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Mutual benefits: Combining reinforcement learning with sequential 
sampling models 
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University of Amsterdam, Department of Psychology, Amsterdam, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
Sequential sampling models 
Reinforcement learning 
Instrumental learning 
Decision-making 

A B S T R A C T   

Reinforcement learning models of error-driven learning and sequential-sampling models of decision making have 
provided significant insight into the neural basis of a variety of cognitive processes. Until recently, model-based 
cognitive neuroscience research using both frameworks has evolved separately and independently. Recent efforts 
have illustrated the complementary nature of both modelling traditions and showed how they can be integrated 
into a unified theoretical framework, explaining trial-by-trial dependencies in choice behavior as well as 
response time distributions. Here, we review a theoretical background of integrating the two classes of models, 
and review recent empirical efforts towards this goal. We furthermore argue that the integration of both 
modelling traditions provides mutual benefits for both fields, and highlight promises of this approach for 
cognitive modelling and model-based cognitive neuroscience.   

1. Introduction 

The field of model-based cognitive neuroscience uses cognitive 
models to bridge the gap between neuroimaging data and behavior 
(Forstmann et al., 2011; Forstmann and Wagenmakers, 2015; Gl€ascher 
and O’Doherty, 2010; O’Doherty et al., 2007; Turner et al., 2019b, 
2017a). Cognitive models constitute a cognitive theory and a corre
sponding psychometric model simultaneously, by decomposing empir
ically observed behavior into the latent cognitive processes that are 
thought to have caused the behavior. By placing such models “in the 
middle” between behavioral data and neural data, they provide a unified 
framework through which to interpret behavioral and neural data 
(Fig. 1). 

This approach has provided significant progress in our understand
ing of the neural underpinnings of cognition, especially using two 
distinct classes of cognitive models: Reinforcement learning (RL) models 
on the one hand, and sequential sampling models (SSMs) of decision 
making on the other. Hallmark studies in RL (for reviews, Gershman and 
Daw, 2017; O’Doherty et al., 2017) used reinforcement learning models 
to identify brain regions that encode (experienced and predicted) value 
(e.g., Daw et al., 2006; O’Doherty et al., 2003; see also O’Doherty, 

2014), neural correlates of reward prediction errors (e.g., O’Doherty 
et al., 2003; Schultz et al., 1997), and the neural underpinnings of 
different learning systems (e.g., Daw et al., 2011; Gl€ascher et al., 2010). 
Model-based cognitive neuroscience using SSMs (for reviews, For
stmann et al., 2016; Mulder et al., 2014) shed light on the neural 
mechanisms underlying response caution (Forstmann et al., 2010, 2008; 
Van Maanen et al., 2011), choice biases and perceptual biases (Leong 
et al., 2019; Mulder et al., 2012), attention effects (Nunez et al., 2017, 
2015), and provided insight into the neural basis of evidence accumu
lation (Gold and Shadlen, 2001; Purcell et al., 2010; Shadlen and 
Newsome, 2001). 

Recent papers (Fontanesi et al., 2019a, 2019b; Frank et al., 2015; 
Millner et al., 2018; Pedersen et al., 2017; Sewell et al., 2019) proposed 
that the two modelling classes can be unified into a single theoretical 
framework. On first sight, such a merger seems at odds with the fact that 
these modelling frameworks appear different in both the behavior they 
seek to explain, as well as the mechanisms proposed to do so. For RL 
models (Sutton and Barto, 2018), the target behavior that is to be 
explained, is changes in choice behavior due to error-driven learning in 
value-based decision making. Whereas implementations differ between 
RL models, the core of the explanation of this change in behavior is that 
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people maintain representations of expected value (or utility), inform 
their choices based on these expected values, and subsequently update 
them based on the difference between the expected value and actual 
outcome – which is referred to as the reward prediction error. 

RL models using error-driven learning account for changes in the 
relative choice probabilities over the course of learning, but do not 
typically account for concurrent (changes in) response latencies, a 
dimension of the data that is often entirely ignored in the employed 
cognitive models. In contrast, SSMs (Forstmann et al., 2016; Ratcliff 
et al., 2016) provide a comprehensive mechanistic account of the de
cision stage, simultaneously explaining how choice accuracy and la
tencies arise from a common set of latent cognitive processes (e.g., 
information processing speed, response caution, motor response time). 
Like in the RL domain, specific implementations differ between SSMs, 
but they share the general idea that people accumulate evidence over 
time for each choice option, until they reach a threshold level of evi
dence, at which point they commit to a decision. Although practice ef
fects have been of considerable interest in perceptual decision-making 
(Dutilh et al., 2009; Evans et al., 2018; Liu and Watanabe, 2012; Petrov 
et al., 2011) in most applications, SSMs do not provide a mechanistic 
account of how the processes driving decision making (e.g., processing 
speed, response caution) might be changed or adjusted as learning 
progresses (e.g., via an explicit learning mechanism). 

In short, the RL framework explains learning over time, but provides 
no mechanistic account of decision making and ignores response time 
distributions. The SSM framework explains how decisions arise from an 
evidence accumulation process and provide detailed fits to response 
time distributions, but often ignores learning over time. From this 
perspective, the RL and SSM frameworks are complementary. In what 
follows, we first review a theoretical grounding for the integration of the 
two classes of models, followed by a review of the empirical efforts to
wards combining RL models with SSMs. Afterwards, we argue that 
integration can work to the benefit of both modelling traditions: Ac
counting for response time distributions provides a major benefit for RL 
models, and the inclusion of learning a major benefit for SSMs. Finally, 
we highlight the exciting promises for cognitive science as well as 
model-based cognitive neuroscience. 

