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Abstract

Mock modular forms have found applications in numerous branches of mathematical sciences since

they were first introduced by Ramanujan nearly a century ago. In this proceeding we highlight a new

area where mock modular forms start to play an important role, namely the study of three-manifold

invariants. For a certain class of Seifert three-manifolds, we describe a conjecture on the mock

modular properties of a recently proposed quantum invariant. As an illustration, we include concrete

computations for a specific three-manifold, the Brieskorn sphere Σ(2, 3, 7). This note is partially based

on the talk by the first author in the conference “Srinivasa Ramanujan: in celebration of the centenary

of his election as FRS” held at the Royal Society in 2018.

∗On leave from CNRS, France.
†g.sgroi@uva.nl
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1 Introduction

Mock modular forms have been a source of fascination since Ramanujan first introduced them about

a century ago [Ram88], [Ram00]. In 2002, Zweger’s doctoral thesis provided the crucial starting point

for a structural theory of mock modular forms. These functions have found applications in various

branches of mathematical sciences, including combinatorics, moonshine, conformal field theory, string

theory and more. We refer to [Zag10a], [Ono09], [Fol10], [Duk14], [CDH14a], [CDH14b], [BFOR17]

and other contributions to this volume for a partial overview of these developments. The purpose of

this article is to highlight the appearance of mock modular forms in a different context: the topology

of three-dimensional manifolds. This appearance was first anticipated in [CCFGH18] and later further

developed via concrete computations in [GM19] and [CS].

To see how mock modular forms appear in the study of three-manifolds, we first introduce a set

of topological invariants, noted by Ẑa, defined in [GPPV17] for weakly negative plumbed manifolds.

Roughly speaking, these are three-manifolds obtained through surgeries along links that are in turn

determined by weighted graphs (cf. Figure 1), which moreover satisfy a certain negativity condition

[CCFGH18].

More precisely, the data we need is a plumbing graph, which is a a weighted simple graph (V,E, λ)

specified by the set V of vertices, the set E of edges, and an integral weight function λ : V → Z.

Equivalently, the data can be captured by an adjacency matrix M , which is a square matrix of size

|V | with entries given by Mvv′ = λ(v) if v = v′, 1 if (v, v′) ∈ E and 0 otherwise. The data determines

a three-manifold1. We say that M3 is a weakly negative plumbed manifold if M−1 is negative-definite

when restricted to the subspace generated by all vertices with degree larger than 2.

Definition 1.1. For M3 a weakly negative plumbed three-manifold and using the above notation, we

define the quantum invariants Ẑa(M3; τ) via the following principal value |V |-dimensional integral:

Ẑa(M3; τ) := (−1)πq
3σ−

∑
v∈V λ(v)

4

∑
n∈2MZ|V |+a

vp
∏
v∈V

∮
|wv|=1

dwv
2πiwv

(
wv−

1

wv

)2−deg(v)

q−
nTM−1n

4 e2πizTn

(1.1)

1Different weighted graph related by the so-called Kirby moves can lead to the same topological three-manifold M3.
See [GM19] for a proof the Kirby-invariance of the quantum invariants Ẑa(M3) defined in Definition 1.1.
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v1

v2

v3 v4

v5

v6

Plumbing graph Γ,
with weights λ : V → Z

Framed link L,
with framing coefficients λ(vi)



λ(v1) 0 1 0 0 0
0 λ(v2) 1 0 0 0
1 1 λ(v3) 1 0 0
0 0 1 λ(v4) 1 1
0 0 0 1 λ(v5) 0
0 0 0 1 0 λ(v6)



Adjacency matrix M

Plumbed M3

obtained from surgery along L

Figure 1: Weighted graphs, adjacency matrices, links and plumbed three-manifolds.

where we write q := e2πiτ and wv := e2πizv as usual, and use the bold-faced letters to denote elements

in Z|V |. When M−1 is moreover negative definite, the above can be rewritten as

Ẑa(M3; τ) := (−1)πq
3σ−

∑
v∈V λ(v)

4 vp
∏
v∈V

∮
|wv|=1

dwv
2πiwv

(
wv −

1

wv

)2−deg(v)

Θ−Ma (τ, z) (1.2)

In the above, π denotes the number of positive eigenvalues, and σ is the signature of M−1. The

label a of the quantum invariants Ẑa(M3) can be identified with elements of the set Spinc(Y ) ∼=
π0Mab(M3) ∼= (2Z|V | + δ)/(2MZ|V |), where δ ∈ Z|V |/2Z|V | is defined by δv = deg(v) mod 2, and

Mab(M3) denotes the moduli space of Abelian flat connections. Denote by a the corresponding

element of (2Z|V | + δ)/(2MZ|V |), the theta function reads

Θ−Ma (τ, z) =
∑

n∈2MZ|V |+a

q−
nTM−1n

4 e2πizTn. (1.3)

A well-known topological invariant for three-manifolds is the Witten-Reshetikhin-Turaev (WRT)

invariant, defined for all three-manifolds. Physically speaking, it is (up to certain well-understood

prefactors) the partition function of Chern-Simons theory on the three-manifold M3 which we denote

by ZCS(M3). For a given three-manifold M3 (and a simple Lie group G which we will take to be

