ), f(τ ′)) .

(3.23)

The above constitute the group of diffeomorphisms mapping the line to itself. The saddle

point solutions spontaneously break this group to an SL(2,R) subgroup given by:

τ → aτ + b

cτ + d
, ad− bc = 1 . (3.24)

The scaling dimension of φ is ∆φ = 0, while that of ψ is ∆ψ = 1/2.6 In addition to

the one-dimensional diffeomorphism group, the low frequency action exhibits an additional

emergent local symmetry.7 This is an SU(2) gauge symmetry acting as:

Sa ≡ Sȧa(τ, τ ′)→ U †ḃ
ȧ
(τ)S ḃb(τ, τ ′)Uab(τ

′) , ∀ τ, τ ′ . (3.25)

Again, Q(τ, τ ′) does not transform under this symmetry. The reason the SU(2) symmetry

is enhanced to a local symmetry is that in the low frequency limit we drop the kinetic

terms of the fermions. However, in a small derivative expansion, we will induce an effective

action for the SU(2) gauge field. We now proceed to derive the low energy effective action

describing the time-reparametrization and local SU(2) rotation modes.

We begin with the action for the fermions:

Seff

Nn
=
∑
a

tr logSa +

∫
dτdτ ′

[
δ(τ − τ ′)

∑
a

∂τ ′S
a − γ2S1S2

]
. (3.26)

The action and equations of motion:

− ∂τ ′ Sa(τ, τ ′)− γ2

∫
duSb(τ, u)Sa(u, τ ′) = −δ(τ, τ ′) (3.27)

are approximately invariant under the following symmetry:

τ → f(τ) , Sa(τ, τ ′)→ f ′(τ)1/2Sa(f(τ), f(τ ′))f ′(τ ′)1/2 (3.28)

6The zero mode of φ is divergent and must be treated with care. One way to do so is to consider that

φ is a coordinate in some compact space. This is what happens in more elaborate versions of the above

model [26].
7This is not apparent in the way we have written the action in (3.9). This is because we have used

the fact that certain correlators vanish on shell. When these functions are reintroduced into the disorder

averaged theory, the SU(2) invariance becomes apparent.
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if we drop the derivative terms in (3.26) and (3.27). Without the derivative term, (3.27)

admits the following solution:

Sa(τ, τ ′) =
1

πγ

1

τ − τ ′
(3.29)

which becomes

Sa(τ, τ ′) =
1

πγ

f ′(τ)1/2f ′(τ ′)1/2

f(τ)− f(τ ′)
(3.30)

after transforming by the symmetry (3.28).

Since (3.28) is not an exact symmetry of the Lagrangian it should contribute to the

action, as should the approximately local SU(2) symmetry. It can be verified, for example

via an explicit coset construction [32–36], that in the absence of explicit breaking these

massless modes have zero action. So we are left with evaluating the contribution from the

explicit breaking of these symmetries. This arises from the kinetic term:

Sbreaking
eff

Nn
=

2∑
a,b=1

∫
dτdτ ′δ(τ−τ ′)∂τ ′

{(
U †ḃ

ȧ
(τ)Uab(τ

′)
)
f ′(τ)1/2f ′(τ ′)1/2S ḃb(f(τ),f(τ ′))

}
,

(3.31)

with Sȧa(τ, τ ′) given in (3.29). The above action displays a UV divergence at τ = τ ′. The

divergence is an artifact of taking the low energy approximation, since the full system is

UV finite. We propose to regularize this by performing in the following simple deformation

δ(τ − τ ′)→ δ(τ − τ ′ − ε) and compute the action order by order in ε. This leads to

Sbreaking
E

Nn
=

2

πγ

∫
dτ

(
1

ε2
− 1

12
{f(τ), τ}+

1

4
Tr
[
∂τU

† · ∂τU
]

+O
(
ε2
))

, (3.32)

where {f(τ), τ} is the expected Schwarzian derivative [17]:

{f(τ), τ} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

. (3.33)

The additional term, involving the unitary matrices, is that of a particle moving in an SU(2)

group manifold. It describes the low energy fluctuations of the SU(2) charged sector [37].