2. Linking RL and SSMs: Theory 

To illustrate the general approach, we assume benchmark models for 
both the (so-called model-free2) RL and SSM frameworks, and assume 
the learning task to which the models are applied consists of two stimuli. 
As briefly noted above, the core assumption of the RL models is that 
agents maintain an internal representation of the expected value (or 
utility) associated with each stimulus and/or action, translate these 
expected values into choices, and update their expected values based on 
the mismatch between the expected values and actual outcomes. To 
formalize these notions, RL models consist of at least two components: 
An update rule and a choice rule (or policy). Update rules define pre
diction errors and specify how subjective reward expectations change as 
a function of these prediction errors. They are based on the temporal 
difference (Rescorla and Wagner, 1972) between the actual and ex
pected outcomes, such as the so-called state-action-reward-state-action 
(SARSA) rule: 

Qi;tþ1 ¼Qi;t þ α
�
rt � Qi;t

�
1  

where Q is the expected value for choice option i on trial t, and r is the 
reward. The difference between the reward and the Q-value is defined as 
the prediction error. Finally, α is a free parameter called the learning rate. 
Higher learning rates indicate that Q-values fluctuate heavily, and 
consequently, each choice is mostly influenced by the rewards received 
on a small subset of previous trials. Conversely, lower learning rates 
indicate that Q-values evolve slowly, and choices are based on a larger 
subset of previous trials. For simplicity (but without loss of generality), 
we ignore the many extensions to this basic rule, including multiple 
learning rates for negative and positive prediction errors (Christakou 
et al., 2013; Daw et al., 2002; Frank et al., 2009; Gershman, 2015; 
Haughey et al., 2007; Niv et al., 2012), eligibility traces to allow for 

Fig. 1. Illustration of the “model in the middle” 
approach. Traditional experimental psychology 
studies cognitive processes using behavioral data; 
traditional cognitive neuroscience studies cognitive 
processes using neural data combined with con
straints from behavioral data. Mathematical psy
chology studies cognitive processes by formally 
modelling behavioral data, which are used to inform 
analyses of neural data in the “model in the middle” 
approach. Adapted from Forstmann et al. (2011) with 
permission.   

2 Note that the terms model-free and model-based reinforcement learning 
refer to the absence or presence of an internal model of the outside world in an 
agent’s mind. Despite the similarity in nomenclature, these concepts are distinct 
from model-free and model-based cognitive neuroscience. 
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updating of previously visited states (Bogacz et al., 2007), choice 
perseveration to model the tendency to repeat previous choices (Chris
takou et al., 2013; Worthy et al., 2013; Yechiam and Ert, 2007), and 
mixture models of model-free and model-based learning (Daw et al., 
2011; Daw and Dayan, 2014; Dezfouli and Balleine, 2013; Doll et al., 
2015; Kool et al., 2018). 

The second component of RL models is the choice rule, which is 
classically called the soft-max function. Soft-max specifies the proba
bility of choosing choice option i (out of N options) as: 

pðiÞ¼
eβQi

PN
j eβQj

2  

where β is a free parameter known as the inverse temperature, and Qi is 
the expected value for choice option i. With two choice alternatives, say 
A and B, this can be rewritten as: 

pðBÞ ¼
eβQB

eβQA þ eβQB
¼

1
1þ eβðQA � QBÞ

3  

highlighting that, in a two choice-alternative task, the difference in Q- 
values for both choice options drives choice probabilities. 

Crucially, soft-max only makes predictions for choice probabilities, 
and ignores a second dimension of behavioral data: response latencies. 
This is not to say that response times are not acknowledged as a valuable 
source of information in value-based decision making (Krajbich et al., 
2015). In fact, SSMs, which exploit information in response time, have 
been applied very successfully in the domain of value-based decision-
making as well (Busemeyer et al., 2019; Krajbich et al., 2010; Krajbich 
and Rangel, 2011; Milosavljevic et al., 2010; Polanía et al., 2014; 
Rodriguez et al., 2015, 2014; Turner et al., 2018b). Note, however, that 
contrary to the literature reviewed below, these papers did not explicitly 
model learning dynamics. 

The fundamental assumption of sequential sampling models is that, 
in order to decide, participants accumulate noisy evidence until a 
threshold level of evidence is reached, and a decision is made. At that 
point, the participant initiates a motor response. Fig. 2 provides a 
schematic overview of the decision process as proposed by the most 
popular SSM, the diffusion decision model (DDM; Ratcliff, 1978; Ratcliff 
et al., 2016). The DDM specifically assumes that the difference in evi
dence for both choice options is accumulated (i.e., the net ‘attractive
ness’ of both choice options), according to: 

dx
dt
¼ vdt þ sdW 4  

where x is the amount of accumulated evidence, t is time, v is the mean 
speed of evidence accumulation (the drift rate), and dW is Gaussian noise 
with standard deviation s (the diffusion coefficient). In words, on each 
time step after stimulus onset, a sample is drawn from a Gaussian dis
tribution with mean v and standard deviation s, which are accumulated 
until either threshold -A or A is reached. Reaching a threshold amounts 
to committing to a decision, at which point the motor processes that 
allow for an overt response (typically a button press) are initiated. Ev
idence accumulation is often thought to start midway between the two 
response thresholds, but the start point parameter z can be shifted to
wards either choice boundary to incorporate a bias in the prior beliefs 
about the two choice options. The resulting response time is the sum of 
the time of evidence accumulation (the decision time), plus an intercept 
to account for the time it takes to perform initial perceptual processes 
and motor execution, which are collectively known as the non-decision 
time, t0. For simplicity, extensions to this model (such as between-trial 
variability in drift rate, start point, and non-decision time) are ignored 
here. 

