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Discrepancy and large dense monochromatic subsets

Ross J. Kang∗ Viresh Patel† Guus Regts‡

October 8, 2018

Abstract

Erdős and Pach (1983) introduced the natural degree-based generalisations of Ram-
sey numbers, where instead of seeking large monochromatic cliques in a 2-edge coloured
complete graph, we seek monochromatic subgraphs of high minimum or average de-
gree. Here we expand the study of these so-called quasi-Ramsey numbers in a few
ways, in particular, to multiple colours and to uniform hypergraphs.

Quasi-Ramsey numbers are known to exhibit a certain unique phase transition and
we show that this is also the case across the settings we consider. Our results depend
on a density-biased notion of hypergraph discrepancy optimised over sets of bounded
size, which may be of independent interest.

Keywords. Ramsey theory, quasi-Ramsey numbers, hypergraph discrepancy, probabilistic method
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1 Introduction

Frank Plumpton Ramsey [22] originally addressed the following question. Fixing q, r ≥ 2, for

any k, is there always a finite n such that in any assignment of q colours to the r-element subsets

of [n] = {1, . . . , n}, there is guaranteed to be a k-element subset of [n] all of whose r-element

subsets have the same colour? Ramsey’s Theorem states that the answer is yes. The search

for the smallest values R
(r)
q (k) of n in this question (the Ramsey numbers) is a central part of

combinatorial mathematics. This search was begun in seminal papers by Erdős and Szekeres [12]

and Erdős [6] for the case q = r = 2 showing that

√
2

k ≤ R
(2)
2 (k) ≤ 4k.

After decades, these remain very near to the best known bounds for this parameter.

When q > 2 or r > 2, our knowledge of the situation is even worse. If q > 2 and r = 2,

then R
(2)
q (k) is exponential in k, but the best known bounds on the constants in the base of the

exponential are weaker for larger q. More significantly, if r > 2 and q = 2, then R
(r)
2 (k) is known

to grow like a tower of exponentials in k [8], but the height of this tower is unknown and is subject

to a $500 Erdős prize. On the other hand, note that Erdős and Hajnal (cf. [14]) have shown that

ln ln R
(3)
4 (k) = Θ(k) as k → ∞.
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For q = r = 2, Erdős and Pach [9] formulated a natural degree-based generalisation of the
Ramsey numbers. Given c ∈ [0, 1], the basic question is as follows: for any k, what is the smallest

n := Rc(k) such that for any graph G = (V, E) on n vertices there exists a subset S ⊆ V of size

ℓ at least k such that either G[S] or its complement G[S] has minimum degree at least c(ℓ− 1)?
We may also ask this question with average degree instead of minimum degree and denote the

corresponding number Rc(k). Clearly Rc(k) ≤ Rc(k) always. We refer to Rc(k) and Rc(k) as

quasi-Ramsey numbers. Of course by taking c = 1 we recover the classical two-colour Ramsey

numbers for graphs.

Erdős and Pach [9] found that the quasi-Ramsey numbers undergo a dramatic change in

growth in k in a narrow window around c = 1/2: if c < 1/2 then they have linear growth, while

if c > 1/2 they have singly exponential growth. They developed a fairly precise understanding

of the transition at the point c = 1/2 — the present authors together with Pach [17] and with

Long [15] have recently refined this.

Our purpose in the present paper is to extend the study of quasi-Ramsey numbers to multiple

colours and uniform hypergraphs (as was initially considered by Ramsey).

We have been able to show that the precise transition behaviour at the point c = 1/2 for

r = q = 2 is present in a similar way when r > 2 or q > 2. The proofs of our results rely critically

on a density-biased notion of hypergraph discrepancy which is optimised only over those vertex

subsets up to a certain size. In fact the most difficult part of the paper is devoted to proving a

bound for this type of discrepancy, cf. Theorem 4 below, which we believe to be of independent

interest.

1.1 Multi-colour quasi-Ramsey for graphs

For the case r = 2, we would first like to study the behaviour of quasi-Ramsey numbers if

rather than two colours (namely the graph and its complement) there are q ≥ 2 colours assigned

to the edges of Kn. Motivated partly by related recent work by Falgas-Ravry, Markström, and

Verstraëte [13], we treat an even more general setting where each of the q colours has an associated

“degree share”. Based on Theorem 4 below, we prove the following in Section 3.

Theorem 1. Fix q ≥ 2, (ρ1, . . . , ρq) ∈ (0, 1)q such that ∑
q
i=1 ρi = 1, and ν ≥ 0. Then there exists a

constant C = C(ν) > 0 such that for each k large enough and any q-colouring of the edges of the complete

graph on at least Ck ln k vertices, there exists a colour j and a subset S of the vertices of size ℓ ≥ k such

that the subgraph induced by S in colour j has minimum degree at least ρj(ℓ− 1) + ν
√
ℓ− 1.

By a clever weighted random construction (cf. also [17]), Erdős and Pach proved that R1/2(k) =
Ω(k ln k/ ln ln k), which means that the quasi-Ramsey number bound for c = 1/2 implicit in The-

orem 1 is sharp up to a ln ln k factor.

We remark that Theorem 1 gives progress on a question posed by Falgas-Ravry, Markström,

and Verstraëte [13]. Given a graph G on n vertices with edge density p, they asked for the

largest integer m = g(G) such that G contains an induced subgraph on at least m vertices with

minimum degree at least p(m − 1) (what they called a full subgraph) or with maximum degree

at most p(m − 1) (a co-full subgraph). In an earlier version of [13], the authors showed that if

p(1 − p) ≥ 1/n then g(G) = Ω(n/(ln n)2) for all graphs G, and asked whether this bound

could be improved to Ω(n/ ln n). In the latest version of [13], they show g(G) = Ω(n/(ln n))
and no longer require the condition p(1 − p) ≥ 1/n (see Theorem 4). Here (addressing the

question in the earlier version) we obtain (a strengthening and generalisation of) the same result
via Theorem 1 and Corollary 8. Indeed, in the case where the edge density p is fixed, Theorem 1

is a strengthening since we can guarantee slightly higher degree than required by taking q = 2

and ρ1 = p. It is a generalisation in the sense of allowing more colours. In Section 3, we show

that this Ω(n/ ln n) bound is also valid for non-constant p, cf. Corollary 8.