4 Low temperature thermodynamics of the SU(2) invariant model

Having solved for the correlation functions of this quantum mechanical system, we now

have all the ingredients necessary to study its thermodynamics. In what follows we only

focus on the thermodynamics of the fermionic fields ψaα(τ) and ignore the contributions

from the bosonic fields φα(τ). Connections between the thermodynamics of this model and

those of charged rotating black holes will be made in later sections.

At low temperatures, the free energy admits an expansion:

1

Nn
logZ = −βF

Nn
= −βE0 + S0 +

C(β)

2
+ . . . (4.1)

where E0 is the ground state energy and S0 is the ground state entropy (both divided by

Nn) and C(β) is a function whose dependence on the temperature is a fixed negative power
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of β. The expectation value of the energy is related to derivatives of the free energy with

respect to β:

〈E〉 =
1

Nn
∂β(βF ) (4.2)

which allows us to relate C(β) to the low temperature contribution to the total energy

(above the ground state energy E0):

Elow ≡ −
1

2
∂βC(β) . (4.3)

Given our saddle point approximation, we can compute thermodynamic quantities from

the on shell action, which, at finite temperature can be written as a sum over discrete

frequencies ωn = 2π (n+ 1/2) /β with n ∈ Z. Let us begin by computing the energy of the

system 〈E〉 = E0 + Elow + . . . . To do so we can take a β derivative of the on-shell action

where Sa(ωn) take their on-shell values (3.16). This calculation is simplified by the fact

that we can use the on-shell conditions (3.13)–(3.14), yielding:

〈E〉 = − 2

β

∑
l∈Z

[
2πi(l + 1/2)

β
S1(ωl) + 1

]
. (4.4)

We have not been able to perform the above sum analytically, however we can still obtain

analytic expressions for E0 and Elow.

To calculate Elow we need not use the exact expressions for the correlators. Instead,

we can extract it from the approximate low frequency solutions (3.17) as follows:

Elow = − 2

β

∑
l∈Z

[
2πi(l + 1/2)

β
S1

low(ωl) + 1

]
. (4.5)

Inserting the approximate correlator into (4.5) gives a divergent sum, but this is of course

an artifact of our low energy approximation. To obtain an analytic expression, we use a

ζ-function regularization scheme, namely

∞∑
l=0

(
l +

1

2

)
≡ ζ(−1, 1/2) =

1

24
,

∞∑
l=1

1 ≡ ζ(0) = −1

2
. (4.6)

Using this regularization, we find the following low temperature approximation:

Elow =
π

3β2γ
. (4.7)

The function C = ∂TElow can be identified with the specific heat, which is linear in T .

Equivalently, we can also compute Elow or C(β) from the Schwarzian effective ac-

tion (3.32), using a map from the line to the Euclidean circle. To do this, we notice that

at low temperatures the free energy contains a term [17]

− βF

Nn
⊃ +

1

6πγ

∫ β

0
dτ

{
tan

(
π τ

β

)
, τ

}
=

π

3βγ
, (4.8)

giving C = 2π/3βγ as well as (4.7) for Elow.
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Figure 3. Left : plot of δE(β) = 〈E(β)〉−E0 and the ζ-regularized value Elow. We have performed

the sum in (4.4) numerically using the exact expression for Sa(ωn) and cutoff our sum above and

below at nc = ±2.5× 103. As nc increases the plots become increasingly close. Right : comparison

between numerically computed −βF/Nn obtained by evaluating the on-shell action (solid curve)

and the low temperature approximation −βE0+C(β)/2 (dashed curve). At low temperatures these

curves align implying that the zero temperature entropy S0 vanishes.

