
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

The emergence of monotone quantifiers via iterated learning

Carcassi, F.; Steinert-Threlkeld, S.; Szymanik, J.

Publication date
2019
Document Version
Final published version
Published in
Creativity + cognition + computation

Link to publication

Citation for published version (APA):
Carcassi, F., Steinert-Threlkeld, S., & Szymanik, J. (2019). The emergence of monotone
quantifiers via iterated learning. In A. K. Goel, C. M. Seifert, & C. Freksa (Eds.), Creativity +
cognition + computation: 41st Annual Meeting of the Cognitive Science Society (CogSci
2019) : Montreal, Canada, 24-27 July 2019 (Vol. 1, pp. 190-196). Cognitive Science Society.
https://cogsci.mindmodeling.org/2019/papers/0054/index.html

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/the-emergence-of-monotone-quantifiers-via-iterated-learning(62a3c8a4-3c62-41dd-a410-ef9f8137dbca).html
https://cogsci.mindmodeling.org/2019/papers/0054/index.html

The emergence of monotone quantifiers via iterated learning
Fausto Carcassi1,*, Shane Steinert-Threlkeld2,*, Jakub Szymanik2

fausto.carcassi@gmail.com; {S.N.M.Steinert-Threlkeld, J.K.Szymanik}@uva.nl
1 School of Philosophy, Psychology and Language Sciences; University of Edinburgh

2 Institute for Logic, Language and Computation; Universiteit van Amsterdam
* Co-first authors.

Abstract

Natural languages exhibit many semantic universals: proper-
ties of meaning shared across all languages. In this paper, we
develop an explanation of one very prominent semantic univer-
sal: that all simple determiners denote monotone quantifiers.
While existing work has shown that monotone quantifiers are
easier to learn, we provide a complete explanation by consid-
ering the emergence of quantifiers from the perspective of cul-
tural evolution. In particular, in an iterated learning paradigm,
with neural networks as agents, monotone quantifiers regularly
evolve.

Keywords: semantic universals; generalized quantifiers;
monotonicity; iterated learning; neural networks

Introduction
While natural languages show great variability, there are fea-
tures that they all appear to share. Linguists call these fea-
tures linguistic universals. Universals have been found at all
levels of linguistic structure: phonological, syntactic, and se-
mantic.1 Some universals might follow from constraints on
what humans are physically capable of doing. For instance,
there is no language whose prosody requires the production
of ultrasounds. The reasons for other universals are harder to
understand, leading to multiple proposed explanations.

One well-supported claim is that at least some universals
are to be explained in terms of learnability.2 More precisely,
it is easier to learn a language that satisfies the universal than
it is to learn a language that does not satisfy the universal,
and this difference in the complexity of acquisition causes
languages that satisfy universals to spread. In the case of
universals of lexical semantics such as the one we focus on
below, the learnability explanation says that lexical entries
whose meaning satisfies the universal are easier to learn, and
therefore more likely to be lexicalized. Complicated mean-
ings can be obtained through complex grammatical construc-
tions and compositional interpretation thereof.

The learnability explanation is an empirical, causal claim
about the origins of linguistic universals. One way to support
the learnability explanation for a specific universal is to pro-
vide a model of learning that is cognitively realistic and on

1For some examples see, respectively, Hyman (2008),
Newmeyer (2008), and Barwise and Cooper (1981).

2See, e.g., Steinert-Threlkeld and Szymanik (in press),
Piantadosi, Tenenbaum, and Goodman (2013), and Peters and West-
erståhl (2006).

which expressions that satisfy the universal are indeed easier
to learn.

Finding an appropriate model of learning can however only
partially explain a linguistic universal. Learnability is a fact
about individual cognition, while a universal is a feature of
a whole language. A second challenge consists in connect-
ing these two levels, showing the effects of learnability on
emerging language structure. This is the so-called problem
of linkage.3

Iterated learning (IL) is a method that addresses the prob-
lem of linkage. In IL, parents teach children their language,
who teach the next generation their language, and so on and
so forth. The crucial insight of IL is that learning is not an
inert process in cultural evolution, since the languages of a
cultural child and its cultural parent are generally slightly dif-
ferent. The changes caused by learning are not random, but
rather tend to be guided by the learner’s cognitive biases. As
a consequence, over time languages adapt better and better to
the agents’ cognitive biases. Learnability can then affect the
frequency of different traits.4

