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Abstract: We use blackfold methods to analyse the properties of putative supergravity

solutions in M-theory that describe the backreaction of polarised anti-M2 branes (namely,

M5 branes wrapping three-cycles with negative M2-brane charge) in the Cvetic-Gibbons-

Lu-Pope background of eleven-dimensional supergravity. At zero temperature we recover

the metastable state of Klebanov and Pufu directly in supergravity. At finite temperature

we uncover a previously unknown pattern of mergers between fat or thin M5-brane states

with the thermalised version of the metastable state. At sufficiently small values of the anti-

brane charge a single fat-metastable merger follows the same pattern recently discovered

for polarised anti-D3-branes in the Klebanov-Strassler solution in type IIB supergravity.

We provide quantitative evidence that this merger is driven by properties of the horizon

geometry. For larger values of the anti-brane charge the wrapped M5-brane solutions

exhibit different patterns of finite-temperature transitions that have no known counterpart

in the anti-D3 system in Klebanov-Strassler.
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1 Introduction

The backreaction of anti-branes in string theory backgrounds with fluxes is a complicated

problem with important ramifications. Anti-branes have been used in the past to study

supersymmetry breaking in string theory and holography [1, 2], to engineer de Sitter so-

lutions [3] and study inflationary model building [4], and to construct non-extremal black

hole microstates [5]. The range of applications is large, but the detailed mechanisms of

anti-brane backreaction have been the subject of much debated controversies.
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1.1 Comments on anti-D3 backreaction in Klebanov-Strassler

One of the prime examples of anti-brane backreaction in the presence of fluxes involves anti-

D3 branes in the Klebanov-Strassler (KS) warped deformed conifold solution in type IIB

string theory [6]. This background, which involves non-trivial 3-form NSNS and RR fluxes,

is holographically dual to a 4d N = 1 supersymmetric quantum field theory (QFT) with

SU(N)×SU(N+M) gauge group. The original probe computation by Kachru, Pearson and

Verlinde (KPV) in ref. [2] revealed that p anti-D3 branes form a metastable state, where

the anti-D3s polarise into NS5 branes wrapping an S2 inside an S3 at the tip of the KS

throat geometry. The metastable state exists when p/M is sufficiently small, p/M . 0.08.1

The probe computation was performed in [2] in two complementary ways: (i) using

the worldvolume theory of the anti-D3 branes and (ii) using a worldvolume theory for NS5

branes. In the D3 perspective (i), the non-abelian DBI action is best understood in the

super-Yang-Mills limit, which, effectively, restricts the description close to the north pole of

the S3. The NS5 brane perspective (ii) does not have this restriction but the formulation

of an effective worldvolume theory for NS5 branes is more challenging. KPV employed an

abelian DBI action that arises by S-duality from the DBI action of the D5 brane. This step

is dubious (see e.g. [7]), because it is in conflict with the regime of validity of the probe

approximation that requires gsp� 1 (gs is the string coupling constant).

The fate of the metastable state beyond the probe approximation involves higher lev-

els of complexity. Considerable effort has been devoted to understand the properties of

backreaction in the supergravity regime where one needs to construct backreacted anti-D3

brane solutions with KS asymptotics. Many works, starting with [8], revealed solutions of

the supergravity equations that involved unphysical singularities in the 3-form fluxes.2 The

presence of these singularities was viewed by some authors as evidence that backreaction

can change dramatically the conclusions of the probe approximation casting doubt to the

very existence of the metastable state originally discovered by KPV (and its subsequent ap-

plications to string phenomenology, e.g. [4]). This conclusion was challenged, however, by

the authors of [16] who argued that the inclusion of backreaction effects in the effective field

theory of a single anti-D3 brane are mild and under control, as one would naively expect.

The non-extremal properties of anti-D3 branes can provide further information about

the physics of the system. The thermal properties of anti-D3 black branes in the Klebanov-

Strassler background were discussed in a series of papers [17–20].

In the overwhelming majority of the supergravity constructions the discussion centred

around the physics of the backreaction of point-like anti-D3 branes. There are several

reasons why the NS5-brane point of view is more appropriate:

1) The metastable state in the probe computation of [2] is a spherical NS5 state.

2) A natural candidate for the resolution of the observed supergravity singularities in-

volves the formation of a spherical NS5-brane state á la Polchinski-Strassler [21].

1p is the number of anti-D3 branes and M the units of 3-form flux through the S3 of the KS geometry.
2Related earlier work includes [9, 10]. Subsequent developments after [8] include [11–15].
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3) The exact supergravity arguments of [22, 23], which are based on Smarr relations, pro-

vide no-go theorems for supergravity solutions describing point-like anti-D3 branes,

but leave wide open the possibility of regular spherical NS5 brane solutions.

For all these reasons, a proper understanding of anti-D3 backreaction in the KS background

requires information about spherical NS5-brane states. Without this information, previous

indications, either from the probe or the supergravity computations with point-like or

smeared anti-D3 brane solutions, remain inconclusive.

Finding a supergravity solution that describes spherical NS5 branes with KS asymp-

totics is a daunting task requiring the solution of complicated systems of partial differential

equations in supergravity. Exact analytic solutions to this problem have been notoriously

out of reach. For that reason, it is sensible to shift the focus towards more versatile ap-

proximation schemes of the supergravity equations. The blackfold formalism [24–26], which

combines elements of matched asymptotic expansions (see e.g. [27, 28] for a discussion of

matched asymptotic expansions in the context of caged black holes) and higher-form fluid

hydrodynamics, has provided very useful information about such problems in the past,

starting with [29] that explored the properties of neutral higher-dimensional black ring

solutions in pure Einstein gravity. All attempts to uncover such solutions in six and higher

spacetime dimensions using exact solution generating techniques so far have failed! This is

not encouraging for exact approaches, since the case of black rings in flat space is expected

to be simpler than the case of wrapped NS5 branes in a geometry with fluxes like the

Klebanov-Strassler background.

In recent work [30], we argued that there is a regime of parameters where (extremal and

non-extremal) spherical NS5 branes in the KS background should be well approximated by

D3-NS5 blackfolds. In this regime, if a full-fledged supergravity solution exists it should

obey a certain set of dynamical equations which can be expressed as equations for an

effective six-dimensional worldvolume theory. The analysis in [30] revealed the following

key points:

1) Extremal spherical NS5 branes should obey at leading order in the blackfold expan-

sion the same equations that were employed by KPV, namely the equations that

arise from the S-dual of the DBI action for the D5 brane. Since these equations are

now derived directly in the supergravity regime, there is no clash between different

regimes of validity and the extremal KPV metastable state can be derived in a long-

wavelength approximation directly in gravity. That removes one of the criticisms

against the KPV metastable state.

2) In the appropriate regime of parameters, p/M . 0.08, the extremal spherical NS5

branes exhibit two vacua away from the north and south poles: one metastable and

one unstable. The blackfold analysis revealed that as soon as the branes become

non-extremal an additional unstable vacuum appears. This is a novel, ‘fat’ unstable

NS5-brane state. Increasing the entropy of the solutions leads to a merger of the fat

unstable state with the thin metastable state. As a function of the entropy, the non-

extremal system exhibits a transition with the features of saddle-node bifurcation.

– 3 –
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Quantitative evidence was provided in [30] suggesting that the origin of this transition

is closely related to the geometric properties of the corresponding black hole horizons.

3) The emerging picture from the blackfold analysis is suggestively consistent with the

exact analysis of [22]. In all cases where [22] lifted a no-go theorem the blackfold

approach produced a go with concrete quantitative predictions.

1.2 Outline and summary of results

The analysis of [30] can be extended in several directions. In this paper we explore extremal

and finite-temperature metastable configurations of anti-branes in a different background

with fluxes. Our goal is two-fold: to test the blackfold approach in more examples of

anti-brane backreaction and to supplement known results with new predictions.