To compute the ground state energy E0 we repeat the calculation at exactly zero

temperature. This yields

E0 = −2×
∫
R

dω

2π

(
iω S1(ω) + 1

)
= −8γ

3π
, (4.9)

where S1(ω) is the exact solution given in (3.16). We can check our analytic expressions

against the numerically evaluated energy 〈E〉 given in (4.4). In figure 3 we show a plot

〈E〉−E0 as compared with Elow obtained via ζ-function regularization in (4.7). These are

in excellent agreement.

To extract the zero temperature entropy S0, we must compute the finite temperature

on-shell action for the fermionic degrees of freedom numerically. This requires us to deal

with the UV divergence at high frequency, which we do by ensuring that the entropy at high

temperatures is simply the dimension of the Hilbert space 2Nn log 2. We plot the result in

the right panel of figure 3. Comparing it with −βE0 +C(β)/2 at low temperatures shows

that S0 vanishes for our model.

Combining everything, the low temperature partition function can be written as:

− βF

Nn
=

1

Nn
logZ[β] =

8βγ

3π
+

π

3βγ
+ . . . (4.10)

The system has a specific heat linear in the temperature at low temperatures, C = 2πT/3γ.

This is a characteristic behavior of near-extremal black holes. A system with exact con-

formal invariance cannot have a specific heat linear in the temperature, since there is no

scale in the problem. On the other hand, a linear specific heat at low temperatures implies

a large density of states all the way down to zero energy, implying the presence of certain

soft modes. As we saw, the modes giving rise to this behavior correspond to low energy

modes appearing due to the breaking of the diffeomorphism group.
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5 SU(2) breaking marginal deformation

We now consider the following deformation to the original SU(2)-invariant action (3.3):

SE → SE − z
∫
dτ ψ̄ȧα(τ)σȧbz ψ

b
α(τ) , (5.1)

which corresponds to turning on a chemical potential z for the angular momentum opera-

tor8 in the ẑ direction Ĵz ≡ ψ̄ȧα(τ)σȧbz ψ
b
α(τ). The above operator corresponds to deforming

the disorder-averaged theory (3.10) in the following way:

Seff

Nn
→ Seff

Nn
− z

∫
dω

2π

(
S1(ω)− S2(ω)

)
. (5.2)

Marginal operators in (0 + 1)-dimensional fixed points have ∆ = 1. In the undeformed

theory, the scaling dimension of the fermions at the infrared fixed point is ∆ψ = 1/2. So the

deformation (5.1) may describe a marginal deformation of the infrared fixed point.9 The

deformation explicitly breaks the original SU(2) symmetry to a U(1) ⊂ SU(2). Notice that

the engineering dimension of z has units of temperature, such that zβ is a dimensionless

quantity, as is γβ. So we can work in units where β = 1 (unless otherwise specified)

whereby the low temperature limit corresponds to taking large γ and z with γ/z fixed.

With the addition of the deformation (5.1), the action is invariant under:

ω → −ω , ψ̄iα(ω)→ ψiα(−ω) , z → −z , Γαβ → Γ̄αβ . (5.3)

This indicates that to restore the CT invariance described in (3.12) we supplement it with

an additional z → −z flip. This symmetry implies that the on-shell correlators respect:

S1(ω, z) = −S1(−ω,−z) and S1(−ω, z) = S1(ω, z).

5.1 Deformed saddle point solutions

As mentioned, given that ∆ψ = 1/2 in the IR, the deformation (5.1) might be marginal at

low energies, since it is built out of two fermions. Let us verify that this is indeed the case.