Previous work has addressed the learnability challenge by
showing that quantifiers, responsive predicates, and color
terms that satisfy certain semantic universals are easier to
learn for neural networks.5 In this paper, we address the prob-
lem of linkage by building an iterated learning model of the
evolution of the semantic structure of quantifiers. In partic-
ular, we will use neural networks as our agents and standard
gradient descent as the learning method inside the context of
iterated learning. The next section briefly reviews the the-
ory of generalized quantification and the universal of mono-
tonicity. After that, the following section presents the model
of cognition and the iterated learning model, as well as an
information-theoretic measure of the degree of monotonicity
of a quantifier. Experiments with this model and their results
are presented in the following section. Results are discussed
in the final section, along with possible future directions.

3The problem of linkage was introduced in Kirby (1999).
4See, e.g., Tamariz and Kirby (2016); Culbertson and Kirby

(2016); Kirby, Cornish, and Smith (2008) for discussions of the way
individual cognition is reflected in language structure through IL and
experimental evidence supporting the connection.

5See, respectively, Steinert-Threlkeld and Szymanik (in press);
Steinert-Threlkeld (in press); Steinert-Threlkeld and Szymanik
(2019).

190

Quantifiers and monotonicity
Determiners are expressions that take a common noun as an
argument and return a Noun Phrase. Determiners can be
grammatically simple—e.g. some, few, most—or complex—
e.g. fewer than three or at most five.6 Determiners express
generalized quantifiers.7 (Monadic) Generalized quantifiers
are properties of sets of subsets of a domain of discourse. The
generalized quantifiers expressed by natural language deter-
miners are of type 〈1,1〉, i.e. properties of exactly two sets.
Equivalently, a quantifier of type 〈1,1〉 takes (the characteris-
tic function of) a set A and returns a function from (the char-
acteristic function of) a set B to truth values. A is the left
argument and B the right argument of the quantifier. For in-
stance, the sentence “most As are B” is true if and only if the
number of As that are B (cardinality of the intersection of A
and B, i.e., |A∩B|) is greater than the number of As that are
not Bs (i.e., |A−B|), i.e.:

JmostK = {(A,B) : |A∩B|> |A\B|}

Various universals have been proposed about which gener-
alized quantifiers are expressed by simple determiners. In the
following, we focus on the monotonicity universal proposed
by Barwise and Cooper (1981). This says that all simple de-
terminers across all languages express monotone quantifiers.
A quantifier is monotone iff it is upward monotone or down-
ward monotone. A quantifier Q is upward monotone [down-
ward monotone] iff for any three sets A, B and B′, if Q(A)(B)
and B⊆ B′ [B′ ⊆ B] then Q(A)(B′). As an example, consider
the upward monotone quantifier JmostK. Assume that the sen-
tence “Most cats sleep” is true and that everything that sleeps
is alive, i.e. JsleepK ⊆ JaliveK. The monotonicity of JmostK
ensures then that “Most cats are alive” is true.

Monotonicity is an interesting universal because it is easy
to imagine non-monotone quantifiers. Examples of non-
monotone quantifiers abound among the meanings of com-
plex determiners: “an even/odd number of” or “exactly 2”,
etc. The commonness of non-monotonicity among complex
quantifiers makes the lack of simple non-monotone quanti-
fiers especially puzzling and in need of an explanation. Pre-
vious work proposed to explain the universal of monotonicity
in terms of the greater learnability of monotone quantifiers.

Steinert-Threlkeld and Szymanik (in press) propose to use
neural networks in this context. A neural network is a com-
putational device that can learn to approximate functions by
observing tuples of inputs and relevant outputs, and progres-
sively minimizing a suitably defined distance between the
true output and the network’s own prediction. In the case
of a quantifier, the input is a structure where the relevant sets
are specified and the output is 1 iff the structure verifies the

6Exactly how to draw the distinction between simple and com-
plex and whether, for instance, most is simple or complex, do not
matter for present purposes.

7For more information on generalized quantifier theory from lin-
guistic, computational, and cognitive perspectives, see also Peters
and Westerståhl (2006) and Szymanik (2016).

