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Abstract
Recent discussions within the mathematical psychology community have focused on how Open Science practices may
apply to cognitive modelling. Lee et al. (2019) sketched an initial approach for adapting Open Science practices that have
been developed for experimental psychology research to the unique needs of cognitive modelling. While we welcome the
general proposal of Lee et al. (2019), we believe a more fine-grained view is necessary to accommodate the adoption of Open
Science practices in the diverse areas of cognitive modelling. Firstly, we suggest a categorization for the diverse types of
cognitive modelling, which we argue will allow researchers to more clearly adapt Open Science practices to different types
of cognitive modelling. Secondly, we consider the feasibility and usefulness of preregistration and lab notebooks for each
of these categories and address potential objections to preregistration in cognitive modelling. Finally, we separate several
cognitive modelling concepts that we believe Lee et al. (2019) conflated, which should allow for greater consistency and
transparency in the modelling process. At a general level, we propose a framework that emphasizes local consistency in
approaches while allowing for global diversity in modelling practices.

Keywords Cognitive modelling · Reproducibility · Open Science · Preregistration · Transparency

Introduction

Psychology and related fields have been gripped by the
so-called “replication crisis” over the past several years
(Pashler and Wagenmakers 2012), though discussions of
the underlying problems date back several decades (cf. e.g.,
Sterling 1959; Cohen 1965; Meehl 1967). The continuing
misuse of statistical methods has led to a substantial por-
tion of the literature being unreplicable and most likely
untenable (Ioannidis 2005; Open Science Collaboration
2015), which has led to a reform movement around “Open
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Science,” where an increasing number of scientists have
focused on improving the use and development of statistics
and methodology within psychology. This movement has
led to the development of a variety of Open Science prac-
tices, such as data sharing (Klein et al. 2018), preregistration
(Wagenmakers et al. 2012), and preregistration’s more rigor-
ous sister Registered Reports (RRs; Chambers et al. 2014),
with the goal of creating transparent and accessible psy-
chological research (Nuijten 2018; Crüwell et al. 2018).
Importantly, transparent scientific practices can counter-
act the effect of cognitive biases and other pressures that
may affect the reproducibility of scientific findings (Munafò
et al. 2017). Our article largely focuses on preregistration,
a practice where researchers specify their research design,
hypotheses, and analysis plan prior to the data collection
(Nosek and Lindsey 2018).

Recent discussions within the mathematical psychology
community have focused on how these Open Science prac-
tices may apply to cognitive modelling (see Wagenmakers
and Evans 2018; Lewandowsky 2019, for reviews of the
recent discussions on social media). Specifically, there are
many instances in cognitive modelling where a lack of prac-
tical constraints (i.e., an abundance of “modeller’s degrees
of freedom,” Dutilh et al. 2018) can lead to inconsistent and
untransparent modelling approaches, which can affect inter-
pretations of model success and failure (McClelland 2009;
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Roberts and Pashler 2000), and prevent the reuse of exist-
ing models (e.g., Addyman and French 2012). Importantly,
Open Science practices have been developed to counter-
act similar problems in experimental psychology, showing a
clear value for similar practices within cognitive modelling,
where they may lead to less biased modelling practices
and broader reuse and refinement of existing models. How-
ever, there has been opposition to Open Science practices
within mathematical psychology, with criticisms suggest-
ing that Open Science practices can be inflexible and are
poorly adapted to the needs of cognitive modelling (see
Wagenmakers and Evans 2018, for a discussion).

Lee et al. (2019) sketched an initial approach for incor-
porating and adapting Open Science practices into cognitive
modelling. Specifically, Lee et al. (2019) suggested sev-
eral “good practices” within cognitive modelling, where
studies should (1) preregister the models and evaluation
criteria, (2) consider the full spectrum of models and evalua-
tion criteria available, (3) ensure the robustness of findings,
and (4) provide a distinction between confirmatory and
exploratory analyses, with “postregistration”—in the form
of a lab notebook—being an option for exploratory analy-
ses. We welcome Lee et al.’s (2019) introduction of Open
Science practices to cognitive modelling, as we believe that
they will aid the consistency and transparency of research in
cognitive modelling. However, we believe that a more fine-
grained view is necessary to accommodate the adoption of
Open Science practices in the diverse range of studies that
fall under the “cognitive modelling” umbrella, where differ-
ent types of cognitive modelling may have different specific
requirements. Specifically, we believe that a lack of distinc-
tion between the diverse areas of cognitive modelling has
led to overly polarized standpoints regarding Open Science
practices, in particular preregistration, within the mathemat-
ical psychology community (see Wagenmakers and Evans
2018; Lewandowsky 2019). More separation and directive
guidance is required to aid the adoption of Open Science
practices in cognitive modelling.