G = SU(2) for the sake of concreteness), we obtain a function ZCS(M3) : Z → C defined on all

integers, namely the (shifted) Chern-Simons levels. Analogous to knot theory, it would be desirable

to have a q-series version of the invariants defined on a continuous domain, such as the upper-half

plane. This would then be the first step towards a categorification of three-manifold invariants,

analogous to the categorification programme of knot invariants. It was shown for weakly negative

plumbed manifolds that the quantum invariants Ẑa provide exactly such a q-series generalisation of

3



the WRT invariants. To be more precise, for weakly negative plumbed manifolds one has [GPPV17]

(i
√

2k)ZCS(M3; k) =
∑
a,b

Xabe
2πiCS(a)k lim

τ→ 1
k

Ẑb(M3; τ). (1.4)

In the above equation, the sum over a is over the set ((2Z|V |+δ)/2MZ|V |))/Z2, which can be identified

with the space of gauge-inequivalent SU(2) Abelian flat connections on M3, and CS(a) denotes the

corresponding Chern-Simons invariant when we regard a as a label for Abelian SU(2) flat connections.

The sum over b is over the set (Z|V |/MZ|V |)/Z2, and the matrix X has as elements

Xab =

∑
(a′,b′)∈{Z2×Z2 orbit of (a,b)}

e2πi(a′,M−1b′)

2
√
|DetM |

. (1.5)

To summarise, two steps need to be taken in order to retrieve ZCS from Ẑa. First, Ẑa has an extra

label a indexing the SU(2) Abelian flat connections while ZCS does not, and this label needs therefore

to be summed over. Second, a so-called radial limit τ → 1
k taking τ ∈ H to the boundary Q∪{i∞} of

the upper-half plane needs to be taken in order to relate the continuous variable τ and the (shifted)

Chern-Simons level.

The modular-like properties of the quantum invariants Ẑa is a rich subject that has been in de-

velopment since [CCFGH18]. So far it develops in parallel to the study of modular-like properties of

knot invariants (see for instance [Zag10b], [GZ18], [DG18], [HL15] for a sample of work in this direc-

tion), although it is expected that the two topics are related both in their physical and mathematical

contexts.

For concreteness and in order to make direct contact with Ramanujan’s mock theta functions,

here we restrict our attention to the simplest non-trivial plumbing graphs: the so-called three-star

weighted graphs. These are, as the name suggests, weighted simple graphs with one vertex of degree

three, three vertices of degree one, while the rest of the vertices (if any) have degree two. See Figure

2. We will denote the unique vertex with degree three by v0. Such graphs are either weakly negative

or not, depending on the sign of (M−1)00. When (M−1)00 < 0, Definition 1.1 is readily applicable

and it is not hard to show that the quantum invariants Ẑa are always holomorphic functions on the

upper-half plane with well-defined q-expansions and moreover have integral coefficients. In fact, a

lot more is true: up to a possible addition of a polynomial, the quantum invariants Ẑa are linear

combinations of false theta functions multiplied by a rational q-power (cf. §2.1 and [BMM18]).

A puzzle immediately arises given the simple result for weakly negative three-star graphs: what

happens when one flips the orientation of the three-manifold? While this might sound like an innocu-

ous operation, it can in fact have rather dramatic consequences due to the pseudo-chiral symmetry

(or CP symmetry in physical terms)

ZCS(M3; k) = ZCS(−M3;−k) (1.6)

of Chern-Simons theory. From the relation (1.4) between the quantum invariants Ẑa(M3; τ) and

4



ZCS(M3; k), and in particular the relation “τ → 1
k” between the two variables, one is led to the guess

Ẑa(−M3; τ) “=” Ẑa(M3;−τ). (1.7)

There are a few immediate problems with this guess. Recall that for a weakly negative plumbed

manifold M3, Definition 1.1 defines a function Ẑa(M3; τ) on the upper-half plane H, which is not

preserved by the action τ 7→ −τ . As a result it is not clear what the right-hand side of the equation

(1.7) even means. More concretely, it is clear from (1.1) that for plumbed manifolds one has τ 7→
−τ ⇔ M 7→ −M , which flips the sign of the adjacency matrix and hence flips the signature of the

lattice for which the theta function Θ−Ma should be defined, and as a result does not render a function

on H when one tries to literally apply Definition 1.1.

This is when the question starts to become interesting from the perspective of mock modular

forms. To be concrete, we let M3 be a weakly negative three-star plumbed three-manifold. As

mentioned before, for such cases Ẑa(M3; τ) are basically false theta functions, which are known to

furnish (rather simple) examples of the so-called quantum modular forms, as will be explained in

§2. The quantum modular properties of the quantum invariants Ẑa are essentially what makes their

relation (1.4) to ZCS possible. At the same time, it can be shown that a mock theta function and the

corresponding false theta function lead to a pair of quantum modular forms that are in fact basically

equivalent (cf. Lemma 2.6), in a way that precisely leads to the radial limit relation (1.6). This leads

to the natural guess that the quantum invariants Ẑa(−M3; τ) for the orientation-reversed three-star

plumbed manifold are given by mock theta functions. This conjecture, proposed in [CCFGH18], will

be discussed in §2.7.

