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Abstract: We initiate the study of dynamical instabilities of higher-dimensional black

holes using the blackfold approach, focusing on asymptotically flat boosted black strings

and singly-spinning black rings in D ≥ 5. We derive novel analytic expressions for the

growth rate of the Gregory-Laflamme instability for boosted black strings and its onset

for arbitrary boost parameter. In the case of black rings, we study their stability prop-

erties in the region of parameter space that has so far remained inaccessible to numerical

approaches. In particular, we show that very thin (ultraspinning) black rings exhibit a

Gregory-Laflamme instability, giving strong evidence that black rings are unstable in the

entire range of parameter space. For very thin rings, we show that the growth rate of

the instability increases with increasing non-axisymmetric mode m while for thicker rings,

there is competition between the different modes. However, up to second order in the

blackfold approximation, we do not observe an elastic instability, in particular for large

modes m � 1, where this approximation has higher accuracy. This suggests that the

Gregory-Laflamme instability is the dominant instability for very thin black rings. Addi-

tionally, we find a long-lived mode that describes a wiggly time-dependent deformation of

a black ring. We comment on disagreements between our results and corresponding ones

obtained from a large D analysis of black ring instabilities.
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1 Introduction

Black holes in spacetime dimensions D ≥ 5 can exhibit different types of instabilities

compared to their four dimensional counterparts. One of these instabilities is the Gregory-

Laflamme instability originally found in the context of perturbations of asymptotically flat

black p-branes [1]. This type of instability was later found to be present in the context of

Myers-Perry black holes [2–5] and in the case of five-dimensional black rings [6]. In fact,

according to the arguments of [7] (see also [8] for the case of black rings), any neutral black

hole solution that admits a blackfold limit (i.e. an ultraspinning limit) is expected to suffer

from a Gregory-Laflamme instability.

Non-axisymmetric instabilities, such as bar-mode instabilities [4, 9–11], are an addi-

tional feature of higher-dimensional rotating black holes. Recently, it was found that a

type of non-axisymmetric instability — the elastic instability — is also present in five-

dimensional black rings with horizon topology S1 × S2 [12]. This instability is related to

transverse deformations of the radius R of the S1 that do not significantly affect the size
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of the radius r0 of the S2. Studies of the end point of these instabilities suggest a viola-

tion of the weak cosmic censorship conjecture [11–13]. It is thus important to study these

instabilities in more generality and in particular by means of analytic methods that can

probe regimes of parameter space that numerical methods cannot reach with acceptable

accuracy.

Besides having proved to be extremely useful in finding new black hole solutions [14–

18] in asymptotically flat space, we demonstrate here that the blackfold approach [7, 19]

is a powerful tool for studying hydrodynamic (i.e. Gregory-Laflamme) and elastic instabil-

ities of higher-dimensional black holes in the ultraspinning regime and away from it.1 In

this context, one first finds a stationary solution, modelled as a fluid confined to a surface,

corresponding to the black hole solution whose stability one wishes to study. The funda-

mental fluid variables and the geometric properties of the surface describing the equilibrium

configuration of the fluid are subsequently perturbed and the stability properties of black

holes are found by studying the propagation of hydrodynamic and elastic modes.

Black rings can be classified as thin 0 ≤ ν < 1/2 or as fat 1/2 ≤ ν < 1 where for very

thin rings ν = r0/R is a measure of the ring thickness. Studying Penrose inequalities, the

fat branch of black rings in D = 5 has been shown to be unstable [20–22] while for the thin

branch in D = 5, the instability of black rings relies on numerical studies [6, 12]. However,

these numerical studies, due to lack of accuracy, have only established the existence of

instabilities for ν ≥ 0.144 [6] and for ν ≥ 0.15 [12]. The region ν < 0.144 is left unknown,

with the only suggestive arguments of [7, 8] being applicable in the strict case of ν = 0, for

which there is barely any distinction between the black ring and the boosted black string.

Additionally, the numerical studies of [6, 12] have not consider non-axisymmetric modes

with m > 2,2 and, moreover, there is currently no knowledge of these instabilities in D ≥ 6

for which no exact black ring analytic solution is known.3

This paper deals with the study of black ring instabilities in the very thin regime for

D ≥ 5 and arbitrary m. Its aim is to provide an analytic understanding of some of these

instabilities and to progress in closing the gap in parameter space by showing that some

of these instabilities are present also for some part of the region ν < 0.144. The blackfold

approach has shown to accurately describe stationary thin black rings. In the left plot of

figure 1, it is shown the phase diagram of D = 5 black rings, where the reduced area aH
and reduced angular momentum j were introduced in [28]. The black solid line is the curve

1We note that we are interpreting the non-axisymmetric instability found for black rings in [12] as an

elastic instability from the blackfold point of view. The rationale for this interpretation is that, in the

context of blackfolds, elastic instabilities of black rings are related to deformations of the radial direction of

the S1 which is the type of deformation encountered in [12]. In general, we do no expect all other types of

non-axisymmetric instabilities [4, 9–11] to be elastic instabilities from the blackfold point of view. In fact,

some of them, if visible within the blackfold approximation, might be of hydrodynamic nature.
2Here m is a discrete number characterising the mode of non-axisymmetric perturbations of the form

ei(−ωτ+mφ/R) where ω is the frequency, τ the time direction and φ the angular direction along the S1.
3Albeit the work of refs. [23, 24] which use large D techniques that we will comment upon and ref. [25],

which has considered the evolution of the Gregory-Laflamme instability for black rings at large D for

m ∼ O(
√
D) and found evidence that the end point of the instability is a non-uniform, non-stationary,

black ring. The behaviour of the end point is expected to depend on the dimension D as in the case of

black strings [26].
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Figure 1. On the left we show the reduced area aH as a function of the reduced angular momentum

j for D = 5 where the black line is the exact curve of the black ring solution [27] and the dashed

red curve is the blackfold approximation up to first order in derivatives [28]. On the right we

show the behaviour of the same quantities for black rings in D = 7 where the black line is the

numerical solution of [29] and the dashed red line the blackfold approximation up to second order

in derivatives [30].

obtained from the exact black ring solution of [27] while the dashed red line is the blackfold

approximation up to first order in derivatives [28].4 This approximation works relatively

well for j & 2.2 which is equivalent to the region 0 ≤ ν . 0.025. In the plot on the right

in figure 1, it is shown the D = 7 black ring solution numerically obtained in [29] (black

solid line) and the blackfold approximation up to second order in derivatives (dashed red

line) [30]. In this case the blackfold approximation works well for j & 1.2 which corresponds

to the region 0 ≤ ν . 0.27. Thus our general analysis of dynamical instabilities of black

rings for arbitrary m and D is expected to be valid at least in the region 0 ≤ ν . 0.025

for D = 5, 6 for which the blackfold approximation is not under control beyond first order,

and in the region 0 ≤ ν . 0.27 for D ≥ 7 for which the approximation is under control up

to second order in r0/R.

In order to proceed with this analysis, we first introduce the blackfold effective theory

in section 2 and derive novel variational formulae required to study perturbations around

equilibrium configurations. In section 3 we study instabilities of boosted black strings as

a way of calibrating our method, since in this case our results, besides providing a check

of the R→∞ limit of black ring instabilities, can be compared against existent numerical

and analytic results. In this context, we provide novel expressions for the growth rates of

the Gregory-Laflamme instability and its onset for arbitrary boost parameter. In section 4

we study the instabilities of black rings and identify the Gregory-Laflamme instability in

D ≥ 5, providing analytic results for the growth rates of the instability and its onset. We

do not find an elastic instability at this order in the blackfold approximation and hence

our results for the black ring contradict the corresponding large D analysis [24], which is

shown to be incorrect. In section 5 we summarise our main results and comment on open

research directions. In appendix A we provide the corrected stress tensor and bending of

perturbed black branes in asymptotically flat space, which contains the identification of

4We note that the dashed red line in the left plot of figure 1 is the curve obtained at ideal order in

the approximation, since the first order approximation does not produce corrections to stationary black

rings [28].
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new transport coefficients. In appendix B we provide details on the perturbed equations

at second order, while in appendix C, integrated by the supplementary material, we give

further details on hydrodynamic and elastic modes.

2 Blackfold equations and linearised perturbations

In this section we briefly review the essential aspects of the blackfold approach required

for the purposes of this work. We discuss the blackfold equations up to second order

in a long-wavelength expansion which determine the equilibrium configurations that we

wish to perturb. Subsequently, we derive new general formulae for linearised perturbations

of the equilibrium blackfold equations, ultimately focusing on the case of 2-dimensional

worldvolumes which describe black strings and black rings. These results will then be used

in the remaining sections in order to study the hydrodynamic and elastic stability of these

later two cases.

2.1 Blackfold equations

The blackfold approach consists of wrapping black branes on weakly curved (p + 1)-

dimensional submanifolds Wp+1 embedded in a D = n + p + 3-dimensional spacetime en-

dowed with metric gµν(x) and coordinates xµ [7, 19]. The location of the submanifold in the

ambient spacetime is determined by the embedding map Xµ(σ), where σa are coordinates

on Wp+1. The submanifold inherits the induced metric γab = eµae
ν
bgµν where eµa = ∂aX

µ

are a set of (p + 1) tangent vectors and a, b, c, . . . are surface indices. The set of (n + 2)

normal vectors nµi are defined implicitly by the relations nµieµ
a = 0 and nµinµ

j = δi
j

where i, j, k, . . . are normal indices. The extrinsic curvature of the submanifold is defined

as Kab
ρ = ∇aeρb where ∇a is the covariant derivative compatible with both gµν and γab.

It is also useful to define its projection along the normal vector, i.e. Kab
i = nρ

i∇aeρb and

mean extrinsic curvature Ki = γabKab
i (or equivalently Kρ ≡ γabKab

ρ).