Our article focuses on three key topics that we believe
will aid the adoption of Open Science practices in cognitive
modelling. Firstly, we provide a categorization for the
diverse types of cognitive modelling, which we believe will
aid the development of directive guidance for Open Science
practices in different categories of cognitive modelling.
Secondly, we address several potential objections to
preregistration within cognitive modelling, discuss the
categories of cognitive modelling that are best suited to
preregistration, and suggest how preregistration may need
to be adapted to suit the specific needs of each category. We
also discuss the concept of “postregistration” and the use of
lab notebooks, and the need for standards and consistency
in post-hoc registration practices. Lastly, we attempt to
separate several cognitive modelling concepts that we

believe Lee et al. (2019) conflated, as their conflation may
lead to inconsistent practices with misleading results within
cognitive modelling.

OneMan’s Meat is Another Man’s Poison

“Cognitive modelling” is an umbrella term commonly used
to describe a diverse range of studies that implement
formalized models to better understand cognitive processes.
These studies can range from purely confirmatory research,
such as a direct comparison between two competing
cognitive theories represented as formalized models (e.g.,
Evans et al. 2017a, 2019a, b; Palestro et al. 2018; Voskuilen
et al. 2016; Evans and Hawkins 2019; Teodorescu and
Usher 2013), to purely exploratory research, such as the
initial development of a model for a novel experimental
paradigm (e.g., Nosofsky 1986; Shiffrin and Steyvers 1997;
Ratcliff 1978; Dougherty et al. 1999; Jones and Mewhort
2007; Vickers and Lee 2000). However, this diversity has
been largely ignored within the recent discussions on how
Open Science practices may apply to cognitive modelling,
leaving the discussion open to potential misunderstandings
about which Open Science practices are applicable to
which types of cognitive modelling. We argue that the
overly generic view of cognitive modelling may be the
underlying reason for much of the opposition to Open
Science practices within mathematical psychology. For
example, in the context of the exploratory development of
a model, a researcher might be horrified at the idea of
“preregistration in cognitive modelling”, and rightfully so,
as preregistration is most useful for confirmatory research.
There are other Open Science practices that are useful for
increasing the transparency of exploratory research such
as sharing your data, materials, and code (Klein et al.
2018), or prioritizing open access publishing (Tennant et al.
2016). We believe that the opposition to Open Science
practices in cognitive modelling might be alleviated by a
more specific categorization of different types of cognitive
modelling, and a discussion of where specific Open Science
practices are most applicable. Specifically, we propose
that it may be useful to split cognitive modelling into
the following four categories: model application, model
comparison, model evaluation, and model development.
Each of these different categories involves different research
goals, uses different methods of assessment, and might
differ in how well they are suited to different Open
Science practices, particularly preregistration. Table 1 lists
each of these different modelling categories, as well as
some important factors that researchers should consider
before implementing each of these categories of cognitive
modelling, some of which we discuss in more detail
throughout the remainder of our article. Importantly, we
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believe that these considerations may be viewed as potential
“researcher degrees of freedom,” which may form the
basis for future preregistration templates and documentation
standards in cognitive modelling.

Model application consists of studies where an existing
cognitive model, which is assumed to provide an ade-
quate representation of the underlying cognitive process, is
applied to empirical data to provide insight into how the
cognitive process operates in that paradigm (e.g., Weigard
and Huang-Pollock 2017; Ratcliff et al. 2001; Janczyk and
Lerche 2019; Lerche et al. 2019; Wagenmakers et al. 2008;
Ratcliff and Rouder 2000; Evans et al. 2018a, c). These
applications often involve experimental studies with differ-
ent groups and/or conditions, with researchers interested
in how the cognitive process changes across these factors,
measured by changes in the values of the model parameters.
Model application is similar to the concept of “measure-
ment models” discussed by Lee et al. (2019, p. 10), though
we wish to distinguish our definition from their definition,
as we believe that measurement is rarely the sole purpose
of a model and that a single model can be used for both
measurement and theory representation. For example, the
diffusion model of decision-making (Ratcliff 1978) is often
used for measurement in model application (e.g., Weigard
and Huang-Pollock 2017; Ratcliff et al. 2001; Janczyk and
Lerche 2019; Lerche et al. 2019; Wagenmakers et al. 2008;
Ratcliff and Rouder 2000; Evans et al. 2018a), though it
has also been used as a cognitive theory in model compar-
ison (e.g., Voskuilen et al. 2016; Voss et al. 2019; Evans
and Hawkins 2019; Evans et al. 2017a, 2019b), model eval-
uation (e.g., Ratcliff and Rouder 1998; Teodorescu and
Usher 2013; Evans et al. 2019a; Cisek et al. 2009; Thura
et al. 2012), and model development (e.g., Ratcliff 1978;
Ratcliff and Rouder 1998; Ratcliff and Tuerlinckx 2002).
Model application typically involves confirmatory research
questions that are similar to those in traditional experi-
mental research—with a cognitive model in place of a
statistical model (i.e., a t test, ANOVA)—where a set of
conflicting a priori hypotheses about how the parameters
should vary over groups and/or conditions are assessed.
Therefore, Open Science practices that have been devel-
oped for confirmatory experimental research—particularly
preregistration—are clearly and readily applicable to the
model application category, and existing preregistration
templates could be adapted for model application with only
minor amendments.