Figure 1: Learning curves on a neural network for the mono-
tone at least 4 (blue) versus at least 6 or at most 2 (red). The
x-axis is number of training steps; the y-axis is accuracy (per-
centage correct) on a test set of examples the network has not
yet seen. This was Figure 4 in Steinert-Threlkeld and Szy-
manik (in press).

quantifier and 0 otherwise. In practice, given a structure the
neural network outputs a probability that can be interpreted
as confidence that the structure verifies the quantifier.

Data about how fast neural networks learn different kinds
of quantifiers was produced with the following algorithms.
First, two quantifiers are picked such that one satisfies the
universal and the other does not. Then, the two quantifiers
are taught to a neural network until it has accurately learned
them. The crucial information is how long on average it takes
neural networks to accurately learn quantifiers that satisfy the
universal compared to ones that do not. Various universals
were tested in this way. In the case of monotonicity, the data
was produced both for a downward monotone and for an up-
ward monotone quantifier. The neural networks were strik-
ingly faster at learning monotone compared to non-monotone
quantifiers. Figure 1 shows an example.

As discussed above, knowing that meanings with certain
features can be learned more easily only goes some of the
way in explaining the features’ universality across various
languages. A full explanation also needs to show that the
structure can and eventually will be reached by processes of
cultural evolution. In the rest of this paper, we develop an it-
erated learning model of the cultural evolution of quantifiers
that embeds the learning model of neural networks, and show
that monotonicity reliably emerges.

Methods
Iterated learning
IL models start with two groups of randomly initialized
agents, the first and second generations. Each agent in the
first generation—the cultural parent—is associated with one
agent in the second generation—the cultural child. A set of

191

linguistic production data is generated for each cultural par-
ent and used as input for the cultural child. The cultural child
tries to approximate its cultural parent’s language. In the fol-
lowing step, the process is repeated with agents in the sec-
ond generation as cultural parents and the new agents in a
third generation as cultural children. The cultural transmis-
sion process is iterated for some number of generations. Each
cultural family line is called a chain of IL.

Crucially, the agents do not learn their parent’s language
perfectly. There can be various reasons for this. First, there
can be a bottleneck in learning. This happens when the
learner does not observe everything that is needed to perfectly
reconstruct the language, and therefore has to guess some as-
pects of it. The number of data points given to the learn-
ers is fixed for all generations and agents and is called the
bottleneck size. A second reason is that the agent might not
have perfect memory or perfect reasoning abilities, and might
therefore learn a language that does not perfectly conform to
the given data. In this case, the more rational the agent, the
closer the learned language will be to the teacher’s language.
A third reason is that the cultural parents might produce lan-
guage in a way that is stochastic rather than deterministic.
This can make the language harder to approximate and im-
possible to learn perfectly. For instance, a cultural parent
might pick among the signals compatible with a certain ob-
servation according to a categorical distribution. The cultural
child would need to infer the parameters of the distribution, a
task which cannot in general be accomplished perfectly with
a finite number of observations.

The changes introduced by each learner accumulate over
generations. Since these changes are not completely random,
but rather tend to be consistent across agents, the languages
tend to change in the same way over time in different chains.
In sum, IL is a way to study how the cognitive system of the
learners determine which languages one should expect to see
spoken in a population of such agents. The crucial individual
level components of an IL model are the set of possible lan-
guages, and the way the agents learn them. We now explain
these two components in turn.

Model of models, quantifiers, and language
Since the focus is on the evolution of monotonicity, we sim-
plify the language model by assuming that the quantifiers are
conservative and extensional.8 This amounts to saying that
the truth value of each quantifier only depends on the ele-
ments in A and A∩B, and not on A∪B or B\A. Therefore, the
truth of any quantifier depends only on which of the elements
of A are also elements of B, and which are not. Assuming

8These, next to monotonicity, are two prominent semantic uni-
versals distinguishing natural language quantifiers from all logically
possible quantifiers. Extensionality means that extending or shrink-
ing the universe of discourse has no effect on the truth-value of the
quantifier sentence as long as the left and right arguments are un-
changed. Conservativity means that only the part of B that is com-
mon to A matters for the truth-value of the sentences. In other words,
the elements in B \A can be safely ignored when determining the
truth-value. See Peters and Westerståhl (2006) for definitions.

conservativity and extensionality both reduces the number of
possible quantifiers that agents can speak and simplifies the
model of each quantifier, since only A and A∩B need to be
encoded. Moreover, we assume that the left argument of the
quantifiers is fixed to some set A with cardinality n.