2.1. A combined RL-DDM 

The DDM explains choice and response latencies in terms of an 
accumulation-to-bound process parametrized by v, A, z and t0, whereas 
traditional reinforcement learning models use soft-max as a choice 
function only. A logical departure point to merge the RL models and 
SSMs is therefore to substitute soft-max with the DDM, or vice versa, 
augment the DDM with an update rule such as SARSA. A requirement to 
do this is a linking function: A mapping between aspects of the learning 
model (parameters or internal dynamics such as expected values or 
prediction errors) and DDM parameters. One intuitive linking function 
follows from a comparison between soft-max and the DDM choice 
function, which is given by (parametrisation from Bogacz et al., 2006): 

perror ¼
1

1þ e2vA=s2 �
1 � e� 2zv=s2

e2vA=s2
� e� 2vA=s2 5 

Assuming an unbiased diffusion process (i.e., z ¼ 0), the probability 
of an error simplifies to: 

perror ¼
1

1þ e2vA=s2 6 

If we further assume that the drift rate equals the difference between 
the evidence for both choice options (v ¼QA - QB), we obtain 

perror ¼
1

1þ eðQA � QBÞ*2A=s2 7 

which is formally equivalent to a soft-max function with the inverse 
temperature parameter equal to the ratio 2A/s2 Conceptually, this is the 
amount of evidence required to commit to a decision, relative to the 
amount of noise in evidence accumulation. In other words, the DDM 
with the drift rate parameter defined as v ¼QA - QB provides an identical 
choice function as soft-max, but adds a latency function, of which the 
exact shape depends on the ratio of the additional parameters A and s. In 
principle, the DDM is therefore able to fit the exact same choice patterns 
as soft-max (which is important because soft-max has been shown to fit 
well to empirical data) while adding a prediction of entire response time 
distributions. 

Note that this equivalence has been described before (Tuerlinckx and 
De Boeck, 2005) and a linear mapping between value differences and 
drift rate has been used to fit the DDM to empirical value-based decision 
data (Fontanesi et al., 2019a, 2019b; Millner et al., 2018; Milosavljevic 
et al., 2010; Pedersen et al., 2017). Note further that the ability to mimic 
soft-max is not unique to the DDM, as other SSMs are able to either 
approximate soft-max or can even be formally equivalent as well 
(notably, Tuerlinckx and De Boeck, 2005, describe a second equivalence 
using a racing accumulator model). 

We highlight the mathematical relations between soft-max and SSMs 
here for three reasons. Firstly, they offer a natural departure point to link 
SSM parameters with variables from RL models, while acknowledging 
that it is an empirical question whether this linking function provides 
the best account of behavioral data. Secondly, these relations provide an 
interesting cognitive interpretation of the soft-max inverse temperature 
parameter in terms of response caution (i.e., thresholds), which we 
discuss further below. Thirdly, it shows that SSMs such as the DDM form 
a generalization of soft-max into the time domain. Speculatively, the 
SSM may approximate the actual cognitive processes underlying value- 
based decision making in learning tasks, and soft-max captures the 
choice function because it is an instantiation (and simplification) of the 
SSM choice rule. 

The mathematical relations between SSMs and soft-max are only 
theoretical in nature, and empirical testing is required to assess whether 
SSMs can in fact describe choice behavior in learning tasks. As 
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preliminary evidence, it is possible to derive some simple predictions 
about empirical data in learning tasks, by reasoning about the cognitive 
processes proposed by SSMs such as the DDM. More specifically, if we 
assume that the DDM is the choice function underlying decisions in an 
instrumental learning task, and the choice data is modelled using soft- 
max, then we can derive several predictions about empirical response 
times in this learning task. Firstly, response times (as well as accuracy) 
should be a function of both the difference in Q-values, and the inverse 
temperature parameter. The former is because drift rate equals the dif
ference between the two Q-values. When choice options are similar (and 
the Q-value difference is small), the drift rate is low, which increases the 
average amount of time it takes to reach a response boundary. A nega
tive relation between Q-value differences and response times has indeed 
been described in the literature (e.g., Frank et al., 2009; Krajbich et al., 
2015; and applications of SSMs to value-based decisions). Furthermore, 
a positive relation between choice times and the inverse temperature 
parameter is implied because higher inverse temperatures are associated 
with higher threshold settings, which implies that participants accu
mulate more evidence before they commit to a decision. We are not 
aware of any literature specifically testing this (while simultaneously 
accounting for the influence of Q-value differences), but this likely holds 
because of the reported fits of combined RL-DDMs, which are reviewed 
below. Finally, the assumption that the evidence accumulation start 
point is unbiased towards either choice alternative entails that the 
response time distributions for both choice options are always sym
metric (‘correct’ and ‘wrong’ answers are equally fast). There is at least 
some evidence to support this idea (Frank et al., 2015; Pedersen et al., 
2017; but see Sewell et al., 2019). However, asymmetric response time 
distributions could be accounted for with a start point shift and/or the 
inclusion of between-trial variabilities in drift rate and start point (e.g., 
Ratcliff and Tuerlinckx, 2002). While no longer formally equivalent, the 
DDM choice function would still approximate soft-max under such a 
parametrisation. 

3. Linking RL and SSMs: Empirical work 

A rigorous test for the relation between learning dynamics and 
response times is to fit a combined RL-SSM3 to empirical data (Box 1 
provides a general overview of how to fit a joint RL-SSM), and to assess 
how well the model is able to capture all aspects of the data: The shape of 
response time distributions for all response types, and changes in 

response time and accuracy over the course of the experiment. Such tests 
have been provided by a series of recent studies (Fontanesi et al., 2019a, 
2019b; Frank et al., 2015; Luzardo et al., 2017; Millner et al., 2018; 
Pedersen et al., 2017; Sewell et al., 2019), and additional studies illus
trate that the approach also helps tackling problems of parameter re
covery (Shahar et al., 2019; see also Ballard and McClure, 2019). Below, 
we review studies that formally link dynamics from a learning model 
with a sequential sampling model, using data from value-based deci
sion-making tasks (e.g., instrumental learning tasks) that would tradi
tionally have been analyzed with soft-max. However, comparable 
approaches have also been used in the perceptual decision-making 
domain (Yu and Cohen, 2009; Zhang et al., 2014), and many of the 
benefits advocated in the current paper apply to that domain as well. 