Model comparison consists of studies where multiple
existing cognitive models are compared on their ability
to account for empirical data, typically either based on
their ability to provide an accurate explanation of the
underlying process, or to predict future data in the same
context (e.g., Voskuilen et al. 2016; Voss et al. 2019;
Evans and Hawkins 2019; Evans et al. 2017a, 2019b).

These assessments are usually made through quantitative
model selection methods, which penalize models based
on either their a priori flexibility (e.g., Kass and Raftery
1995; Evans and Brown 2018; Myung et al. 2006; Annis
et al. 2019; Evans and Annis 2019; Gronau et al. 2017;
Schwarz 1978) or their overfitting to the noise in samples
of data (e.g., Spiegelhalter et al. 2002; Vehtari et al. 2017;
Browne 2000; Akaike 1974). Importantly, models that are
more flexible a priori will have an unfair advantage in
accurately explaining the data than simpler models (Roberts
and Pashler 2000; Myung and Pitt 1997; Evans et al.
2017b), and models that over-fit to a sample of data
will predict future data more poorly than those that only
capture the robust trends (Myung 2000). Although model
comparison is less similar to confirmatory experimental
research than model application, model comparison still
typically involves confirmatory research questions about
which models will be superior to others, making it well
suited to preregistration. However, several additional factors
need to be considered for the preregistration of model
comparison beyond the factors in model application, such
as the models to be compared (discussed by Lee et al. as
“the players in the game,” p.3) and the model selection
methods for the comparison (discussed the Lee et al. as “the
rules of the game.” p.3). Furthermore, model comparison
can often involve the use of existing data sets, meaning that
researchers need to consider the scope of their comparison
(i.e., the empirical contexts included in the comparison), and
any potential preregistration template formodel comparison
would need to consider secondary data preregistration (see
Mertens and Krypotos 2019; Weston et al. 2018).

Model evaluation consists of studies where one or
multiple existing cognitive models are evaluated on their
ability to account for specific patterns in empirical data
(e.g., Ratcliff and Rouder 1998; Teodorescu and Usher
2013; Evans et al. 2019a; Cisek et al. 2009; Thura et al.
2012). These assessments are usually made through visual
assessments of qualitative trends that can be plotted from
the data, which are contrasted to the predictions that the
model can make for these aspects of the data. It should
be noted that model evaluation contains no correction
for model flexibility and, therefore, should not be used
to answer confirmatory research questions about which
models are superior to others, as these comparisons will
be biased towards more flexible models (see Roberts and
Pashler 2000; Evans 2019b, for more detailed discussions).
However, model evaluation is ideal for answering research
questions about why certain models are found to be
superior to others in model comparison and what further
development may be required to create a better explanation
of the underlying process, meaning that it is often used in
combination withmodel development.Model evaluation can
be used in a confirmatory manner when researchers have a
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specific model, or models, that they wish to evaluate on a
specific trend, or trends, and in these casesmodel evaluation
requires a similar consideration to model comparison
for preregistration. However, when model evaluation is
combined with model development, model evaluation can
become an iterative, exploratory process, which is less
applicable to preregistration and related Open Science
practices.