The disorder-averaged equations are now given by

1

S1(ω, z)
= −iω + z + γ2S2(−ω, z) , (5.4)

1

S2(ω, z)
= −iω − z + γ2S1(−ω, z) . (5.5)

Let us first assume that the deformation is small, i.e. |z| < 2γ. In this regime the exact

correlator for the fermions is given by

S1(ω, z) =
1

γ

− iω − z
2γ

+ i sign(ω)

√
1−

(
iω − z

2γ

)2
 , (5.6)

8Here and in the following we call the charges associated with our internal SU(2) symmetry “angular

momentum” given the analogy with black hole physics.
9Relevant deformations of the SYK model were considered in [38–40].
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and S2(ω, z) = S1(ω,−z). As expected, at z = 0 they reduce to the correlators studied in

the previous sections. When γ → 0, they reduce to the correlators of a massless fermion in

the presence of the SU(2) breaking deformation. From (5.6) we can read off the spectral

density, as in (3.22):

ρ1(E, z) =


1
γ

√
1−

(
E−z
2γ

)2
, z − 2γ < E < z + 2γ ,

0 , otherwise

(5.7)

with ρ2(E, z) = ρ1(E,−z).

At low energy, ω � γ, and for |z| < 2γ the correlators are, at leading order:

S1
low(ω, z) =

1

γ

 z

2γ
+ i sign(ω)

√
1−

(
z

2γ

)2
 , S2

low(ω, z) = S1
low(ω,−z) , (5.8)

which, upon Fourier transforming to Euclidean time, become

S1
low(τ, τ ′) =

1

γ

δ(τ − τ ′) z

2γ
+

√
1−

(
z

2γ

)2

π(τ − τ ′)

 , S2
low(τ, τ ′; z) = S1

low(τ, τ ′;−z) .

(5.9)

Hence for |z| < 2γ the fermionic correlation functions exhibit the same conformal late

time decay as in the undeformed theory, with the same fermionic weight ∆ψ = 1/2. For z

within the range 0 < |z| < 2γ this deformation is marginal in the IR. We can verify this

late time behavior by numerically Fourier transforming the exact solutions (5.6) for any z

in the range |z| < 2γ and compare these to the large time separation approximation. This

is shown in figure 4. The deformed theory also exhibits a low energy emergent local U(1)

symmetry, to be contrasted with the local SU(2) symmetry in the undeformed case. The

low energy effective action governing the breaking of these approximate symmetries can be

derived as in section 3.2.

Let us now see what happens as we tune z through z = ±2γ. The square root has a

branch cut that extends along the real z axis for |z| > 2γ. However, at small |ω| the iω

inside the square root in (5.6) acts as an iε prescription, which crucially depends on the

sign of ω, for correctly analytically continuing through |z| = 2γ. To leading order at low

frequencies, we find the solution are real and constant :

S1
low(ω, z) =

z

2γ2

1−

√
1−

(
2γ

z

)2
 , S2

low(ω, z) = − z

2γ2

1−

√
1−

(
2γ

z

)2
 .

(5.10)

Thus the low frequency correlations become purely local in Euclidean time ∝ δ(τ − τ ′)
for |z| > 2γ, indicating that the fermions barely interact. The correlation function being

purely local suggests that the fermions are gapped rather than scale invariant. Indeed we

see from the spectral density (5.7) that for |z| > 2γ there are no states within an open
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Figure 4. The solid blue curves are the numerical Fourier transforms of (5.6), S1(u), u ≡ τ − τ ′,
while the dashed orange curves represent the large time separation approximations S1

low(u) in (5.9).

For |z| < 2γ, S1
low(u) matches the late time behavior of the numerical Fourier transform.

set of E = 0. In fact, using the spectral representation of the correlator, we can readily

compute the Euclidean time expression analytically for |z| ≥ 2γ

S1(u, z) = Θ(uz)
e−uzI1(2|u|γ)

uγ
. (5.11)

From the asymptotic form of the Bessel function, we see that this correlator exhibits an

exponential decay, e.g. for z > 0:

S1(u� 0) ∼ e−u(z−2γ)

(uγ)3/2
. (5.12)

This late time behavior is similar to the Euclidean time correlation function for a free

fermion with mass µ: G = Θ(u)e−µu, thus (5.11) allows us to identify the mass gap of this

phase as µgap = |z| − 2γ. We also note the subleading behavior of the correlator (5.12)