The first study explicitly linking trial-to-trial evolution of expected 
values with drift rate in a DDM was provided by Frank and colleagues 
(2015), although they did not use a temporal difference learning rule but 
a Bayesian ideal observer model instead. In this simultaneous EEG-fMRI 
study, participants performed a probabilistic category learning task 
(Frank et al., 2004, Fig. 3A). By jointly modelling learning and 
decision-making processes, the authors showed that both the drift rate 
and threshold were modulated by expected value. Furthermore, in a 
model-based cognitive neuroscience analysis, they showed that decision 
thresholds were modulated by subthalamic nucleus (a small nucleus 
deep in the brain) activity, as well as by the dorsolateral prefrontal 
cortex but only under decision conflict. 

Pedersen and colleagues (2017) further developed the cognitive 
modelling of combining learning and the DDM, and used the SARSA 
learning rule instead of a Bayesian ideal observer model. They showed 
that this combined RL-DDM was able to account for both response time 
distributions and learning over time in data from a probabilistic selec
tion task. A model comparison between various RL-DDM specifications 
showed that a linear mapping between the Q-value difference and drift 
rate, combined with a time-varying threshold and different learning 
rates for updates after positive and negative prediction errors provided 
the best fit to their data. They then applied this model to data of patients 
diagnosed with attention deficit/hyperactivity disorder to compare their 
behavior on and off medication, and show that various RL-DDM pa
rameters, including the boundary separation and learning rates, were 
affected by ADHD medication. Interestingly, the authors demonstrated 
that the model was able to fit most of the data well, but showed misfits in 
two aspects: It overestimated accuracy for difficult decisions; and 
overestimated the differences in accuracy between choice difficulty 
levels at the end of the experiment, while underestimating these dif
ferences in the beginning of the experiment (see Pedersen et al., 2017; 
their Fig. 3). 

Fig. 2. A) Evolution of Q-values over time due to learning (upper panel) and the corresponding choice probabilities (lower panel) on a single-trial basis. In traditional 
RL modelling, the choice probabilities are determined by the soft-max function. With RL-SSMs, these choice probabilities are a function of the SSM (e.g., the DDM). B) 
Illustration of decision processes as formalized in the diffusion decision model (DDM). To reach a decision, participants accumulate noisy evidence for both choice 
options (A and B) until one of the two thresholds is reached and a decision is made. The choice corresponds to the threshold that is reached, and the response time is 
the time it took to reach this boundary, plus the time it takes for perceptual encoding and motor response. 

3 Throughout the manuscript, we use RL-SSM when the sentence refers to the 
entire class of SSMs, and RL-DDM when it refers to an RL-SSM using the DDM 
specifically. 
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A similar study by Fontanesi and colleagues (2019a) aimed to extend 
hallmark findings in value-based decision making (i.e., the effects of 
choice difficulty, value magnitude, and value difference) to the context 
of learning. Various RL, DDM, and integrated RL-DDMs were fit to the 
data, after which both qualitative and quantitative model comparisons 
showed that only the integrated RL-DDM was able to account for all 
aspects of the data (see Fig. 3B). In order to overcome the issue of 
overestimating choice accuracy for difficult choices reported by Peder
sen et al. (2017), a non-linear link function between expected values and 
drift rate was required. Furthermore, the effect of value magnitude was 
accounted for by allowing the threshold effect to vary as a function of 
the mean expected value (c.f. Frank et al., 2015; Ratcliff and Frank, 
2012), indicating that participants responded less cautiously when a 
larger gain could be earned. 

In another study, Fontanesi and colleagues (2019b) applied the RL- 
DDM framework to understand how context effects influence response 
times and accuracy in an instrumental learning task. They re-analyzed 
data from four experiments in which context was manipulated by 
altering the valence of feedback: Participants had to learn to maximize 
gains for some choice options (reward learning), and minimize losses for 
others (avoidance learning). Furthermore, participants received either 
feedback for the rewards associated with both choice options (c.f. 
Fig. 2A), or only the choice option that was actually chosen. Using the 
RELATIVE model (Palminteri et al., 2015) as a learning model, they 
showed that the valence of feedback consistently affected non-decision 
time: In trials in which participants had to make a decision in order to 
gain a reward, non-decision time was lower than in trials in which 
participants had to decide in order to avoid a loss. Furthermore, giving 
full feedback instead of partial feedback increased the drift rate and the 
threshold, and decreased the non-decision times of choices. Finally, in 
line with earlier findings (Frank et al., 2015), decision conflict (the 

inverse of difficulty) affected the threshold. These results are especially 
interesting since they show that the decision-making process is not only 
affected by the expected reward, but also by the state that the 
decision-maker is in. 

Sewell and colleagues (2019) took a related approach to modelling 
choice data from a probabilistic learning task, using an associative 
network (ALCOVE; Kruschke, 1992) instead of a classical reinforcement 
learning model to model learned changes in associative strength be
tween stimuli and outcomes. This model was able to account for changes 
in choice probabilities and response latencies due to learning, as well as 
the effect of choice difficulty. To do so, a non-linear linking function 
between expected values and drift rates was required. However, they 
note that the model showed minor misfits in two aspects of the data: It 
could not capture the observed asymmetry between response latencies 
associated with correct and incorrect responses (errors were consistently 
slower; see Fig. 3C), and the model predicted a higher skewness in the 
response time distributions than observed. 

An interesting application of an integrated RL-DDM was given by 
Millner and colleagues (2018), who used this framework to improve our 
understanding of how aversive Pavlovian biases shape choice behavior. 
Such biases are thought to be the result of a hard-wired response to avoid 
aversive stimuli, and have been previously associated with response 
inhibition. Using their Go-Nogo paradigm combined with RL-DDM 
modelling, the authors showed not only that Pavlovian biases can also 
promote active behavior (rather than only response inhibition), but that 
the bias was best understood as a response bias (or start point bias) in 
decision-making. That is, when faced with an aversive stimulus, a 
Pavlovian bias reduces the amount of evidence participants require to 
decide towards the response that minimizes the influence of aversive 
stimuli, regardless of whether this response is active or passive. 