1.2 Multi-colour quasi-Ramsey for hypergraphs

The multicolour quasi-Ramsey investigation above naturally extends also to r-uniform hyper-

graphs, where we consider colourings of the hyperedges of the complete r-uniform hypergraph

K
(r)
n on n vertices. The degree of a vertex is the number of hyperedges incident with the vertex.
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As Ramsey numbers for hypergraphs are even less well understood than for graphs, despite
a long history, one might expect the hypergraph quasi-Ramsey problem to put up significant

resistance. To the contrary, we have found that the precise threshold in quasi-Ramsey numbers for

graphs established in [17] is present in an analogous way for hypergraphs. Based on Theorem 4

below and a standard random construction we establish the following result in Section 4.

Theorem 2. Let r ≥ 2. Fix q ≥ 2 and (ρ1, . . . , ρq) ∈ (0, 1)q with ∑
q
i=1 ρi = 1.

(i) Let ν ≥ 0. Then there exists a constant C > 0 such that for each ε > 0 and k large enough, for

any q-colouring of the edges of the complete r-uniform hypergraph on at least kν2C2(1+ε)+2r/(r+1)

vertices there exists a colour j and a subset S of the vertices of size ℓ ≥ k such that the subhypergraph

induced by S in colour j has minimum degree at least

ρj

(

ℓ− 1

r − 1

)

+ ν
√
ℓr−1 ln ℓ.

(ii) There is a constant C > 0 such that, if ν(·) is a non-decreasing non-negative function, then for each

k large enough there is a q-colouring of the edges of the complete r-uniform hypergraph on Ckν(k)2+1

vertices such that the following holds. For any colour j and any subset S of the vertices of size ℓ ≥ k,

the subhypergraph induced by S in colour j has average degree less than

ρj

(

ℓ− 1

r − 1

)

+ ν(ℓ)

√

r

(

ℓ− 1

r − 1

)

ln ℓ.

We note that if we wish to find induced subgraphs with exactly (rather than at least) k vertices,

then the following applies for for ∑
q
i=1 ρi < 1. The proof appears in Section 4.

Proposition 3. Let r ≥ 2. Fix q ≥ 2 and (ρ1, . . . , ρq) ∈ [0, 1]q with ∑
q
i=1 ρi < 1. Then there exists a

constant C > 0 such that for each k large enough, for any q-colouring of the edges of the complete r-uniform

hypergraph on at most Ck vertices there exists a colour j and a subset S of the vertices of size k such that

the subhypergraph induced by S in colour j has minimum degree at least ρi(
k−1
r−1).

The situation could be more nuanced if ∑
q
i=1 ρi > 1. It is of course unknown what precisely

happens when ∑
q
i=1 ρi = q, that is, the regime of the classical hypergraph Ramsey numbers, but

we also do not know much for 1 < ∑
q
i=1 ρi < q. We will elaborate on this and state some open

questions in Section 5.

Organisation. As mentioned above the proofs of our main results rely on a discrepancy

result, which we state and prove in the next section. In Section 3 we prove Theorem 1 and in

Section 4 we prove Theorem 2 and Proposition 3. We conclude with some remarks and open

questions in Section 5.

2 Discrepancy over sets of bounded size

In this section we introduce our main tool, a p-discrepancy result for bounded sets in uniform

hypergraphs, cf. Theorem 4 below.

Let r ≥ 2 and let H = (V, E) be an r-uniform hypergraph. For p ∈ [0, 1] and S ⊆ V, the

p-discrepancy of S is defined as

Dp(S) := e(S)− p

(|S|
r

)

,

the number of hyperedges in the subhypergraph induced by S less a p proportion of the total

possible number of hyperedges on S. For several r-uniform hypergraphs defined on the same

vertex set, we specify Dp,H(S). The p-discrepancy of H is defined as

Dp(H) := max
S⊆V

|Dp(S)|. (1)

For the classic choice p = 1/2, we usually refer to this just as discrepancy. If p is chosen as

|E|/(|V|
r ), the hyperedge density of H, then the p-discrepancy measures how uniformly the hy-

peredges are distributed over the vertices.
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A well-known result of Erdős and Spencer [10] states that there exists C = C(r) > 0 such
that, provided n is large enough, the discrepancy of any r-uniform hypergraph H = (V, E) on n

vertices satisfies

D1/2(H) ≥ Cn(r+1)/2. (2)

This is sharp up to the choice of the constant C. The same statement for p-discrepancy with

p = |E|/(|V|
r ) was shown by Erdős, Goldberg, Pach and Spencer [7] for r = 2 and by Bollobás and

Scott [1] for r > 2 (where the constant C depends on p).

It is natural to wonder what happens when the sets over which the maximum is taken in (1)

all have a bounded number t of vertices. Clearly, one can obtain a constant times t(r+1)/2, but in

fact one gains a little more. Below we prove the following, generalising the results of Erdős and

Spencer [10, 11], of Erdős, Goldberg, Pach and Spencer [7] and, partially, of Bollobás and Scott [1].

Theorem 4. Let r ≥ 2. There exist constants C, D > 0 such that for any p ∈ (0, 1) the following holds.

For each n large enough and all (ln n)/D ≤ t ≤ n, we have that any r-uniform hypergraph H = (V, E)
on n vertices satisfies

max
S⊆V,|S|≤t

|Dp(S)| ≥ C min{p, 1 − p}t(r+1)/2
√

ln(n/t). (3)

Note that p in Theorem 4 is not assumed to be the density of the hypergraph. We also note

that the case p = 1/2 of Theorem 4 was proved for r = 2 (i.e. graphs) and shown to be tight

up to the choice of the constant C by Erdős and Spencer [11, Theorem 7.1]. A slightly stronger

form for the hypergraph case (for p = 1/2) was announced and its proof left as a “difficult”

exercise in [11, Chapter 7]. To the best of our knowledge no proof has been published. Although

Theorem 4 suffices for our purposes, for p varying as a function of n, there is still room for

potential improvement in the bound, since a random r-uniform hypergraph with edge density p

supplies an upper bound example with instead the factor min{√p,
√

1 − p} in (3).