(uγ)−3/2. This is characteristic of a density of states scaling as
√
E at low energies, which

is precisely the case for ρ1(E, z) in (5.7) when z = 2γ.10

In summary, at zero temperature turning on z spoils the supersymmetric relation

iωQ(ω) = S1(ω) = S2(ω), as is to be expected. However, finite but small z does not

spoil the scaling invariant form of the correlators nor does it shift the conformal weights

of the scalars and fermions, which are related by supersymmetry. In this sense, the SU(2)

breaking deformation is non-supersymmetric and marginal. When |z| becomes sufficiently

large (> 2γ) the model exhibits a transition to a gapped phase and conformal invariance

is lost.

We now proceed to study the thermodynamics and quantum phase structure of the

model in the presence of the deformation.

10It is perhaps worth noting that the appearance of a 3/2 scaling at late times has appeared in several

different contexts including [41–43].
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6 Low temperature phase structure

To make contact with the physics of near-extremal rotating black holes, we study the low

temperature thermodynamics of the z-deformed theory. Using the effective action for the

fermion two-point function S, we find the following finite temperature expression for the

angular momentum

1

Nn
∂z logZ ≡ β〈Ĵz〉 =

∑
n∈Z

[
S1(ωn, z)− S2(ωn, z)

]
. (6.1)

6.1 Small z gapless phase

Let us start in the regime |z| < 2γ. We can evaluate the sum (6.1) in the low temperature

limit, taking ωn � |z|, γ, with z and γ large, but of the same order to ensure that |z| < 2γ.

The part of the sum related to the low frequency limit at leading order is

β〈Ĵz〉low =
z

γ2

∑
n∈Z

1− |ωn|

2γ

√
1−

(
z

2γ

)2

 . (6.2)

As it stands, the above sum exhibits the same fictitious divergences as (4.5) and needs to

be regularized. We can regulate it using the ζ-function approach adopted in (4.6). With

this choice the ωn-independent term in (6.2) is regularized to zero. This term is responsible

for the local piece of the correlator proportional to δ(τ − τ ′). That it does not contribute

to the low temperature partition function is an encouraging sign that our regularization is

sensible. The ζ-regularized sums give the following low temperature angular momentum

β〈Ĵz〉low = − πz

12βγ3

√
1−

(
z

2γ

)2
, (6.3)

where we have reintroduced explicit factors of β. We note a transition at z = ±2γ, where

the angular momentum diverges. That it diverges is an artifact of the large N limit, given

that at any finite N there is no state with infinite angular momentum. At finite N the

above transition is smoothed out.

We can integrate (6.3) with respect to z to obtain the z-corrected low temperature

free energy

1

Nn
logZ[β, z] = −β

(
E0(z)− z〈Ĵz〉0

)
+

π

3βγ

√
1−

(
z

2γ

)2

. (6.4)

What remains is to compute the contributions at T = 0 to energy and angular momentum.

At exactly zero temperature, we can perform the continuous ω-integral

〈Ĵz〉0 =

∫
R

dω

2π

(
S1(ω, z)− S2(ω, z)

)
. (6.5)
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Figure 5. Left : comparison between δJz ≡
(
〈Ĵz〉β − 〈Ĵz〉0

)
(solid-blue) and 〈Ĵz〉low (dashed-

red) given in (6.3), for z = 20 (in units where β = 1), with a cutoff on the sum given by nc =

±2× 104. Note the sharp transition at γ = z/2. Right : δJz vs. z and γ. The red line indicates the

locus |z| = 2γ.

which computes the angular momentum (divided by Nn). Remarkably, this integral can be

performed exactly, for the full Sa(ω, z) solution, yielding the following result for |z| < 2γ:

〈Ĵz〉0 =
2

π

sin−1

(
z

2γ

)
+

z

2γ

√
1−

(
z

2γ

)2
 . (6.6)

The minus sign in the small temperature contribution (6.3) means that the angular mo-

mentum at small temperatures is slightly less than that at vanishing temperatures. As a

check on (6.3), we compare it to a numerical evaluation of the full sum (6.2) with (6.6)

subtracted. They are in good agreement, as shown in figure 5.