It is important to highlight that in the studies mentioned above, the 

Box 1 
Fitting an RL-SSM 

Model fitting entails finding a set of model parameters that maximize the likelihood of the data under the model. There are many ways to 
optimize a set of parameters, including frequentist methods such as SIMPLEX (Nelder and Mead, 1965), differential evolution optimization 
(Price et al., 2006), and particle swarm optimization (Clerc, 2010), and Bayesian methods such as MCMC sampling (e.g., Ter Braak, 2006). 
Obtaining the likelihood of an individual subject’s data under an RL-SSM depends on the update rule, the linking function, and the SSM, but in a 
general form can be described in the following pseudo-code:  

1. Assume recursive update rule f (Q|α), sequential sampling model L (RT, choice|θ), and linking function g(Q, θ|ψ)  
2. Generate proposal joint set of parameters α, θ, ψ 
3. for 1 � n �N do  
4. for 1 � k � K do  
5. if n ¼ 1 then  
6. Initialize Qk ;n ¼Qk ;1 ¼ 0.5  
7. else 
8. Calculate Qk ;n with update rule f(Qk ;n� 1|α)  
9. end if 
10. end for 
11. Calculate θn with linking function g(Qn;θ|ψ)  
12 Calculate likelihood (L ðRTn ;choicen jθnÞ

13. end for 
14. Calculate 

PN
n¼1log L ðRTn ; choicen jθnÞ as a measure of model fit to entire data set  

Steps 2–14 are repeated using optimization algorithms until convergence. In the pseudo-code, α is a set of parameters of the update rule (e.g., 
the learning rate in Equation (1)), θ a set of parameters of the sequential sampling model (e.g., non-decision time, start point, and threshold of 
the DDM), and ψ a set of parameters of the linking function (e.g., a slope parameter under the assumption of a linear relation between drift rates 
and Q-value differences). The initial value of Q is set to 0.5, formalizing that the subject’s expected value of each choice option is unbiased at 0.5 
(with “reward” being þ1 and no reward þ0) at the start of the experiment. Alternatively, this initial value could be estimated as a free parameter 
as well. N is the number of trials, and K the number of choice options under consideration. 

The overall procedure is highly comparable to fitting an RL model with soft-max. The crucial difference lies in steps 11 and 12: A linking function 
is required, and the likelihood function is the sequential sampling model instead of soft-max. Compared to fitting a traditional SSM, steps 4–11 
are added, whereas traditional SSM fitting requires only a single set of proposal parameters θ for the entire data set.  
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results could not have been obtained without jointly modelling the 
learning and decision parts of the data. Furthermore, while all models 
appear to be able to capture fundamental aspects of the decision and 
learning processes, misfits remain, providing a challenge and opportu
nity for future model development. 

4. Benefits of integration 

The previous section reviewed the current work on combining 
reinforcement learning models with SSMs, providing several illustra
tions of how such integrated models can improve our understanding of 
learning and decision making simultaneously. Here, we generalize 
beyond individual use-cases, and argue that integration of the two 
modelling traditions is promising for both cognitive modelling and 
model-based cognitive neuroscience. 

4.1. Methodological benefits: Improved parameter recovery 

Before parameters can be interpreted or related to neural measures, 
it is crucial that the true data-generating parameter values can be 
recovered from the model when it is fit to data (Moran, 2016; Spektor 
and Kellen, 2018). Good parameter recovery involves reliably and 
accurately estimating the true parameter values that generated a set of 
observed or simulated data, and provides a minimally necessary con
dition that must be met before one can make inferences about latent 
cognitive processes from model parameters. Although it may seem 
trivial, good recovery is a known issue for both RL models (Spektor and 
Kellen, 2018; Wetzels et al., 2010) and SSMs (Boehm et al., 2018; Mileti�c 
et al., 2017; Ratcliff and Tuerlinckx, 2002; Van Ravenzwaaij and 
Oberauer, 2009). 

It is promising to see that current RL-SSM studies (Fontanesi et al., 
2019a; Pedersen et al., 2017) recognized the importance of good 
parameter recovery, and explicitly studied the recovery properties of the 
models employed in their studies. These RL-DDMs recovered remark
ably well given the numbers of trials included. Another recent study 
showed that combining RL models with the DDM significantly improves 
recovery compared to more common (relatively complex) RL mixture 
models (Shahar et al., 2019; see also Ballard and McClure, 2019). The 
reason behind these good recovery properties is that including response 
times increases the information content of the data, and the amount of 

constraint offered by the data. In fact, in modelling the two-stage deci
sion task (Daw et al., 2011) using a common (choice-only) RL mixture 
model of model-based and model-free learning, Shahar et al. (2019) 
reported that very high numbers of trials (>1000) were required to 
obtain good parameter recovery properties for the crucial mixture pro
portion parameter, against only 200 trials for a combined RL-DDM. In 
this light, modelling the data using a combined RL-SSM may even be 
considered necessary for such relatively complex RL models. Good re
covery with small numbers of trials is especially beneficial for 
model-based cognitive neuroscience, where collection of large numbers 
of trials is too time consuming and/or costly. 

It would be interesting to see whether including learning in model
ling also improves recovery of commonly-used SSM parameters. For 
example, parameters designed to model between-trial variabilities in the 
DDM (Boehm et al., 2018), urgency signals (Evans et al., 2019; Vos
kuilen et al., 2016), and evidence leakage and inhibition effects (Mileti�c 
et al., 2017) often show poor recovery due to trade-offs with other pa
rameters. The additional trial-by-trial constraints on evidence accumu
lation rates likely decreases covariances between parameters, which 
could aid parameter recovery. 

4.2. Benefits for reinforcement learning models 

4.2.1. Explaining response times 
From the RL perspective, a process-agnostic choice rule is replaced 

with a psychologically-principled process model that describes how 
decisions arise from value representations that change over time due to 
learning. The formalization of decision making as an accumulate-to- 
threshold process allows for the explanation of a whole new dimen
sion of the behavioral data in terms of explaining the shape of entire 
response time distributions. 