2.1 Proof of Theorem 4

Our proof may be viewed as an extension of the proof of Erdős and Spencer [10] of (2). We will

first prove several lemmas extending lemmas from [10]. We start with the following adaptation

of [10, Lemma 2].

Lemma 5. Fix c > 0. Then, for all m, all y ≥ 2 such that ln y ≤ cm/4, and any choice of real numbers

x1, . . . , xm satisfying |xi| ≥ 1 for at least cm of the i ∈ [m], we have

∣

∣

∣

∣

∣

∑
i∈V

xi

∣

∣

∣

∣

∣

≥ 4−1
√

cm ln(y), (4)

for at least (8y)−12m choices of V ⊆ [m].

Proof. For simplicity, let us assume that cm ∈ N and that x1, . . . , xcm all have absolute value at
least 1. For V ⊆ [m] set φ(V) := ∑i∈V xi , V1 := V ∩ [cm] and V2 := V \ V1. Then φ(V) =
φ(V1) + φ(V2). Set c1 = 16−1cm ln y. Then (4) does not hold if and only if φ(V1) ∈ (−φ(V2)−√

c1,−φ(V2) +
√

c1). By a result of Erdős [5] this holds for fixed V2 for at most

∑
r : |r− cm

2 |≤√
c1

(

cm

r

)

choices of V1 ⊆ [cm]. Since
√

c1 ≤ cm/8 by assumption on y, it follows from elementary argu-

ments, cf. Proposition 7.3.2 in the lecture notes of Matoušek and Vondrák [19], that

2cm − ∑
r : |r− cm

2 |≤√
c1

(

cm

r

)

≥ 2cm+1

15
exp

(−16c1

cm

)

=
2cm+1

15y
>

2cm

8y
.

In other words, for fixed V2, we have for at least (8y)−12cm choices of V1 that (4) holds. Now

summing over all possible V2 proves the lemma.
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We will next prove a result about r-partite r-uniform hypergraphs, or (r, r)-graphs for short.
Recall that an r-uniform hypergraph H = (V, E) is said to be r-partite if there exists a partition

of V into r sets V1, . . . , Vr such that every hyperedge e intersects all of the Vi exactly once. In

this case we sometimes say H is an (r, r)-graph on V1 ∪ · · · ∪ Vr. For an r-uniform hypergraph

H = (V, E) and pairwise disjoint subsets S1, . . . , Sr ⊆ V, define e(S1, . . . , Sr) to be the number of

hyperedges of H that have exactly one endpoint in Si for i ∈ [r]. Then define

Dp(S1, . . . , Sr) := e(S1, . . . , Sr)− p
r

∏
i=1

|Si|.

The next lemma extends [10, Lemma 1].

Lemma 6. Let r ≥ 2 and p ∈ (0, 1). There exists constants cr, dr > 0 such that for all t large enough, all

y ≥ 2 such that ln y ≤ drt, and any (r, r)-graph H on A1 ∪ · · · ∪ Ar, with |Ai| = t for each i, we have

|Dp(B1, . . . , Br)| ≥ min{p, 1 − p}crtr/2
√

ln y for at least y−1dr2tr choices of subsets Bi ⊆ Ai, i ∈ [r].

Proof. The proof is by induction on r. In case r = 1, we have for a (1, 1)-graph H = (V, E) and

S ⊆ V that Dp(S) = ∑i∈S xi, with xi = 1 − p if i ∈ E and xi = −p if i /∈ E. Let p̂ = min{p, 1 − p}.

Then |xi/ p̂| ≥ 1 for all i ∈ V. So by Lemma 5 it follows that for at least (8y)−12t choices of S ⊆ V

we have |Dp(S)| ≥ 4−1 p̂
√

t ln y. The base case holds with d1 = 8−1 and c1 = 4−1.

Now assume r > 1. For any fixed a ∈ Ar we can form a (r − 1, r − 1)-graph Ha on A1 ∪ · · · ∪
Ar−1 by letting e ∈ E(Ha) if and only if e ∪ {a} ∈ E(H). Define

Y := {(B1, . . . , Br−1, a) | Bj ⊆ Aj, a ∈ Ar, |Dp,Ha
(B1, . . . , Br−1)| ≥ p̂cr−1t(r−1)/2}

By induction, for t large enough, we know that for any a ∈ Ar

∣

∣

∣
{(B1, . . . , Br−1) | Bj ⊆ Aj, |Dp,Ha

(B1, . . . , Br−1)| ≥ p̂cr−1t(r−1)/2}
∣

∣

∣
≥ dr−12t(r−1)/e.

(Here, we have applied the statement for (r − 1, r − 1)-graphs with y = e.) Let us write d =
e−1dr−1. So |Y| ≥ dt2t(r−1). This implies that out of the 2t(r−1) choices of (B1, . . . , Br−1) at least
1
2 d2t(r−1) of them satisfy that |{a ∈ Ar : |Dp,Ha

(B1, . . . , Br−1)| ≥ p̂cr−1t(r−1)/2}| ≥ dt/2. (Oth-

erwise, |Y| < 1
2 d2t(r−1)|Ar|+ 2t(r−1)dt/2 < dt2t(r−1), a contradiction.) Fix such a (B1, . . . , Br−1)

and define for a ∈ Ar

xa =
Dp,Ha

(B1, . . . , Br−1)

p̂cr−1t(r−1)/2
.

Then |xa| ≥ 1 for at least dt/2 of the a in Ar. By Lemma 5, we have, for ln y ≤ dt/8, for at least

(8y)−12t choices of Br ⊆ Ar that

|Dp(B1, . . . , Br−1, Br)| =

∣

∣

∣

∣

∣

∑
a∈Br

eHa
(B1, . . . , Br−1)− p

r

∏
i=1

|Bi|
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
a∈Br

Dp,Ha
(B1, . . . , Br−1)

∣

∣

∣

∣

∣

= p̂cr−1t(r−1)/2

∣

∣

∣

∣

∣

∑
a∈Br

xa

∣

∣

∣

∣

∣

≥ tr/2 p̂cr−1

√

32−1d ln y. (5)

As this holds for at least 1
2 d2t(r−1) choices of (B1, . . . , Br−1), it follows that (5) holds for at least

d(16y)−12tr = dry−12tr choices of (B1, . . . , Br). So setting, dr = d/16 and cr = cr−1

√
32−1d, the

proof is finished.