In §3, we will review some recent results supporting the conjecture. The first involves building the

relevant orientation-reversed three-manifold via Dehn surgeries on knot complements [GM19], and

the second involves employing the indefinite theta series to extend the definition of Ẑa(M3) to general

plumbed manifolds [CS]. To illustrate the various ideas discussed in this proceeding, we will discuss

in details the specific example of the Brieskorn sphere M3 = Σ(2, 3, 7).

2 False, Mock, and Three-Manifolds

In this section we argue that mock modular forms play a role in three-manifold quantum invariants.

In §2.1 we introduce the relevant class of quantum invariants and review their relation to false theta

functions. In §2.2 we review the quantum modular properties of false and mock theta functions and

explain their relevance for three-manifold topology. In §2.3 we discuss a mock conjecture for Ẑa and

its motivation and consequences.

2.1 False Theta Functions and Negative Three-Star Graphs

For concreteness, we focus on the simplest type of non-trivial graph: the three-star graphs (see Figure

2). These type of graphs correspond via plumbing (cf. Figure 1) to Seifert manifolds with three

singular fibers. The relation between false theta functions and the WRT invariants for this family

of three-manifolds was first pointed out in [LZ99] and later extensively studied in [Hik05a], [Hik05b],

5



[Hik11]. Here we are interested in their quantum invariants Ẑa(M3). It is easy to see [CCFGH18]

that Definition 1.1 leads to a function well-defined on H if and only if (M−1)00 < 0, namely when the

resulting plumbed three-manifold M3 is weakly negative.

v0

v1

v2 v3

Figure 2: A three-star graph.

In order to describe the quantum modular properties of Ẑa(M3), we will need the following defi-

nitions.

Definition 2.1. Let m ∈ Z>0 and r ∈ Z/2m. Define false theta functions

θ̃1
m,r(τ) :=

∑
k∈Z

k≡r (mod 2m)

sgn(k) q
k2

4m . (2.1)

Note that this is nothing but the usual theta function for one-dimensional lattice
√

2mZ when the

sign factor in the summand is removed. This leads to the nomenclature [Rog17,Fin88].

It will also be convenient to define, after [BMM18], the following functions for m ∈ Z>0 and j ∈ Z

Fj,m(τ) :=
∑
k∈Z

sgn

(
k +

1

2

)
q(k+ j

2m )
2

. (2.2)

Furthermore, we have

Fj,m(mτ) = θ̃1
m,j(τ) + pm,j(τ), (2.3)

where pm,j(τ) is the polynomial in q given by

pm,j(τ) =



−2
b j
2m c∑
k=1

q
(j−2mk)2

4m , if j ≥ 2m

0 , if 0 ≤ j < 2m

2
−b j

2m c−1∑
k=0

q
(j+2mk)2

4m , if j < 0.

(2.4)

Note that the definition (2.2) can be extended to m, j ∈ Q∗ since the right hand side only depends

on their ratio j
m .

In terms of the above building blocks, it can be shown that given a 3-star weighted graph, the

corresponding Ẑa(M3) can be written in terms of Fj,p for some p and j. See Theorem 4.2 in [BMM18]

for the result on a closely related quantity, denoted Z(q) in [BMM18], and [CCFGH18] for numerous

examples.
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In particular, in what follows we will further restrict our attention to weakly negative plumbed

manifolds with three-star plumbing graphs with four nodes. Denote by M the corresponding adjacency

matrix, let A := − 1
2M

−1 and let v0 be the unique vertex with degree three. Moreover, assume that

the corresponding adjacency matrix M is unimodular. As a result there is only one quantum invariant

Ẑ0(M3; τ) := Ẑa(M3; τ) with a = δ mod 2MZ|V |, as defined in 1.1. Write also

m = 2A00

b0 = 2

3∑
j=1

Aj0, bi = 4Ai0 − 2

3∑
j=1

Aj0

c0 = A12 +A23 +A31 +
1

2

3∑
j=1

Ajj , ci = c0 − 2
∑

j∈{1,2,3}
j 6=i

Aij

(2.5)

for i = 1, 2, 3. Note that di := − b2i
4m + cj satisfy di = dj =: d for all i, j ∈ {0, 1, 2, 3}. In the above

notation we have the following Proposition.

Proposition 2.2. [BMM18] Consider a weakly negative three-star plumbing graph with four nodes

and unimodular adjacency matrix, denote by M3 the corresponding plumbed three-manifold. Its unique

quantum invariant satisfies

(−1)πq−cẐ0(M3; τ) =

3∑
j=0

Fm−bj ,m(mτ) (2.6)

with c = d+
3σ−

∑
vm(v)

4 , where m, bj and d are defined as above and where σ and π as defined as in

Definition 1.1.