One may wonder why modelling response time latencies is important 
when choices (and changes thereof) are of primary interest to a 
researcher. The reason is that response latencies and choice behavior 
have long been known to trade-off (for early work, e.g., Wickelgren, 
1977), and this trade-off is under voluntary control of the participant 
(for reviews, Bogacz et al., 2010; Heitz, 2014). As a consequence, 
studying changes in choice behavior without considering the concurrent 
changes in response latencies could lead to biased conclusions. For 
example, an increase in accuracy over time could indicate that a 

Fig. 3. A) Typical instrumental learning task, in which a participant has to decide between two stimuli, each associated with a probabilistic reward. By trial and 
error, the participant needs to learn which stimuli lead to greatest reward. Reproduced from Fontanesi et al. (2019a, 2019b) with permission. B) Change in accuracy 
(top panel) and mean RT (bottom panel) over time. Dashed lines are data, shaded area corresponds to 95% Bayesian credible interval of the RL-DDM predictions, and 
colors indicate choice difficulty. The RL-DDM was able to capture the increase in accuracy and decrease in mean RT over time. Figure adapted from Fontanesi et al. 
(2019a, 2019b) with permission. C) Quantile probability plot of fit of entire response time distributions for five learning blocks in Sewell et al. (2019), only for 
choices where the probability of reward for both choices options were 0.8 and 0.2. In this plot (see Ratcliff and Smith, 2011 for a more detailed explanation of this 
type of graph), circles indicate the model predictions, and numbers correspond to data for five learning blocks. The x-axis of the numbers and circles indicates the 
proportion of choices (i.e., right side circles/numbers are correct answers, left side are incorrect answers), and the y-axis indicates the 10th, 30th, 50th, 70th, and 
90th percentile of the response times. The combined learning-DDM was able to capture the overall response time distributions, although some misfits are present (e. 
g., an underestimation of the incorrect response times in learning blocks 1, 3, and 5). Reproduced with permission from Springer: Psychonomic Bulletin & Review 
from Sewell et al. (2019). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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participant improves at a task (i.e., a practice effect), but this conclusion 
only holds if response times decrease (or remain the same) as learning 
progresses. Increases in response times would suggest that participants 
increase their response caution instead. Conversely, there may be no 
change in choice behavior over time (which may lead a researcher to 
believe that no learning took place), but a striking decrease in response 
times. This could indicate that the participant did learn and simulta
neously decreased response caution, leading to similar accuracy over the 
entire course of learning. Combined RL-SSMs prevent such inferential 
biases by considering both choices and response latencies. 

4.2.2. Interpreting the soft-max inverse temperature parameter 
RL-SSM can offer alternative interpretation of the soft-max inverse 

temperature parameter. This parameter is typically interpreted in terms 
of the exploitation/exploration trade-off (e.g., Daw et al., 2006), with 
higher values indicating that participants exploit current knowledge of 
the likely rewards associated with each response alternative (i.e., par
ticipants stick with responses known to result in rewards), and lower 
values indicating that participants explore the environment more (i.e., 
participants test out alternative responses to see whether they result in 
rewards). Alternatively, the inverse temperature parameter has been 
interpreted in terms of sensitivity to reward (e.g., Fontanesi et al., 
2019a; Pedersen et al., 2017), since higher values indicate that the 
currently expected reward has a more deterministic influence on choice 
behavior. The RL-DDM specifically, in contrast, offers a different inter
pretation of this parameter (and its behavioral effects) in terms of the 
speed-accuracy trade-off (SAT) (Tuerlinckx and De Boeck, 2005): Some 
participants are slower and more accurate than others because they 
inform their decisions based on more evidence (i.e., they set higher 
response thresholds). Unlike the traditional interpretations of the in
verse temperature parameter, this alternative interpretation thus makes 
formal predictions about response times. These predictions furthermore 
entail more than a mere increase or decrease in the mean response times, 
but are about the shapes of the entire response time distributions of both 
correct and incorrect responses. Future experiments, for example using a 
classical speed/accuracy trade-off manipulation, should test whether 
empirical data supports this interpretation. 

On top of explicitly modelling SAT settings, RL studies may further 
benefit from the richness of latent variables estimated using SSMs, such 
as the amount of time it takes for participants to perform early percep
tual processes and initiate motor responses (i.e., non-decision time), 
potential response biases, and the efficiency with which participants 
process information (i.e., accumulation rates). One field where this may 
be of special interest is computational psychiatry research (Wiecki et al., 
2015), since SSMs allow for a more detailed description of differences in 
decision-making processes between healthy and clinical populations, 
and the effect of medication. Pedersen et al. (2017) already provided an 
example of how a combined RL-DDM was used to analyze the complex 
effects of medication on response thresholds, non-decision times and 
learning rates in patients with ADHD. These complex effects could not be 
captured by the inverse temperature parameter of soft-max. 

4.2.3. Model selection 
Model selection entails finding the most parsimonious trade-off be

tween quality of fit and model complexity. However, in some cases, 
different models of the same complexity can make the exact same pre
dictions for choice data, which makes it difficult if not impossible to 
distinguish between these models. In such a case, response times can 
provide additional and sometimes crucial constraint to inform model 
selection. An example is the study of context effects on preferential 
decision-making, where it was shown that some models can only be 
distinguished on the basis of the combination of choice and response 
time data (Busemeyer et al., 2019; Molloy et al., 2019; Turner et al., 
2018b). 

Mixture models form another example where response times can be 
especially informative (Van Maanen et al., 2016, 2014). Mixture models 

in decision-making propose that observed data are the result of not a 
single decision-making process, but of a mixture between two or more 
processes (or cognitive strategies). A well-known example in reinforce
ment learning are the model-free and model-based control systems (Daw 
and Dayan, 2014). Model-free control assumes that Q-values are 
computed solely by trial-and-error (i.e., Equation (1)), while 
model-based control assumes that Q-values are explicitly computed 
based on an internal cognitive model of the world. Observed choice 
behavior is thought to be a mixture of both types of control, and the 
mixture parameter, that denotes how reliant a subject is on either of 
these strategies, is often analyzed (Daw et al., 2011). However, as also 
discussed above, the amount of information in choice data alone is often 
too limited to reliably estimate parameters of such a mixture model 
(Shahar et al., 2019). 