Assuming conservativity/extensionality and a fixed set A,
we can represent the part of the world—called a model—that
is relevant to determining the truth value of a quantifier as
a bit vector of a fixed length n. Each element of the model
represents an object in A. Each element has value 1 iff the
object corresponding to that bit is also an element of B, and
0 otherwise. For instance, the vector [0,1,1] would model a
situation where A = {o1,o2,o3} and o2, o3 ∈ B. The set of
models is the set of all binary strings of length n, i.e. the set
of possible relations between a fixed A and any possible B.
We call M′ a submodel of a model M iff M′ is 0 everywhere
where M is 0. For instance, [0,1,1,0,0] is a submodel of
[0,1,1,1,1]. Note that each model is a submodel of itself.

We represent a quantifier as a function from models to sin-
gle bits. An example of a quantifier is Q(x) = 1 if ∑

n
i=1 xi >

2 otherwise 0, meaning “more than two”. Since for A of size
n there are 2n different models, each quantifier is a 2n-sized
bit vector. Each element of the quantifier vector corresponds
to a model and has value 1 iff the model verifies the quantifier
and 0 otherwise.

To see how this works in practice, consider a set A of size 3.
There are 8 possible ways in which any other set B can over-
lap with A. Each of these is modelled as a bit vector of size
3. For instance, [0,1,1] says that the second and third object
of A are also elements of B, but the first is not. The English
expression “all As are B” is modelled by a bit vector of size
8 that has value 1 at the index corresponding to the model
[1,1,1] and 0 otherwise. If the models are ordered lexico-
graphically9 and the last model is therefore [1,1,1], then the
quantifier corresponds to the vector [0,0,0,0,0,0,0,1]. We
call a quantifier degenerate if and only if it corresponds to a
vector of identical elements, 0s or 1s. A degenerate quantifier
corresponds intuitively to a quantifier that is true or false of
every model.

Each agent encodes a single quantifier. Agents do not en-
code the quantifiers directly. Rather, given a model they pro-
duce a truth value by using a neural network. The next two
sections clarify the connection between the neural networks
and the agent’s behaviour.

Neural Networks
Because of the aforementioned learnability results of
Steinert-Threlkeld and Szymanik (in press), the agents that
make up the generations in our iterated learning setup are
neural networks. Each network has n input neurons (one for
each bit of a vector corresponding to a model) and one out-
put neuron (how probable it thinks that the true output is a
1), with two hidden layers of 16 neurons each. We made this

9In that case, lexicographic order is the dictionary order over se-
quences of letters from the alphabet {0,1) with 0 preceding 1 in the
order.

192

choice so that the networks had enough expressive power to
represent many quantifiers, including complex ones. Future
work will analyze the effect of architecture choices on the
results presented below. The networks and learning, which
will be described in the next section, were implemented in
PyTorch.10

Such a network learns from input/output pairs using a
fancier version of gradient descent called Adam (Kingma
& Ba, 2015). The network receives a number of true in-
put/output pairs, which it iterates over in small batches. For
each batch, it guesses the correct outputs for the inputs, and
then updates its parameters (weights and biases connecting
the neurons) in such a way that its future outputs are guaran-
teed to be closer to the truth.11 Because this style of learning
is fairly gradual, we introduce one more parameter to our sim-
ulations, namely number of epochs: this is how many times
the network processes its training set in each generation. In
other words, the network sees a portion of its parent’s lan-
guage, as determined by bottleneck size, but gets to learn from
that portion number-of-epochs times.12

Model of the agents
Each agent plays two roles in an IL simulation. The first role
is to learn a language given data from the previous generation.
The second role is to produce data used to teach to the follow-
ing generation. To produce this data, the agent is prompted
with randomly chosen models.