Note that, using (2.3) this immediately shows

q−cẐ0(M3; τ) =

4∑
j=1

˜θ1
m,m−bj (τ) + p(τ) (2.7)

where p(τ) is a polynomial which one can work out explicitly using (2.3). Often times, one has

−m < bj ≤ m for all j ∈ {0, 1, 2, 3} and p(τ) = 0. In other words, up to an overall rational power

of q and possibly the addition of a polynomial, the quantum invariants Ẑ0 is given by a false theta

function.

Example. In this section, we will illustrate the computation of the quantum invariant and in particular

Proposition 2.2, with the example of the Brieskorn sphere M3 = Σ(2, 3, 7), which can be described as

the intersection between the algebraic surface {x2+y3+z7 = 0} and the five sphere {|x|2+|y|2+|z|2 =

1}. It can be obtained as a plumbed manifold with the plumbing graph shown in Figure 3. Note that

M is indeed unimodular, consistent with the fact that Brieskorn sphere is a integral homology sphere

with trivial H1(M3;Z) ∼= Z4/MZ4 and there is hence just one quantum invariant Ẑ0(M3; τ).

Plugging the adjacency matrix in (2.5) one obtains

m = 42 , (bj , 4cj) = (1, 1), (−13, 5), (−29, 21), (41, 41) for j = 0, 1, 2, 3. (2.8)

7



−1

−7

−3 −2

M =


−1 1 1 1
1 −2 0 0
1 0 −3 0
1 0 0 −7



Figure 3: Plumbing graph and adjacency matrix for Σ(2, 3, 7)

Using Definition 1.1 (or (2.6)), one obtains that

Ẑ0(Σ(2, 3, 7); τ) = q
83
168

∑
k≥0

k2≡1 (42)

(
k

21

)
q
k2

168

= q
83
168

(
θ̃1

42,1 − θ̃1
42,13 − θ̃1

42,29 + θ̃1
42,41

)
(τ)

= q
1
2

(
1− q − q5 + q10 − q11 + . . .

)
(2.9)

which is indeed a false theta function of weight 1/2. The fact that ZCS(Σ(2, 3, 7)) is given by the

above function by taking the limit

ZCS(Σ(2, 3, 7); k) =
1

i
√

2k
lim
t→0+

(Ẑ0(Σ(2, 3, 7);
1

k
+ t)) (2.10)

was first established by [LZ99].

2.2 False, Mock, and Quantum

As we have seen, a pre-requisite for a q-series to play the role of the quantum invariants Ẑa(M3) is to

have a specific behaviour when taking the radial limit, so that it gives the WRT invariants via (1.4).

This is demonstrated in the Σ(2, 3, 7) example in (2.10). This leads us to the concept of quantum

modular forms (QMF), first introduced by D. Zagier [Zag10b]. Roughly speaking, a quantum modular

form is a function defined on Q with a certain modular-like property: the deviation from modularity,

measured by a modular difference function denoted by pγ , has nice analytic properties that are not a

priori manifest or expected. In this proceeding we work with a specific version of the definition that

is often referred to as defining strong quantum modular forms. We refer to §7.3 of [CCFGH18] for

details about modular forms in the current context.

To state the definition, let us recall the usual definition of the slash operator acting on the space

of holomorphic functions on H for weight w and multiplier χ on Γ, which we take to be a subgroup

of the modular group SL2(Z):

f(τ)|w,χγ := f

(
aτ + b

cτ + d

)
χ(γ)(cτ + d)−w , γ =

(
a b
c d

)
∈ Γ. (2.11)

Definition 2.3. [Zag10b] Consider a function Q : Q → C. It is called a strong quantum modular

8



form of weight w and multiplier χ for Γ if for every γ ∈ Γ the modular difference function pγ(x) :

Q\{γ−1(∞)} → C, defined by

pγ(x) := Q(x)−Q|w,χγ(x) (2.12)

is a real-analytic function of R minus finitely many points.

The false theta functions we encountered in §2.1 are examples of quantum modular forms. The

simplest way to see this is to note that false theta functions defined in (2.1) are examples of Eichler

integrals. Given a cusp form g =
∑
n>0 ag(n)qn of weight w ∈ 1

2Z, its Eichler integral is defined as

g̃(τ) :=
∑
n>0

n1−wag(n)qn. (2.13)

It is easy to see that the false theta function θ̃1
m,r is the Eichler integral of the weight 3/2 unary theta

function

θ1
m,r(τ) :=

1√
4m

∑
`∈Z

`=r mod 2m

` q`
2/4m, (2.14)

as the notation suggests.

Note that this is equal to the following integral2

g̃(τ) = C

∫ i∞

τ

g(z′)(z′ − τ)w−2dz′, (2.15)

where C = (2πi)w−1

Γ(w−1) . Letting Q(x) := limt→0+ g̃(x + it) in Definition 2.3, one immdiately sees that

the modular difference function pγ(x) admits an expression as a period integral

pγ(x) = C

∫ i∞

γ−1(i∞)

g(z′)(z′ − x)w−2dz′ (2.16)

and is hence equipped with the desired analytic properties.