We will focus on another much-studied example of anti-brane backreaction that in-

volves anti-M2 branes in a warped product of R2,1 and the eight-dimensional Stenzel space

in M-theory — the CGLP background [31]. The Stenzel space is a deformed cone over the

Sasaki-Einstein manifold V5,2 = SO(5)/SO(3), which is the base of the Calabi-Yau 4-fold∑5
i=1 z

2
i = 0. Similar to the KPV construction in type IIB string theory, the anti-M2

branes are placed at the tip of the cone, where they backreact in the presence of non-trivial

four-form fluxes. This situation was first analysed in the probe approximation by Kle-

banov and Pufu (KP) in [32], who found a metastable stable of anti-M2 branes polarised

into M5 branes wrapping a three-cycle for p/M̃ . 0.054 (here p is the number of anti-M2s

and M̃ the units of the background four-form flux). The CGLP background is asymp-

totically AdS4 × V5,2 and describes holographically a dual three-dimensional gauge theory

(see e.g. [33–35] for aspects of the dual QFT.) The KP vacuum expresses holographically

a metastable state in the strongly coupled dual QFT.

The fate of the KP state beyond the probe approximation was considered in a series

of papers. In [36–40] unphysical four-form flux singularities in supergravity solutions of

backreacted anti-M2s were observed casting doubt on the existence of the KP state. In [23]

an exact supergravity analysis based on a Smarr formula provided a natural explanation

of the observed singularities and indicated that the no-go theorems for point-like anti-M2

branes can be evaded for spherical M5 branes in agreement with the probe computation.

The no-go theorems of [23] make the following predictions about exact supergravity

solutions of anti-M2 branes in the CGLP background:

1) There are no regular extremal solutions of point-like anti-M2 branes. Here and in

what follows, the terminology ‘point-like anti-M2’ refers to solutions with vanishing

M5 brane dipole charge and spherical horizon topology (more precisely, R2 × S7

horizon topology). Regular solutions of M5 branes wrapping a 3-cycle, with horizon

topology R2 × S3 × S4, can evade the no-go theorem.

2) At finite temperature, point-like anti-M2 black brane solutions can in principle exist,

but require a specific boundary condition for the gauge potentials at the horizon. As

we noted in the previous point, they cannot have a regular extremal limit. Regular

black M5 brane solutions wrapping a 3-cycle are in principle allowed.

– 4 –
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As a result, we expect that as we raise the temperature, the horizon size of a putative

metastable M5 black brane state will increase eventually eating up the S3 part of the

geometry and converting the horizon topology to an S7. At that point (or close to that

point), either the solution is one of the spherical horizon topology solutions (if such solutions

exist) or the metastable black M5 state disappears. Whatever the outcome, this picture

suggests a finite temperature transition.

One can imagine different mechanisms by which a metastable M5 state disappears in a

scenario where it cannot transit to a solution of spherical horizon topology. One possibility

is a mechanism driven by horizon geometry. Near the critical point, the deformations of the

horizon geometry play an important role and lead to the loss of the metastable state before

the solution changes topology. Another possibility is that the metastable state disappears

before the size of the Schwarzschild radius grows significantly because of modifications

of the finite-temperature potential that resemble how the metastable state is lost at zero

temperature at sufficiently high values of the anti-charge.

In this paper we uncover, using the blackfold formalism, a black hole phase diagram

that is not only consistent with these expectations and the no-go theorems of [23], but

also reveals new unexpected patters of finite-temperature transitions. Interestingly, we

find (unlike the case of anti-D3 branes in Klebanov-Strassler) that both of the possibilities

mentioned in the previous paragraph can appear in different regimes of parameters.

At zero temperature, we show that the blackfold equations recover faithfully the abelian

DBI equations used by KP in [32] and the same extremal metastable vacuum that they

found. Alternatively, these equations could be obtained with the use of the abelian PST

effective action for M5 branes [41–43]. The fact that the blackfold equations for extremal

M2-M5 brane bound states are closely related to the equations of motion of the PST ef-

fective action has also been noted previously in [44, 45]. In section 2 we re-affirm this

statement. The main lesson of this part is that the KP metastable state is consistent with

the constraint equations of supergravity for a putative wrapped M5 brane configuration.

As we note in section 3.1, this is a strong indication that one can setup a matched asymp-

totic expansion scheme to obtain perturbatively a regular solution of fully backreacted

metastable wrapped M5 branes in supergravity.

At finite, sufficiently small, temperature, we uncover (in direct analogy to the case of

anti-D3 branes in Klebanov-Strassler [30]) three main branches of wrapped M5 black brane

solutions: a fat unstable state, a metastable state and a thin unstable state. The terms

‘fat’ and ‘thin’ refer to the relative size of the S3 that the M5 brane wraps and the size of

the Schwarzschild radius. The behaviour of these branches at higher temperatures depends

on the value of p/M̃ . Surprisingly, in section 6 we discover three separate regimes of p/M̃

(inside the window of the metastable state, p/M̃ . 0.054) that exhibit different patterns

of thermal transitions.

There is a low-p/M̃ regime where the anti-M2 physics in CGLP is very similar to the

anti-D3 physics in Klebanov-Strassler. In this regime there is a single finite-temperature

transition that involves the merger of a fat unstable black M5 with the metastable black

M5. Beyond this merger the metastable state is lost. We present non-trivial quantitative

evidence that supports the scenario where this merger is driven by properties of the horizon

– 5 –
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geometry. This observation gives us confidence that the leading order blackfold equations

capture quite accurately the long-wavelength properties of full-fledged black hole solutions.

In addition, for the anti-M2 system we find two regimes of p/M̃ that have no known

counterpart in the system of anti-D3 branes in Klebanov-Strassler. In the large-p/M̃

regime there is a single merger between the metastable state and the thin unstable M5

brane state. In this case, there are no indications that the loss of the metastable state is

driven by properties of the horizon geometry. In an intermediate regime of p/M̃ the phase

diagram exhibits three (instead of one) transitions: two of them involve mergers of the

metastable state with the thin unstable state and one involves a merger of the metastable

state with the fat unstable state. These patterns are new, unexpected predictions of the

blackfold formalism for supergravity and the dual QFT.

The plan of the paper is as follows. Useful properties of the CGLP background are

reviewed in section 2. The key components of the formalism that we use and the regime of

our approximations are discussed in section 3. The recovery of the extremal KP state from

the blackfold equations is presented in section 4. The non-extremal blackfold equations and

several related types of effective potentials that facilitate different aspects of our analysis

are discussed in section 5. The main results on the non-extremal properties of the system

are obtained in section 6. Important questions and open problems are summarised in the

concluding section 7. A note on Smarr relations is relegated to appendix A.

2 M-theory setup

We consider the backreaction of polarised anti-M2 branes in the eleven-dimensional super-

gravity solution of CGLP [31], which is a warped product of R2,1 and the eight-dimensional

Stenzel space. The eleven-dimensional background metric has the form

ds2
11 = gµνdx

µdxν = H−
2
3
(
−(dx0)2 + (dx1)2 + (dx2)2

)
+H

1
3ds2

8 , (2.1)

where ds2
8 is the metric element of the Stenzel space. Details on the full structure of this

metric and the function H can be found in [31, 32]. The background also involves a non-

trivial profile for the four-form field strength G4 and its Hodge dual G7 = ?11G4. It is

convenient to collect the following constants that appear in this background (we follow

closely the notation in [32])

• A constant m appears in the expressions of G4 and G7 and is related to the M̃ units

of G4 flux through an S4 of the background via the relation

M̃ =
18π2m

(2π`P )3
, (2.2)

where `P is the eleven-dimensional Planck length.

• The complex structure deformation of the four-complex dimensional conifold that

gives rise to the Stenzel space is expressed in terms of the constant ε. In complex

coordinates zi in C5 the Calabi-Yau space
∑5

i=1 z
2
i = 0 is deformed to

∑5
i=1 z

2
i = ε2.