Model development consists of all instances where
models are altered in some way to create a new model
and can be viewed as the preceding work required for all
other categories of cognitive modelling (e.g., Brown and
Heathcote 2005, 2008; Usher and McClelland 2001; Evans
et al. 2018b; Nosofsky 1986; Shiffrin and Steyvers 1997;
Ratcliff 1978; Dougherty et al. 1999; Jones and Mewhort
2007; Vickers and Lee 2000; Ratcliff and Rouder 1998;
Ratcliff and Tuerlinckx 2002). The alterations can range
from minor tweaks to an existing model (e.g., Brown and
Heathcote 2008; Evans et al. 2018b; Ratcliff and Rouder
1998; Ratcliff and Tuerlinckx 2002), to constructing a
novel model of a novel paradigm (e.g., Nosofsky 1986;
Shiffrin and Steyvers 1997; Ratcliff 1978). The goal of the
development process could be to create a simple model
well suited to model application, a new explanation of the

underlying process that will be compared with other models
in model comparison, or a general model that provides a
functional form capable of meeting a range of qualitative
benchmarks in model evaluation. Model development is a
broad category that encompasses many cognitive modelling
studies and is often necessary to adapt an existing model
to a new paradigm, even when development is not the
focus of the study (Navarro 2019). In many of these
cases, model development can be an iterative, exploratory
process, meaning that Open Science practices designed for
confirmatory experimental research, such as preregistration,
have limited applicability. However, we believe that model
development is the most crucial category of cognitive
modelling, and therefore, future research should investigate
how the process of model development can be made as
transparent as possible, without restricting the iterative,
exploratory process. The considerations in Table 1 may
provide a valuable starting point for these investigations.

Note that our categorization of cognitive modelling might
not be ideal for all purposes. Many researchers work with
more than one category of cognitive modelling, and existing
studies often combine these different categories. However,
we believe that this categorization provides a useful tool
for discussing the applicability of Open Science practices to

Table 1 Transparency considerations in different categories of cognitive modelling

Category Important considerations for transparency

Model applicationa Selecting a model to assume as the underlying process

Creating a match between model parameters and application domain theory

Deciding upon the method of parameter estimation (e.g., maximum likelihood)

Choosing a method of statistical inference on parameters (e.g., Bayes factors)

Model comparisona Selecting a subset of precisely defined models to be compared

Selecting a suitable data set (or data sets) for the comparison

Deciding upon the goal of the comparison (e.g., explanation or prediction)

Deciding upon a comparison criterion that matches the goal (e.g., cross validation for prediction)

Deciding upon the strength of evidence required for confidently selecting one model over another

Deciding upon robustness checks to account for ancillary assumptions

Model evaluationa Selecting the data trends or benchmarks of interest

Deciding upon clear criteria for evaluation (e.g., directional, goodness-of-fit, visual)

Defining the criteria for adequacy (e.g., when the model is seen to be descriptively accurate)

Defining all a priori theoretically justifiable functional forms of the model

Clearly separating confirmatory and exploratory aspects (e.g., data-driven changes to the model)

Model developmentb Providing a clear and transparent documentation of the model exploration process

Discussing existing theoretical justification for model components and functional form

Distinguishing between theory-driven development and data-driven development

Deciding which components of the model are core and which are ancillary

Deciding upon the purpose of the model (e.g., tool for application, formalization of theory, both)

Deciding upon evaluation criteria that will drive the model development (e.g., data trends, parameter identifiability)

aConsiderations should be made before the modelling process
bConsiderations can be made during any point of the exploratory process
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cognitive modelling and determining where these practices
may need to be adapted for the specific needs of different
types of cognitive modelling.

The Devil Is in the Details

Lee et al. (2019) made an important contribution by sug-
gesting several “good practices” within cognitive modelling.
Here, we discuss two of these specific practices, which
were intended as an initial approach for incorporating and
adapting Open Science practices into cognitive modelling:
“registered modelling reports” and “postregistration.” The
registered modelling reports format was proposed as an
extension of the registered reports format used in confirma-
tory experimental research, where an article can receive an
in-principle acceptance for publication after the first round
of thorough reviews on a detailed research proposal and is
then published after a second round of reviews when the
study has been conducted (Chambers et al. 2015). Postreg-
istration was proposed as a process of recording every detail
of an exploratory modelling process in the form of a lab
notebook, as an attempt to increase transparency in non-
confirmatory settings. While we welcome the attempt to
introduce practices that increase the consistency and trans-
parency of modelling approaches, Lee et al. (2019) did not
provide specific guidelines on how these practices should
be implemented. As discussed above, there are many differ-
ent types of cognitive modelling, ranging from the purely
confirmatory to the purely exploratory, which each also dif-
fers in how Open Science practices would be best suited to
their usage. Therefore, we argue that the current proposals
of Lee et al. (2019) might be of limited value to mathe-
matical psychology researchers and that some researchers
may still object to registered modelling reports—and more
generally, preregistration—as it is currently unclear which
types of cognitive modelling they are most applicable to.
Here, we use our proposed categorization to discuss the role
of preregistration within cognitive modelling and address
potential objections that researchers may have to preregis-
tration in cognitive modelling. We also discuss Lee et al.’s
proposal of “postregistration” in more detail, in what cases it
is likely to be most applicable, and how it could be adapted
to better ensure consistent and transparent research practices
in cognitive modelling.