An analogous argument demonstrates that mock modular forms also lead to quantum modular

forms. To see that, we first recall the definition of mock modular forms, adapted to the classes of

functions that are relevant for our context. In particular, we assume that the shadow g is a cusp form

with real Fourier coefficients, namely g(−τ̄) = g(τ).

Definition 2.4. We say that a holomorphic function f on H is a mock modular form of weight k

and multiplier χ on Γ if there exists a weight 2− k cusp form g on Γ such that the non-holomorphic

completion of f , defined as

f̂(τ) = f(τ)− g∗(τ)

satisfies f̂ = f̂ |k,χγ for every γ ∈ Γ. In the above, g∗ denotes the non-holomorphic Eichler integral

g∗(τ) := C

∫ i∞

−τ̄
(τ ′ + τ)−kg(τ ′) dτ ′, (2.17)

defined for τ ∈ H.

2We choose the branch to be the principal branch −π < argx ≤ π.
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Note that there is no canonical normalization for the shadow and we choose ours to simplify

the comparison between mock modular forms and Eichler integrals (2.13). Assuming that the limit

limt→0+ f(x + it) exists for a given x ∈ Q, let Q(x) := limt→0+ f(x + it), and consider γ ∈ Γ in

the notation of Definition 2.3. The γ-invariance of the completion f̂ leads to an expression for the

corresponding modular difference function pγ(x) given by the modular difference function associated

to g∗(τ). Through the related function (given by τ 7→ −τ)

g̃∗(τ) = C

∫ i∞

τ̄

(τ ′ − τ)−kg(τ ′) dτ ′ (2.18)

and the fact that the modular difference function associated with g̃∗ is again a period integral com-

pletely analogous to (2.16), it follows that mock modular forms indeed lead to quantum modular

forms. Moreover, the quantum modular forms arising from a mock modular form and the Eichler

integral of its shadow are clearly closely related.

However, just as Ramanujan already pointed out in his original work [Ram88], mock modular forms

inevitably encounter infinities when approaching certain rational numbers from within the upper-half

plane. Nonetheless, there exists a finite collection of weakly holomorphic modular forms that can be

used to “cut out” these infinities and render a well-defined radial limit. More explicitly, we have the

following theorem.

Theorem 2.5. [GOR13,CLR16] Let f be a mock modular form of weight k and multiplier system χ

for Γ0(N) with non-vanishing shadow g, and let {x1, . . . , xt} ⊂ Q ∪ {i∞} be a set of representatives

of Γ0(N)-inequivalent cusps, then

1. the function f(τ) has exponential singularities at infinitely many rational numbers,
2. for every weakly holomorphic modular form G of weight k and multiplier system χ for Γ0(N),

f −G has exponential singularities at infinitely many rational numbers,
3. there exits a collection {Gj}tj=1 of weakly holomorphic modular forms with the following property.

Given any cusp x, let xj be the cusp representative that is Γ0(N)-equivalent to x and write

Gx = Gj. Then f −Gx is bounded towards x.

Moreover, following the arguments sketched above, the mock modular form and the Eichler integral

of its shadow leads to a pair of closely related strong quantum modular forms.

Lemma 2.6. [CCFGH18] With the notation of Theorem 2.5, let g be the shadow of f , the asymptotic

expansions of the Eichler integral g̃ and the mock modular fomr f −Gx near x take the form

(f −Gx)(−x+ it) ∼
∑
n≥0

αx(n)(−t)n and g̃(x+ it) ∼
∑
n≥0

αx(n)tn. (2.19)

In particular, when the shadow g is a weight 3/2 unary theta function, the mock modular forms

are (up to an overall rational power of q) called mock theta functions in the terminology of [Zag10a],

and the Eichler integral are the false theta functions encountered in §2.1. The false-mock pair satisfies

lim
t→0+

(f −Gx)(x+ it) = lim
t→0+

g̃(−x+ it), (2.20)

reminiscent of the relation (1.6) between ZCS(M3) and ZCS(−M3) when taking x = 1
k . Focusing

on the cusp x = 0, we can see that the false and mock forms have the “same” asymptotic series,
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approaching from the upper- and lower-half plane, in the sense that the asymptotic expansions in the

limit t→ 0+ satisfy

(f −G0)(it) ∼
∑
n≥0

α0(n)(−t)n and g̃(it) ∼
∑
n≥0

α0(n)tn. (2.21)

On the three-manifold side, the cusp x = 0 is relevant for the perturbative invariants (the so-called

Ohtsuki series), capturing the expansion around the semi-classical k →∞ limit.

To end this subsection, we provide an explicit example of such a false-mock pair.