In vacuum, this approach is generically applicable if the horizon size of the black brane

r0 satisfies the hierarchy of scales r0 � R where R is the smallest intrinsic or extrinsic

scale associated with the submanifold or to variations of the fluid degrees of freedom that

live on it. In the case of singly-spinning black holes, this implies that the black hole must

be ultraspinning, i.e. in appropriate units the black hole angular momentum is much larger

than its mass. In the case of black rings with horizon topology S1 × S2, the ultra-spinning

limit is commonly referred to as the thin limit, since in this case the radius R of the S1

must be much larger than the horizon radius r0 of the S2.
In the context of vacuum General Relativity, the starting point is the boosted

Schwarzschild black brane. The process of “wrapping” the black brane on a weakly curved

submanifold translates into a small, long-wavelength, perturbation of the black brane ge-

ometry that must satisfy Einstein equations order-by-order in a derivative expansion. Typ-

ically, the expansion parameter ε � 1 is defined as ε = r0/R or ε = kr0 where k is the

wavenumber of the perturbation being performed. A subset of the Einstein equations

(constraint equations) up to order O(ε) has been identified to be [28, 31, 32]

∇aT ab = 0 , T abKab
i = 0 , (2.1)
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where we have ignored the existence of edges on the submanifold. Here the stress tensor

T ab up to first order in derivatives is given in terms of a viscous fluid [31]

T ab = T ab(0) + T ab(1) , T ab(0) = εuaub + PP ab , T ab(1) = −2ησab − ζθP ab , (2.2)

where ua is the normalised fluid velocity uaua = −1 and P ab = γab+uaub is a perpendicular

projector to ua. The thermodynamic quantities ε and P denote the energy density and

pressure respectively while η and ζ denote shear and bulk viscosity. All these quantities

are a function of the local temperature T . Their specific dependence and form in terms of

the black brane radius r0 is given in appendix A, together with the definition of the shear

tensor σab and the fluid expansion θ.

At one higher order, the stress tensor T ab receives additional corrections that depend

on derivatives of the intrinsic and extrinsic geometry as well as on second derivatives of

the fundamental fluid variables. If n ≥ 3, these corrections are dominant compared to

backreaction corrections and in this case, the equations of motion (2.1) are modified at

order O(ε2) to [33]

∇aT ab = eµ
b∇a∇bDabµ , T abKab

i = niµ∇a∇bDabµ , (2.3)

where we have assumed that the background metric is flat (i.e. the associated Riemann

tensor vanishes) and that the brane is not spinning in transverse directions to Wp+1. In

eq. (2.3), T ab receives an additional correction T ab(2) and Dabµ is the brane bending moment

that encodes the response of the black brane due to extrinsic deformations. The bending

moment can be written as Dabµ = YabcdKcd
µ where Yabcd is the Young modulus [34]. The

explicit form of these structures is detailed in appendix A.

Of particular importance is the class of solutions that describes the equilibrium sector

of (2.1) and (2.3). In this case, the fluid velocity must be aligned with a worldvolume

Killing vector field ka such that

ua =
ka

k
, T =

T

k
, k = | − γabkakb|1/2 , (2.4)

where T is the constant global temperature of the fluid and k is the modulus of the time-

like Killing vector field. The worldvolume Killing vector field is subjected to the constraint

that its pushforward onto the ambient spacetime coincides with a background Killing vec-

tor field kµ, i.e. kµ = eµak
a. For this particular class of solutions, the first equation in (2.1)

and (2.3), which is the set of hydrodynamic equations for the stress tensor T ab, is auto-

matically satisfied, regardless of the choice of embedding map Xµ. The second equation

in (2.1) and (2.3) is the remaining non-trivial elastic equation that determines conditions

on the embedding map given a particular choice of ka. Solutions that satisfy (2.4) have

σab = θ = 0 by virtue of the Killing equation and hence T ab(1) = 0. It is this equilibrium

class of solutions that we wish to perturb around in order to study the stability properties

of given configurations.

2.2 Linearised perturbations

The purpose of this section is to derive variational formulae that describe linear pertur-

bations of equilibrium configurations that solve (2.1) and (2.3) following the machinery

– 5 –
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developed in [35].5 This will form the basis for studying the stability of propagating sound

and elastic modes in the next sections.

The fluid degrees of freedom consist of a scalar degree of freedom, which we choose to be

the energy density ε, and p independent components of the fluid velocity ua supplemented

by n + 2 transverse components of the embedding map which we denote by Xµ
⊥(σ) =

⊥µνXν(σ) where ⊥µν = nµin
i
ν .6 Our intent is to perform a slight perturbation of these

variables around equilibrium solutions such that

ε→ ε+ δε , ua → ua + δua , Xµ
⊥(σ)→ Xµ

⊥(σ) + δXµ
⊥(σ) . (2.5)

Under these perturbations all geometric quantities transform, for instance δγab =

2Kab
ρδX

ρ
⊥ [35]. The normalisation condition uaua = −1, implies the constraint on the

variations of the fluid velocity

uaδu
a = uaubK

ab
ρδX

ρ
⊥ , (2.6)

which is the statement that only p components of the fluid velocity are independent. These

variations are sufficient to characterise the deformations of the ideal order stress tensor,

which take the form

δT ab(0) =
ε

n+ 1

[(
nuaub − γab

) δε
ε

+ 2nu(aδub) − δγab
]
, (2.7)

where we have used the specific equation of state ε = −(n+ 1)P provided in appendix A.

In order to determine the variation of the equations of motion (2.1) up to first order, one

also requires the variation of the first order stress tensor

δT ab(1) = −2ηδσab − ζδθP ab , δθ = ∇aδua − ua∇a (KρδX
ρ) , (2.8)

where we have used that in equilibrium θ = σab = 0. As we are interested in the p = 1

case, we have not written explicitly the variation δσab. This is sufficient for obtaining linear

perturbations of (2.1). Defining δT ab = δT ab(0) + δT ab(1), these take the general form

∇aδT ab − T cb∇c
(
KρδX

ρ
⊥
)
− 2T ac∇a

[
Kb

cρδX
ρ
⊥

]
+ T ac∇b

(
Kac

ρ ⊥ρλ δXλ
⊥

)
= 0 ,

δT abKab
i + T abniµ∇a∇bδXµ

⊥ = 0 ,
(2.9)

where we have used that for equilibrium solutions T abKab
i = 0 up to first order and

focused on backgrounds with vanishing Riemann tensor. At second order and for n ≥ 3,

eqs. (2.9) receive modifications due to the right hand side of (2.3). These modifications are

cumbersome and are detailed in appendix B. Eqs. (2.9) and (B.3) are the equations that

we wish to solve for different initial configurations in terms of the perturbed fields (2.5),

in particular we wish to analyse the vanishing of the determinant of eqs. (2.9) and (B.3)

which provide sufficient conditions for the existence of solutions.

5When describing perturbations of equilibrium configurations, the scale of the problem is set by 1/T .

Thus, by means of eq. (2.4) and appendix A, when writing ε = r0k, it is really meant ε = k/T .
6The remaining p + 1 components of the embedding map Xµ can always be chosen as the coordinates

onWp+1 since σa = eaµX
µ. Hence, whenWp+1 has no edges, variations of these components coincide with

worldvolume reparametrisations and can be ignored.

– 6 –
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2.2.1 Two-dimensional worldvolumes

In the next sections we focus on two-dimensional worldvolumes (p = 1) which can describe

boosted black strings and black rings in D ≥ 5. In this case, the analysis simplifies

considerably since, for instance, δσab = 0 and hence

δT ab(1) = −ζδθP ab . (2.10)

In turn, the effect of the first order corrections to the stress tensor in (2.9) only depends

on the bulk viscosity in the form

∇aδT ab(1) = −ζ∇a
(
P abδθ

)
,

δT ab(1)Kab
i = −ζδθ

(
Ki + uaubKab

i
)

= −ζδθn+ 1

n
Ki +O

(
ε3
)
,

(2.11)

where in the last equality we have used (2.1) and neglected O
(
ε3
)

terms which we do not

consider in this paper. If in addition we focus on the case of boosted black strings for which

Kab
i = 0, eqs. (2.9) further simplify to

∇aδT ab = 0 , T abniµ∇a∇bδXµ
⊥ = 0 , (2.12)

up to first order in derivatives. This shows that in this situation, the extrinsic perturbations

δXµ
⊥ decouple from the intrinsic perturbations δε and δua. At second order, these equations

receive non-trivial corrections, as explained in appendix B and for some configurations, such

as black rings, the perturbations begin to couple. In the next section, we use the variational

formulae derived here to study the stability of boosted black strings.

3 Instabilities of boosted black strings

Gregory-Laflamme instabilities of static black strings using the blackfold approach were

considered in [7, 31, 36, 37]. Here we consider both fluid and elastic perturbations of boosted

black strings up to second order in the derivative expansion. We compare our results with

the static and boosted cases with the large D analysis performed in [23, 24, 38], showing the

relevance of the Young modulus of black strings (defined in appendix A) in the dispersion

relation of elastic modes. Elastic modes are shown to always be stable. We also derive

novel expressions for kGL, which describes the onset of the Gregory-Laflamme instability

for arbitrary boost parameter and compare with the numerical analysis of [39], finding

good agreement when D ≥ 7. The results of this exercise are extremely useful to study

perturbations of black rings in section 4 as they must be recovered at large ring radius.

3.1 Ideal order modes

We consider the equilibrium solution of (2.1) that represents a boosted black string. To

begin with, we introduce the background Minkowksi metric in the form

ds2 ≡ gµνdxµdxν = −dt2 +

D−1∑
i=1

(
dxi
)2

, (3.1)

– 7 –
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and we embed the string via the map Xt = τ , X1 = z and Xi = 0 , i = 2, . . . , D − 1,

leading to the induced string metric

ds2 ≡ γabdσadσb = −dτ2 + dz2 . (3.2)

In addition, a boosted string is characterised by the Killing vector field ka∂a = ∂τ + β∂z
with modulus k =

√
1− β2, where 0 ≤ β < 1 is the boost parameter. The case β = 0

describes the static black string. This embbeding is a minimal surface (a two-dimensional

plane in (t, x1)) and hence has vanishing extrinsic curvature, i.e. Kab
i = 0.