Notice that in the limit z → ±2γ, the zero temperature angular momentum 〈Ĵz〉0 tends

to ±1. At z = ±2γ, the total zero temperature angular momentum becomes ±N , i.e. all

spins pointing up or down. A simple computation for the ground state energy, analogous

to the z = 0 case, yields

E0(z) = −8γ

3π

(
1−

(
z

2γ

)2
)3/2

. (6.7)

6.2 Large z gapped phase

When |z| > 2γ the fermionic correlation functions become purely local in the low frequency

limit. Thus, the low frequency contribution to the partition function no longer has a non-

trivial frequency dependence, it is purely constant. Using our ζ-function regulator, we

simply evaluate

∂z logZlow[β, z] = 0 . (6.8)

Indeed, for |z| > 2γ, the low temperature thermodynamics is insensitive to z. As we

shall see, this reflects the fact that the fermions become gapped at low temperatures. The

integral at exactly zero temperature can also be performed, yielding

〈Ĵz〉0 = sign(z) . (6.9)
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Figure 6. d2〈Ĵz〉0/dz2 vs. z, for γ = 1.

The angular momentum for |z| > 2γ is constant, and only depends on the sign of z.

Multiplying by N gives us the total angular momentum, meaning that for all |z| > 2γ the

total angular momentum is ±N in the ẑ-direction, so all spins are pointing up or down.

The low temperature partition function for |z| > 2γ, including the zero temperature

piece, is given to leading order by:

1

Nn
logZ[β, z] = β|z|+ . . . (6.10)

Notice that for |z| > 2γ, both the entropy and the energy are vanishing to leading order in

the low temperature expansion.

6.3 Phase transition

At exactly zero temperature, the transition between |z| < 2γ and |z| > 2γ is not smooth.

In particular, coming from |z| < 2γ we can compute

d2

dz2
〈Ĵz〉0 = − z

2πγ3

√
1−

(
z

2γ

)2
. (6.11)

On the other hand, coming from |z| > 2γ we obtain a vanishing second derivative. Both

〈Jz〉0 and its first derivative are continuous as a function of z across the transition, indi-

cating that we have a higher order quantum phase transition. We plot this in figure 6.

The critical exponent of ∂2
z 〈Ĵz〉0 is −1/2 can be obtained from the behavior of (6.11)

near |zc| = 2γ.

At small but non-vanishing temperatures there is another discontinuity that we ob-

serve. For |z| < 2γ we have:

β〈Ĵz〉low = − πz

12βγ3

√
1−

(
z

2γ

)2
, (6.12)

whereas for |z| > 2γ, we find 〈Ĵz〉low = 0. Interestingly, the strength of the discontinuity

at exactly zero temperature (6.11) is subleading compared to that from the sub-leading
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piece in the small temperature expansion (6.12), which is a divergence of 〈Ĵz〉β itself, with

critical exponent −1/2.

We emphasize here the different orders of limits that we have chosen. In both cases, we

are first taking the large N limit. But then we must decide whether we are taking the zero

temperature limit before or after the z → ±2γ limit. Depending on this order of limits,

the phase structure is either like the zero temperature one or the low temperature one.

To summarize, for small values of z, the system is disordered and gapless, and the

dominant low temperature states have small angular momentum. As z increases, we are

biasing an increasing number of states to have angular momentum in the ẑ-direction.

Finally, at |z| = 2γ, all the spins are pointing in the same direction and the system enters

an ordered, gapped phase. The presence of a non-analyticity in the system is an artifact

of taking the large N limit first. At finite but large N the transitions described above are

smooth.