– 6 –
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• At the tip of the cone the value of the function H is

Ĥ0
m2

ε
9
2

' 1.0898
m2

ε
9
2

. (2.3)

• It is useful to consider the related constants

a2
0 =

(
m2

ε
9
2

Ĥ0

)− 2
3

, b20 =
3

2
Ĥ

1
3
0 . (2.4)

Anti-M2 branes placed in the CGLP background are attracted towards and eventually

stabilise at the tip of the eight-dimensional cone. Hence, for our purposes it is enough to

focus on the tip of the conifold (τ = 0 in the appropriate radial coordinate τ [32]). After a

trivial rescaling of the Minkowski coordinates x0, x1, x2 by the constant factor a0/(b0m
1/3)

one obtains the metric3

ds2 = m
2
3 b20
(
−(dx0)2 + (dx1)2 + (dx2)2 + dψ2 + sin2 ψ dΩ2

3

)
. (2.5)

We will use spherical coordinates ϑ, ω, ϕ to express the metric element of the unit round

S3 as dΩ2
3 = dϑ2 +sin2 ϑ

(
dω2 + sin2 ω dϕ2

)
. The four-form flux G4 = dA3 is given in terms

of the gauge field

A3 =
27

4
mf(ψ) sin2 ϑ sinω dϑ ∧ dω ∧ dϕ , (2.6)

where

f(ψ) =
1

3
cos3 ψ − cosψ +

2

3
, (2.7)

while the seven-form flux G7 takes the form

G7 = −27

4
m2b30 sin3 ψ sin2 ϑ sinω dx0 ∧ dx1 ∧ dx2 ∧ dψ ∧ dϑ ∧ dω ∧ dϕ . (2.8)

3 Forced M-brane blackfolds and higher-form hydrodynamics

We are interested in supergravity solutions that describe the polarization of M2 branes

into M5 branes wrapping an S3 inside the S4 of the background geometry (2.5). As we

noted in the introduction there is almost no information about such solutions in the current

literature, because the exact solutions of this type involve the analysis of intractable partial

differential equations.

A more efficient approach involves a long-wavelength expansion scheme of the su-

pergravity equations where one tries to match a solution that interpolates between the

asymptotic background (2.5)–(2.8) at large distances and the near-horizon region of a

wrapped M2-M5 bound state solution. In the appropriate regime of parameters, which will

be discussed in detail later in this section, the local behaviour of the latter can be further

3At the tip, we localise at the origin of the transverse four-dimensional flat space. Hence, in (2.5) only

an S4 out of the overall seven-dimensional transverse space appears.

– 7 –
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approximated by the M2-M5 bound state solution in flat space. For quick reference, the

M2-M5 bound state in flat space has metric [46] (see also [47, 48])

ds2 = (HD)−
1
3
[
−f(dx0)2 + (dx1)2 + (dx2)2 +D((dx3)2 + (dx4)2 + (dx5)2)

]
+H

(
f−1dr2 + r2dΩ2

4

)
,

(3.1)

where

f = 1− r3
0

r3
, H = 1 +

r3
0 sinh2 α

r3
, D = (sin2 θH−1 + cos2 θ)−1 . (3.2)

There are also non-trivial profiles for the 3-form potential A3 and the dual potential A6

A3 = − sin θ cothα (H−1 − 1) dx0 ∧ dx1 ∧ dx2 + tan θDH−1dx3 ∧ dx4 ∧ dx5 , (3.3)

A6 = cos θ cothαD(H−1 − 1)dx0 ∧ dx2 ∧ · · · ∧ dx5 . (3.4)

The M5 worldvolume directions are along (012345) and there is a smeared density of M2-

brane charge along the directions (012). The parameters r0, α, θ are parameters of the

non-extremal solution. They parametrise the thermodynamic quantities of the solution

(the energy density ε, the temperature T , the entropy density s, the M2 and M5 chemical

potentials Φ2,Φ5 and the corresponding charge densities Q2,Q5). In the Einstein frame

we have the following relations

ε =
Ω4

16πG
r3

0(4 + 3 sinh2 α) , T =
3

4πr0 coshα
, (3.5)

s =
Ω4

4G
r4

0 coshα , Φ2 = − sin θ tanhα , Φ5 = cos θ tanhα , (3.6)

Q2 = − 3Ω4

16πG
r3

0 sin θ sinhα coshα , Q5 =
3Ω4

16πG
r3

0 cos θ sinhα coshα , (3.7)

where Ω4 = 8π2

3 is the volume of the unit 4-sphere S4 and G = (2π)8`9P is Newton’s

gravitational constant. For later reference we also define the quantity

Q̃2 =
3Ω4

16πG
r3

0 sin θ cos θ sinh2 α , (3.8)

which is obtained from the solution (3.1)–(3.4) from an integral of the four-form field

strength G4 = dA3 over an S7 that surrounds the worldvolume directions that are or-

thogonal to the dissolved M2-brane density: Q̃2 = − 1
16πG

∫
S7 ?G4. The expression of the

corresponding free energy F (which will be useful later on) is

F = ε− T s =
Ω4

16πG
r3

0(1 + 3 sinh2 α) . (3.9)

The extremal limit is achieved by taking r0 → 0, α → ∞ with the combination r3
H ≡

r3
0 sinh2 α kept fixed.

When the values of the parameters r0 and θ are non-zero the SO(5, 1) Lorentz sym-

metries of the M5-brane worldvolume are spontaneously broken by the temperature and

the presence of the M2-brane density. The Goldstone bosons of these symmetries can be

phrased in terms of a unit time-like velocity vector ua and a projector ĥab which is aligned

– 8 –
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along the worldvolume directions of the smeared M2-brane density inside the M5.4 From

here on, latin letters from the beginning of the alphabet a, b, . . . = 0, 1, . . . , 5 will be used to

denote the M5-brane worldvolume directions. ĥab can be further expressed in terms of three

unit spacelike orthonormal worldvolume vectors va, wa, za (which are also normal to ua)

ĥab = ηab − vavb − wawb − zazb , (3.10)

where ηab is the 6d Minkowski metric. In terms of these variables the worlvolume energy-

momentum tensor takes the form

Tab = T s
(
uaub −

1

3
ηab

)
− Φ2Q2ĥab − Φ5Q5ηab . (3.11)

With these ingredients one would like to set up a scheme of matched asymptotic

expansions where the supergravity equations are solved perturbatively. In this scheme a

wrapped M5-brane solution is captured at leading order in the near horizon region by a

long-wavelength deformation of the M2-M5 bound state (3.1)–(3.4) where the parameters

r0, θ, ĥab are promoted to slowly varying functions of the M5 worldvolume directions σa (a =

0, 1, . . . , 5). The extrinsic bending of the worldvolume in the ambient eleven-dimensional

spacetime is captured by promoting the trivial Minkowski metric ηab in (3.11) into a non-

trivial slowly varying induced metric γab.

Let us denote by rb the characteristic scale of the near-horizon solution, by L the

characteristic scale of the asymptotic background and by R the characteristic scale of the

above worldvolume quantities. Typically, the scales L and R are not completely unrelated

because a non-trivial background forces a solution to develop comparable gradients. We

would like to work in a regime where rb � min(R, L). The small ratio rb/R � 1 guarantees

that we can set up a matched asymptotic expansion where a near-zone solution at trans-

verse distances r � R can be matched to a far-zone solution at r � rb on a large overlap

region rb � r � R. The simultaneously small ratio rb/L� 1 guarantees that the leading

order near-zone solution can be approximated by the (black) M2-M5 brane solution in flat

space. Concrete examples of this expansion in AdS spacetimes can be found in [51, 52]

(a related general discussion appears in section 5 of [26]). The specifics of the conditions

imposed by these small ratios in our setup will be presented in subsection 3.3 below.

In general cases, obtaining solutions of long-wavelength deformations in the near hori-

zon region is highly non-trivial even at the leading order of the expansion. The existence

of regular solutions was worked out systematically in pure Einstein gravity in [53] and in

Einstein-Maxwell-dilaton theories in [54, 55]. It remains an open problem in general super-

gravity theories for multi-charge solutions, though the set of necessary constraint equations

that need to be solved for the existence of such solutions has been identified in full gener-

ality [26], as will be explained below. Despite the lack of a general complete construction

of regular solutions in such matched asymptotic expansions in supergravity, the analysis of

the above cases and the many successful applications of the blackfold formalism has led to

4In full generality, Goldstone scalars are expected to be required to be introduced to describe the

dynamics of the system as for smeared string density [49, 50]. However, for the cases studied in this paper,

it is sufficient to work with ĥab.
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the appreciation that one can distill very useful, immediate information about a putative

gravitational solution by focusing the analysis on the constraint equations of (super)gravity

and studying them independently of the rest of the (super)gravity equations.

3.1 On the dominant role of the constraint equations

The (super)gravity constraint equations for (black) brane ansätze of the above-mentioned

type are conservation equations of effective currents (the energy-momentum tensor and

other higher-form currents) that can be identified either in the near-zone or the far-zone

expressions of the perturbative solution.5 In the leading order far-zone analysis they be-

come the well-known (forced) conservation equations of the Newtonian-approximation. The

importance of the constraint equations relies on three central points:

(i) They are necessary conditions for the existence of a perturbative solution. This

is most evident in the asymptotic Newtonian analysis of the matched asymptotic

expansion.