Lemma 7. Let r ≥ 2 and p ∈ (0, 1). There exists constants c′r > 0, d′r > 0 such that, for each n large

enough and any t satisfying (ln n)/d′r ≤ t ≤ n/2, each r-uniform hypergraph H = (V, E) on n vertices

has pairwise disjoint subsets B1, . . . , Br ⊆ V with |Bi| ≤ t/r for all i such that

|Dp(B1, . . . , Br)| ≥ min{p, 1 − p}c′rt(r+1)/2
√

ln(n/t).

The proof of this lemma is based on ideas from [11, Chapter 7].
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Proof. Write p̂ = min{p, 1 − p} and write α = ⌊t/r⌋(r−1)/2
√

ln(n/t). Now partition V into r
pairwise disjoint sets A1, . . . , Ar with A1, . . . , Ar−1 each of size ⌊t/r⌋ and Ar of size n − (r −
1)⌊t/r⌋ ≥ n/2. For a ∈ Ar, let Ha be the (r − 1, r − 1)-graph on A1 ∪ · · · ∪ Ar−1 with e ∈ E(Ha)
if e ∪ {a} ∈ E(H).

Let c = cr−1 and d = dr−1 > 0 be the constants from Lemma 6. Setting d′r =
d

r+1 , we see that

we may apply Lemma 6 to Ha with y = n/t to find that when selecting Bi ⊆ Ai independently

and uniformly at random for i ∈ [r − 1], then |Dp,Ha
(B1, . . . , Br−1)| > p̂cα with probability at least

dt/n for each a ∈ Ar. We may assume that d ≤ 8/r. For convenience write B = (B1, . . . , Br−1)
and let

X(B) := |{a ∈ Ar | |Dp,Ha
(B)| > p̂cα}|.

Then, as |Ar| ≥ n/2, E(X(B)) ≥ dt/2. This implies that there exists B = (B1, . . . , Br−1) with

Bi ⊆ Ai for i ∈ [r − 1] such that X(B) ≥ dt/2. By symmetry we may assume that |{a ∈ Ar |
Dp,Ha

(B) > p̂cα}| ≥ dt/4. Now fix Br ⊆ Ar of size dt/4 ≤ t/r such that Dp,Ha
(B) > p̂cα for each

a ∈ Br. Then

Dp(B1, . . . , Br) = ∑
a∈Br

Dp,Ha
(B) ≥ p̂c′rt(r+1)/2

√

ln(n/t) (6)

for n large enough, with c′r = cd/(4r(r−1)/2 + 1). This finishes the proof.

We can now prove Theorem 4.

Proof of Theorem 4. Let D be the constant d′r from Lemma 7. The cases t > n/2 follow from the

case t = n/2. So we may assume (ln n)/D ≤ t ≤ n/2. By the previous lemma, there is a

constant c > 0 and sets B1, . . . , Br of size at most t/r such that |Dp(B1, . . . , Br)| ≥ c min{p, 1 −
p}t(r+1)/2

√

log(n/t). Now we claim that

∑
S⊆[r]

(−1)|S|Dp(
⋃

i∈S

Bi) = (−1)rDp(B1, B2, . . . , Br), (7)

which we will prove shortly. Let us first observe that it implies, for at least one of the 2r − 1

nonempty subsets S of [r], we have

|Dp(
⋃

i∈S

Bi)| ≥ 2−rDp(B1 . . . Br) ≥ 2−rc min{p, 1 − p}t(κ+1)/2
√

log(n/t).

As |⋃i∈S Bi)| ≤ t, setting C = 2−rc, this finishes the proof of the theorem.

To prove (7), let us define for a subset U = {i1, . . . , im} ⊆ [r] and α ∈ Z
m
≥0 such that ∑

m
i=1 αi =

r, e(Bα1

i1
, . . . , Bαm

im
) to be the number of hyperedges of H that have αj endpoints in Bij

and define

Dp(B
α1

i1
, . . . , Bαm

im
) = e(Bα1

i1
. . . Bαm

im
)− p

m

∏
j=1

(|Bij
|

αj

)

.

Then for any U = {i1, . . . , im} ⊆ [r] we have

Dp(
⋃

i∈U

Bi) = ∑
α∈Z

m
≥0

∑
m
i=1 αi=r

Dp(B
α1

i1
, . . . , Bαm

im
). (8)

We substitute (8) into the left hand side of (7) and examine the various contributions. Let us fix

U = {i1, . . . , im} ⊆ [r] and α ∈ Z
m such that ∑

m
i=1 αi = r and such that each αi > 0 and look at the

contribution of Dp(B
α1

i1
, . . . , Bαm

im
) to (7). Clearly, there is a contribution if and only if S contains U.

For m′ ≥ m there are exactly ( r−m
m′−m) sets S that give a contribution of (−1)m′

Dp(B
α1

i1
, . . . , Bαm

im
). So

the contribution of the pair U, α to (7) is given by

r−m

∑
i=0

(−1)i+m

(

r − m

i

)

= (−1)m
r−m

∑
i=0

(

r − m

i

)

=

{

0 if m < r

(−1)r if m = r.

This proves (7).
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3 Multi-colour quasi-Ramsey results for graphs

Here we give a proof of Theorem 1 and discuss some consequences of it. Our proof of Theorem 1

is based on the proof of [15, Theorem 2], which in turn is inspired by a method of Erdős and

Pach [9].

Proof of Theorem 1. Let φ : ([n]2 ) → [q] be a colouring of the edges of the complete graph on

n ≥ Ck ln k vertices. Let us write Gj = ([n], φ−1({j})), the graph given by colour j for j ∈ [q]. For

a set S ⊆ V and j ∈ [q], we define the following form of skew-discrepancy

Dj,ν(S) := Dρj ,Gj
(S)− ν|S|3/2.

By Dj(S) we mean Dj,0(S) and we refer to ν|S|3/2 as the skew factor of the set S.