In the learning phase, each agent receives learning data
consisting of a set of tuples 〈model, judgment〉. The judg-
ment is a single bit expressing whether the quantifier used by
the agent is compatible or not with the model. This data is
used to train the agent’s neural network as described in the
previous subsection.

Production works as follows. The agent feeds an observed
model to its neural network. The neural network returns a
number in the [0,1] interval. Then, the agent rounds the num-
ber and returns it. The returned number expresses whether
the agent’s quantifier is compatible or not with the model that
the agent observed. The production behaviour is determin-
istic, since an agent always produces the same bit given the
same model.

Prompted with a string of 1s and 0s, agents produce a 1 or
0. The former models a state of the world, the latter mod-
els the compatibility of the agent’s quantifier with the world
state. However, nothing in the simulation implies that neu-
ral networks are interpreting 1 and 0 as True and False re-
spectively in their input and output. Therefore, the output of
an agent under-determines which quantifier the agent speaks,
even when the output for all models is known. For instance,
an agent that returns 1 for input [0,0,1,1] can be interpreted
as accepting the model where B = {o3,o4} (if 1 is interpreted

10http://pytorch.org
11For general introductions, see Nielsen (2015); Goodfellow,

Bengio, and Courville (2016).
12In some experimental literature — for example, Carr, Smith,

Culbertson, and Kirby (2019) — this is also referred to as exposures.

as True in the model and in the quantifier), as rejecting the
model where B = {o3,o4} (if 1 is interpreted as False in the
quantifier and True in the models), as accepting the model
where B = {o1,o2} (if 1 is interpreted as True in the quanti-
fier and False in the models), or as rejecting the model where
B = {o1,o2} (if 1 is interpreted as False in the quantifier and
the models). Crucially, the interpretation of the bits has to be
consistent across the models and across the quantifier judg-
ments. Therefore, each agent can be interpreted as speaking
four quantifiers, depending on whether 1 and 0 are interpreted
as meaning true or false in the models and in the agent’s out-
put. We discuss below how we deal with underdeterminacy
when it might make a difference to the interpretation of the
results.

Measures of monotonicity

Figure 2: Kernel Density Estimation of the distribution of
degrees of monotonicity from a sample of 300 completely
random quantifiers and 300 random neural network agents.
The x-axis is the measure of monotonicity we describe in the
main text.

According to the standard definition, monotonicity is a bi-
nary property. A possible way of analyzing the results would
be to find the proportion of monotone languages in every
generation. However, some quantifiers are intuitively more
monotone than other quantifiers. For instance, consider the
three quantifiers “some”, “between 3 and 5” and “an even
number of”. While “some” is monotone and the other two
quantifiers are not, intuitively “an even number of” is the least
monotone of the three. To track finer changes in monotonicity
level over time, we define a graded measure of monotonicity.

We measure monotonicity in information-theoretic terms
as the proportion of uncertainty in the output of a quantifier
that is removed after knowing that there is a submodel where
the quantifier is true (i.e. a 1). For a perfectly (upward) mono-
tone quantifier Q, if a model M has a submodel to which the
quantifier assigns 1 then Q will assign 1 to M. Therefore, for

193

a monotone quantifier all the uncertainty is removed and the
measure has value 1.

More formally, first define the random variables 1Q and 1≺Q
on the space of possible models as follows. 1Q is the value
that Q assigns to the model M. 1≺Q is whether a model has a
submodel that the quantifier considers true (assigns 1 to). The
entropy of 1Q, H(1Q), quantifies the uncertainty about what
truth value Q will assign to a model. The conditional entropy
H(1Q | 1≺Q) quantifies the uncertainty about what Q will as-
sign to a model, given that one knows whether the model has
a submodel that Q considers true (assigns 1 to). H(1Q | 1≺Q)
is minimized (attains value 0) for a perfectly monotone quan-
tifier: if you know that a model has a true submodel, and
the quantifier is upward monotone, you know the truth value
of that model. The difference between the entropy and the
conditional entropy between these variables is known as the
mutual information:

I(1Q;1≺Q) := H(1Q)−H(1Q|1≺Q)

This measures how much information 1≺Q provides about 1Q.
For a perfectly monotone quantifier, H(1Q|1≺Q) = 0, and so
I(1Q;1≺Q) = H(1Q). In other words: for a monotone quanti-
fier, knowing which models have a true sub-model provides
as much information as knowing the entire quantifier.