Preregistration

An important underlying focus of preregistration and regis-
tered reports is to highlight the difference between explo-
ration (data dependent) and confirmation (data independent)
in quantitative experimental research. The idea here is that
so-called questionable research practices (QRPs)—such as

hypothesizing after results are known (HARKing; Kerr
1998), p-hacking (Simmons et al. 2011; de Groot 2014),
and other researcher degrees of freedom (Simmons et al.
2011)—may affect a study in ways which render the seem-
ingly confirmatory results uninterpretable (Wagenmakers
et al. 2012). Preregistrations or registered reports can help to
counteract QRPs and unchecked researcher degrees of free-
dom by pre-specifying the hypotheses and analysis plans.

Importantly, the underlying strength of preregistration
and registered reports are in their specificity: clearly speci-
fied research plans can prevent QRPs and create greater con-
sistency and transparency in scientific findings. Although
we agree with Lee et al. (2019) that registered reports could
be a valuable tool in cognitive modelling studies, we do not
believe that they provided adequate specificity to constrain
researcher degrees of freedom and help prevent QRPs in
cognitive modelling studies. Crucially, Lee et al. (2019) did
not provide specific guidelines for how to implement these
registered modelling reports, with their proposal limited to
a general description that mirrors regular registered reports.
However, different categories of cognitive modelling range
from confirmatory to exploratory, which establishes the
need for distinct implementation guidelines for preregis-
trations and registered reports in different categories, and
possibly even the creation of new procedures that can
increase transparency in a similar way. We argue that there
cannot be a “one-size-fits-all” solution for preregistration
or registered reports in cognitive modelling, as proposed by
Lee et al. (2019). Instead, category-specific templates—or
a flexible general registered report template with appropri-
ate sub-templates—should be developed. Moreover, these
category-specific templates need to be sufficiently detailed
and actionable to allow researchers to implement registered
modelling reports in a consistent manner. Creating these
templates should be the goal of future research aiming to
integrate Open Science practices into cognitive modelling.
Moreover, as we argue below, while preregistration seems
applicable to the largely confirmatory nature ofmodel appli-
cation, model comparison, and model evaluation, preregis-
tration is less applicable to the largely exploratory nature of
model development, meaning that other practices should be
developed to increase transparency in model development.

Furthermore, we believe that Lee et al. (2019) did little
to quell the past and potential objections to preregistration
in cognitive modelling. We believe that many previously
voiced objections against preregistration and Open Science
practices in cognitive modelling (see Lewandowsky 2019)
stem from overly general proposals being applied to
category-specific challenges. Here, we use our proposed
categorization to address four key potential objections
to preregistration in cognitive modelling: objections that
have been previously voiced by mathematical psychology
researchers (see Lewandowsky 2019; Wagenmakers and

Comput Brain Behav (2019) 2:255–265 259



Evans 2018, for discussions) or are legitimate objections
that we believe researchers may have.

Objection 1: “We cannot apply preregistration to cogni-
tive modelling.”

Given our categorization, this objection should be divided
into four different possible objections: one for each cate-
gory of cognitive modelling. We agree that preregistration is
rarely applicable to the exploratory practice of model devel-
opment and that Lee et al.’s proposal of lab notebooks—
which we comment on below—is a more promising future
avenue for this category. However, preregistration should be
feasible in all other categories of cognitive modelling, and
although implementing preregistration in model compari-
son and model evaluation may require major refinement to
current preregistration guidelines and templates, preregis-
tration in model application should be possible with minor
amendments to existing guidelines and templates.

Objection 2: “Preregistration does not cover all specific
needs of cognitive modelling.”

We agree that this is currently the case and share the
concern that overly general templates will not be useful
for the diverse nature of cognitive modelling. However,
we believe that this can be solved by creating specific
templates for model application, model comparison, and
model evaluation. In cases where multiple categories of
cognitive modelling are used within a single study, a
researcher can apply different templates for the different
confirmatory analyses, which will separate the confirmatory
and exploratory modelling efforts.