(ii) In all cases that have been worked out in detail (most notably [53] in Einstein gravity)

the constraint equations are also sufficient conditions for the existence of a regular so-

lution. Specifically, the solution of the leading order constraint equations guarantees

the consistent solution of all the gravitational equations at first order. The expec-

tation that this is true to all orders of the matched asymptotic expansion in general

theories of gravity and for general black brane solutions was dubbed ‘the blackfold

conjecture’ in [44]. This conjecture has a closely related cousin in the fluid-gravity

correspondence in AdS/CFT [56].

(iii) The solution of the leading order constraint equations provides complete thermody-

namic information about the first-order backreacted supergravity solution. This is

also analogous to the fluid-gravity correspondence (e.g. [57]).6

The constraint equations are equations of an effective worldvolume theory. Since they

capture long-wavelength properties of broken symmetries they are naturally formulated as

generalized higher-form hydrodynamics on dynamical hypersurfaces. We will be referring

to these equations as ‘blackfold equations’ and they will be laid out explicitly for the system

of interest in the following subsection.

We would like to stress the following point. The fact that the leading order blackfold

equations can be obtained from an asymptotic Newtonian analysis may give the impression

that these equations are describing solutions in a probe approximation where backreaction

effects are not taken into account. This viewpoint is misleading. Because of points (ii) and

(iii) the blackfold equations capture data of bona fide backreacted supergravity solutions.

A clean example of this statement can be found in [29] where neutral ultra-spinning thin

5For supersymmetric M2-M5 solutions in flat space it has been shown [45] that one can also find an

analog of the usual gravitational constraint equations in the Killing spinor equations. These equations

coincide with the κ-symmetry conditions of the abelian M5-brane theory.
6See also [29] for a concrete exhibition of this statement.
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black rings in higher-dimensional Einstein gravity were analysed using these very same

blackfold and matched asymptotic expansion techniques.

It has been noted [26, 44, 58] that by applying the leading order blackfold equations to

extremal multi-charge D-brane configurations in ten-dimensional type IIA/B supergravity

one can re-discover from supergravity the familiar abelian DBI description of D-branes

and all their bulk-boundary couplings in open string theory.7 By studying higher-order

corrections of the blackfold equations in the double rb/L, rb/R expansion in the presence

of higher-form charges one can obtain interesting modifications of the abelian DBI actions

that have not been explored systematically to-date (for previous studies of higher-derivative

corrections see [59–64]).

The blackfold equations extend easily beyond the case of D-branes. At extremality,

they also provide DBI-like descriptions for NS5 branes8 as well as M-branes in M-theory

whose microscopic derivation is less straightforward. For M5 branes one expects to recover

the PST effective action [43] in this manner. We will verify this expectation for a special

configuration of wrapped M5s in section 4 and section 5.2.

Motivated by points (i), (ii), (iii) above, the main purpose of this paper is to analyse

the constraint equations for polarised black anti-M2 branes in the CGLP background.

Assuming the validity of (ii) we will be able to obtain in this manner new information

about the existence of fully-backreacted metastable states in M-theory in the supergravity

regime and data about their finite-temperature thermodynamic properties that have been

to-date inaccessible to all other methods.

The validity of point (ii) is crucial in this exercise. We expect it to be true for the

following reasons. Firstly, as we mentioned above there are classes of examples where at

least the leading order of the required matched asymptotic expansions work in accordance

with (ii). There is a proof of this statement for neutral black holes in Einstein gravity [53]

and in Einstein-Maxwell-dilation theories and related ones [66].

For anti-branes in background fluxes one may be especially worried that (ii) may

fail. However, by following the exact analysis of [22, 23] one can derive specific no-go

theorems, where it is obvious when unphysical singularities may occur. The polarised anti-

D3s in Klebanov-Strassler and the polarised anti-M2s in CGLP evade these no-go theorems.

Although, this does not prove (ii) it provides a very suggestive context where it can be

considered. In fact, as we emphasised in the introduction, we can do a little better.

The exact analysis of [22, 23] emphasises the role of horizon topology and makes a

natural prediction. On general grounds, one expects that as one increases the temperature

of a black hole solution with non-spherical horizon topology, there will be a point, at

7The DBI action is derived in weakly coupled open string theory when D-branes are treated in the probe

approximation. In [44] it was proposed that the simultaneous emergence of the abelian DBI in the opposite,

supergravity regime, is a manifestation of the supergravity/DBI correspondence and that its origin should

be traced back to open-closed string dualities that generalise the AdS/CFT correspondence beyond the

near-horizon decoupling limit. The relation of the leading order blackfold equations with DBI dynamics

has been shown to exist at extremality irrespective of supersymmetry [44].
8The 6d blackfold effective action for NS5 branes is the natural non-linear completion of the NS5 world-

volume action proposed several years ago in [65]. As we noted in the introduction, this worldvolume

description of NS5 branes played a key role in [30] where the KPV results were recovered.
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sufficiently high temperature, where the horizon topology of the solution will change and

will become spherical. As we noted in the introduction, this is a natural scenario consistent

with the no-go theorems, where the topology change does not occur, because a dramatic

change of the horizon geometry is accompanied with the loss of the metastable branch.

In section 6 we show that, according to the blackfold analysis, there is a regime of p/M̃

where this scenario is indeed verified. In addition, the blackfold equations produce concrete

quantitative data that support the claim that this transition is driven by properties of the

horizon. In our opinion, this is non-trivial evidence that fits well with the proposed validity

of the assumption in point (ii).

It would be very interesting to show (ii) explicitly by constructing the full first-order

backreacted supergravity solution. This is a rather complicated task to which we hope to

return in future work. Nevertheless, we stress again that by solving all the supergravity

equations at the leading order of the matched asymptotic expansion we would demonstrate

(ii) (and therefore the perturbative existence of the backreacted polarised anti-M2-branes),

but we would not obtain any new information about thermodynamics at this order beyond

the data we extract in the present paper.

3.2 Blackfold equations

We can summarise the M2-M5 thermodynamics (3.5)–(3.11) with the use of the following

currents, namely, the energy-momentum tensor

Tab = T s
(
uaub −

1

3
γab

)
− Φ2Q2ĥab − Φ5Q5γab (3.12)

= C

[
r3

0

(
uaub − 1

3
γab
)
− r3

0 sinh2 αγab + r3
0 sin2 θ sinh2 α

(
vavb + wawb + zazb

)]

and the charge currents

J3 = Q2 ∗ (v ∧ w ∧ z)− Q̃2 v ∧ w ∧ z
= Cr3

0 sin θ sinhα [− coshα ∗ (v ∧ w ∧ z)− cos θ sinhαv ∧ w ∧ z] , (3.13)

J6 = −Q5 ∗ 1 = −Cr3
0 cos θ sinhα coshα ∗ 1 . (3.14)

In these expressions we introduced for convenience the constant C = 3Ω4
16πG = π

2G . γab =

gµν
∂Xµ

∂σa
∂Xν

∂σb
is the six-dimensional induced metric on the effective M5-brane worldvolume

and gµν is the eleven-dimensional metric on the asymptotic background. The scalars Xµ

capture covariantly the embedding of the 6d worldvolume in the ambient background ge-

ometry. The Hodge dual ∗ refers to the induced metric γab. We draw the attention of the

reader to the two contributions that appear on the r.h.s. of eq. (3.13). The first contri-

bution is an electric current for the dissolved M2-brane charge and the second a magnetic

current that follows from fluxes that are inherent in the M2-M5 bound state.
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The general leading order blackfold equations in M-theory in the presence of back-

ground fluxes were derived in [26]. They can be written in the form

∇aT aµ =
1

3!
Gµa1a2a34 J3a1a2a3 +

1

6!
Gµa1···a67 J6a1···a6 , (3.15)

d ? J3 + ?J6 ∧G4 = 0 , (3.16)

d ? J6 = 0 . (3.17)

In these expressions ? is the Hodge dual with respect to the eleven-dimensional asymptotic

background metric gµν .

The combination of eqs. (3.15)–(3.17) and (3.12)–(3.14) can be viewed as an effec-

tive 6d hydrodynamic system for a perfect fluid of higher-form symmetries on a dynami-

cal worldvolume. They are dynamical equations for the unknown worldvolume functions

r0, θ, α, u
a, va, wa, za and the transverse part of the embedding scalars Xµ.