While this roughly captures what we want from a measure
of monotonicity, it needs to be normalized to form a degree
that applies across quantifiers, since 0≤ I(1Q;1≺Q)≤ H(1Q).
We do this by dividing by H(1Q), moving the upper bound to
1. In total then, we measure monotonicity as

mon(Q) :=
I(1Q;1≺Q)

H(1Q)

=
H(1Q)−H(1Q|1≺Q)

H(1Q)

= 1−
H(1Q | 1≺Q)

H(1Q)

To see how this measure tracks intuitions, consider the pre-
vious mentioned quantifiers “some”, “between 3 and 5” and
“an even number of”. “Some” gets monotonicity 1.0, be-
cause knowing whether a model has a submodel that veri-
fies “some” eliminates all uncertainty about the truth of the
model. Recall that each agent can be interpreted as instanti-
ating any of four quantifiers, which can be monotone to dif-
ferent degrees. This raises the question of which of the four
degrees of monotonicity should be considered in the analysis
of the results. The monotonicity of an agent’s language is the
highest among the degrees of the quantifiers compatible with
the agent’s language. For instance, an agent whose quanti-
fier is “between 3 and 5” has degree 0.7517 and one with “an
even number of” has degree 0.001.

We compare the results of the simulation to the distribution
of the measure in randomly generated quantifiers. There are
two different random distributions of quantifiers. On the one

hand, there are the quantifiers instantiated by randomly ini-
tialized agents. On the other hand, there are the quantifiers
sampled uniformly from the space of possible quantifiers.
These two distributions are depicted in Figure 2. While the
completely random quantifiers have a narrower distribution,
both types of random distribution are very skewed towards
low degree of monotonicity. This makes sense: monotonicity
is a relatively rare property, and so should not be expected to
appear randomly. We now turn to the results, showing that
higher degrees do emerge via iterated learning.

Materials
For our experiments, we used a fixed model size of 10 (which,
recall, is also the size of the input to the agents), with 10
agents in each generation, and varied the bottleneck size (200,
512, 715, 1024) and number of epochs (4 and 8). For each
setting of those two parameters, we ran 20 trials.

The code, data, and instructions for running ex-
periments may be found at https://github.com/
thelogicalgrammar/NeuralNetIteratedQuantifiers.

Results
The first result is that monotone quantifiers evolve consis-
tently and rapidly for some values of the simulation param-
eters. More specifically, the evolution of monotonicity de-
pends on the bottleneck size and the number of epochs, i.e.
how much of the parent’s language is observed by the cul-
tural child. See Figure 3 for the results. If the networks
get too much input, they learn the quantifier accurately and
change is very slow. If the networks get too little input, the
learning has little effect and no pattern emerges. If languages
are somewhat stable across generations, but enough variation
is allowed by not over-training the cultural children, mono-
tonicity evolves.

A second result is that the monotone quantifiers that
emerge are in large part non degenerate. In Bayesian mod-
els that include a prior for simplicity, degenerate languages
become widespread under pure IL (Kirby, Tamariz, Cornish,
& Smith, 2015). Here, however, degenerate quantifiers are a
small minority (about 0.005% of all quantifiers).

The third result is that most non-degenerate monotone
quantifiers fall in one of a few types. About 79% of the per-
fectly monotone quantifiers show the following pattern: there
is some index i such that the quantifier—call it Qi—assigns
1 to a model iff the model is 1 at i (or an equivalent pattern
obtained by switching 0 and 1 uniformly in the models and/or
in the quantifier). Qi is true iff oi, the object represented by
index i, belongs to the set B.13. Therefore Qi(A) functions
like a proper noun for oi. Just like “Anna is human” is true iff
Anna belongs to the set of humans, “Qi(A) is B” is true iff oi
belongs to the set B.

13In set-theoretic terms, Qi is a principal ultrafilter If U is a finite
non-empty set, a set F is a principal ultrafilter on U if there is an
a ∈U such that F = {B ∈ P (U)|a ∈ B}. In the present model, Qi is
(the characteristic function of) a principal ultrafilter on B because it
it contains every subset of B that contains i.