Objection 3: “Cognitive modelling often uses existing
data, which cannot be preregistered.”

We agree that creating consistent and transparent practices
for the reuse of existing data is challenging, though it has
been recently addressed within confirmatory experimental
research. An existing preregistration template for studies
using secondary data (https://osf.io/v4z3x/) proposes that
researchers should create a detailed recording of their
existing knowledge of the data set and any possible sources
of bias. While bias from previous experience with the
data cannot be ruled out, preregistering this information
adds transparency to the modelling process, placing the
findings into the context of previous knowledge for both the
researcher and readers of the study.

Objection 4: “None of this applies to model development.”

Although model development is rarely confirmatory, we
caution against throwing the baby out with the bathwa-
ter. While preregistration may not be appropriate for model
development, other Open Science practices may provide
greater consistency and transparency to the process, such

as the proposal of Lee et al. (2019) of “postregistration” in
the form of lab notebooks, which we discuss below. Further-
more, asmodel development is often used in combination with
other categories of cognitive modelling, such as model eval-
uation, preregistration may still be useful for the sections of
the overall modelling process where the developed model is
then applied, compared, and/or evaluated.

Lab Notebooks

Lee et al. (2019) proposed the idea of “postregistration,”
in the form of lab notebooks, for exploratory work. Based
on our categorization, lab notebooks are most applicable to
model development and could add transparency to the explo-
ration of the different forking paths taken to reach the
final model. Moreover, as noted by Lee et al. (2019), the
documentation of the development processes may foster
the publication of failed model development efforts, which
could counteract file-drawer effects and add community
knowledge about unfruitful development processes. There-
fore, lab notebooks can be seen as an effective way to
increase transparency in model development.

However, we argue that the overly general proposal
of Lee et al. (2019) lacks the necessary detail to create
consistent and transparent practices. Firstly, it should be
clearly noted that documenting choices in notebooks is in
no way comparable to preregistration. Lab notebooks are
an important step towards greater transparency, but the term
“postregistration” can be misleading and may result in the
retroactive framing of exploratory processes as “registered”
confirmatory analyses. Secondly, a lab notebook must
be constrained and accessible to ensure consistency and
transparency. Lee et al. (2019) suggested that “Modeling
notebooks can be created using existing software tools such
as Jupyter or Rmarkdown” (p.8). However, no framework,
guidelines, or standards were provided for what these
notebooks should consist of and how they should be
structured, meaning that the current proposal may result
in thousands of lab notebooks that are overly detailed,
missing important information, poorly documented, and/or
not reproducible. Given that cognitive modelling work
already suffers from accessibility problems resulting from
the use of a multitude of different programming languages
and a poor adherence to good coding practices (Addyman
and French 2012), it does not seem unreasonable to believe
that similar issues will be present within lab notebooks.

We believe that specific standards are crucial for the
success of post-hoc study registration. The standards for
post-hoc study registration could be based on the format
of exploratory reports, which aim to promote transparency
in exploratory work (McIntosh 2017). However, while
exploratory reports help promote the value of exploratory
work, the precise advantages of the specific proposal of
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McIntosh (2017) are still unclear. Another possibility would
be adapting the idea of living preregistration documents
(Haven and Grootel 2019) to model development. At a
minimum, lab notebooks should adhere to a set of basic
standards for coding and data sharing (Addyman and French
2012), such as the Google Style Guides1 or the psych
data standard project,2 and researchers must agree on
specific standards for what aspects need to be recorded
and how they should be detailed. An agreed set of
standards would also provide the opportunity for more
rigorous review processes (e.g., code review), which could
increase transparency while also decreasing errors. We also
believe that these standards should extend beyond empirical
studies to simulation studies, as the selective reporting of
specific simulations results can provide an incomplete and
inaccurate picture of the properties of a model, though the
specific standards for simulation studies may have different
requirements than those of empirical studies, and we leave
a more detailed discussion of this topic to future research.
Ideally, if a researcher were to leave a project, a lab
notebook should allow their successor to immediately fill
their role based on the notes: a lofty gold-standard, but one
worth attempting to accomplish.

Chalk and Cheese

One final point of brief debate is the cognitive modelling
concepts that Lee et al. (2019) mentioned within their “good
practices.” Specifically, we believe that Lee et al.’s discus-
sion conflated several distinct theoretical goals for imple-
menting cognitive models and that the chosen cognitive
modelling assessment should match the specific theoretical
goals of the implementation, as different assessments can
potentially lead to different conclusions. In this section, we
discuss the difference between answering which and why
questions, the difference between explanation and predic-
tion, and the difference between updating prior model odds
and updating prior parameter distributions.