In order to study potential instabilities of these configurations we consider lin-

earised perturbations around these equilibrium configurations. Due to the variational

constraint (2.6), these can be parametrised by small perturbations of the energy density

δε(σ), the z-component of the fluid velocity δuz(σ) and of the (n + 2) transverse compo-

nents of embedding map δXµ(σ)⊥. In particular, we consider plane wave solutions to the

perturbation equations (2.9) that we parametrise as

δε(σ) = δεei(−ωτ+kz) , δuz(σ) = δuzei(−ωτ+kz) , δXµ
⊥(σ) = δXµ

⊥e
i(−ωτ+kz) , (3.3)

where ω is the oscillation frequency, k the wavenumber and δε, δuz and δXµ
⊥ are small

perturbation amplitudes. Introducing these variations into the perturbed equations at

ideal order (2.9) and demanding the determinant of the system of 3 equations to vanish

leads to two elastic modes (due to perturbations of second equation in (2.1)) and two

hydrodynamic modes (due to perturbations of the first equation in (2.1)), which are solved

perturbatively such that

ω = ω(0) + ω(1)kr0 + ω(2)(kr0)
2 + . . . , (3.4)

where it is assumed that ε = kr0 � 1. Under this approximation, the ideal order frequen-

cies read

ω
(0)
1,2(k) =

nβ ±
√
n+ 1

(
1− β2

)
n+ 1− β2

k , ω
(0)
3,4(k) =

β(n+ 2)± i
√
n+ 1

(
1− β2

)
n+ 1 + β2

k . (3.5)

These two sets of frequencies are obtained independently from each of the equations in (2.9)

since intrinsic and extrinsic perturbations decouple for the black string and are valid for

any n ≥ 1. In particular, the frequencies ω1,2 are the elastic frequencies associated with

perturbations of the second equation in (2.1) and ω3,4 the hydrodynamic frequencies, as-

sociated with the first equation in (2.1). The frequency ω3 will be interpreted as being

associated with the Gregory-Laflamme instability. In the static case β = 0, (3.5) had been

obtained in [7]. Contrary to the case β = 0, the hydrodynamic frequencies with β > 0 are

not purely imaginary. A case of particular interest is when β = 1/
√
n+ 1, which corre-

sponds to the value of the boost that locally characterises the black ring of section 4. In

this case the modes (3.5) become

ω
(0)
1 (k) = 0 , ω

(0)
2 (k) =

2
√
n+ 1

n+ 2
k , ω

(0)
3,4(k) = (n+ 2± in)

√
n+ 1

n2 + 2n+ 2
k , (3.6)

– 8 –
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Figure 2. On the left we show the dimensionless imaginary part of ω3, defined as ω̄ = Imω3r0, as

a function of k̄ = kr0/
√
n for D = 5 (n = 1). The black solid line represents β = 0, the grey solid

line β = 1/
√

2 and the red solid line β = 9/10 while the grey dashed line is the imaginary part of

the ideal order result (3.5). We have shown these curves up to k̄ = 1, but we only expect them to

be strictly valid for small k̄. On the right plot we show the behaviour of the imaginary part of ω3

for β = 1/10 and n = 1 (black), n = 2 (red), n = 3 (blue) and n = 4 (purple).

and hence have a zero-frequency mode. It is worth noticing that the elastic modes ω1,2

in (3.5) are always real and positive for all values of 0 ≤ β < 1 and thus the perturba-

tions (3.3) describe oscillating but stable solutions. The hydrodynamic mode ω4 has a

negative imaginary part and hence the perturbations (3.3) describe stable solutions which

are damped in time. On the other hand, the hydrodynamic mode ω3 has a positive imag-

inary part and hence the perturbations will grow exponentially in time, signalling the

existence of the well-known Gregory-Laflamme instability of black strings [1], as spelled

out in [7] for the case β = 0. This instability grows faster for lower values of n and smaller

values of β, and becomes attenuated as one approaches n→∞ or β → 1.

Given that ω4 has a negative imaginary part that does not vanish for any value of β,

any higher order correction to ω4 cannot make it unstable for small values of kr0. However,

the elastic modes in (3.5) have real frequencies and thus it is plausible that higher order

corrections could introduce a small but imaginary part. As we will show below, this is

however not the case.

3.2 First order modes

In finding high-order derivative corrections to (3.5), our aim is to understand whether

other types of instabilities appear (such as elastic instabilities) as the black string effectively

becomes less thin. We also wish to understand the onset of the instability described by kGL,

i.e. the maximum value of k for which the instability is present. For p = 1, as mentioned in

section 2.2, first order corrections are controlled only by the bulk viscosity ζ. Evaluating

the perturbative equations accounting for the first order corrections in the stress tensor

and using (2.9) leads to the following correction to the hydrodynamic frequencies

ω
(1)
3,4(k) = ∓

(n+ 2)k3
(
β ± i

√
n+ 1

) (
n+ 1∓ i

√
n+ 1β

)2
n
√
n+ 1 (n+ 1 + β2)3

k , (3.7)
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where we have ignored corrections of the order of O
(
(kr0)

2
)
. The elastic frequencies

remain the same as in eq. (3.5) and thus they remain stable under linear perturbations.

The correction to ω
(1)
3 has been obtained in [31] when β = 0 but not explicitly for ω

(1)
4 . We

observe here that when β = 0 the corrections become equal and purely imaginary. Hence

the hydrodynamic modes up to first order become

ω3,4(k) =
i√
n+ 1

(
±k − (n+ 2)

n
√

(n+ 1)
r0k

2

)
+O

(
(kr0)

2
)
, (3.8)

where the “+” sign corresponds to the solution of [31]. Overall, the mode ω3 is always

unstable while ω4 is always stable. In figure 2 on the left, we show the behaviour of the

growth rate of the Gregory-Laflamme instability (i.e. the imaginary part of ω3) for D = 5

and different values of β. As β increases, the behaviour of the dimensionless frequency ω̄

becomes increasingly linear as a function of k̄. The dashed and solid grey lines exhibit the

improvement of first order corrections to the hydrodynamic modes and deviations from the

linear ideal order result (3.6). On the right plot of figure 2, we exhibit the behaviour of

the growth rate of the instability for β = 1/10 and for different values of n starting with

n = 1 (black line) and ending in the n = 4 (purple line). The plot shows that the growth

rate increases with increasing dimension for small k̄.

The case β = 0 was explicitly compared against numerical simulations in [31] and

agreement was found in the entire range of k̄ at large n while for small n it is only a

good approximation for smaller values of k̄. In the case of β 6= 0, a numerical study was

performed in [8] and in particular it was found a finite value of kGLr0 < 2 for all values of

β for n = 1. We observe that ω3 in (3.7) is characterised by a value of kGLr0 that increases

significantly as β → 1 for n = 1. In particular, using (3.7) we can find the analytic value

of kGLr0 to be

kGLr0 =

(
n+ 1 + β2

)2√ n+1
1−β2

(n2 + 3n+ 2) (n+ 1− 3β2)
, (3.9)

and it leads to no solution for β ≥
√

(n+ 1)/3. The result (3.9) is in fact a new analytic

result, not present in the literature but not an extremely useful one for small n or β ≥√
(n+ 1)/3. However, at large n and β = 0 this result is approximately valid as already

noted in [31]. Additionally, the lack of predictability as β → 1 is expected since for fixed

r0 ∝ k/T ∼ 1, as β → 1 we need T → 0 and hence for the approximation to be valid we

require k � T , thus k ∼ 0. This means that as β → 1 we expect our approximation to

be appropriate only near k ∼ 0. These considerations and the result (3.9) largely improve

once we consider second order corrections as will be shown in the next section.

Finally, in the special case β = 1/
√
n+ 1 which describes the critical boost of black

rings at large radius, the hydrodynamic frequencies become

ω3,4(k) = (n+ 2± in)

√
n+ 1

n2 + 2n+ 2
k − i

√
n(n+ 1)

5
2

2 ((1± i) + n)3
ζ

ε
k2 +O

(
(r0k)2

)
, (3.10)

where ζ was defined in appendix A. To summarise, up to first order in derivatives we find the

existence of a Gregory-Laflamme instability for arbitrary boost β and no elastic instability.
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Figure 3. The figure on the left exhibits the imaginary part of ω3 at second order using (C.1)

as a function of k̄ for D = 7 for different values of the boost parameter: β = 0 (black solid line),

β = 1/2 (grey solid line) and β = 9/10 (red solid line). The grey dashed line represents the first

order result for β = 1/2 obtained in (3.7). The figure on the right provides a comparison between

blackfold and large D results for D = 5 and D = 7 for static strings and at the critical boost. The

blue solid line is the blackfold result at second order for β = 0 and D = 7 while the dashed line

is the corresponding large D result at fourth order derived in [40]. The black solid line represents

the imaginary part of ω3 at first order as in (3.7) while the black dashed line is the corresponding

result at large D [24]. The grey solid line is the imaginary part of ω3 as in (C.1) while the grey

dashed line is the corresponding large D result (C.2).

3.3 Second order modes and comparison with the large D analysis

At second order in derivatives, the derivation of the modes is more intricate as explained

in section 2.2 due to the non-trivial modification to the equations of motion and the ap-

pearance of the Young modulus as a response to bending. Additionally, at second order in

derivatives, hydrodynamic and elastic corrections are dominant compared to backreaction

corrections only if n ≥ 3 [34]. This means that the analysis here is only useful for D ≥ 7.