Example. Consider the order seven mock theta function F0(q) by Ramanujan [Ram00]. It is, up to

an overall power of q−
1

168 , a mock modular form of weight 1/2

f(τ) = q−
1

168 F0(q) = q−
1

168

(
1 + q + q3 + q4 + q5 + 2q7 +O(q8)

)
, (2.22)

whose shadow is given by the unary theta function

g(τ) =
(
θ1

42,1 − θ1
42,13 − θ1

42,29 + θ1
42,41

)
(τ). (2.23)

Compared to (2.9), we see that the Eichler integral is (up to a factor q
83
168 ) precisely the quantum

invariant of the Brieskorn sphere Σ(2, 3, 7):

Ẑ0(Σ(2, 3, 7); τ) = q
83
168 g̃(τ). (2.24)

2.3 A Mock Conjecture

In [CCFGH18], the following relation between mock modular forms and three-manifold quantum

invariants is proposed3.

Conjecture 2.7. Let M3 be a three-manifold whose quantum invariants take the form

Ẑa(M3; τ) = qc (g̃(τ) + p(τ)) (2.25)

where c ∈ Q, g̃(τ) is the Eichler integral of a theta function g(τ) of weight w = 3
2 and p(τ) is a

polynomial in q, then

Ẑa(−M3; τ) = q−c (f(τ) + p(−τ)) , (2.26)

where f(τ) is a weight 1/2 mock modular form whose shadow is given by g(τ).

The relevance of the above conjecture can be seen in Proposition 2.2, which guarantees the

existence of M3 satisfying the condition of the conjecture. More generally, we also expect mixed

weight and higher-depth mock modular forms to play a role in three-manifolds quantum invariants.

See [CCFGH18] and [CCFFGH]. In what follows we briefly describe the three general motivations for

3Note that when −M3 is not a weakly negative plumbed manifold, the mathematical definition 1.1 does not apply and
this conjecture can be seen as rather a definition. However, recall that a physical definition of Ẑa(M3) does exist for all
closed three-manifolds [GPPV17]. As a result, independent computations can in principle be carried out for −M3, as we
will demonstrate in §3.1 for certain classes of −M3. With this in mind we regard (2.26) as a conjecture.

11



the above conjecture, first discussed in [CCFGH18]. In §3 we will present explicit calculations which

render results predicted by Conjecture 2.7, and hence constitute further evidence for it.

• As mentioned in the previous subsection, the asymptotic values (2.20) and expansions (2.21)

of a false-mock pair are analogous to the relation (1.6) among the WRT invariants of a pair of

three-manifolds related by a flip in orientation.

• Some false theta functions have known expressions as q-hypergeometric series, which converge

not only inside but also outside the unit circle (when considered as a function of q). In some

cases the expression on the other side is given by a mock theta function. See §7.4 of [CCFGH18]

for details.

• When a weight 1/2 mock modular form can be expressed as a so-called Rademacher sum, one

can prove in general that the same Rademacher sum, now performed in the lower rather than

the upper half-plane, yields precisely the corresponding Eichler integral. In other words, the

Rademacher sum yields a function defined on both H and H−, where they coincide with the

mock resp. false theta function in question.

We refer to §7.4 of [CCFGH18] for a detailed discussion of the third point above. To illustrate the

second point, let us consider an example that is again relevant for the Brieskorn sphere M3 = Σ(2, 3, 7).

Example. Let us define a function ψ : H ∪H− in terms of the q-hypergeometric series:

ψ(τ) :=
∑
n≥0

qn
2

(qn+1; q)n
. (2.27)

Note that the q-hypergeometric series converges both for |q| < 1 and |q| > 1. It can be shown

that [Hik05b]

ψ(τ) =

q
− 1

168 g̃(τ) , τ ∈ H

F0(q−1) , τ ∈ H−
. (2.28)

See also [BFR12] for a more general discussion. As a result, since Ẑ0(Σ(2, 3, 7), τ) = q
1
2ψ(τ) for τ ∈ H,

we can try to extend the definition of LHS to H− using the RHS. It is hence natural to guess that (cf.

(1.7))

Ẑ0(−Σ(2, 3, 7), τ) “ = ” Ẑ0(Σ(2, 3, 7),−τ)“ = ”q−
1
2F0(q). (2.29)

We now end this section with a discussion on certain important open questions. First, note

that Conjecture 2.7 does not specify, given a shadow, which mock modular form f should be the

correct quantum invariant for the orientation-reversed manifold M3. Recall that two mock modular

forms differing by a (weakly holomorphic) modular form have the same shadow. This question is of

crucial importance since, as proposed in [GPPV17], the Fourier coefficients of the quantum invariants

Ẑa are (up to a possible factor of 2) integers which have the physical interpretation of counting

supersymmetric quantum states in the underlying quantum physical theory. This said, we do expect

the leading term of Ẑa in the τ → i∞ expansion to obey the naive q ↔ q−1 relation and this puts

meaningful constraints on the mock modular forms. Second, as we have seen in §2.2, mock and false

theta functions relate to the WRT invariants in a slightly different way. While the radial limit of

false theta functions are well-defined, for many cusps x one has to subtract the singular terms (by

12



subtracting a modular form Gx which cuts out the singularity for instance) of the mock form in order

to have a well-defined limit when approaching x from within the upper-half plane (cf. Lemma 2.6).

The asymmetry might not be so surprising from the physical point; the M5-brane theory is known

to be a chiral theory. It would be extremely interesting to understand the physical or topological

interpretation of the singular terms when taking radial limit of mock theta functions.