Let us construct a sequence of graphs as follows. We define V0 := [n]. For i > 0, suppose

Xi−1 and Vi−1 are given. Then amongst all choices of (S, j) where S ⊆ Vi−1 and j is a colour,

let (X(i), c(i)) maximize Dj,ν(S) and set Vi := Vi−1 \ Xi. Note that by Theorem 4 we alway

have that Dc(i),ν(Xi) > 0. We stop at step t, the first time that |Vt| < n/2. Define for j ∈ [q],
Ij := {i ∈ [t] | c(i) = j}.

Claim 1. For each j ∈ [q] and each i ∈ Ij,

δ(Gj[Xi]) ≥ ρj(|Xi| − 1) + ν(|Xi| − 1)1/2.

Proof. Suppose there exists a vertex x ∈ Xi with strictly smaller minimum degree. Write ni := |Xi|.
We may of course assume that ni ≥ 2. Set X′

i := Xi \ {x}. Then e(X′
i) = e(Xi) − degGj

(x) >

e(Xi)− ρj(ni − 1)− ν(ni − 1)1/2. So it follows that

Dj,ν(X
′
i) > e(Xi)− ρj

(

ni − 1

2

)

− ν(ni − 1)3/2 − ρj(ni − 1)− ν(ni − 1)1/2

= e(Xi)− ρj

(

ni

2

)

− ν((ni − 1)(3/2 + (ni − 1)1/2). (9)

Now note that n3/2
i = (ni − 1 + 1)n1/2

i > (ni − 1)3/2 + (ni − 1)1/2. This implies by (9) that

Dj,ν(X
′
i) > Dj,ν(Xi), contradicting the maximality of Dj,ν(Xi). ♦

By Claim 1 we may assume that |Xi| ≤ k − 1 for all i ∈ Ij and j ∈ [q], for else we are done. By

symmetry among the colours, we may assume that

∑
i∈I1

|Xi| ≥
n

2q
. (10)

Writing I1 := {i1, . . . , im}, we have that for each s ∈ [m − q − 1]:





q+1

∑
j=1

|Xis+j
|





3/2

≤ (q + 1)3/2(k − 1)3/2. (11)

We next show the following:

Claim 2. For each s ∈ [m − q − 1], D1(Xis+q+1
) ≤ 5

2(q+1)
D1(Xis

).

Proof. For any i 6= j ∈ I1 define

D1(Xi, Xj) := eG1
(Xi, Xj)− ρ1|Xi||Xj|,

where eG1
(Xi, Xj) denotes the number of edges between Xi and Xj in the graph G1. Then D1(Xi ∪

Xj) = D1(Xi) + D1(Xj) + D1(Xi , Xj). Let s ∈ [m − 1]. Then, by maximality of D1,ν(Xis
), we have

D1,ν(Xis
) ≥ D1,ν(Xis

∪ Xis+1
), which implies that

D1(Xis+1
) ≤ −D1(Xis

, Xis+1
) + ν|Xis

∪ Xis+1
|3/2.
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Using the obvious fact that ν|X|3/2 ≤ ν|Y|3/2 if |X| ≤ |Y|, this implies

q+1

∑
t=1

tD1(Xis+t
) ≤ − ∑

0≤j<l≤q+1

D1(Xis+j
, Xis+l

) +

(

q + 1

2

)

ν
∣

∣

∣∪q+1
j=0 Xis+j

∣

∣

∣

3/2
. (12)

Let us now fix s ∈ [m − q − 1]. Then, since D1(X) = −∑
q
c=2 Dc(X) for any set X, it follows

that

−D1(∪q+1
j=0 Xis+j

) =
q

∑
c=2

Dc(∪q+1
j=0 Xis+j

) =
q

∑
c=2

Dc,ν(∪q+1
j=0 Xis+j

) + (q − 1)ν
∣

∣

∣
∪q+1

j=0 Xis+j

∣

∣

∣

3/2

≤ (q − 1)

(

D1(Xis
) + ν

∣

∣

∣
∪q+1

j=0 Xis+j

∣

∣

∣

3/2
)

,

by maximality of D1,ν(Xis
). This clearly implies

−
q+1

∑
j=1

D1(Xis+j
)− ∑

0≤j<l≤q+1

D1(Xis+j
, Xis+l

) ≤ qD1(Xis
) + (q − 1)ν

∣

∣

∣
∪q+1

j=0 Xis+j

∣

∣

∣

3/2
. (13)

Combining (13) and (12) we obtain

q+1

∑
t=2

(t − 1)D1(Xis+t
) ≤ qD1(Xis

) +

((

q + 1

2

)

+ q − 1

)

ν
∣

∣

∣
∪q+1

j=0 Xis+j

∣

∣

∣

3/2
,

from which it follows, using maximality of D1,ν(Xis+t
), that

q(q + 1)

2
D1(Xis+q+1

) ≤ qD1(Xis
) + (q(q + 1) + q − 1))ν

∣

∣

∣
∪q+1

j=0 Xis+j

∣

∣

∣

3/2
.

So by (11)

D1(Xis+q+1
) ≤ 2

q + 1
D1(Xis

) + 3(q + 1)3/2ν(k − 1)3/2. (14)

As |Vi| ≥ n/2 for all i < t we know by Theorem 4 that there exists a set X ⊆ Vis
of size at most k

whose ρj-discrepancy satisfies

Dρj ,Gj
(X) ≥ max

j′∈[q]
min{ρj′ , 1 − ρj′}Ck3/2

√

ln(C(ν) ln k), (15)

for some j ∈ [q]. Since the skew factor of this set X is at most νk3/2, it follows that if k (or C(ν)) is

large enough, then D1(Xis
) ≥ 6(q + 1)5/2ν(k − 1)3/2. Combining this with (14) finishes the proof

of the claim. ♦

Claim 2 now implies that for s = m− q − 1 we have D1(Xis
) ≤

(

5
2(q+1)

)s/(q+1)
D1(Xi1

) (where for

simplicity we have assumed that s ≡ 0 (mod (q+ 1))). Note that D1(Xis
) ≥ 6(q+ 1)5/2ν(k− 1)3/2

(by the proof of Claim 2) and that this is at least 1 when k is large enough. From this we deduce

that m is bounded by

(q + 1) ln(D(Xi1
))

ln( 2
5 (q + 1))

+ (q + 1) ≤ 2(q + 1)(1 + ln( 2
5 (q + 1))

ln( 2
5 (q + 1))

ln(k − 1) =: c(q) ln(k − 1).