6.4 Comparison to rotating black holes

Our quantum system exhibits a coupling z that breaks SU(2), while preserving SL(2,R) up

to some finite value. Moreover, the partition function exhibits a non-analytic behavior in z

at the transition point. These are common features between the quantum mechanics and

the black hole system, where we can identify z with the angular velocity of the horizon Ω

(that acts as a chemical potential for the angular momentum). These are encouraging signs

that the black hole picture may have a purely quantum mechanical interpretation. We find

it curious, and perhaps interesting, that for the particular choice of clock discussed at the

end of section 2.4, the non-analytic behavior CBH ∼
√

1− 8Q2Ω2 of the black hole specific

heat is precisely that of the deformed quantum system CQM ∼
√

1− (z/2γ)2. However,

the non-analyticities in the black hole case depend on how the near-horizon clock is defined,

and we leave it to future work to sharpen this analogy. We also notice that the leading

contribution in the limit z → 2γ to the free energy at exactly zero temperature displays the

same non-analytic behavior as the free energy of the black hole at T = 0, once we define

an appropriate chemical potential for the angular momentum (see appendix A). However

the derivatives of the free energy differ in the two cases.

7 Outlook on future directions

The main quantitative results of the paper and their relation to black hole physics were

presented at the end of the previous section. Here we conclude with an outlook on future

directions.

7.1 Five dimensional black holes

Five-dimensional black holes differ in several interesting ways from their four-dimensional

counterparts. For instance, there is no analog of the no hair theorem in five-dimensional

asymptotically flat space. The most symmetric solution is non-rotating and preserves

the SO(4) ∼= SU(2)L × SU(2)R spatial symmetry group. When extremal, the solutions

of five-dimensional Einstein-Maxwell theory have also been shown to generally exhibit an
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SL(2,R) symmetry [44]. There is a large class of such SL(2,R) invariant near-horizon

geometries for these black holes which can be classified by the symmetries they preserve.

Depending on the charges and angular momenta the preserved symmetries are either:

SO(4), SU(2) × U(1) or a U(1) × U(1) rotational subgroup. It would be interesting to

interpret this in the language of the quantum mechanical models that we have considered.

Since SO(4) ∼= SU(2)L × SU(2)R, we can start with two separate sets of fermions ψaL and

ψaR transforming under SU(2)L × SU(2)R. Then it is easy to implement any breaking

pattern by turning on chemical potentials for different fermion bilinears. In the gravity

theory, an interesting possibility is to turn on two angular momenta of the same magnitude

| ~JL| = | ~JR|. Then it can be shown that the residual symmetry of the solution is SU(2) [44].

This suggests that this configuration corresponds to fermions excited purely in the SU(2)L
(or SU(2)R) sector (see [45] for a related discussion).

7.2 Interacting models and ground state degeneracy

An important requirement of more realistic models is a large ground state degeneracy. Our

models do not exhibit this crucial feature for the phenomenology of extremal black holes.

One way to achieve a large degeneracy of ground states would be to consider a cubic rather

than quadratic superpotential. This was precisely the case considered in [20], where it was

argued that the supersymmetric saddle has an IR limit where the fermionic scaling dimen-

sion is ∆ψ = 1/2. A cubic superpotential is already enough to have a (supersymmetric)

ground state degeneracy that grows exponentially in N [46]. Moreover, this theory gives

rise to more intricate higher point functions then the model under consideration. We hope

to report on this case in the future.

7.3 Superradiance

Rotating black holes in asymptotically flat space are known to superradiate. Classically,

when we send an incident wave toward the horizon it may scatter back out with more energy.

Quantum mechanically, this can occur spontaneously and is a rotational analog of Hawking

radiation. Any quantum mechanical dual of a rotating black hole must somehow exhibit this

feature [47]. Superradiance connects the near-horizon geometry to the asymptotic region,

since it induces non-vanishing flux at the boundary of the near-horizon geometry. From the

point of view of AdS2, superradiance of an extremally rotating black hole manifests itself in

terms of Schwinger-pair production of highly charged particles in a background E-field (see

for example [48]). These particles cannot be contained in the AdS2 near-horizon region and

leak out of its boundary [49]. This manifests itself in terms of complex scaling dimensions

of the form ∆ = 1/2 + iν, with ν real. Interestingly, SL(2,R) allows for unitary irreducible

representations that have such complex scaling dimensions. It would be interesting to

construct SL(2,R) invariant models with operators transforming under these irreducible

representations and understand if they are related to superradiant modes.