3 Explicit Calculations

In this section we summarise recent developments which make it possible to define and to compute

the quantum invariants Ẑa(−M3) for certain three-manifolds −M3 that are relevant for the mock

conjecture discussed in §2.3. We illustrate these methods with explicit computations for the Brieskorn

sphere M3 = Σ(2, 3, 7).

3.1 Quantum Invariants via Knots

In this subsection, we review a (conjectural) way, introduced in [GM19], to compute the quantum

invariants Ẑa for some of the three-manifolds that are relevant for the mock conjecture 2.7, by con-

structing them via Dehn surgeries of knot complements.

Consider a knot K. Let Y (K) be the knot complement of K in an integral homology sphere Ŷ .

A closed manifold Yp/r(K) can be obtained by Y (K) via Dehn surgery with coefficient p/r ∈ Q∗.

Roughly speaking, p/r specifies the diffeomorphism of ∂Y (K), dictating the way a solid torus is glued

along ∂Y (K) to obtain Yp/r(K).

Now consider the special case when Ŷ = S3. Given this choice, one associates to a knot K a two

variable series

FK(x, q) ∈ 2−cq∆Z[x1/2,, x−1/2][q−1, q]] (3.1)

where c ∈ Z+ and ∆ ∈ Q. For instance, for K a positive torus knot, an explicit expression for FK(x, q)

has been given in [GM19]. Define a “Laplace transform” L(a)
p/r, given by (see also [GMP16])

L(a)
p/r : xuqv →

 q−u
2r/p · qv if ru− a ∈ pZ ,

0 otherwise .
(3.2)

It has been shown for positive torus knots K (Theorem 1.2 of [GM19]) and conjectured for general

knots (Conjecture 1.7 of [GM19]) that, for values of p/r such that the right hand side is well defined

and for some d ∈ Q and ε ∈ {±1}, one has

Ẑa(τ, S3
p/r(K)) = εqd · L(a)

p/r[(x
1
2r − x− 1

2r )FK(x, q)] (3.3)

where we canonically identify the Spinc-structure of S3
p/r(K) with

a ∈ Z +
r + 1

2
mod pZ. (3.4)

Now it remains to compute FK for general knots. It is convenient to define a rescaled version of
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FK(q, x):

fK(x, q) :=
FK(x, q)

x
1
2 − x− 1

2

. (3.5)

Based on physical expectations, a relation between the Borel resummation of the colored Jones poly-

nomial Jn(e~) and fK(x, q), where q = e~ and x = en~, is conjectured in (Conjecture 1.5 of) [GM19].

This, together with the AJ conjecture for the Jones polynomials [Gar04], in turn leads to the following

conjecture

Conjecture 3.1. [GM19] For any knot K ⊂ S3 the quantum polynomial Â of K annihilates the

series fK(x, q)

ÂfK(x, q) = 0 (3.6)

and

lim
q→1

fK(x, q) = s.e.
1

∆K(x)
(3.7)

where the symmetric expansion s.e. denotes the average of the expansions of the given rational function

as x→ 0 (as a Laurent power series in x) and as x→∞ (as a Laurent power series in x−1).

Note that (3.6) sets up a recursion relation for the coefficients fm(q) in fK(q, x) =
∑
m
fm(q)xm,

while the relation (3.7) to the Alexander polynomial ∆K(x) provides a boundary condition for the

recursion equation. This is often sufficient to determine FK to any desired order.

Example. For the figure-eight knot K = 414141, the above-mentioned procedure leads to the leading order

expansion [GM19]

F414141
(x, q) =

1

2

(
Ξ(x, q)− Ξ(x−1, q)

)
(3.8)

where

Ξ(x, q) = x1/2 + 2x3/2 + (q−1 + 3 + q)x5/2 + (2q−2 + 2q−1 + 5 + 2q1 + 2q2) + . . . . (3.9)

The orientation-flipped Brieskorn sphere −Σ(2, 3, 7) can be constructed through surgery on the

complement in S3 of the figure-eight knot 414141, namely −Σ(2, 3, 7) = S3
−1(414141). Exploiting the conjecture

(3.3) and plugging in (3.8)-(3.9), we obtain the result:

Ẑ0(−Σ(2, 3, 7)) = −q− 1
2 (1 + q + q3 + q4 + q5 + 2q7 + q8 + 2q9 + q10 + 2q11 + . . .). (3.10)

Note that the above leading terms in the q-expansion coincide (up to a sign) with the guess (2.29)

based on quantum modular properties and on q-hypergeometric identities. However, the procedure

outlined in this subsection does not immediately lead to a way to prove the modularity of (3.10). We

will see yet another way to compute Ẑ0(−Σ(2, 3, 7)) in the following subsection.