Solving for the second order correction in (3.4) using the modified linearised equa-

tions (B.3), one obtains corrections to the elastic modes

ω
(2)
1,2(k) = ∓

λ1
√
n+ 1n2k4

(
n2 + 2n+ 1± 4

√
n+ 1β

(
n+ 1 + β2

)
+ β2(6(n+ 1) + β2)

)
k

Pr20
(
n+ k2

)4 ,

(3.11)

which are purely real and where λ1 was introduced in appendix A. Thus black strings are

elastically stable within the blackfold approximation up to second order in derivatives. In

addition, the hydrodynamic modes also receive corrections and are given in eq. (C.1). In

the case β = 0, the correction ω
(2)
3 agrees with that obtained in [36, 37]. In the case of the

critical boost for black rings, these corrections read

ω
(2)
1 (k) = −λ1

√
n+ 1

Pr20
k , ω

(2)
2 (k) =

λ1n
4
√
n+ 1

Pr20(n+ 2)4
k ,

ω
(2)
3,4(k) = ±

√
n+ 1(n+ 2)(n(2i(n+ (1± i))(τω/r0)− in+ (i± 5)) + (2i± 6))

2(n+ (1± i))5
k ,

(3.12)
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where τω was introduced in appendix A. Using the full expressions for arbitrary β given in

appendix C we exhibit in the left plot of figure 3 the behaviour of the imaginary part of ω3

for different values of β for D = 7. It is observed a strong modification of the behaviour

of ω3 at the critical boost when comparing first order (grey dashed line) and second order

(grey solid line) in the figure on the left. Thus, for instance, the first order result (3.7) for

β = 1/2 only accurately describes the behaviour of the instability up to values of k̄ ∼ 0.15.

Hence, the behaviour of the instability for boosted black strings becomes qualitatively

similar to the static case (black solid line) and to the behaviour for n = 1 [8] as one

includes higher-order corrections. Therefore, we expect these results to be approximately

valid for k̄ ∼ 1 and β ∼ 1.

The study of hydrodynamic and elastic instabilities of static and boosted black strings

has been performed in [23, 24, 38] using large D methods. In order to compare our results

with those for the boosted black string at large D in [24], we redefine the boost parameter

β such that α =
√
nβ and we perform the expansion of our hydrodynamic modes at large

n (equivalent to large D given that p = 1 is fixed). This leads to the following expansions

for the elastic modes

ω1,2(k) =(α∓ 1)
k√
n
± 1

2

(
1∓ 2α+ 2α2 + 3k2r20

) k√
n3

∓ 1

8

(
3∓ 8α+ 12α2 ∓ 8α3 + 2k2

(
13∓ 24α+ 12α2

)
r20
) k√

n5
+O

(
1√
n7

)
,

(3.13)

while the hydrodynamic modes at large D exhibit the following behaviour

ω3,4(k) =(α± i) k√
n
− ik2r0

n
∓ i

2

(
1± 2iα+ 2α2

) k√
n3

+
ik2
(
−2± 6iα+ 3α2

)
r0

2n2

+
1

8

(
±3i− 8α∓ 4iα2 − 8α3 + 8k2(±i+ 2α)r20

) k√
n5

+
k2
(
8i∓ 12α+ 60iα2 ± 36α3 − 3iα4

)
r0

8n3
+O

(
1√
n7

)
.

(3.14)

Comparing (3.13) and (3.14) with the corresponding results for ` = 0 and ` = 1 modes in

eqs. (B.12)-(B.13) of [24], we find complete agreement provided we ignore the terms of order

r30k
3 in the elastic modes of [24], which are of higher order in the brane thickness.7 In the

case of the hydrodynamic modes, the two results agree exactly, without any approximation.

At finite values of D we provide a comparison between blackfold and large D results in

the right plot of figure 3. The black solid line in the figure on the right corresponds to the

first order result (3.7) while the black dashed line is the large D (C.2) result at D = 5. The

grey lines provide the same comparison with the second order result (C.1) for D = 7 at

7In order to compare with the results of [24] we have set r0 = 1 and used the large D behaviour

τω = r0(1/2 − π2/(3n2) − 4ζ(3)/n3 − 4π4/(45n4) + O(n−5). Also note that eq. (B.13) of [24] contains

several typos. We have used the ancillary file provided with [24] to recover eqs. (B.12)-(B.13) in order to

identify them. The correct solution, up to r2
0k

2 terms, is (3.13)–(3.14), while the full solution is provided

in eqs. (C.2)–(C.3) for completeness.
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Figure 4. Onset of the Gregory-Laflamme instability k̄GL = kGLr0 as a function of n as predicted

by different methods for β = 0: first order blackfold approach (black dashed line), second order

blackfold approach (black solid line), fourth order large D approach [40] (blue solid line) and

numerical points of [39] (orange squares).

the critical boost. The blue solid line is the blackfold result for β = 0 and the blue dashed

line is the large D fourth order result obtained in [40] for D = 7. The two approaches give

similar results for small (though not too small) values of k̄ when D = 7 but differ at very

small k̄ where the blackfold approach is more accurate. We also see that in D = 7 for the

static case, where the large D approach has been pushed to fourth order, and for values

of k̄ & 0.3 the large D result is very inaccurate with the growth rate of the instability

increasing without bound for higher values of k̄, whereas the blackfold approach has shown

to be approximately accurate in the entire range of k̄ [36, 37]. Additionally, for D = 5 the

large D result is highly inaccurate for all k̄, only becoming better for larger values of D.

Onset of the instability. It is possible to obtain a refined expression for the onset of

the instability (3.9) using the results of appendix C. In particular we find that kGL can

be expressed in closed form as in (C.4) and provides a finite kGLr0 for the entire range

0 ≤ β < 1. As clear from the comparison between first and second order results (grey

solid and dashed lines) in the left plot in figure 3, kGLr0 is highly sensitive to higher-

order corrections. In figure 4, we exhibit the behaviour of the onset of the instability as a

function of n for β = 0 as predicted by the second order blackfold approach (black solid

line) compared to the first order result (3.9) (black dashed line) and the large D result

(blue solid line) obtained in [40], together with the numerically obtained points (orange

squares) of [39]. The first striking thing to note is that the large D approach is highly

accurate for n ≥ 2 even though, as we have noted above and explicitly shown in figure 3,

the growth rate of the instability according to the same method increases without bound

for n ≤ 5, i.e. for instance, the large D result does not predict the existence of a finite

kGLr0 when n < 6. Nevertheless, when extrapolating the large D result valid for n ≥ 6 to

lower values of n the agreement with the numerical values is excellent for n > 1, visible

from the solid blue curve in figure 4.

The other interesting feature of figure 4 is that the first order blackfold result more

accurately predicts kGLr0 for n ≤ 4 than the second order blackfold result (though when
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n = 1 it is off by a factor of 5 compared to the numerical result). When n ≥ 5, the second

order blackfold result becomes more accurate than the first order result and approaches the

large D result as n increases. This is not surprising since, as stated earlier, the frequency ω3

reproduces exactly the corresponding large D result. In general, we do not have the right

to expect that the blackfold approach accurately describes the growth rate of the instability

for values of k̄ & 1 and it is already remarkable that in many cases it approximately does so.

A comment on ω4. We note that ω4 at second order acquires an imaginary part for

larger values of k̄. For instance for n = 3, it does so for k̄ & 5. This threshold value for

ω4 is always more than twice that of k̄GL of ω3.
8 This feature is also visible in the large

D results of [40]. We do not expect this to be a smoking gun for another hydrodynamic

instability of black strings since these high values of k̄ are a priori outside the regime of

validity of both methods.

4 Instabilities of black rings

In this section we focus on the instabilities of asymptotically flat singly-spinning black

rings in D ≥ 5 by following the same approach as in the previous section. We show

that at ideal order (i.e. ultraspinning) black rings are Gregory-Laflamme unstable under

small linearised perturbations but elastically stable. Including higher derivative corrections

yields a similar behaviour for the dispersion relations of the unstable perturbation as that

found numerically in [6] for the non-axisymmetric quantised mode m = 2 and D = 5. The

analysis here has higher accuracy for large modes m� 1 and by including corrections up

to second order in the thickness of the ring, we show that no elastic instability appears,

thus contradicting large D results [24]. We obtain analytic expressions for the onset of the

Gregory-Laflamme instability for black rings and study its behaviour as a function of m.

We also find a long-lived mode describing a slowly oscillating wiggly black ring.

4.1 Ideal order modes

The black ring solution, up to first order in derivatives, is an equilibrium solution of (2.1)

where the spatial worldvolume geometry is closed and the fluid elements living on it are

rotating. It is useful to write the flat Minkowski background in the form

ds2 = −dt2 + dr2 + r2dϕ2 +
D−3∑
i=1

(
dxi
)2

, (4.1)

where we have isolated a two-dimensional spatial plane written in polar coordinates. The

ring is embedded in this background by choosing Xt = τ,Xr = R,Xϕ = φ and Xi =

0 , i = 1, . . . , D − 3 such that the induced metric and rotating Killing vector field are

ds2 = −dτ2 +R2dφ2 , ka∂a = ∂τ + Ω∂φ , k2 = 1− Ω2R2 , (4.2)

8In fact we also observe that the imaginary part of ω3 at second order becomes positive again at a higher

value of k̄. We also consider this feature to be outside the regime of validity of the method employed here.
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where 0 ≤ φ ≤ 2π and Ω is a constant angular velocity which admits the following expansion

Ω = Ω(0) + Ω(1)ε+ Ω(2)ε
2 + . . . , ε =

r0
R

. (4.3)

At ideal order, eq. (2.1) fixes Ω(0) = 1/(R
√
n+ 1). The difference between (4.2) and

the geometry of the black string of the previous section is the closed spatial topology.