The Difference BetweenWhich andWhy

Lee et al. (2019) proposed a “continuum of utilities (i.e.,
cost functions) for ‘scoring’ a model against data” (p.
6). Specifically, Lee et al. (2019) discussed two different
ways in which researchers commonly assess the ability
of models to account for empirical data: assessing how
well different models can account for different qualitative

1http://google.github.io/styleguide/
2https://github.com/psych-ds/psych-DS

benchmarks, as in our category of model evaluation, or
comparing models on a flexibility-corrected goodness-of-fit
metric, as in our category of model comparison. Lee et al.
(2019) suggested that these different assessments could be
treated as “two end-points on a continuum of utilities,”
where researchers “balance between giving weight to
qualitatively important data patterns, while still measuring
overall quantitative agreement” (p. 6). In practice, this
would involve researchers deciding upon the relative weight
given to the qualitative benchmarks and quantitative fit and
then selecting the model that provides the best-weighted
performance across both of these factors.

Although we agree that both model evaluation and
model comparison are important for understanding psy-
chological processes, we disagree that these two cate-
gories should form a continuum for selecting between
models. Rather, we argue that these different forms of
assessment reflect fundamentally different goals of imple-
menting models that answer fundamentally different ques-
tions (see Evans 2019b, for a more in-depth discussion).
Specifically, model comparison provides the most appro-
priate answer to which model provides the best account
of a sample of data, as model comparison methods have
been specifically designed to achieve this goal, taking
into account all aspects of the data providing corrections
for model flexibility. In contrast, model evaluation pro-
vides the most appropriate answer to why some models
perform better than others according to model selection,
as model evaluation provides visual insights into how a model
succeeds or fails to account for specific parts of the data,
and does not attempt to correct for flexibility.

The Difference Between Explanation and Prediction

Lee et al. (2019) also proposed that researchers should
preregister the assessment criteria (i.e., the “rules of
the game”, pp. 3f) when performing model comparison
(according to our categorization) in a registered modelling
report. Specifically, Lee et al. (2019) provided a token
example where different evaluation criteria lead to different
models being selected and, therefore, opposite theoretical
conclusions. While we agree that researchers should
preregister the model selection method used for model
comparison to limit researcher degrees of freedom, making
a sensible choice for this preregistration requires knowledge
of what method best suits the research question: an issue
that Lee et al. (2019) wrote off as “a challenging statistical
and methodological question that remains an active area
of debate and research throughout the empirical sciences
and statistics” (p. 4). Although we agree that understanding
and developing methods ofmodel comparison is an ongoing
area of research, we believe that there is a clear rationale for
why researchers should prefer specific methods in specific
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situations and that this rationale is required for principled
preregistration of assessment criteria (Evans 2019a; Gronau
and Wagenmakers 2019).

In most cases, mathematical psychology researchers use
models to either explain or predict a cognitive process
(Yarkoni and Westfall 2017). As mentioned previously,
selecting a model that maximizes one of these goals
requires a method that provides some penalty for flexibility,
as models with greater a priori flexibility provide less
constrained (and hence poorer) explanations of a process,
and models that over-fit to a sample of data provide
poorer predictions about future data. Importantly, specific
methods have been designed to correct for each type of
flexibility: Bayesian model selection methods (e.g., Kass
and Raftery 1995; Evans and Brown 2018; Annis et al.
2019; Evans and Annis 2019; Gronau et al. 2017; Schwarz
1978) punish models for their a priori flexibility, reflected in
their integration of the unnormalized posterior probability
over the parameter space, and out-of-sample prediction
methods (e.g., Spiegelhalter et al. 2002; Vehtari et al.
2017; Browne 2000; Akaike 1974) punish models for
overfitting to samples of data, reflected in their assessment
of unseen samples of data.3 Therefore, some simple and
clear guidelines already exist for how researchers should
choose a method for model comparison: when researchers
are interested in providing the best explanation of a
cognitive process, they should use a model comparison
method that penalizes for a priori flexibility, such as
Bayesian model selection (though also see the minimum
description length principle; Myung et al. 2006); when
researchers are interested in best predicting future data,
they should use a model comparison method that penalizes
for overfitting, such as out-of-sample prediction (see Evans
2019a, for a more in-depth discussion). Furthermore, we
believe that model comparison methods without corrections
for a priori flexibility or overfitting (e.g., the RSME, MAD,
correlations, and LL methods mentioned by Lee et al. 2019)
can be ignored in most situations, as these methods only
provide insight into which model maximizes the fit for
a sample of data, and in the context of explanation or
prediction will provide conclusions that are biased towards
more flexible models.