7.4 Rotating de Sitter horizons

There is an interesting limit where a rotating black hole in a de Sitter space has the size

of the cosmological horizon. In this case, one finds a SL(2,R) × U(1) invariant solution
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to the Einstein equations endowed with a positive cosmological constant [50–52]. When

the rotation is turned off it reduces to the dS2 × S2 Nariai geometry, and the U(1) is

enhanced to an SO(3). These features are remarkably similar to those of the Kerr-Newman

case, although in de Sitter there is no Maxwell field necessary. It would be interesting to

understand whether our discussion is also relevant for these geometries.

7.5 SYK models with global symmetries

There exists generalizations of the SYK model where the SYK fermions are made to trans-

form under a global SO(M) symmetry [27]. Just as in the original SYK model with q-body

interactions, these generalized models exhibit an emergent SL(2, ) symmetry at low en-

ergies, with the IR weights of the fermions given by ∆ = 1/q. It would certainly be

interesting to explore whether SO(M)-breaking deformations formed out of q fermions re-

main marginal in the IR. Furthermore, it would be exciting to see if these deformations

can be understood holographically as turning on angular momenta for extremal black holes

with an SM+1 topology.
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A Left moving chemical potential

In this appendix we consider an ensemble for extremal (T = 0) rotating black holes different

than the one studied in the main text. The thermodynamic potential G (again at fixed Q)

of interest is:

G = J − TL S , (A.1)

where the parameter βL ≡ 1/TL pays the role of a chemical potential for J . One can

show that TL is the effective temperature felt by left-moving modes near the extremal

horizon, upon tracing out the interior region in the Frolov-Thorne vacuum state [24].11

Equilibrium is attained when δG = 0 with respect to variations of J and S, thus defining

a zero-temperature first law. The zero temperature partition function Z is defined as

logZ ≡ −βLG =⇒ ∂βL logZ = −J(βL) . (A.2)

At T = 0 we can parametrize the black hole entropy in terms of J as

S = π
√

4J2 +Q4 , (A.3)

11The term “left-moving temperature” originates in the Kerr-CFT literature and is borrowed from the

language of 2d CFT with its associated left (holomorphic) and right (anti-holomorphic) fields. In this

language TL should be associated with a chemical potential for left-moving fields in the putative dual.
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and the T = 0 first law gives the equilibrium expression for TL:

δS

δJ

∣∣∣∣
Q fixed

= βL =
4πJ√

4J2 +Q4
. (A.4)

At Q = 0, this reduces to TL = ±1/2π. We can relate βL to the angular velocity at the

horizon

β±L = π sign(Ω)
√

(1∓ s)(3± s) , (A.5)

with s defined in (2.7). Along the positive branch, β+
L = 0 at Ω = 0 whereas β−L = ±2π at

Ω = 0 in the negative branch. The branches meet at Ω = ±1/
√

8Q where βL = ±
√

3π .

We can invert (A.4) and obtain J(βL):

J(βL) =
Q2βL

2

1√
4π2 − β2

L

. (A.6)

So the thermodynamic potential is given as function of TL:

G = − Q2

2βL

√
4π2 − β2

L , (A.7)

or equivalently the partition function is given by:

logZ =
Q2

2

√
4π2 − β2

L . (A.8)

Notice the non-analyticity at βL = ±2π. At these values of βL we have that J(βL) diverges

and the divergence has a (quantum) critical exponent of one-half. We would like to interpret

this as a quantum phase transition. It is different from the Q2Ω2 = 1/8 divergence we found

previously, where the angular momentum did not diverge.
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