194

https://github.com/thelogicalgrammar/NeuralNetIteratedQuantifiers
https://github.com/thelogicalgrammar/NeuralNetIteratedQuantifiers

0 100 200 300
Generation

0.2

0.4

0.6

0.8

1.0

M
on

ot
on

ici
ty

Epochs = 4

0 100 200 300
Generation

Epochs = 8

Bottleneck
200
512
715
1024

Figure 3: The simulation was ran 20 times for each combination of bottleneck size and number of epochs in a population of
10 agents and a maximum model size of 10. The plot shows how the average monotonicity level across all languages changes
over 300 generations. Convergence to monotonicity depends on how much the learners’ neural networks are trained, which
itself depends on the number of epochs and the bottleneck size. With small bottleneck and few epochs, monotonicity does not
evolve. With a bigger bottleneck size and more training epochs, monotone languages become widespread. However, increasing
the training data further tends to impede the development of monotone languages.

For other monotone quantifiers Q{ j,k}, there are two indices
j,k (with j 6= k) such that Q{ j,k} assigns 1 to a model iff the
model has value 1 at both j and k (or, again, an equivalent
patterns obtained by switching 0 and 1 in the models and/or
in the quantifier). Q{ j,k} is true iff B contains two specific ele-
ments of A, and false otherwise.14 It can be interpreted as the
conjunction of two proper nouns. Like “Anna and Rob are hu-
man” is true iff Anna is human and Rob is human, “Q{ j,k}(A)
is B” is true iff o j is B and ok is B.

Discussion
The results we presented support the learnability account of
the origins of semantic universals of quantification. While
previous work compared quantifiers satisfying semantic uni-
versals to quantifiers that do not, we have presented a model
where the former are selected out of all of the possible quan-
tifiers by a process of cultural evolution. Moreover, the pref-
erence for monotone quantifiers is not a consequence of an
explicitly coded bias for simplicity, but rather of an inde-
pendently motivated, biologically plausible model of learn-
ing. The results therefore suggest that not only are monotone
quantifiers easier to learn, but they are also widespread in lan-
guage because of their learnability.

This model can be straightforwardly extended in various

14These are called in set-theoretic terms principal filters. They are
not principal ultrafilters because their truth depends on more than
one element.

ways. The agents judged their quantifier compatible with a
given model simply by rounding the output of their neural
network. An alternative to this is for the agents to accept a
model with a probability proportional to the network’s output.
Such so-called sample agents do not straightforwardly instan-
tiate a quantifier, since they can produce inconsistent output
when repeatedly prompted with the same model. However,
preliminary results have shown that neural networks are ca-
pable of doing statistical learning: given enough data, they
approximate not just whether their parents tend to reject or
accept a model, but also the probability of acceptance.

While the quantifiers that emerge from our experiment are
monotone, they are unnatural in certain respects. For in-
stance, the proper-name-like quantifiers that emerge are not
quantitative, i.e. their truth value depends not simply on the
number of 1s and 0s, but on the identity of particular ele-
ments.15

To try and explain the emergence of quantifiers which are
both monotone and quantitative, it might be necessary to
make it more difficult for the networks to rely on the identity
of particular objects by, for instance, shuffling the order of
models in the parent and the teacher’s inputs. Another pres-
sure that might contribute to shape the meaning of quanti-
fiers comes from communication (Kirby et al., 2015). While

15See Steinert-Threlkeld and Szymanik (in press) for the defini-
tion of and motivation for quantity, which generalizes the isomor-
phism/permutation constraint in generalized quantifier theory as dis-
cussed, for instance, in Peters and Westerståhl (2006).

195

some semantic universals of quantification might have an ad-
vantage in cultural evolution because they conform well with
learning biases, other universals might evolve because they
lead to more successful communication. Therefore, combin-
ing iterated learning with a pressure for accurate communica-
tion might help more natural quantifiers emerge. We leave all
of these exciting possibilities to future work.

Acknowledgments

Shane Steinert-Threlkeld and Jakub Szymanik have re-
ceived funding from the European Research Council un-
der the European Unions Seventh Framework Programme
(FP/20072013)/ERC Grant Agreement n. STG 716230
CoSaQ.