The SSM framework offers exciting new ways to model competing 
choice strategies. One option is to assume that Q-values are a mixture of 
the two control systems, and link the difference in Q-values to drift rates 
of an SSM (Shahar et al., 2019). Another option would be to model the 
different strategies as a race between accumulators, as is typically done 
in race models such as the linear, ballistic accumulator (LBA) model 
(Brown and Heathcote, 2008). This way, model selection between 
RL-SSMs provides a way to test not only for the existence of multiple 
choice strategies in learning tasks, but also how exactly these strategies 
interact and/or compete. 

4.3. Benefits for sequential sampling models 

4.3.1. An explicit theory of drift rates 
From the perspective of SSMs, a major benefit from the integration is 

that an explicit theory of drift rates is incorporated into the model, 
specifying exactly what constitutes the evidence that is being accumu
lated. By equating (or non-linearly linking) drift rates with Q-value 
differences, RL-SSMs propose that evidence accumulation is driven by 
(differences in) expected value. In simple instrumental learning tasks, 
where model-free control drives choice behavior, Q-values are thought 
to be stored in procedural memory (Gershman and Daw, 2017). By 
modelling such a task using a RL-SSM, the time it takes to perform 
additional cognitive processes such as stimulus identification will be 
accounted for by the non-decision time parameter, and variability in 
response latencies are a consequence of the noise in Q-value accumu
lation. In more complex tasks (e.g., the two-stage decision task, Daw 
et al., 2011), Q-values can either be thought of as a mixture of multiple 
control systems, or the decision-making process can be modelled as a 
race between such control systems, as proposed above. 

4.3.2. Single trial parameter estimates 
RL models offer trial-by-trial estimates of expected value and pre

diction errors, which have been used in model-based cognitive neuro
science to make inferences about trial-by-trial variability in neural 
measures. This approach involves using expected values or prediction 
errors as parametric modulators in analyses of neural data, and has 
proven to be very powerful in identifying the brain areas putatively 
involved in computing and representing these variables (O’Doherty 
et al., 2007). 

The default SSM framework, by contrast, does not provide a single 
parameter estimate per trial. Instead, one set of parameters per condi
tion is typically estimated, and it is assumed that all responses within 
this condition are independent draws from a single distribution. Apart 
from the fact that this assumption is difficult to entertain (as evidenced, 
for example, by the phenomenon of post-error slowing; Dutilh et al., 
2012), it also limits the methodology of model-based cognitive neuro
science. Since only one parameter estimate is available per condition 
and subject, assuming that all choice processes within that condition are 
identical (except for within-trial noise), there is no explicit model of 
trial-by-trial dynamics that can be used to analyze within-subject dy
namics in neural measures. As an alternative approach, between-subject 
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dynamics are often analyzed, showing that the size of a 
between-condition BOLD-response contrast in certain brain areas (e.g., 
anterior striatum) covaries across subjects with corresponding changes 
in model parameters (e.g., threshold) (Forstmann et al., 2010, 2008; 
Mulder et al., 2012). While insightful, between-subject correlations 
between parameter estimates and neural data offer substantially less 
detailed descriptions of behavior than within-subject analyses, and ef
fects that may be present at the group level (i.e., based on aggregated 
data) do not necessarily translate into commensurate effects at the in
dividual level (e.g., Simpson’s paradox; Kievit et al., 2013). To overcome 
this limitation, substantial effort has been put into developing methods 
to obtain trial-by-trial parameter estimates, either using behavioral data 
alone (Gluth and Meiran, 2019; Van Maanen et al., 2011), or by making 
use of behavioral and neural data together, as in joint modelling ap
proaches (Turner et al., 2019b, 2019a; 2018a, 2017b, 2015). 

By explicitly linking drift rates to expected values, unified RL-SSM 
models provide trial-by-trial estimates of drift rates. Furthermore, the 
additional constraint offered by the data has been shown to allow for a 
more fine-grained description of the decision-making behavior, for 
example by including trial-by-trial estimates of threshold (Fontanesi 
et al., 2019a, 2019b; Frank et al., 2015; Pedersen et al., 2017) as well. 
Additional trial-order effects such as post-error slowing (Dutilh et al., 
2012) could potentially be modelled by allowing the threshold to vary as 
a function of prediction errors. Together, the combination of RL and SSM 
models increases the level of detail in the cognitive model, allowing for 
more powerful inferences at the single-trial level. 

4.4. Benefits for model-based cognitive neuroscience 

An integrated RL-SSM is likely closer to the data-generating model of 
human behavior than either model alone. This is crucial for model-based 
cognitive neuroscience, because by placing the cognitive model “in the 
middle” of the behavioral and neural data, the analyses of neural data 
are not only driven by the latent cognitive processes a model is able to 
identify, but also constrained by a model’s limitations: Potential model 
misspecifications or biases propagate into the model-based analyses, 
limiting or biasing the final conclusions. In order to draw valid con
clusions about the brain and cognition, the cognitive models employed 
should be as unbiased as possible with respect to the data-generating 
process, within the limits of what the data allow for. It is a matter of 
model development (and competitive model selection) to discover 
which model specifications are closest to the ground truth. 

5. Future directions 

In model-based cognitive neuroscience, the quality of inferences in 
neural functioning depends on how well cognitive models approximate 
the actual underlying cognitive processes, rendering cognitive model 
development of crucial importance to the field. In this light, the recent 
efforts in cognitive modelling toward integrating reinforcement learning 
and sequential sampling traditions into a unified theoretical framework 
are highly exciting. 