So by (10) we deduce that at least one of the m sets Xi with i ∈ I1 satisfies |Xi| ≥ C(ν)k
2qc(q)

, which for

C(ν) large enough contradicts the fact that |Xi| ≤ k − 1 for all i ∈ I1. This proves the theorem.

In case ν = 0 in Theorem 1 the proof shows that the statement can actually be strengthened

to the case that (ρ1, . . . , ρq) are not constant. Indeed, from (14) we can directly argue that m is

bounded by a constant depending on q times k − 1. This means we do not need (15), which

requires that ρi is not too small in terms of k or C(ν). So we have the following corollary, which

in particular implies that for any graph G on n vertices, g(G) = Ω(n/ ln n), partly answering the

question of Falgas-Ravry, Markström, and Verstraëte [13].

Corollary 8. For any q ≥ 2 there exists a constant C such that for any k ∈ N, any q-colouring of the

edges of the complete graph on n = Ck ln k vertices and any (ρ1, . . . , ρq) ∈ (0, 1)q such that ∑
q
i=1 ρi = 1,

there exists a colour j ∈ [q] and set of vertices S of size ℓ at least k such that the graph induced by S in

colour j has minimum degree at least ρj(ℓ− 1).
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Remark. By adapting some results in [15], which are based on discrepancy results of Spencer [23]
and Lovász, Spencer and Vesztergombi [18], one can deduce from Theorem 1 that there is a set S

of size exactly k which has minimum degree at least ρi(k− 1) plus a constant times
√

(k − 1)/ ln k.

We leave the details to the reader.

4 A precise threshold for uniform hypergraphs

In this section we prove Proposition 3 and Theorem 2.

4.1 The linear regime

We prove Proposition 3 by combining a greedy deletion argument together with probabilistic

thinning, similar to what was done for graphs in [17]. We require the following concentration

inequality [20, Corollary 6.10].

Theorem 9 (McDiarmid [20]). Let Z1, . . . , Zn be random variables with Zi taking values in a set Ai and

let Z = (Z1, . . . , Zn). Let f : ∏ Ai → R be measurable. Suppose there exist constants c1, . . . , cn such

that for each k = 1, . . . , n

∣

∣E( f (Z) | Zi = zi, i ∈ [k − 1], Zk = zk)− E( f (Z) | Zi = zi, i ∈ [k − 1], Zk = z′k)
∣

∣ ≤ ck

for all (z1, . . . , zk−1) ∈ ∏
k−1
i=1 Ai and zk, z′k ∈ Ak. Then for all t > 0 we have

P(| f (Z)− E( f (Z))| > t) ≤ exp

(

−2t2

/

n

∑
i=1

c2
i

)

.

Using this result, we can prove the following lemma, which is a standard application of

martingale inequalities, but we spell out the details for completeness.

Lemma 10. Let H = (V, E) be an r-uniform hypergraph with N vertices and p(N
r ) edges. If S ⊆ V is a

uniformly random subset of n distinct vertices, then for any p > ε > 0,

P

(

e(H[S]) ≤ (p − ε)

(

n

r

))

< exp

(−2ε2(n − 2(r − 1))

r2

)

.

Proof. We formulate the setup to apply Theorem 9. Pick the random subset S by picking its

vertices one at a time uniformly at random from the pool of remaining vertices, and let Z1, . . . , Zn

be the vertices picked, and let Z = (Z1, . . . , Zn).
For v = (v1, . . . , vn) ∈ Vn, write H[v] := H[{v1, . . . vn}]. Let f : Vn → N be defined by setting

f (v1, . . . , vn) to be the number of edges in H[v]. Note that

P

(

e(H[S]) ≤ (p − ε)

(

n

r

))

= P

(

f (Z) ≤ (p − ε)

(

n

r

))

.

Write V(k) for the set of k-component vectors in which all components are distinct. Furthermore,

given z = (z1, . . . , zk) ∈ Vk, write V(n)|z for the set of vectors in V(n) whose first k components

are (z1, . . . , zk).
Given two vectors z = (z1, . . . , zi−1, zi) and z′ = (z1, . . . , zi−1, z′i) ∈ V(i), we define a function

g : V(n)|z → V(n)|z′ such that g fixes v if z′i occurs as a component of v and replaces zi with z′i in

v if z′i does not occur as a component in v. It is easy to see that g is a bijection.

Now we check the bounded difference condition in Theorem 9. Note first that for z =
(z1, . . . , zi−1, zi) ∈ V(i),

E ( f (Z) | (Z1, . . . , Zi) = z) = ∑
v∈V(n)|z

(

N − i

n − i

)−1

e(H[v]).
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Taking z′ = (z1, . . . , zi−1, z′i) ∈ V(i), we have

∣

∣E ( f (Z) | (Z1, . . . , Zi) = z)− E
(

f (Z) | (Z1, . . . , Zi) = z′
)∣

∣

=

∣

∣

∣

∣

∑
v∈V(n)|z

(

N − i

n − i

)−1

e(H[v])− ∑
v∈V(n)|z′

(

N − i

n − i

)−1

e(H[v])

∣

∣

∣

∣

=

∣

∣

∣

∣

∑
v∈V(n)|z

(

N − i

n − i

)−1

(e(H[v])− e(H[g(v)])

∣

∣

∣

∣

≤ max
v∈V(n)|z

|e(H[v])− e(H[g(v)])| ≤
(

n

r − 1

)

.

The last quantity is bounded above by ( n
r−1) because H[v] and H[g(v)] are two hypergraphs that

differ in at most one vertex. Now observing that E( f (Z)) = p(n
r) and applying Theorem 9 with

ck = ( n
r−1) for all k yields the result.

We can now give a proof of Proposition 3.