The geometry and Killing vector field of the boosted black string in section 3 are recov-

ered at large radius R → ∞ by defining the coordinate z = φR and the boost velocity

β = ΩR = 1/
√
n+ 1.

As in the case of boosted black strings, we perform small perturbations of the energy

density, fluid velocity and embedding scalars, in particular along the ring radial direction

δε(σ) = δεei(−ωτ+kRφ) , δūφ(σ) = δūφei(−ωτ+kRφ) , δR(σ) = δRei(−ωτ+kRφ) , (4.4)

where we have defined δ̄uφ = Rδuφ which remains finite as R→∞. In this case, eqs. (2.9)

couple to each other and hence hydrodynamic and elastic perturbations cannot be studied

individually. This means that δR perturbations are necessarily accompanied by δε and

δūa perturbations and vice-versa.9 Since the spatial topology is closed, k is quantised such

that m = kR for discrete m. In this context, the vanishing of the determinant of eqs. (2.9)

leads to two elastic modes which remain the same as for the boosted black string (3.5) with

boost β = 1/
√
n+ 1 and hence stable, while the hydrodynamic modes read

ω
(0)
3,4 =

√
n+ 1

(n2 + 2n+ 2)R

(
(n+ 2)m±

√
2(n2 + 2n+ 2)− n2m2

)
. (4.5)

At large radius R → ∞ (i.e. at large m → ∞), these frequencies reduce to those of the

boosted black string with β = 1/
√
n+ 1 given in (3.6), as expected. It can be observed

that the frequencies ω
(0)
3,4 have an imaginary part, with ω

(0)
3 being unstable only if

m > mmin =

√
2

n

√
n2 + 2n+ 2 , (4.6)

while ω
(0)
4 is always stable. In particular mmin =

√
10 for n = 1 and, for m = 1, the

frequencies ω
(0)
3,4 are always real for any n while for m ≥ 2 complex frequencies are attained

only if n ≥ 3. In any case, for each n there is always a sufficiently large enough m

that makes ω3 unstable. This implies that, besides also being unstable in the fat branch

1/2 ≤ r0/R < 1 [20–22], black rings are also Gregory-Laflamme unstable in the thin regime

r0/R� 1 in particular in the regime 0 ≤ r0/R . 0.025 as mentioned in section 1.

It is worth noting that, for instance, for m = 1, 2 the frequency ω3 is real for n = 1.

This is not in contradiction with [6, 12] since the numerical analysis for m = 2 has not been

9It is also possible to consider perturbations along the remaining n + 1 components of the embedding

map, which decouple from δR perturbations for the black ring even at second order in derivatives. At ideal

and first order, the modes coincide with those of the boosted black string with β = 1/
√
n+ 1 while at

second order the elastic modes receive 1/R corrections which we provide in (C.6). These perturbations do

not lead to an elastic instability.
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carried out in the region ν < 0.144 and it is possible to speculate whether the Gregory-

Laflamme instability is present for ν ∼ 0 or whether it ceases to exist at some small value

of ν. It is unclear at the present moment if a real ω3 is a prediction in the infinitely thin

limit or whether the blackfold approach is not valid for m = 1, 2. In fact, as we shall

see when studying first order corrections, these frequencies acquire an imaginary part but

do not have the expected qualitative behaviour, while the elastic frequencies can develop

poles at such low values of m. However, it is clear that the method employed here is more

accurate when m� 1. The perturbation wavelength λ ∼ k−1 ∼ R/m must satisfy

λ� r0 ⇒
r0
R
� 1

m
. (4.7)

At fixed global temperature T (i.e. fixed r0) the boosted black string limit is attained

when R→∞ and hence m→∞ such that m/R is finite. Since the method employed here

describes the dynamics of very thin (ultraspinning) rings, according to (4.7) the larger m is,

the smaller r0/R must be. In particular, in the regime m� 1 the dynamics of black rings

is described by a mild deformation of the dynamics of boosted black strings. Specifically,

we may expand the unstable frequency in (4.5) in powers of 1/m, giving

ω
(0)
3 =

(1 + i)m
√
n+ 1

(n+ 1 + i)R
− i
√
n+ 1

mnR
− i
√
n+ 1(n(n+ 2) + 2)

2m3n3R
+O

(
1

m5

)
, (4.8)

which makes the connection with (3.6) explicit in the limit R→∞ and where the second

and third terms represent deviations in 1/R away from the boosted black string. It is

expected that these results will provide a good approximate description for higher values

of m but only a comparison with a numerical analysis, which is not currently available,

will settle this issue.

The elastic modes for black rings are the same as for boosted black strings with critical

boost (3.6) and hence purely real. It is plausible that these modes could acquire a positive

imaginary part as we move away from the thin limit. This turns out not to be the case as

we will show below. However, corrections to the dispersion relations are still useful as not

only they represent long/short lived time-dependent black hole solutions but also allows to

understand better the behaviour of dominant instabilities.

4.2 First order modes and comparison with large D analysis

At first order in derivatives the equation of motion (2.1) set Ω(1) = 0 for black rings. The

stress tensor receives viscous corrections which for p = 1 only depend on the bulk viscosity.

The vanishing of the determinant of the system (2.9) now requires that the frequencies of

the elastic modes take the form

ω1 = 0 +O
(
ε2
)
, ω2 =

2m
√
n+ 1

(n+ 2)R

(
1 + i

2m
√
n(n+ 2)

4(n+ 1)− (m2 − 1)n2
ε

)
+O

(
ε2
)
, (4.9)

where ε = r0/R makes clear that the ring is not necessarily infinitely thin. We note that

ω2 receives an imaginary contribution that is positive for m = 1 ∀ n and for n = 1 with

m = 2, otherwise it is a negative contribution. However, the correction to ω2 has a pole
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when m̃ = (n + 2)/n, which is maximal when n = 1 for which m̃ = 3 while it is m̃ = 2

for n = 2 and only has another integer value at m̃ = 1 when n → ∞. We interpret

this divergence as a signal that we should not trust (4.9) (and the method in general) for

m ≤ m̃. In particular, when m = m̃ the expansion manifestly breaks down.

In the more accurate regime m� 1 the non-trivial elastic frequency (4.9) becomes

ω2 =
2m
√
n+ 1

(n+ 2)R
− 4i
√
n+ 1

n3/2R
ε+O

(
1

m2

)
+O

(
ε2
)
. (4.10)

Thus, at first order in derivatives, the blackfold approach is not able to identify an elastic

instability for m� 1. On the other hand, using the large D approach ref. [24] has claimed

the existence of an elastic instability. In order to provide a comparison,10 we expand (4.9)

at large n and find

ω1 = 0 +O
(
ε2
)
, ω2 =

2m

R

1√
n
− 4im2

(m2 − 1)nR
ε+O

(
1√
n7

)
+O

(
ε2
)
, (4.11)

while the same frequencies in [24] expanded in the thin radius regime ε = r0/R read

ω
(D)
1 =

im2

4 (m2 − 1)nR
ε+ . . . , ω

(D)
2 =

2m

R

1√
n
− 19im2

4 (m2 − 1)nR
ε+ . . . . (4.12)

We see that ω1 and ω
(D)
1 disagree and that ω2 and ω

(D)
2 only agree at ideal order. In

particular, ω
(D)
1 is the frequency responsible for the elastic instability in [24], due to its

positive imaginary part for any m > 1. This disagreement indicates that ω
(D)
1 and ω

(D)
2

are not correct and hence the results of [24] have not identified an elastic instability.11

The remaining sound modes receive the following corrections at large n

ω
(1)
3 =

m
(
m2 − 3

)√
m2 − 2− i

(
m2 − 2

) (
m2 + 1

)(
m2 + i

√
m2 − 2m− 2

)
nR

+O
(

1√
n3

)
,

ω
(1)
4 =

i(1−m4 + 2m2) + 2
√
m2 − 2m

(m2 − 1)nR
+O

(
1√
n3

)
,

(4.13)

which also disagree with [24] at first order in the thickness and reduce to (3.10) at large

n. The results for arbitrary n and m are provided in the supplementary material. We

note that the mode ω3 is now also unstable for m = 2, as previously advertised. However,

comparison with the numerical results of [6] for m = 2 hints towards the fact that m = 2

is outside the regime of validity of the method employed here. Similarly, comparison of

the mode ω2, which also developed an imaginary part at first order for n = 1, with the

10We remark that we are not imposing a priori constraints on the form of the mode number m as a

function of the parameters of the theory, besides requiring that m � m̃. Consequently, we expect the

comparison with the large D approach to be reasonable under the more general assumption of mΦ = O(1)

as considered in [24]. As in [24], we are also perturbing the stationary black ring configuration along the

physical angular coordinate Φ of the large D approach.
11 The author of [24] does not think that his results are correct and has not been able to reproduce them

at a later stage. This is why the author has never sent the paper for publication (e-mail correspondence).
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Figure 5. On the left, we show the imaginary part of frequencies ω2 (red solid line), ω3 (black solid

line) and ω4 (grey solid line) for black rings up to first order in derivatives as a function of the ring

thickness ν = r0/R for D = 5 and m = 10 using the full expressions provided in the supplementary

material. The dashed lines are the corresponding frequencies for boosted black strings in (3.7) with

critical boost. On the right plot we show the behaviour of the imaginary part of ω3 as a function

of m for m = 6 (red), m = 8 (blue), m = 10 (black) and m = 12 (purple) for D = 5.

results for the elastic instability found in [12] for m = 2 seems to reiterate this point.12

Additionally, it is clear from (4.13) that the expansion also breaks down for m = 1 for any

n as ω3,4 develop a pole. This gives additional evidence that the expansion should not be

trusted for m ≤ m̃.

In the left plot of figure 5 we show the imaginary part of ω2,3,4 for D = 5 and m = 10.