The current conservation equations (3.16), (3.17) have a straightforward meaning.

Eq. (3.17) implies that the total number of M5 branes is fixed, namely that the quantity

Q5 is a constant of motion. Q5 is a bona fide charge when the M5 brane does not wrap

compact surfaces, otherwise it is a dipole charge. The modified conservation equation (3.16)

implies the conservation of an effective current d ? J̃3 = 0 such that the M2-brane charge

Q2 ≡
∫
M⊥

3

∗J̃3 , J̃3 = J3 + ?(?J6 ∧A3) , (3.18)

is also a constant of motion. In this expression the integral is performed over the world-

volume directions M⊥3 perpendicular to the worldvolume directions M3 of the dissolved

M2-brane charge. Q2 is the Page charge of the M2 branes [67].

3.3 Regimes of validity

The blackfold expansion is a long-wavelength expansion whose validity requires that higher-

order corrections are much smaller than the ideal order quantities. Determining the validity

of blackfold approximations requires a quantitative understanding of the length scales asso-

ciated to variations of leading order structures, such as that associated with the curvature

of the worldvolume. Many of the geometric structures that determine the scales L,R dis-

cussed above have been analysed in [63, 68], such as the worldvolume Ricci scalar, the

spacetime Ricci scalar or the square of the mean extrinsic curvature of the worldvolume.

Thus, we must require that rb � min(L,R) where rb can be one of the three different

length scales characterising the near-horizon brane solution, namely the radii associated

with the energy density and charge densities (see (3.5)–(3.7))

rb =

(
ε

C
,
Q5

C
,
Q2

C

)1/3

, (3.19)

where we recall that C = π
2G .

In the following sections we will be considering configurations of M5 branes that are

extended along the directions x0, x1, x2 and wrap the S3 at fixed angle ψ in the CGLP
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background (2.5). It is then natural to focus our attention on the validity of these specific

configurations. The smallest curvature scale is that associated with the curvature of the

worldvolume (R ∼ b0m1/3 sinψ) and the largest intrinsic scale is the energy density radius

(rb ∼ r0 sinhα). Thus we must require

r0 sinhα� b0m
1/3 sinψ , (3.20)

which constrains the product r0 sinhα. It is clear from this expression that the validity of

the approximation breaks down both near the north and south poles. The same conclusion

is reached if charge density radii are considered. In particular, expressing the M5 brane

charge in terms of the number N5 of M5 branes such that

Q5 =
N5

(2π)5`6P
, (3.21)

and using 16πG = (2π)8`9P , together with (2.2), one must have that(
N5

M̃

)1/3

� b0 sinψ , (3.22)

which again breaks down near the north and south poles. On the other hand, for values of

sinψ ∼ 1 one obtains
N5

M̃
� 1 . (3.23)

When approaching the poles, i.e. for values of sinψ ∼ 0, one requires an even smaller ratio

of N5/M̃ . From the requirement that charge density associated to Q2 is small enough, one

finds (
p

M̃

)1/3(N5

M̃

)1/3

� b0 sinψ , (3.24)

where we have defined
p

M̃
≡ Q2

18π2mQ5
. (3.25)

From the requirement (3.24) we deduce that the ratio p/M̃ cannot be too large. We thus

conclude that, except very near ψ = 0, π, there is always a choice of parameters that allows

for these configurations to be within the regime of validity of the approximation.

4 KP metastability from extremal blackfolds

As a useful warmup, we consider first the case of a special time-dependent ansatz of wrapped

M5 branes. We assume that the conditions of the blackfold expansion are met and that

the time-dependence is characterised by appropriately small derivatives. Since we wrap

the M5s around the S3 at τ = 0 in (2.5) there is a single transverse scalar that we turn on

— the angle ψ. We work in static gauge and set

x0 = σ0 ≡ t , xi = σi (i = 1, 2) , ϑ = σ3 , ω = σ4 , ϕ = σ5 . (4.1)
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We are taking the extremal limit r0 → 0, α→∞ keeping the combination r3
H = r3

0 sinh2 α

fixed. In our ansatz there are three unknown functions

ψ(t) , rH(t) , θ(t) . (4.2)

Part of our ansatz specifies the orientation of the M2 branes that are smeared inside the

M5 worldvolume. We choose the M2s to be oriented along the directions x0, x1, x2. Hence,

the timelike velocity vector and the three orthonormal spacelike vectors normal to the M2

worldvolume directions inside the M5 branes are

ua∂a = m−1/3b−1
0 (1− ψ′2)−1/2∂t , va∂a = m−1/3b−1

0 (sinψ)−1∂ϑ , (4.3)

wa∂a = m−1/3b−1
0 (sinψ sinϑ)−1∂ω , za∂a = m−1/3b−1

0 (sinψ sinϑ sinω)−1∂ω . (4.4)

Inserting this ansatz into the extremal version of the equations (3.15)–(3.17) we obtain the

dynamical equations that describe the slow motion of homogeneous polarized anti-M2s in

the ψ direction inside the S4 of the background geometry.

A little algebra shows that, when projected along the worldvolume the energy-

momentum conservation equations (3.15) are trivial. The single non-trivial equation

in (3.15) is the µ = ψ equation, which reads

cotψ =
9

4b30

(
− tan θ +

√
1− ψ′2
cos θ

)
− ψ′′

3(1− ψ′2)

1

cos2 θ
. (4.5)

As we noted previously, the current conservation equation (3.17) expresses the fact

that

Q5 = Cr3
H cos θ (4.6)

is a constant of motion. This equation can be used to eliminate rH(t) in terms of θ(t).

The second current conservation equation determines the Page charge Q2 in terms of the

dynamical variables of the problem

Q2 =
27π2m

2
Q5

(
1

3
cos3 ψ − cosψ +

2

3

)
− 2π2Cmb30r3

H sin θ sin3 ψ . (4.7)

Together with (4.6), this equation can be used to express θ(t) in terms of the transverse

scalar ψ(t)

tan θ =
1

b30 sin3 ψ

[
−9p

M̃
+

27

4

(
1

3
cos3 ψ − cosψ +

2

3

)]
. (4.8)

The equations (4.5), (4.6), (4.8) are a complete set of dynamical equations. It is

straightforward to verify that the combination of (4.5) and (4.8) follows by Euler-Lagrange

variation from the Lagrangian

L =
√

1− ψ′2
√
Ĥ0

96
sin6 ψ +

(
3

8
f(ψ)− p

2M̃

)2

− 3

8
f(ψ) +

p

2M̃
, (4.9)

where

f(ψ) ≡ 1

3
cos3 ψ − cosψ +

2

3
. (4.10)
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This coincides with the DBI Lagrangian obtained by U-duality from the D4 brane in the

probe approximation in [32]. The agreement between the probe DBI expressions and the

leading-order extremal blackfold equations that we found here is another example of the

supergravity/DBI correspondence.

Our analysis suggests that the use of the DBI equations is a valid long-wavelength

approximation in the supergravity regime irrespective of supersymmetry. Therefore, we

can use (4.9) to search for metastable states. In this manner we recover the KP results in

the regime of section 3.3 directly in supergravity. To find static vacuum configurations we

need to extremise the potential that follows from (4.9), that is

Vextremal(ψ) =

√
Ĥ0

96
sin6 ψ +

(
3

8
f(ψ)− p

2M̃

)2

− 3

8
f(ψ) +

p

2M̃
. (4.11)

5 Thermal M-brane anti-blackfolds

From the point of view of holography, temperature can be incorporated in the system at

hand in different ways. Let us list here three rough possibilities:

• One option is to begin by adding temperature to the supersymmetric vacuum of

the dual QFT. In the bulk this involves a CGLP black hole with positive M2-brane

charge.9 Then, one can analyse the existence and properties of a metastable state in

this thermal environment. In the bulk, an analysis based on the probe approximation

would entail at leading order the use of a DBI-type action for a wrapped M5 brane

in the background of the CGLP black hole.

• A second option that focuses more directly on thermal effects on the metastable

state itself goes along the following lines. In the bulk description, we can either

consider solutions in the probe approximation using a thermalised DBI-like (or PST-

like) effective action in CGLP, or in the supergravity regime we can attempt to

construct a wrapped M5 black hole with negative M2 charge that asymptotes to the

supersymmetric background. In this section, we will focus on the second approach

using blackfold techniques. The fundamental difference between this bullet point

and the previous one is that as one turns off the anti-brane charge, in the first case

one recovers a thermal state of the dual QFT, whereas in the second one recovers a

supersymmetric ground state of the dual QFT.