References
Barwise, J., & Cooper, R. (1981). Generalized Quantifiers

and Natural Language. Linguistics and Philosophy, 4(2),
159–219.

Carr, J. W., Smith, K., Culbertson, J., & Kirby, S. (2019).
Simplicity and informativeness in semantic category sys-
tems. Retrieved from https://psyarxiv.com/jkfyx

Culbertson, J., & Kirby, S. (2016). Simplicity and Speci-
ficity in Language: Domain-General Biases Have Domain-
Specific Effects. Frontiers in Psychology, 6. doi: 10.3389/
fpsyg.2015.01964

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep
Learning. The MIT Press. Retrieved from https://www
.deeplearningbook.org/

Hyman, L. M. (2008). Universals in phonology. The Linguis-
tic Review, 25(1-2), 83–137.

Kingma, D. P., & Ba, J. (2015). Adam: A Method
for Stochastic Optimization. In International Confer-
ence of Learning Representations (ICLR). Retrieved from
https://arxiv.org/abs/1412.6980

Kirby, S. (1999). Function, Selection, and Innateness: The
Emergence of Language Universals. Oxford; New York:
OUP Oxford.

Kirby, S., Cornish, H., & Smith, K. (2008). Cumulative cul-
tural evolution in the laboratory: An experimental approach
to the origins of structure in human language. Proceed-
ings of the National Academy of Sciences, 105(31), 10681–
10686.

Kirby, S., Tamariz, M., Cornish, H., & Smith, K. (2015).
Compression and communication in the cultural evolution
of linguistic structure. Cognition, 141, 87 - 102. doi:
https://doi.org/10.1016/j.cognition.2015.03.016

Newmeyer, F. J. (2008). Universals in syntax. The Linguistic
Review, 25(1-2), 35–82. doi: 10.1515/TLIR.2008.002

Nielsen, M. A. (2015). Neural Networks and Deep Learn-
ing. Determination Press. Retrieved from http://
neuralnetworksanddeeplearning.com/

Peters, S., & Westerståhl, D. (2006). Quantifiers in Language
and Logic. Oxford: Clarendon Press.

Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D.
(2013). Modeling the acquisition of quantifier seman-

tics: a case study in function word learnability. Re-
trieved from http://colala.berkeley.edu/papers/
piantadosi2012modeling.pdf

Steinert-Threlkeld, S. (in press). An Explanation of
the Veridical Uniformity Universal. Journal of Seman-
tics. Retrieved from https://semanticsarchive.net/
Archive/DI5ZTNmN/UniversalResponsiveVerbs.pdf

Steinert-Threlkeld, S., & Szymanik, J. (2019). Ease of
Learning Explains Semantic Universals. Retrieved from
https://semanticsarchive.net/Archive/zM5ZGIxM/
EaseLearning.pdf

Steinert-Threlkeld, S., & Szymanik, J. (in press). Learnabil-
ity and Semantic Universals. Semantics & Pragmatics. Re-
trieved from http://semanticsarchive.net/Archive/
mQ2Y2Y2Z/LearnabilitySemanticUniversals.pdf

Szymanik, J. (2016). Quantifiers and Cognition. Logical and
Computational Perspectives. Springer.

Tamariz, M., & Kirby, S. (2016). The cultural evolution of
language. Current Opinion in Psychology, 8, 37-43. doi:
10.1016/j.copsyc.2015.09.003

196

https://psyarxiv.com/jkfyx
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
https://arxiv.org/abs/1412.6980
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://colala.berkeley.edu/papers/piantadosi2012modeling.pdf
http://colala.berkeley.edu/papers/piantadosi2012modeling.pdf
https://semanticsarchive.net/Archive/DI5ZTNmN/UniversalResponsiveVerbs.pdf
https://semanticsarchive.net/Archive/DI5ZTNmN/UniversalResponsiveVerbs.pdf
https://semanticsarchive.net/Archive/zM5ZGIxM/EaseLearning.pdf
https://semanticsarchive.net/Archive/zM5ZGIxM/EaseLearning.pdf
http://semanticsarchive.net/Archive/mQ2Y2Y2Z/LearnabilitySemanticUniversals.pdf
http://semanticsarchive.net/Archive/mQ2Y2Y2Z/LearnabilitySemanticUniversals.pdf