The plot shows that only the frequency ω3 (black solid line) has a positive imaginary part

and hence signals a hydrodynamical instability. The dashed lines are the corresponding

boosted black string results of section 3 at critical boost. As the thickness ν increases, the

behaviour of the black ring frequencies increasingly differs from the boosted black string

frequencies. It is expected that the results presented here will be valid for small ν . 0.025.

In the left plot of figure 5 we have clearly extrapolated the curves beyond the regime

of validity.

In the right plot of figure 5 we exhibit the growth rates of the instability ω3 for different

values of m starting with m = 6 (red line) and ending with m = 12 (purple line) for D = 5.

The curves show that the instability grows faster for increasing m. Thus, the large m

modes dominate the dynamics of very thin black rings.

4.3 Second order modes

At second order in derivatives for D ≥ 7, the stability analysis of black rings becomes more

involved due to the additional non-trivial contributions to the equations of motion (2.3).

12The comparison of our results with those of [6, 12] is not exact since the latter results are valid for

ν ≥ 0.144 while the former are expected to be valid for ν . 0.025. However, the qualitative behaviour of

our results is far from what is expected, as it does not approximate the results of [6, 12] when extrapolated

to larger values of ν.
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Figure 6. The left plot exhibits the behaviour of the imaginary part of the frequencies ω2 (red solid

line), ω3 (black solid line) and ω4 (grey solid line) for black rings up to second order in derivatives

as a function of the ring thickness ν = r0/R for D = 7 and m = 10. The dashed lines are the

corresponding frequencies for boosted black strings in (3.12) with critical boost. The right plot

exhibits the growth rate of the instability associated to ω3 as a function of ν for m = 6 (red line),

m = 8 (blue line), m = 10 (black line) and m = 12 (purple line).

At this order equilibrium (2.3) requires that13

Ω(2) = Ω(0)
n2 + 3n+ 4

2n2(n+ 2)
ξ(n) . (4.14)

Thus the ideal order stress tensor will contribute with extra terms due to the second order

correction to Ω. As explained in section 1 we expect this analysis to be valid for small

values of the thickness ν, in particular for ν . 0.27 for D = 7.

Given (4.14), requiring the determinant of (B.3) to vanish leads to the purely real

second order correction to the first elastic mode14

ω1 = 0 +
m
(
m2 − 2

) (
m2 + 1

)√
n+ 1(3n+ 4)

2 (m2 − 1)n2(n+ 2)R
ξ(n)ε2 +O

(
ε3
)
, (4.15)

which is purely real and reduces to (3.12). Thus, ω1 acquires time-dependent behaviour as

expected, since the fluid velocity is not aligned with a Killing vector field, but no unstable

behaviour. Interestingly, up to this order this mode does not attenuate and thus represents

a long lived time-dependent modulation of a black ring. Given that ω1 is real we conclude

that the blackfold approach is not able to detect an elastic instability in asymptotically

flat black rings at this given order in the expansion for D ≥ 7 and for any value of m ≥ 2.

The remaining modes acquire non-trivial corrections at second order, whose explicit

expression we have provided in the supplementary material. In the left plot of figure 6 we

exhibit the behaviour of the imaginary parts of the frequencies ω2,3,4 in D = 7 for m = 10

as a function of ν. As it can be seen from figure 6, the frequency ω3 (black solid line)

acquires a positive imaginary part in the region ν . 0.27 and we thus expect to accurately

describe the onset of the Gregory-Laflamme instability. We note that the frequency ω2

13This result is related to the one obtained in [30] via the field redefinition R→ R−Rξ(n)ε2/n.
14It is worth mentioning that, like ω3,4 in (4.13), ω1 develops a pole at m = 1 for any n.
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Figure 7. Onset of the Gregory-Laflamme instability νGL for black rings as a function of n for

m = 8 (black lines), m = 12 (blue lines), m = 20 (purple lines) and m = 50 (red lines) using first

order blackfold approach (dashed lines) and second order blackfold approach (solid lines).

never acquires a positive imaginary part but that ω4 does. For m = 10 and D = 7, as

seen from figure 6, the imaginary part of ω4 becomes positive for ν > 0.3. The origin of

this positive imaginary part is rooted in the comment we made at the end of section 3.3

about the same behaviour of ω4 for the boosted black string. As explained there, the

imaginary part of ω4 lies outside the regime of validity of the method. If m increases, both

the imaginary part of ω3 and ω4 are pushed to lower values of ν but ω4 remains outside

the regime of validity due to (4.7). Thus, this does not signal a new instability.

In the right plot of figure 6 we exhibit the growth rates of the instability associated

with ω3 as a function of m in D = 7 starting with m = 6 (red line) and ending in m = 12

(purple line). For small values of ν the growth rate increases with increasing m as already

noted in figure 5. As ν increases further, the growth rate eventually decreases to zero,

analogous to the behaviour of boosted black strings and to the numerical results of [6] for

m = 2. It is possible to determine the onset of the instability analytically. At large m and

n, the onset can be written in a compact form

νGL =
n(4n(2n− 3)− 53)− 60

8mn3/2
+
n(n(131− 12n(2n+ 1)) + 51)− 769

4m3n3/2
+O

(
1

m5
,

1

n3

)
.

(4.16)

The full expression for the onset is provided in the supplementary material. In figure 7

we exhibit the onset of the instability νGL as a function of n for different values of m,

in particular m = 8 (black line) up to m = 50 (red line) as predicted by the first order

approximation (dashed lines) and second order approximation (solid lines). It is clear from

figure 7 that the behaviour of the onset is qualitatively similar to that of the boosted

black string of figure 4. One observes that as m increases, the onset ends at thiner and

thiner rings, in agreement with figure 6. These analytic results consist of the first analytic

determination of νGL.
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5 Discussion

In this paper we initiated a systematic study of the dynamical stability of black holes in

D ≥ 5 in the blackfold limit (ultraspinning limit) and applied it to asymptotically flat

boosted black strings and black rings. In the context of boosted black strings, though

studied numerically in [1, 8], we have provided new analytic results such as the growth

rate of the Gregory-Laflamme instability for arbitrary boost β and analytic expressions for

the onset of the instability for arbitrary boost and spacetime dimension. In the context

of black rings, we have provided the first correct analytic expressions for the growth rate

of the Gregory-Laflamme instability as a function of the axisymmetric mode m and for

the onset of the instability. In D = 5, our analysis is valid for at least ν . 0.025 and in

D = 7 for ν . 0.27. This thus progresses in closing the gap in parameter space where black

rings were found to be unstable (i.e. for ν ≥ 0.144 in [6] and ν ≥ 0.15 in [12] in D = 5)

by showing explicitly the instability for very thin rings, and for large non-axisymmetric

modes, where numerical methods are not precise enough.

Despite our analysis including second order corrections to the blackfold approxima-

tion, we have not been able to identify an elastic instability of black rings, as that found

numerically in [12] for m = 2 and D = 5.15 We have identified divergences in the dis-

persion relations for hydrodynamic and elastic modes that manifestly break the expansion

when m = 3 for D = 5, m = 2 for D = 6 and m = 1 for all D ≥ 5. We have inter-

preted these divergences as signalling that the blackfold approximation breaks down for

m ≤ m̃ = (n + 2)/n. In fact, a qualitative comparison of the growth rates of potential

Gregory-Laflamme and elastic instabilities for D = 5 and m = 2 found here with those

numerically obtained in [6, 12] indeed suggest that the analysis we have carried out is not

valid for m = 2 and D = 5.16 On the other hand, the analysis performed here is more

accurate for large modes m � 1 for which, within this approach and up to second order,

no elastic instability is found in any dimension D. This suggests that there is a value of

ν that marks the onset for the elastic instability and that due to the requirement (4.7),

our analysis is only valid for very thin rings which lie in a region of parameter space below

that onset.17 We observe in the work of [12] that the growth rate of the elastic insta-

bility for ν = 0.15 is close to zero, giving some rationale for this interpretation and, in

addition, unpublished numerical results [41] substantiate this picture. It may be the case

that signatures of the elastic instability appear at third or higher order but to push the

blackfold approximation beyond second order is as a daunting task as it is useless since

it would require a very high number of derivative corrections, making the effective theory

impractical. At any rate, the non-existence of the elastic instability in the thin regime,

and the fact that the elastic frequency ω2 is real up to second order, promptly suggests the

15We emphasise that we have interpreted the non-axisymmetric instability found in [12] as an extrinsic

perturbation from the blackfold point of view, which if unstable, would be visible in the dispersion relation

of elastic modes. See also footnote 1.
16We note, however, that this comparison is only qualitative since the results of [6, 12] are only valid for

ν ≥ 0.144. See also section 4.2.
17We thank P. Figueras for suggesting this to us.
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existence of a long-lived mode that describes a slow time-dependent modulation of a black

ring — a wiggly black ring.

The above considerations lead us to conclude that the Gregory-Laflamme instability

is the dominant instability for black rings in D ≥ 5 in the thin regime. In this context,

we also observed that the growth rate of the Gregory-Laflamme instability increases with

increasing m for very thin rings, in which case the dominant instability is that associated

with the boosted black string. At higher values of ν, and hence for thicker rings, there is

competition between modes with different m as shown in figure 6. A numerical analysis of

black ring instabilities for m � 1 would be extremely useful in order to provide a better

comparison between analytic and numerical methods.

The results obtained here have been compared with corresponding results using the

large D approach. In the case of boosted black strings we have found an exact agreement

with the findings of [23, 24, 38], for which the inclusion of the Young modulus of black

strings was key. In general, the blackfold approach provides a better approximation, more

accurate for small k, and predicts a value for the onset of the instability for any D whereas

the large D approach, though the predicted growth rates increase without bounds with

increasing k for D ≤ 9, predicts a better onset of the instability when the large D result

is extrapolated to smaller values of D. In the case of black rings, we have compared our

results with those of [24] and found that the existent large D results are not correct (see

footnote 11). Thus there is currently no analytic understanding of the elastic instability

found in [12].