• A third, more general, option is to thermalise all the sectors of the system at the

same time.10 This would entail in the bulk the construction of a black hole solution

that describes the backreaction of a thermally excited wrapped M5 brane in the

background of the CGLP black hole. One could also try to capture aspects of this

case with blackfold techniques, but we will not explore this possibility in this case.

9For a construction of smeared black M2-brane solutions that preserve an SO(5) symmetry see [71].
10This approach was taken for example in [69] which considers the thermalized version of the BIon solution

by analyzing a D3-F1 blackfold in hot flat space and in [70] which considers an F1 blackfold in the AdS

black hole background to study finite temperature Wilson loops.
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Adding temperature to the effective actions of weakly coupled open strings is a noto-

riously difficult problem that involves open string loop computations (we refer the reader

to [72] for a relevant discussion). In that sense, implementing the option of the second bullet

point with a DBI-like probe analysis is not a straightforward exercise. In the supergravity

regime, however, the blackfold equations allow the incorporation of thermal effects rather

easily. In this section we present the explicit form of the non-extremal blackfold equations

and discuss ways to obtain static thermal vacua from the extremisation of thermal effective

potentials.

5.1 Non-extremal equations

For concreteness, let us consider again a time-dependent ansatz for a wrapped M5. To

obtain the thermal version of the equations in section 4 we need to find the explicit form

of the equations (3.15)–(3.17) without implementing the extremal limit r0 → 0, α → ∞
with rH fixed. In this case, r0(t) and α(t) are independent dynamical variables.

The current conservation equation (4.8) remains the same

tan θ =
1

b30 sin3 ψ

[
−9p

M̃
+

27

4

(
1

3
cos3 ψ − cosψ +

2

3

)]
. (5.1)

Eq. (4.6) becomes

Q5 = Cr3
0 cos θ sinhα coshα (5.2)

and can be used to eliminate r0 in terms of α and θ. The non-extremal analog of eq. (4.5) is

ψ′′

1− ψ′2

(
4

9
+

1

3
sinh2 α

)
+ cotψ

(
1

3
+ cos2 θ sinh2 α

)
=

9

4b30
cos θ sinhα

(
− sin θ sinhα+

√
1− ψ′2 coshα

)
.

(5.3)

These are three equations for four unknowns. Unlike the extremal case where these

equations follow from a variational principle, in the non-extremal case there is no obvious

candidate of an effective action for arbitrary time-dependent configurations.

In what follows, we focus on static configurations where the equation (5.3) simplifies to

cotψ

(
1

3
+ cos2 θ sinh2 α

)
=

9

4b30
cos θ sinhα (− sin θ sinhα+ coshα) . (5.4)

The solutions of eqs. (5.1), (5.4) at fixed p/M̃ are parametrised by a free constant.

This could be a non-extremality parameter like r0 or α, or a more physically motivated

thermodynamic parameter like the total entropy S or the global temperature T .

The solutions of (5.1), (5.4), and their properties, will be discussed in detail in section 6.

In the rest of this section we explain how to obtain these solutions as extrema of suitable

effective potentials. A different potential is formulated for each parameter that we choose

to keep fixed. We will discuss three kinds of potentials: VT where the global temperature

T is kept fixed, VS where the total entropy S is kept fixed and Vα where the parameter α is

kept fixed. The first two thermodynamic potentials have appeared before (see e.g. [59, 73]).

The third one, which is new, is non-thermodynamic.
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5.2 Interlude on effective potentials

5.2.1 Comments on effective thermodynamic potentials

Before we present specific effective potentials for the M2-M5 configurations of interest, it is

useful to first comment on a slightly more general problem. The general blackfold equations

describe an effective fluid on a dynamical hypersurface. Let us assume that we are interested

in stationary solutions of these equations. For such solutions there is a worldvolume Killing

vector field ka, which is assumed to be the pullback of a background Killing vector field

kµ. It has been argued in [25, 59, 73] that by using standard thermodynamic quantities it

is possible to formulate effective actions of the transverse scalars whose extrema reproduce

the profiles of stationary solutions. In these actions the intrinsic degrees of freedom of

the effective fluid are integrated out and the variational problem is restricted to stationary

configurations. These actions are guaranteed to produce correct stationary solutions if they

recover the currents of the fluid under general variations of the background fields.

For concreteness, let us focus on the case of interest: M2-M5 blackfolds on the CGLP

background. We can obtain an effective action by varying over stationary configurations at

a fixed global temperature T in the following manner. By definition, the global tempera-

ture is related to the local temperature T of the effective fluid in (3.5) as T = |k|T . For the

Killing vector ka we have ka∂a = m1/3b0 ∂t and ua = ka/|k|— hence, |k| = m1/3b0. Varia-

tions of the background lead to variations of the induced metric δγab, the pulled-back three-

form gauge potential δA3abc and its dual δA6abcdef , defined such that G7 = dA6+A3∧G4/2.

These variations are performed keeping Q2, Q5 and T fixed. Let us denote γ⊥ab ≡ vavb +

wawb + zazb the projector onto worldvolume directions perpendicular to the dissolved M2

directions. Keeping Q2, T and Q5T
3 fixed under variations imply the variational properties

δ tan θ = (v ∧ w ∧ z)abcδA3abc −
1

2
tan θ γ⊥abδγab ,

δr0 = −1

2
r0u

aubδγab − r0 sinhα coshα δ(tanhα) ,

δ(tanhα) =
3

2

tanhα

1− sinh2 α
uaubδγab +

tanhα

1− sinh2 α
sin θ cos θ δ(tan θ) ,

(5.5)

respectively. Under such variations one can easily show that the thermodynamic effective

action

ST = −
∫
M6

d6σ
√
−γ F +Q5

∫
M6

P[A6] + Q2

∫
M3

P||[A3] ,

= −
∫
M6

d6σ
√
−γ F +Q5

∫
M6

(
P[A6] +

1

2
P[A3 ∧A3] +

Φ2

Φ5
dV⊥ ∧ P||[A3]

)
,

(5.6)

reproduces the correct currents

δST =

∫
M6

d6σ
√
−γ
(

1

2
T abδγab + J̃abc3 δA3abc + J a1···a66 δA6a1···a6

)
. (5.7)

In (5.6) F = ε−T s is the free energy (3.9), P[A6] is the pullback of the background six-form

A6, M6 is the six-dimensional worldvolume of the effective theory, P||[A3] is the pullback

of the background A3 onto M3 and dV⊥ =
√
γ⊥dv ∧ dw ∧ dz is the volume form on M⊥3 .
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Invariance of (5.6) under gauge transformations δA3 = dΛ2 and δA6 = dΛ5 for

gauge parameters Λ2,Λ5 leads to the conservation equations for J̃3 and J6 respectively

as in (3.16)–(3.17). The last term in (5.6) vanishes for the specific configurations that we

are interested in, since P||[A3] = 0. However, in order to extract the correct currents via a

variational principle, it is required.

In (5.6) it is implicitly assumed that we have implemented all constraints from the con-

stant Q2, Q5 and T together with a stationary ansatz for the vectors ua, va, wa, za and that

we have expressed r0, α, θ in terms of the transverse scalars. The resulting action is an ac-

tion of the transverse scalars alone.11 By varying it with respect to the transverse scalars we

are guaranteed to obtain equations that lead to the correct stationary solutions of the black-

fold equations. Explicit formulae for wrapped M5 branes will appear in the next subsection.

The effective action (5.6) has a well defined extremal limit T → 0, reducing to the PST

action [41, 42] (multiplied by the number of M5-branes N5) when all worldvolume gauge

fields have been integrated out. However, the existence of a maximum temperature (3.5)

and, in cases of bound states with a Hagedorn temperature such as the D3-NS5 brane [30]

for which T = 0 does not describe all extremal solutions, the potential at fixed T is

unsuitable for describing the entire phase space of off-shell configurations. Instead, defining

B5 as the spatial part of the worldvolume M6, a closely related effective action, where we

keep the total entropy

S =

∫
B5

√
−γ s ut (5.8)

fixed, is more appropriate and can be obtained by Legendre transforming (5.6) yielding

SS = −
∫
M6

d6σ
√
−γ ε+Q5

∫
M6

P[A6] + Q2

∫
M3

P||[A3] . (5.9)

The Wick rotated version of (5.9) corresponds to the total energy in the system as we

explicitly show in appendix A. Different choices of thermodynamic ensembles, where other

global chemical potentials are kept fixed, are also possible and we have deferred this analysis

to appendix A.