3.2 Relation to indefinite theta functions

As mentioned earlier, one immediate problem with the proposal Ẑa(−M3; τ) “=” Ẑa(M3;−τ) (1.7)

is the fact that in Definition 1.1 one has τ ↔ −τ ⇔ M ↔ −M , and after this flipping of signature

one no longer obtains a theta function Θ−Ma (1.3) (and an integral (1.1)) that makes sense on the

upper-half plane.
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While it seems to be the end of the road as far as Definition 1.1 is concerned, a natural possibility is

to replace the naive theta series with a regularised theta function. Indeed, building on previous work

by Vignéras [Vig77], Zwegers [Zwe02] has devised a way to define a regularisation for theta functions of

signature (1, n) which retains its holomorphicity, and moreover established the relation to mock theta

functions. The regularisation of general indefinite theta functions and the relation to higher-depth

mixed mock modular forms has recently been developed in [ABMP16], [Naz16], [Wes16], [FK17], [ZZ].

In [CS], we apply these results to define and to compute quantum invariants for plumbed three-

manifolds that are not weakly negative.

For the sake of concreteness and in order to establish a direct relation to Ramanujan’s mock theta

function, we focus on the class of three-manifolds discussed in Proposition 2.2. In the notation of

Proposition 2.2 and of Figure 2, after performing the integration over wvi for i ∈ {1, 2, 3} and write

the wv0 = w, we obtain

Ẑ0(M3; τ) = (−1)πq
3σ−

∑
v m(v)

4 vp

∮
|w|=1

dw

2πiw(w − w−1)
h(τ, z) (3.11)

where

h(τ, z) =

3∑
j=0

∑
ε∈{±1}

ε
∑

k∈1+2Z
q
m
4 k

2−
εbj
2 k+cjwk. (3.12)

Note that naively taking τ 7→ −τ in h(τ, z) gives

q
1
24

η(τ)

3∑
j=0

∑
ε∈{±1}

ε
∑

k∈1+2Z

∑
n∈Z

(−1)nq−
m
4 k

2+
εbj
2 k−cj+ 3n2−n

2 wk

=
q−d e

πi
6

η(τ)

3∑
j=0

∑
ε∈{±1}

εw
εbj
m

∑
v∈Λj,ε

q
(v,v)

2 e2πi(z 1
2 ).v

(3.13)

where we have inserted 1 = η(τ)
η(τ) =

q
1
24

∑
n∈Z(−1)nq

3n2−n
2

η(τ) , and the bilinear form in the second line is

given by

(v′,v) := vTKv, K :=

−m2 0

0 3

 , (3.14)

and the set of summation is given by

Λj,ε =

{
v = ( v1v2 )|v1 ∈ 2Z + 1− εbj

m
, v2 ∈ Z− 1

6

}
. (3.15)

In other words, the key ingredient h(τ, z) of the integrand becomes, after taking τ 7→ −τ and

multiplying by η(τ), a sum of theta functions of signature (1, 1) that we would like to make sense

of. As a result, we propose the following definition for three-manifolds M3 that satisfy the conditions

specified in Proposition 2.2 (i.e., when M3 is a weakly negative plumbed manifold which can be

obtained from a three-star plumbing graph with four nodes and unimodular adjacency matrix):

Ẑ0(−M3; τ) :=
(−1)πq−

3σ−
∑
v m(v)

4

η(τ)
vp

∮
|w|=1

dw

2πiw(w − w−1)
ϑMa (τ, z) (3.16)
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where

ϑMa (τ, z) := q−d e
πi
6

3∑
j=0

∑
ε∈{±1}

εw
εbj
m

∑
v∈Λj,ε

ρ(v) q
(v,v)

2 e2πi(z 1
2 ).v

(3.17)

for an appropriately chosen “regularisation factor” ρ(v) which will be discussed in details in [CS] and

will be described explicitly in the example below.

Example. We will again take the example of M3 = Σ(2, 3, 7), with the plumbing graph and the

adjacency matrix given in Figure 3. The relevant parameters m, bj , and cj are given in (2.8). Adapting

[Zwe02] to preserve the symmetry4 ϑMa (τ, z) = −ϑMa (τ,−z), we choose the regularising factor

ρ(v) = ρc,c
′
(v) :=

1

2
(sgn(v̄, c)− sgn(v̄, c′)) (3.18)

where v̄ = ( |v1|v2 ) for v = ( v1v2 ) and the two timelike vectors are chosen to be

c = (1, 0), c′ = (8, 21). (3.19)

See [CS] for a discussion on the choices of the timelike vectors c and c′. Putting things together, we

have the following result (see [CS] for a proof).

Proposition 3.2. When the regularisation factor ρ(v) is given as in (3.18), (3.19), the definition

(3.16) leads to

q
1
2 Ẑ0(−Σ(2, 3, 7); τ) = F0(q)

= 1 + q + q3 + q4 + q5 + 2q7 +O(q8)
(3.20)

where F0(q) is the order 7 mock theta function of Ramanujan.

Note that this result, given by the order 7 mock theta function, was precisely what was expected

in [CCFGH18] (2.29). Moreover, at least the leading orders of q-expansion also, up to a sign, coincides

with the result (3.10) which was obtained via a logically totally independent computation. These

results constitute supporting evidence for Conjecture 2.7.
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