This work only dealt with boosted black strings and black rings but the method we

have provided here, and the complete characterisation of the black brane stress tensor

up to second order in derivatives in appendix A, is sufficient for studying the dynamical

stability of a plethora of different uncharged asymptotically flat black hole solutions, such

as helical black rings, Myers-Perry black holes and helicoidal black rings [14–17]. We plan

on returning to this general analysis in the future.

Furthermore, in the case of curved backgrounds such as Anti-de Sitter space, the

method can be applied up to first order in derivatives to many of the black holes studied

in [42, 43]. In order to push it one order higher, it is required to first study the Love numbers

of asymptotically flat black branes similarly to the work of [44, 45] and to extract the

relevant transport coefficients associated with couplings to the background Riemann tensor.

Gathering some of the existent results in the literature [46–51], it will be possible to

study the dynamical stability of black holes in supergravity and string theory by general-

ising the methods described here. Such generalisation can then be applied to the study of

dynamical stability of charged black holes [52–62]. We wish to pursue this direction in the

near future.
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A Stress tensor and bending moment of perturbed black branes

In this appendix we provide the stress tensor and bending moment for perturbed (intrin-

sically and extrinsically) boosted black branes up to second order in derivatives, assuming

the absence of boundaries. The full structure of the stress tensor and bending moment for

these black branes at pole-dipole order was given in [33, 63, 64]. However, the exact form

of all relevant transport coefficients was not given. Here we derive all transport coefficients

by combining several results originating from different endeavours.

Decomposing derivatives of the fluid velocity as

∇aub = −uaab + σab + ωab +
θ

p
Pab , (A.1)

where the fluid acceleration, shear, vorticity and expansion are defined as

ab = ua∇aub , σab = P caP
d
b∇(cud) −

θ

p
Pab , ωab = P caP

d
b∇[cud] , θ = ∇aua , (A.2)

the stress tensor, up to second order in derivatives, can be written in the form [63]18

T ab = εuaub + PP ab − 2ησab − ζθP ab

+ T
(
γ1u

c∇cσ<ab> + γ2R<ab> + γ3F
<ab> + γ4θσ

ab
)

+ T
(
γ5σ

c<aσc
b> + γ6σ

c<aωc
b> − γ7ωc<aωcb> + γ8a

<aab>
)

+ T
(
ζ1u

c∇cθ + ζ2R+ ζ3u
cudRcd + ζ4θ

2 + ζ5σ
2 + ζ6ω

2 + ζ7a
2
)
P ab

+ λ1

[
KiKi

(
γab − (n+ 2)uaub

)
− 4Kab

iK
i
]

+ λ2

[
KcdiKcdi

(
γab − (n+ 2)uaub

)
− 4KaciKb

ci

]
+ λ3

[
ucudKc

eiKdei

(
γab − nuaub

)
− 2ucudKa

c
iKb

di

]
,

(A.3)

where all coefficients ζ, η, γi, ζi, λi are functions of the temperature T and we have defined

σ2 = σabσ
ab, ω2 = ωabω

ab, a2 = aaaa.
19 In (A.3) we have introduced the intrinsic Ricci

18This form of the stress tensor is the most general one at pole-dipole order and does not include couplings

to the background Riemann tensor besides those that are implicit via the intrinsic Riemann tensor and

Gauss-Codazzi relations. In full generality, at second order in derivatives, including pole-quadrupole order,

further couplings to the background Riemann tensor are present. However, since in this paper we focus on

backgrounds with vanishing Riemann tensor, such couplings need not be considered.
19The last three lines of (A.3) have not been written in the Landau frame but are instead given in

the partition function frame. It is always possible to write these last three lines in the Landau frame by

performing the frame transformation given in [63].
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scalar R and Ricci tensor Rab defined in terms of the Christofell connections associated

with γab and F ab = ucudRcadb where Rabcd is the intrinsic Riemann tensor. We have also

defined the brackets <> which act on an arbitrary tensor Aab as

A<ab> = Pa
cPb

d

(
Acd +Adc

2
− γcd

p
P efAef

)
. (A.4)

In turn, the bending moment, with associated Young modulus, takes the following form

Dabi = YabcdKcd
i , Yabcd = 2

(
λ1γ

abγcd + λ2γ
a(cγd)b + λ3u

(aγb)(cud)
)

. (A.5)

For asymptotically flat black branes, the energy density, pressure, temperature and entropy

density were determined in [7] to be

P = −
Ω(n+1)

16πG
rn0 , ε = −(n+ 1)P , T =

n

4πr0
, s =

Ω(n+1)

4πG
rn+1
0 , (A.6)

while the shear η and bulk ζ viscosities were determined in [31] to be

η =
s

4π
, ζ = 2η

(
1

p
+

1

n+ 1

)
. (A.7)

At second order in derivatives, the coefficients λi were determined in [33], using the results

of [32, 34], and account for elastic corrections. These coefficients read

λ1 = − Pr20
(3n+ 4)

2n2(n+ 2)
ξ(n) , λ2 = −Pr20

1

2(n+ 2)
ξ(n) , λ3 = −Pr20ξ(n) ,

ξ(n) =
n tan(π/n)

π

Γ
(
n+1
n

)4
Γ
(
n+2
n

)2 ,

(A.8)

and are well defined for n ≥ 3. In order to determine the remaining coefficients in (A.3)

we note that, in the case Kab
i = Rabcd = 0 and n ≥ 3, refs. [36, 37] derived the following

second order corrections to the stress tensor

T ab(2)|K=R=0 = 2ητω

[
P acP bdue∇eσcd −

θ

n+ 1
σab + 2ω(a|c|σb)c

]
+ ζτω

[
uc∇cθ −

θ2

n+ 1

]
P ab

− 2ηr0

[
P acP bdue∇eσcd +

(
2

p
+

1

n+ 1

)
θσab + σacσbc +

σ2

n+ 1
P ab
]
,

(A.9)

where τω = r0
nH−2/n−1 is the harmonic number function. By direct comparison of (A.9)

with (A.3) one obtains

T γ1 = 2η (τω − r0) , T γ4 = −2η

(
τω

n+ 1
+ r0

(
2

p
+

1

n+ 1

))
,

T γ5 = −2ηr0 ,

T γ6 = −4ητω , γ7 = 0 , γ8 = 0 , T ζ1 = ζ (τω − r0) , ζ6 = 0 , ζ7 = 0 ,

T ζ4 = −ζ
(

τω
n+ 1

+ r0

(
1

p
+

1

n+ 1

))
, T ζ5 = −2ζr0

(
1

p
+

1

n+ 1

)
,

(A.10)

while γ2, γ3 and ζ2, ζ3 are left undetermined.
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In order to determine these coefficients we recur to equilibrium partition functions,

which set strong constraints on the stress tensor, compatible with the second law of ther-

modynamics. At pole-dipole order and for configurations that have vanishing Kab
i the

most general equilibrium partition function, ignoring the presence of boundaries, takes the

form [33, 63, 64]

F = −
∫
Bp

√
−γ
(
P + P̃1R+ P̃2ω

2 + P̃3a
2
)
, (A.11)

for coefficients P̃i that are unknown functions of T and scale as Pi ∝ rn+2
0 by dimension

analysis. When Rabcd = 0 and assuming equilibrium ua = ka/k, one can derive ω2 =

−∇aaa (see (A.3) of [65]). In this case, the partition function (A.11) reduces to20

F|R=0 = −
∫
Bp

√
−γ
(
P + (P̃3 − T P̃ ′2)a2

)
, (A.12)

where the prime denotes ∂T P̃2. The particular combination of P̃3 − T P̃ ′2 was in turn

determined in [16] (see (3.24) and subsequent discussion) to be

P̃3 − T P̃ ′2 =
Ω(n+1)

16πG
rn+2
0

n

2
, n ≥ 3 . (A.13)

This, together with the fact that γ7 = γ8 = 0 will be sufficient to determine the unknown

transport coefficient γ2 from which, according to the constraints derived from the second

law of thermodynamics in [65], the remaining coefficients γ3, ζ2, ζ3 can be obtained. In fact,

γ7 = γ8 = 0 implies that P̃2 and P̃3 can be expressed in terms of P̃1 as we shall see.

Returning to the partition function (A.11), we now consider the case where Kab
i = 0

but R may be non-zero.21 The constraints that the equilibrium partition function (A.11)

imposes on the constitutive relations were studied in [66]. Using the defining relations

in (3.25) of [67] between P̃i and the functions Pi introduced in [66], together with the

constraints (5.8) and (5.15) of [66], eq. (A.13) and γ7 = γ8 = 0 we deduce that22

P̃1 = −Pr20
1

n+ 2
, P̃2 = −(n+ 2)

2
P̃1 , P̃3 = (n+ 1)(n+ 2)P̃1

T γ2 = −2P̃1 , T γ3 = 2(n+ 2)P̃1 , T ζ2 = −2

(
1

p
+

1

n+ 1

)
P̃1 ,

T ζ3= 2
(n+ p+ 1)

p
P̃1 , n ≥ 3 .

(A.14)

This completes the determination of (A.3), which provides the complete stress tensor for

blackfolds up to second order in derivatives for backgrounds with vanishing Riemann tensor.

20Here we have assumed that the submanifold has no boundaries but the same result holds in the presence

of boundaries once we use the blackfold boundary condition r0|∂Bp = 0 [7] at the boundary ∂Bp.
21Due to the Gauss-Codazzi equation this implies that Racbd = Rabcd where Rabcd is the tangential

projection of the background Riemann tensor. Thus, when considering (A.11) we assume that Rabcd is

non-vanishing. Additionally, the derivation of the remaining transport coefficients requires that all other

projections of the background Riemann tensor onto the submanifold vanish.
22We note that expressions (5.8) of [66] can be straightforwardly generalised to arbitrary p. These

expressions can also be obtained by taking the results of [68] for arbitrary D and performing a frame

transformation to the Landau frame.