Proof of Proposition 3. Assume ∑
q
i=1 ρi < 1 − ε for some ε > 0 and let N = Ck, where C is to be

determined later. Given any q-colouring of the edges of the complete r-uniform hypergraph on N

vertices, let Hi be the subhypergraph consisting of edges coloured i and let pi be the edge density

of Hi. Then for some i, we must have that pi > ρi + ε/q. Set ε′ = ε/q. We may assume without

loss of generality that p1 > ρ1 + ε′.
Now, starting with H1 and n = N, we repeatedly remove an arbitrary vertex of degree less

than [ρ1 + (ε′/2)](n−1
r−1). If we continue for t iterations, then we have removed at most

t

∑
i=1

[ρ1 + (ε′/2)]

(

N − i

r − 1

)

= [ρ1 + (ε′/2)]

((

N

r

)

−
(

N − t

r

))

vertices from H1. So after t iterations the number of vertices is n = N − t and the number of

edges remaining in the hypergraph is at least

(ε′/2)

(

N

r

)

.

Since this hypergraph can only have at most (n
r) edges, it follows that

(ε′/2)

(

N

r

)

≤
(

N − t

r

)

.

It is easy to see that there exists c = c(ε′, r) such that for n = N − t ≤ cN, this inequality fails.

Hence we find a set T of vertices such that with |T| = n = cN vertices such that every vertex in

H1[T] has degree at least [ρ1 + (ε′/2)](n−1
r−1) in H1[T]. We want that |T| ≥ k, so it suffices to take

C ≥ 1/c.

Finally we pick S ⊆ T uniformly at random such that |S| = k. Let v ∈ T. Then, conditional

on v ∈ S, the set S \ {v} is a uniformly random set S′ ⊆ T \ {v} such that |S′| = k − 1. Now, if H′

denotes the (r − 1)-uniform hypergraph H′ on T \ {v} induced by the at least [ρ1 + (ε′/2)](n−1
r−1)

edges incident with v, then the degree of v is the same as e(H′[S′]). So it follows from the

previous lemma that, conditional on v ∈ S, the probability that the degree of v is at most [ρ1 +

(ε′/4)](k−1
r−1) is exponentially small in k. Since the probability that v ∈ S is k/n, we have that,

unconditionally, the probability that there exists v ∈ T with degree at most [ρ1 + (ε′/4)](k−1
r−1) is

at most n · k
n exp(−Ω(k)) → 0 as k → ∞. We conclude that for large enough k there exists S of

size k such that H1[S] has minimum degree at least [ρ1 + (ε′/4)](k−1
r−1), as required.

4.2 From polynomial to super-polynomial growth

Although we treat the significantly more general situation of hypergraphs and multiple biased

colours, our proof of Theorem 2 has strong similarities to that of [17, Theorem 3].

10



Proof of Theorem 2(i). Let c be the constant from Theorem 4 and let C := maxj∈[q](cρj)
−1. Define

for ν ≥ 0 and j ∈ [q] the following form of skew discrepancy for a set S ⊆ V:

Dν,j(S) := Dρj ,Hj
(S)− ν|S|(r+1)/2

√

ln |S|.

Let X ⊆ V attain the maximum skew discrepancy over all subsets of V and j ∈ [n]. By symmetry

we may assume that it is attained at colour 1. Using that (ℓ−1
r ) + (ℓ−1

r−1) = (ℓr), we find by a similar

argument as in the proof of Claim 1, that

δ(H1[X]) ≥ ρ1

(|X| − 1

r − 1

)

+ |X|(r−1)/2ν
√

ln |X|.

So it now suffices to show that |X| ≥ k. By Theorem 4 there exists a set Y ⊆ V of size at most

k2r/(r+1) such that Dρ1,H1
(Y) ≥ c min{ρ1, 1 − ρ1}krνC

√

(1 + ε) ln k ≥ krν
√

(1 + ε) ln k. As ε > 0,

the skew factor of X is dominated by νkr
√

(1 + ε) ln k and hence for k large enough we know that

Dν,j(X) ≥ kr . This clearly implies that |X| ≥ k and finishes the proof.

For the proof of Theorem 2(ii), first we describe the expected behaviour of what we refer to

here as t-dense sets — vertex subsets that induce average degree deg at least t — in the random

r-uniform hypergraph H
(r)
n,ρ with vertex set [n] = {1, . . . , n} and hyperedge probability ρ. For this,

we need a result best stated with large deviations notation, cf. [4]. For ρ ∈ (0, 1), let

Λ∗
ρ(x) =

{

x ln x
ρ + (1 − x) ln 1−x

1−ρ for x ∈ [0, 1]

∞ otherwise

(where Λ∗
ρ(0) = − ln(1 − ρ) and Λ∗

ρ(1) = − ln ρ). This is the Fenchel-Legendre transform of the

logarithmic moment generating function associated with the Bernoulli distribution with proba-

bility ρ (cf. Exercise 2.2.23(b) of [4]). Some calculus checks that Λ∗
ρ(x) has a global minimum

of 0 at x = ρ, is strictly decreasing on [0, ρ) and strictly increasing on (ρ, 1]. The following is a

straightforward adaptation of Lemma 2.2(i) in [16] and bounds the probability that a given subset

of k vertices in H
(r)
n,ρ is t-dense.

Lemma 11. Given t, k with t ≥ ρ(k−1
r−1),

Pr
(

deg
(

H
(r)
k,ρ

)

≥ t
)

≤ exp

(

−
(

k

r

)

Λ∗
ρ

(

t

/(

k − 1

r − 1

)))

.

Proof of Theorem 2(ii). For any η > 1 let

n =

⌊

kν(k)2+1

ηe

⌋

,

where k is some large enough integer. For each i ∈ [q] we write

fi(ℓ) = ρi

(

ℓ− 1

r − 1

)

+ ν(ℓ)

√

r

(

ℓ− 1

r − 1

)

ln ℓ.

Let us consider a random q-colouring of ([n]r ), the hyperedges of K
(r)
n , where independently and

uniformly each hyperedge is assigned the colour i with probability ρi. So, writing Hi for the

subhypergraph induced on [n] by the hyperedges of colour i, we see that Hi is distributed as the

random r-uniform hypergraph H
(r)
n,ρi

.