The integration of the RL and SSM frameworks poses new avenues 
for future research. Firstly, what is the best way to model choice 
behavior in learning tasks? The currently reviewed studies used the 
DDM as a choice function, but despite its ability to capture the main 
aspects of the data, various misfits were also reported. Since race models 
such as the linear ballistic accumulator model (LBA; Brown and 
Heathcote, 2008) have been very successful in explaining choice 
behavior in both perceptual and value-based decisions (Busemeyer 
et al., 2019; Rodriguez et al., 2015, 2014; Turner et al., 2018b), it would 
be informative to see if they can help overcome the misfits reported 
earlier. Furthermore, unlike the DDM (but see Krajbich and Rangel, 
2011), race models can easily be extended to multi-alternative choice 
tasks. However, there are various other SSMs such as the leaky 
competing accumulator model (Usher and McClelland, 2001), urgency 

models (Hawkins et al., 2015; Thura and Cisek, 2016), and racing 
diffusion models (e.g., Boucher et al., 2007; for a more complete over
view, see Bogacz et al., 2006, their Fig. 2; and Ratcliff et al., 2016, their 
Fig. 2). It is crucial to test which SSMs provide the best fit to 
decision-making data in learning contexts. 

Cognitive model development also entails testing to what extent 
learning and decision-making processes operate independently, and to 
what extent they interact. The current literature consistently finds that 
drift rates fluctuate as a function of reward expectations, although it 
remains a topic of discussion whether this mapping is linear or 
nonlinear. Furthermore, some studies (Fontanesi et al., 2019a; Frank 
et al., 2015) find an effect of expected value on decision thresholds. On 
top of this, it may be that the start point of evidence accumulation can be 
biased due to learning effects (e.g., Millner et al., 2018), which could 
potentially also explain the slowness of errors relative to correct re
sponses reported by Sewell et al. (2019). A related interesting question is 
how SAT settings influence learning. Sewell et al. (2019) suggest that the 
learning rate could be affected by imposing speed stress in the 
decision-making phase. The underlying reasoning is that speed stress 
generally causes participants to inform their decisions based on less 
evidence (i.e., low thresholds) (Heitz, 2014), which increases the like
lihood of an error and thereby decreases the information content in an 
error compared to errors that occur when choices are based on a lot of 
evidence (i.e., high thresholds). 

Similar to progressing our understanding of how the cognitive sys
tems of learning and decision making interact, a model-based cognitive 
neuroscience using RL-SSMs can also improve our understanding of how 
the neural systems underlying learning and decision-making interact. 
Both in the RL framework (O’Doherty et al., 2017) as in the SSM 
framework (Mulder et al., 2014), much progress has been made in our 
understanding of the neural systems underlying learning and perceptual 
decision making separately. These brain networks at least partly over
lap. One example structure is the striatum, of which different parts have 
been implicated in processing reward prediction errors (e.g., Haruno 
and Kawato, 2006; O’Doherty et al., 2003) and learning of 
action-outcome associations (Balleine et al., 2007; Kim et al., 2009), as 
well as response caution settings (Forstmann et al., 2008; Van Maanen 
et al., 2011). A second example is the parietal cortex, which has been 
implicated in perceptual evidence accumulation (e.g., Shadlen and 
Newsome, 2001), as well as value-based decision-making (e.g., Platt and 
Glimcher, 1999) and state prediction error updating (Gl€ascher et al., 
2010). Using methods similar to Frank and colleagues (2015), or 
potentially joint modelling (Turner et al., 2019a, 2019b), it would be 
interesting to test whether the similarity in neural systems alludes to the 
same cognitive processes playing a role in both RL and decision-making, 
or that different cognitive processes are underpinned by the same neural 
substrates. 

The suggestions above only scratch the surface of the plethora of 
modelling options in combining RL and SSMs. This combinatorial ex
plosion of modelling options simultaneously forms a challenge for future 
research. From the RL framework, multiple learning rules can be taken, 
as well as additional mechanisms (mentioned briefly above) such as 
multiple learning rates, eligibility traces, choice perseveration, and 
mixture modelling. Further, as detailed above, there exists a multitude 
of SSMs, including the DDM with various parametrizations, and race 
models such as racing diffusion accumulators and the LBA, and urgency 
models. Finally, as already shown by the current literature, there are 
multiple linear and nonlinear linking functions possible between RL 
model dynamics and SSM parameters. Again, this landscape of options is 
exciting, but risks post-hoc modelling decisions and overfitting issues. 
Selecting the most theoretically informative combination of RL and SSM 
mechanisms and the most appropriate linking functions from this broad 
landscape will be an important challenge for future model development 
and selection. 

A second (and related) challenge is to make quantitative compari
sons between models that vary in the dimensionality of the data they 
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explain. More specifically, traditional RL models using soft-max treat 
data as univariate (i.e., choices only), whereas combined RL-SSMs treat 
data as multivariate (i.e., choices with associated response latencies). An 
unpractical consequence of this difference in dimensionality is that 
likelihood estimates of soft-max and SSMs (and, by extension, model 
comparison metrics such as AIC (Akaike, 1973) and BIC (Schwarz, 
1978), and their Bayesian extensions such as the DIC (Spiegelhalter 
et al., 2002)) are informed by different data, and cannot be directly 
compared. A potential option to overcome this issue is to resort to 
cross-validation techniques (e.g., Ahn et al., 2008; Steingroever et al., 
2014). In such techniques, the models are fit to part of the data, and 
subsequently used to generate predictions on choice behavior in a 
separate part of the data. With RL-SSMs, it would be possible to 
repeatedly fit the model to the first n trials, and predict the choice and 
response time for trial nþ1. The accuracy of such predictions can be 
compared and interpreted as a measure of generalizability. Apart from 
these relative model selection criteria, it is important to also assess the 
absolute quality of fit (Palminteri et al., 2017), to ensure that the model 
is able to capture key phenomena in the data. 

Neither of these challenges poses a fundamental hurdle to inte
grating the cognitive model classes. Moreover, although the articles 
reviewed here focus on value-based decision-making, very similar ben
efits also apply to the perceptual learning domain (e.g., Diaz et al., 2017; 
Lak et al., 2017). Careful model development, combined with experi
mental work and tests of specific influence, has the potential to offer the 
field of model-based cognitive neuroscience a powerful new tool for 
measuring and interpreting behavioral and neural data within a single 
theoretical framework encompassing a variety of cognitive processes. 
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