5.2.2 Potential at fixed temperature

In this subsection we present the precise form of the potential VT for M5 branes wrapping

S3 in (2.5). The black M5s of interest are characterised by the local temperature T =
3

4πr0 coshα . Eliminating r0 with the use of eq. (5.2) we can write

T 3 =
27C

64π3Q5
T 3 , T 3 ≡ cos θ sinhα

cosh2 α
. (5.10)

We will use T to express all the relevant formulae. Dividing ST by the infinite volume

of the R3,1 part of the M5 worldvolume and an overall constant factor of 36π2m2b30Q5 we

11It is also possible to write an action for M2-M5 branes that does not make assumptions about the

background or how the M2 branes are embedded into the M5. In this case, additional dynamical fields

must be introduced as in [49, 50].
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0.4

0.6

0.8

Max T

Figure 1. A plot of the maximum possible value of the temperature T of the M2-M5 branes at

each angle ψ for p/M̃ = 0.03.

obtain the potential

VT (ψ) =
b30 sin3 ψ(1 + 3 sinh2 α(ψ))

54 cos θ(ψ) sinhα(ψ) coshα(ψ)
− 3

8
f(ψ) . (5.11)

In this formula θ(ψ) is obtained by using eq. (5.1). α(ψ) is determined by combining (5.10)

and (5.1). The function f(ψ) was defined in eq. (4.10). The potential VT depends para-

metrically on p/M̃ and T . One can show by direct evaluation that the equation dVT
dψ = 0

is equivalent to the equation that follows from the blackfold equations (5.1), (5.2), (5.4).

In particular, when T = 0 we recover the extremal vacua of Klebanov and Pufu.

There are two intricacies of the fixed-T potential that are worth highlighting. The first

one is that eq. (5.10) has in general two solutions of α for a given angle ψ at a fixed value

of T . The two solutions are

tanhα±(ψ) =

√√√√1

2
±

√
1

4
− T 6

cos2 θ(ψ)
. (5.12)

The branch of α+ is valid for α ≥ α∗ and the branch of α− for α ≤ α∗. The critical

value α∗ defines a point where α+ = α−, i.e. a point where cos2 θ(ψ) = 4T 6. Numerically,

α∗ ' 0.881374. Notice that these solutions are real only when

| cos θ(ψ)| ≥ 2T 3 . (5.13)

This inequality imposes a constraint on the domain of ψ where the potential VT (ψ) in (5.11)

can be defined sensibly.

The second related feature is that the temperature of the wrapped M5s at a given

angle ψ has a maximum possible value. This follows immediately from (5.10) and the fact

that the function sinhα/ cosh2 α has a maximum value of 1/2. A plot of the maximum

temperature at a given angle ψ appears in figure 1.
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5.2.3 Potential at fixed entropy

The action (5.9) allows us to formulate a potential whose extrema determine the equi-

libria of the wrapped M5 branes at a fixed total entropy. In the case at hand the total

entropy (5.8) is given by the expression

S =
8π3m

5
3 b50Q

4
3
5

3 C
1
3

S , S3 ≡ sin9 ψ

cos4 θ sinh4 α coshα
. (5.14)

We express all relevant quantities using the properly normalised entropy S. Dividing SS
in (5.9) by the infinite volume of the R3,1 part of the M5 worldvolume and the overall

factor 36π2m2b30Q5 we obtain the potential

VS(ψ) =
b30 sin3 ψ(4 + 3 sinh2 α(ψ))

54 cos θ(ψ) sinhα(ψ) coshα(ψ)
− 3

8
f(ψ) . (5.15)

Again, one can verify by direct computation that the extrema of this potential reproduce the

correct static solutions of the blackfold equations at fixed total entropy S. The potential

VS depends parametrically on p/M̃ and the entropy S. At S = 0 the potential (5.15)

reduces to the potential that follows from the DBI action.

In this case the potential is well defined in the whole range of angles ψ. We will present

numerical plots of the potential in different regimes of parameters in the next section. The

same type of fixed-entropy potential was computed for the wrapped NS5 branes in the

Klebanov-Strassler background of type IIB string theory in [30].

5.2.4 Potential at fixed α

The above discussion demonstrates that one can consider effective potentials in different

ensembles. All of them reproduce the same static configurations as the original blackfold

equations but the off-shell shape of the potential in each case is different. It is natural to ask

whether it is possible to define a potential that keeps some other quantity constant, possibly

one that does not have a straightforward thermodynamic interpretation. When we solve

the combination of eqs. (5.1), (5.4), technically the most convenient choice would be to solve

them at a fixed value of α. α =∞ would be the extremal case and α = 0 the exact opposite.

One can show by direct computation that the following fixed-α potential does the job:

Vα(ψ) =
1

18
b30 sin3 ψ

1

cos θ(ψ)
− 3

8
cothα f(ψ) +

1

sinh2 α
H(ψ) (5.16)

with

H(ψ) =

∫ ψ

ψ0

dχ

cotχ

√
Ĥ0

96
sin6 χ+

(
3

8
f(χ)− p

2M̃

)2
 . (5.17)

The constant ψ0 in the lower limit of the integration in (5.17) is arbitrary. Its value deter-

mines an arbitrary additive constant to the potential. As before, we obtain θ(ψ) by solving

the eq. (5.1). As a trivial check, notice that Vα reduces to the extremal potential (4.11)

when α→∞ (in that case the last term in Vα vanishes).
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Figure 2. A plot of the extremal potential Vextremal in (4.11) as a function of ψ. Different colors

depict the plot for different values of the p/M̃ (the values of p/M̃ for each color are quoted in the

legend on the right).

By varying the values of α we obtain the full range of static wrapped M5-brane config-

urations that we would obtain directly from the blackfold equations. The same overall set

of static configurations can be obtained by extremising either of the potentials VT and VS

for different values of T and S. In that sense, all the potentials that we described above

are equivalent.

The off-shell shape of each potential is different. One should exercise some caution

when employing the full shape of the potential to make statements about, say, the stability

of the different vacua. Since the entropy current is conserved in our leading order ideal

hydrodynamic effective theories, time-dependent solutions will naturally evolve conserving

the total entropy. This suggests that the off-shell shape of the fixed-S potential contains

correct information about the stability of the vacua we find (at least within the homo-

geneous ansatz of wrapped M5s that we used). In the next section, we plot the fixed-α

potential and show that it shares the same qualitative features as the fixed-S potential.

6 M-brane metastability at finite temperature

We are now in position to determine in detail what happens to the KP vacua once we turn

on the temperature. We will discuss the non-extremal physics from the perspective of all

the potentials presented in the previous section.

6.1 Vacua and transitions

For reference, figure 2 depicts the extremal potential, first obtained in [32]. There is a

clearly visible metastable vacuum for p/M̃ ≤ p∗ � 0.0538. In this regime there are also

two unstable extrema: one at ψ = 0 and another in the vicinity of ψ � 1.2. The point

ψ = 0 is outside the regime of validity of our long-wavelength approximations.

In what follows we focus on the ‘metastable regime’ p/M̃ ∈ (0, p∗) and examine how

thermal effects modify the stable and unstable vacua. It is technically convenient to start
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Figure 3. Plots of the non-extremal potential Vα as a function of ψ for p/M̃ = 0.03. The range of

the plot is restricted in the region ψ ∈ (0, 1.5) where the most interesting physics occurs. Different

colors depict the potential at different values of the non-extremality parameter α (the specifics of

these values are listed in the legend). The blue dots indicate the unstable fat M5 vacua near the

north pole (ψ = 0). The black dots indicate the metastable vacuum. The red dots indicate a second

unstable vacuum (thin M5 branch). The green dot at α � 0.7424 is a merger point of the blue and

black vacua.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
ψ

0.05

0.10

0.15

Vα
1000
1.2
0.8932
0.75
0.6971
0.67
0.65
0.63

0.2 0.4 0.6 0.8 1.0 1.2 1.4
ψ0.03

0.04

0.05

0.06

0.07

Vα

1000
2
1.5
1.247
1.1

Figure 4. On the left, we plot the non-extremal potential Vα as a function of ψ for p/M̃ = 0.035.