Given a subset S ⊆ [n] of ℓ ≥ k vertices, let AS be the event that deg(Hi[S]) ≥ fi(ℓ) for some

i ∈ [r]. Since fi(ℓ) ≥ ρi(
ℓ−1
r−1) for each i, we have by Lemma 11 that

Pr(AS) ≤
q

∑
i=1

exp

(

−
(

ℓ

r

)

Λ∗
ρi

(

fi(ℓ)

/(

ℓ− 1

r − 1

)))

≤
q

∑
i=1

exp

(

−
(

ℓ

r

)

Λ∗
ρi

(

ρi + ν(ℓ)

√

r ln ℓ

/(

ℓ− 1

r − 1

)

))

.
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Now, writing

ε = ε(ℓ) = ν(ℓ)

√

r ln ℓ

/(

ℓ− 1

r − 1

)

,

we have by Taylor expansion of Λ∗
ρi

(assuming ε < min{ρi, 1 − ρi}) that

Λ∗
ρi
(ρi + ε) = (ρi + ε) ln

(

1 +
ε

ρi

)

+ (1 − ρi − ε) ln

(

1 − ε

1 − ρi

)

=
∞

∑
j=1

ε2j

(2j − 1)2j

(

1

ρi
2j−1

+
1

(1 − ρi)
2j−1

)

+
∞

∑
j=1

ε2j+1

2j(2j + 1)

(

1

(1 − ρi)
2j

− 1

ρi
2j

)

=
ε2

2ρi(1 − ρi)
+ O(ε3) ≥ ε2

for ε small enough (and hence k large enough). So the probability that AS holds for some set

S ⊆ [n] of ℓ ≥ k vertices is at most

∑
S⊆[n],|S|≥k

Pr(AS) ≤
n

∑
ℓ=k

(

n

ℓ

) q

∑
i=1

exp

(

−
(

ℓ

r

)

Λ∗
ρi
(ρi + ε)

)

≤ q
n

∑
ℓ=k

(

en

ℓ
exp

(

− 1

r

(

ℓ− 1

r − 1

)

ε2

))ℓ

≤ q
n

∑
ℓ=k

η−ℓ
< 1,

where in this sequence of inequalities we have used the definition of n, the fact that ℓ ≥ k and

η > 1, and a choice of k large enough. Thus for k large enough there is a q-colouring of the edges

of K
(r)
n where for each i ∈ [q] every vertex subset of size ℓ ≥ k induces a subhypergraph in colour

i with average degree less than fi(ℓ), so the result follows.

5 Concluding remarks and open questions

Let us introduce some notation to facilitate our discussion. Fix q ≥ 2 and let (ρi)
q
i=1 be a sequence

of q numbers in [0, 1]. Given a colouring φ of the complete r-uniform hypergraph K
(r)
n on vertex

set [n] that assigns each hyperedge a colour from [q], we let Hφ,j denote the subhypergraph

([n], φ−1(j)) induced by all hyperedges of colour j for j ∈ [q]. The basic question now becomes

the following: for any k, what is the smallest number n := R
(r)
(ρi)i

(k) such that, for any q-colouring

φ of the hyperedges of K
(r)
n , there is guaranteed to be a subset S ⊆ [n] of size ℓ at least k such

that the subhypergraph Hφ,j[S] induced on S in colour j has minimum degree at least ρj(
ℓ−1
r−1) for

some j ∈ [q]? We may also ask this question with average degree instead of minimum degree

and denote the corresponding number R
(r)
(ρi)i

(k). Clearly R
(r)
(ρi)i

(k) ≤ R
(r)
(ρi)i

(k) always. We refer to

R
(r)
(ρi)i

(k) and R
(r)
(ρi)i

(k) as q-colour hypergraph quasi-Ramsey numbers. Note that when ∑
q
i=1 ρi = q we

retrieve the ordinary hypergraph Ramsey-numbers.

With this notation we see that for ∑
q
i=1 ρi < 1, Proposition 3 shows that R

(r)
(ρi)i

(k), and hence

R
(r)
(ρi)i

(k), has linear growth in k; Theorem 2 precisely describes the transition from polynomial to

super-polynomial growth of the q-colour hypergraph quasi-Ramsey numbers. In particular, for

∑
q
i=1 ρi > 1, Theorem 2(ii) implies that R

(r)
(ρi)i

(k), and hence R
(r)
(ρi)i

(k), is at least singly exponential

in k. This implies for hypergraph quasi-Ramsey numbers that, irrespective of a well-known

conjecture of Erdős, Hajnal and Rado [8] (concerning the case ∑
q
i=1 ρi = q), there must be a

transition for r-uniform hypergraphs with r ≥ 4 from singly exponential to doubly exponential

(or higher) growth in k that takes place for 1 < ∑
q
i=1 ρi ≤ q. It would be an interesting challenge

to understand the nature of this transition.
We note that if all the ρi are uniformly bounded below 1, Conlon, Fox and Sudakov [2,

3] proved results that imply R
(r)
(ρi)i

(k), and hence R
(r)
(ρi)i

(k), has growth that is at most singly

exponential in k:

12



Proposition 12 (Conlon, Fox and Sudakov [2, 3]). Let r ≥ 2. Fix q ≥ 2 and ε > 0 and let ρ1 = · · · =
ρq = 1 − ε. Then

R
(r)
(ρi)i

(k) =

{

2O(k2) if q = 3 [3, Theorem 2] and

2O(kD) if q ≥ 4 [2, Proposition 6.3]

where D > 0 is a fixed constant that depends on r, q and ε.

Along these lines, a first question to resolve is perhaps whether a strengthening of Proposi-

tion 12 holds: given r ≥ 3, q ≥ 2 and ε > 0, is there some D such that ln R
(r)
(ρi)i

(k) = O(kD) if

∑
q
i=1 ρi < q − ε? Or could it instead be the case, say, that, given r ≥ 4, q ≥ 2 and ε > 0, there

is some D > 0 such that ln ln R
(r)
(ρi)i

(k) = Ω(kD) if ρ1 = 1 and ρi = ε/(q − 1) for i ∈ {2, . . . , q}?

These questions can be considered part of a refinement of a problem of Erdős (cf. [21, pp. 21–22]),
a problem he described as “interesting and mysterious” and for whose solution he offered $500.

Borrowing his intuition, it might be more natural to believe that the answer to the first question

is ‘yes’ and to the second ‘no’. On the other hand, in light of a result of Erdős and Hajnal that

was mentioned in the introduction, the answers could depend on r and q.
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