The Difference Between Updating Prior Model Odds
and Updating Prior Parameter Distributions

Lee et al. (2019) also proposed that the distinction between
confirmatory and exploratory analysis can be posed in
terms of Bayesian updating. Specifically, Lee et al. (2019)

3Note that the “information criteria” do not actually assess unseen
data, but instead provide an approximation to leave-one-out cross
validation under certain assumptions.

suggested that in confirmatory analyses “claims are sought
about the relative probability of models, based on the
data” and require prior odds, and in exploratory analyses
“it is difficult to make claims about prior probabilities of
models” (p. 10). While we agree that the prior model odds
are an important part of Bayesian model selection that is
often overlooked by researchers and may be the difference
between confirmatory and exploratory analyses in some
case, we disagree that this is a “useful way to think of
the distinction” (p. 10). We argue that this distinction is
extremely limited, as it is only applicable to a single method
(i.e., Bayesian model selection) within a single category of
cognitive modelling (i.e., model comparison) and ignores
the process of theory updating.

In Bayesian terms, the process of theory updating can
often be represented as updating the prior distributions
of the parameters: the plausibility assigned to different
parameter values before having observed some sample
of data. After having observed the sample of data, a
researcher may be interested in refining their model based
on the information contained within the sample of data for
inferences on future samples of data. This could involve
updating the prior distributions to the estimated posterior
distributions (i.e., today’s posterior is tomorrow’s prior;
Lindley 1972; Wagenmakers et al. 2010), or altering the
functional form of the model by adding or removing
parameters (i.e., adding/removing prior distributions). In
contrast, updating the prior model odds suggests that
researchers believe that these exact models (including the
prior distributions) will be the comparison of interest
in future samples of data, and serves as an update to
the running tally of the relative probability of the two
models. Therefore, refining a model by updating the
prior distributions changes the precise form of the model,
meaning that researchers must choose between refining
their theories and updating the relative probability of the two
models. Importantly, we argue that confirmatory settings
exist where it is difficult to make claims about prior odds
and exploratory settings exist where reasonable prior odds
can be derived. For instance, we believe that in some
situations, researchers may wish to perform confirmatory
analyses after refining theories: a case of a confirmatory
analysis without updated prior model odds. Furthermore,
we believe that in other situations, researchers may wish
to add a model to the comparison that they have previous
knowledge about (e.g., the unrefined model), in a secondary,
exploratory step: a case of an exploratory analysis that
could involve prior model odds. Therefore, we disagree
with the proposed distinction between confirmatory and
exploratory based on prior model odds and instead suggest
that after observing a sample of data, researchers should
carefully consider whether they wish to refine their theory
through updating the prior distributions or adjust the relative
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probability of the two models through updating the prior
model odds.

Conclusion

Our article provided a discussion of several important issues
that we believe were not fully addressed by Lee et al. (2019).
Firstly, we proposed a clear categorization for the diverse
types of cognitive modelling, and through this categoriza-
tion proposed a framework for Open Science practices in
cognitive modelling that emphasizes local consistency in
approaches, while allowing for global diversity in mod-
elling practices. This is an important step towards both
category-appropriate guidance and more fruitful discussions
regarding Open Science practices in cognitive modelling.
Secondly, we addressed potential objections to preregistra-
tion in cognitive modelling and argued that preregistration
and lab notebooks need further, more detailed development
to be useful tools of transparency and consistency for cog-
nitive modelling. We also provided several suggestions for
how these practices could be further developed, and how
categorizations, such as the one that we proposed, may help
this process. More generally, Open Science practices, and
especially preregistration, should be adapted more specif-
ically for individual fields to create the greatest potential
benefits. Lastly, we addressed several cognitive modelling
concepts that are closely related to Open Science practices
but that we believe Lee et al. (2019) conflated and provided a
detailed discussion of how these concepts differ. We also dis-
cussed when each of these concepts is likely to be relevant
for researchers, which should allow greater consistency in
cognitive modelling practices. We hope that the discussions
within our article will help advance the field of mathemati-
cal psychology from robust discussions to robust standards
for Open Science practices in cognitive modelling.
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