– 25 –



J
H
E
P
0
4
(
2
0
1
9
)
1
6
9

This paper focuses on the case of black strings and black rings for which the wordvolume

is two-dimensional, i.e. p = 1. Hence, by definition σab = ωab = 0. Thus the stress

tensor (A.3) simplifies considerably to

T ab =εuaub + PP ab − ζθP ab

+ T
(
ζ1u

c∇cθ + (ζ2 −
ζ3
2

)R+ ζ4θ
2

)
P ab

+ λ1

[
KiKi

(
γab − (n+ 2)uaub

)
− 4Kab

iK
i
]

+ λ2

[
KcdiKcdi

(
γab − (n+ 2)uaub

)
− 4KaciKb

ci

]
+ λ3

[
ucudKc

eiKdei

(
γab − nuaub

)
− 2ucudKa

c
iKb

di

]
,

(A.15)

where we have used that for two-dimensional surfaces R<ab> = F<ab> = 0 and Rab =

Rγab/2. It is interesting to note that the coefficient proportional to R does not affect the

boosted black string dispersion relations of section 3 and neither does it affect the elastic

mode ω1 for black rings in section 4.

B Linearised equations at second order

In section 2.2 we obtained the linearised equations of motion (2.9) up to first order in

derivatives. In order to obtain the second order equations we must consider perturbations

of (2.3). Defining Nµ = ∇a∇bDabµ, we explicitly evaluate its variation under variations of

the embedding map

δNµ = ∇a∇bδDabµ + δΓ̃cac∂bDcbµ + δΓµaλ∂bD
abλ + 2∂a

(
δΓ̃

(a
bcD

b)cµ
)

+ 2δ
(

Γ̃adaΓ̃
(d
bc

)
Db)cµ

+ 2δ
(

ΓµaλΓ̃
(a
bc

)
Db)cλ + ∂a

(
δΓµλbD

abλ
)

+ δ
(

Γ̃aacΓ
µ
λb

)
Dabλ + δ (ΓµαaΓ

α
λb)Dabλ ,

(B.1)

where the variations of the induced connection Γ̃abc (associated with γab) and background

connection Γµνλ (associated with gµν), as well as its projections, read [35]

δΓabc =
1

2
γcd
(
2∇(aδγb)d −∇dδγab

)
, δΓµνλ = δXα∂αΓµνλ , δΓµaλ = δeνaΓ

µ
νλ + eνaδΓ

µ
νλ ,

(B.2)

with δeνa = ∂aδX
µ and δγab given in section 2.2. Given δNµ, the linearised equations up

to second order thus take the form

∇aδT ab − T cb∇c
(
KρδX

ρ
⊥
)
− 2T ac∇a

[
Kb

cρδX
ρ
⊥

]
+ T ac∇b

(
KacρX

ρ
⊥
)

= δebµN
µ + ebµδN

µ ,

δT abKab
i + T abniµ∇a∇bδXµ

⊥ =
(
niρΓ

ρ
µνδX

ν − niρeaµ∇aδXρ
)
Nµ + niµδN

µ ,

(B.3)

where we have used that [35]

δniµ = niρ∇µδXρ − niρ∂µδXρ − niρeaµ∇aδXρ − nµjω̂j i ,
δKab

i = niµ∇a∇bδXµ −Kab
jω̂ij , ω̂ij = nµinαjδX

λ∂[αgµ]λ ,
(B.4)
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and assumed that the Riemann tensor of the background vanishes. Though it is a fully

spacetime covariant expression, it is clear from the form of (B.3) that the right hand side

is not manifestly spacetime covariant, which is a feature of working with variations of the

embedding map instead of Lagrangian variations [35].

In order to evaluate (B.3), it is required to evaluate the variations of the bending

moment δDabµ and of the second order corrections to the stress tensor δT ab(2), which consist

of variations of all the terms appearing in the last four lines of (A.15). In particular, the

second order coefficients appearing in (A.5) and (A.15) are proportional to rn+2
0 and hence

can be traded by variations of δε. For instance, using (A.6) one finds δλ1 = (n+2)λ1δε/(nε).

Together with (B.4) and the variations δγab, δu
a given in section 2.2, it is straightforward

to obtain δDabµ and the variation of the contributions in the third to fifth lines in (A.15).

The second line in (A.15) varies such that

δT ab(2) =

[
ζ (τω − r0)uc∇cδθ +

(n+ 2)

n

(
ζ2 −

ζ3
2

)
Rδε
ε

+

(
ζ2 −

ζ3
2

)
δR
]
P ab + . . . , (B.5)

since θ = 0 for equilibrium configurations and where the dots represent the variations of

the last three lines in (A.15). The variation of the intrinsic Ricci tensor and scalar can be

evaluated by noting that

δRab = ∇cδΓ̃cac −∇bΓ̃cac , δR = ∇a
(
γbcδΓ̃abc

)
−∇bδΓ̃aab +Rabδγab . (B.6)

This is all that is required for explicitly obtaining (B.3) for specific configurations.

C Details on hydrodynamic and elastic modes

Here we provide some of the exact solutions to the dispersion relations and the onset of

the Gregory-Laflamme instability obtained in the core of this paper. The remaining details

are given in the supplementary material.

Hydrodynamic modes of boosted black strings. In section 3 we obtained expres-

sions for second order elastic modes for arbitrary boost parameter β. Here we report the

corrections to the hydrodynamic modes, specifically

ω3,4 = ± i(n+ 2)k2

2n
√
n+ 1 (n+ 1 + β2)5

[
−

(n+ 2)
(√
n+ 1∓ iβ

)2 (
n+ 1∓ i

√
1 + nβ

)4
n(n+ 1)

+
2(n+ 2)

(√
1 + n∓ iβ

) (
n+ 1∓ i

√
1 + nβ

)3 (
n+ 1∓ 3i

√
n+ 1β − 2β2

)
n
√
n+ 1

+ 2
(
n+1+β2

) (√
n+ 1+n

(√
n+ 1∓ 2iβ

)
∓ 2iβ −

√
n+ 1β2

)2
((τω/r0)− 1)

]
k ,

(C.1)

where τω was introduced in appendix A.
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Hydrodynamic and elastic modes of boosted black strings at large D. In sec-

tion 3 we compared our results with corresponding ones from a large D analysis. Here we

re-derive the results of [24], in particular the elastic modes read

ω1,2 = (α∓ 1)
k√
n
± 1

2

(
1∓ 2α+ 2α2 + 3k2

) k√
n3
− 3i

k4

n2
+O

(
1√
n5

)
, (C.2)

and hence when comparing with (3.13) one must ignore the term of order O
(
n−2

)
since it

is of order O
(
(r0k)3

)
, which is one higher order in the brane thickness than what we have

considered in this paper. In turn, the hydrodynamic modes read

ω3,4 =(α± i) k√
n
− ik2

n
∓ i

2

(
1± 2iα+ 2α2

) k√
n3

+
ik2
(
−2± 6iα+ 3α2

)
2n2

± 1

8

(
3i∓ 8α− 4iα2 ∓ 8α3 + 8k2(i± 2α)

) k√
n5

+O
(

1√
n7

)
,

(C.3)

and agree exactly (without any approximation) with those obtained in (3.14).

Onset of the Gregory-Laflamme instability for boosted black strings. In sec-

tion 3.3 we have shown the behaviour of the onset of the hydrodynamic instability using the

blackfold approach. The exact expression for the onset, including second order corrections,

is given by

kGLr0 =
2n

√
(n+ 2) (β2 + n+ 1)4 (2f [β, n] + g[β, n])− h[β, n]

2k(n+ 2) (f [β, n]− l[β, n])
, (C.4)

where the functions f, g, h, l are given by

f [β, n] =− 2H−n+2
n

(
β2 + n+ 1

) (
β4 − 6β2(n+ 1) + (n+ 1)2

)
+ β6(5n+ 6) ,

g[β, n] =− β4(n+ 1)(81n+ 122) + 8β2(n+ 1)2(3n+ 11) + (n+ 1)3(3n− 2) ,

h[β, n] =2(n+ 2)
(
−3β2 + n+ 1

)√
n(n+ 1)

(
β2 + n+ 1

)2
,

l[β, n] =5β4(n+ 1)(9n+ 14) + 5β2(n+ 1)2(3n+ 10) + (n− 2)(n+ 1)3 ,

(C.5)

where H is the harmonic number function introduced in appendix A.

Elastic modes for black rings along the n + 1 transverse directions. As men-

tioned in footnote 9, it is possible to perturb the black ring along the remaining transverse

(n + 1) directions Xi. In the case of black rings, these perturbations decouple from δR

perturbations and from perturbations along each i direction up to second order in deriva-

tives. It is useful to introduce new elastic frequencies ω5,6 that describe the propagation

of elastic modes due to deformations of the (n+ 1) Xi directions. At ideal and first order,

these frequencies are the same as the frequencies ω1,2 obtained for boosted black strings in

section 3 with critical boost β = 1/
√
n+ 1. At second order, they receive corrections due
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to the corrected equilibrium condition for black rings (4.14), which take the form

ω
(2)
5 =

m
(
m2 − 1

)√
n+ 1(3n+ 4)ξ(n)

2n2(n+ 2)R
,

ω
(2)
6 =

m
√
n+ 1

(
n
(
n
(
n
(
n
(
m2(−(3n+4))+5n+46

)
+172

)
+328

)
+320

)
+128

)
ξ(n)

2n2(n+ 2)5R
,

(C.6)

where ξ(n) was introduced in appendix A. These corrections do not acquire an imaginary

part and hence they are stable. In the limit m→∞ they reduce to (3.12).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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