Different colors depict the potential at different values of the non-extremality parameter α. Once

again, the blue dots indicate an unstable vacuum near the north pole (ψ = 0) (fat M5 branch) and

the black dots the metastable vacuum. The red dots indicate a second unstable vacuum (thin M5

branch). In this case there are three green dots. At α � 0.8932 and α � 0.6971 they represent

merger points of a metastable state with a red unstable thin M5 state. At α � 0.65 the green dot

represents a merger with a blue unstable fat M5 state. On the right, we plot the non-extremal

potential Vα as a function of ψ for p/M̃ = 0.04. The plotted values of α are listed in the legend. In

this regime there is a single green dot at α � 1.247, which is a merger point of the black metastable

state with the red unstable thin M5 state.

with the analysis of the blackfold equations at fixed α, where the plots of the potential Vα

(in (5.16), (5.17)) exhibit the extrema most clearly. In figures 3 and 4, we present plots

of Vα at three different values of p/M̃ : 0.03, 0.035 and 0.04. Curves with different colors

represent the form of the potential at the same p/M̃ for different values of α. The dots

indicate the location of the extrema and the color of the dots the nature of the solution at

those extrema. We use the following conventions:
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• A blue dot represents an unstable solution in the vicinity of the north pole at ψ = 0.

This is a black M5 brane solution wrapping an S3 with a small radius compared

to the Schwarzschild radius (further details on this aspect will appear in the next

subsection). We call this type of solutions fat M5 branes.

• A black dot represents a metastable solution. These solutions are thermalised versions

of the KP metastable state.

• A red dot represents an unstable wrapped M5 black brane whose S3 radius is large

compared to the Schwarzschild radius. We call this type of solutions thin M5 branes.

• A green dot represents the merger of an unstable state with a metastable state.

Depending on the regime of p/M̃ the system exhibits three different types of bifurca-

tions.

Regime I: small p/M̃ . The first type occurs for p/M̃ ∈ (0, p1). Numerically, we have

determined p1 ' 0.0345. The characteristic behaviour of this regime appears in figure 3.

The bottom blue curve is a near-extremal curve at α = 1000. As we decrease α (and

therefore increase the non-extremal effects) we observe the gradual convergence of the fat

unstable branch towards the metastable branch. They merge at a small value of α (α '
0.7424 in the case of figure 3) at ψ ' 0.5 which corresponds to the renormalised temperature

T ' 0.73873. At even smaller values of α only the unstable thin M5 brane branch (red

dot) remains. In this regime we observe the same saddle-node type bifurcation that was

observed in the case of polarised anti-D3 branes in the Klebanov-Strassler background [30].

In the next subsection we will present quantitative evidence that suggests that this type of

merger is driven by properties of the horizon geometry.

Regime II: intermediate p/M̃ . Interestingly, unlike the polarised anti-D3s in

Klebanov-Strassler, in the M-theory case at hand there are two additional types of tran-

sitions that point towards qualitatively different properties of the dual three-dimensional

QFT. A more involved transition pattern occurs for p/M̃ ∈ (p1, p2). Numerically, we

obtain p2 ' 0.0372. This is a small window where, as we decrease α, three consecutive

saddle-node-type bifurcations occur. First, the metastable state merges with the red thin

black M5 state on the right of the plot (in figure 4 on the left this occurs at α ' 0.8932,

ψ ' 0.74173 and T ' 0.78917). This type of transition is qualitatively different compared

to the transition in figure 3. It bears a strong resemblance to the zero temperature transi-

tion in figure 2 when p/M̃ crosses the threshold for the existence of a metastable vacuum.

For a range of lower values of α only the fat unstable M5 brane state (blue dots) exists.

Then, at another saddle-node-type bifurcation a metastable state and a thin unstable state

re-appear out of nothing (in figure 4 on the left this occurs at α ' 0.6971, ψ ' 0.69662

and T ' 0.78318). Subsequently, at even lower values of α the new metastable state starts

moving closer to the fat unstable state. A third and final merger between the fat and

metastable states occurs, which is qualitatively of the same character as in regime I. In

figure 4 on the left this merger occurs at α ' 0.65, ψ ' 0.58389 and T ' 0.75475.
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Figure 5. Plots of the fixed-S counterparts of the plots in figures 3 and 4 on the right. The left

plot depicts VS at p/M̃ = 0.03 and the right plot VS at p/M̃ = 0.04.

Regime III: high p/M̃ . There is a third regime, where p/M̃ ∈ (p2, p∗). In this case,

there is only one merger, which is a merger between the metastable state and the red thin

unstable state. In figure 4 on the right this merger occurs at α � 1.247 at ψ � 0.81220,

T � 0.75445. As we noted above, this type of thermal transition does not occur in the case

of polarised anti-D3 branes in the Klebanov-Strassler background. In the next subsection

we present evidence suggesting that properties of the horizon geometry play a less important

role in this type of merger.

The corresponding analysis of the system at fixed total entropy S with the use of the

potential VS reveals exactly the same qualitative and quantitative features. In figure 5 we

present the fixed-S counterparts of the plots in figures 3 and 4 on the right. It is visually

harder to observe the three transitions in the plot of VS at p/M̃ = 0.035, so we did not

include this value in figure 5. As we noted previously, the VS potential is better motivated

physically compared to the Vα potential.

An interesting alternative perspective to the thermal properties of the wrapped M5

branes arises from the analysis of the blackfold equations at fixed temperature T . Since

the fixed-T potential VT is not defined for all angles ψ, it is more informative to plot T as a

function of ψ for the extrema of VT at each value of p/M̃ . In figures 6 and 7 we present these

plots for p/M̃ = 0.01, 0.03, 0.035, 0.04. The color conventions for these plots are as follows:

• The blue curves represent unstable configurations of fat M5 black branes with values

of α in the + branch in (5.12).

• The purple curves in figures 6 and figures 7 represent unstable configurations in the

− branch in (5.12).

• The black curves represent metastable states. They belong to both the + branch and

the − branch.

• The orange curves in figures 6 and the red curves in figures 7 represent unstable thin

M5-brane configurations. They belong to the + branch.

• The green dots represent mergers of a metastable with an unstable black hole phase.

These dots are in direct correspondence with the green dots in the previous plots.
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Figure 6. On the left, we plot the temperature of all the static M5-brane configurations as a

function of their position ψ on the four-sphere at fixed p/M̃ = 0.01. The color conventions are

explained in the main text. There is a single fat-thin merger in this regime represented by the green

dot. On the right, we plot the temperature of all the static M5-brane configurations as a function

of their position ψ at fixed p/M̃ = 0.03. This is still a phase diagram in regime I.

0.5 1.0 1.5
ψ

0.2

0.4

0.6

T

Figure 7. On the left, we plot the temperature of all the static M5-brane configurations as a

function of their position ψ at fixed p/M̃ = 0.035. This is a representative phase diagram in

regime II. There are three merger points in this diagram represented by green dots and two separate

branches of metastable states represented by black segments. On the right, we plot the temperature

of all the static M5-brane configurations as a function of their position ψ at fixed p/M̃ = 0.04. This

is a representative phase diagram in regime III.

Other points where different curves intersect are not merger points. At these intersec-

tions there are two black hole states with the same T and ψ but different values of α.

The salient features of the temperature diagrams in figures 6 and 7 are the following.

There are again three separate regimes I, II, III, which are the fixed-T versions of the

corresponding regimes in the fixed-α and fixed-S analyses.

Regime I: small p/M̃ . At small enough values of p/M̃ the characteristic behaviour

of the phase diagram is represented by figures 6. Let us first consider the features of the

left plot of figure 6. At small values of the temperature, there are four black hole phases:

the blue unstable fat M5 state, the black metastable state, the orange unstable thin M5

state and the purple unstable thin M5 state. The combined branch of the orange and
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purple states is in one-to-one correspondence with the unstable states represented by red

dots in e.g. figure 3. There is no merger in this branch. In this regime, there is only a

single merger which is located on the blue-black branch. The blue-black merger is the fat-

metastable merger that we noted also in figure 3 in the context of the fixed-α and fixed-S

analyses. This merger involves two states in the + branch.

As we increase p/M̃ we observe two effects, which are clearly visible in the right plot

of figure 6. The first one is the appearance of intermediate purple states in the blue-black

pair. Unlike the case of the left plot of figure 6, in this case the merger happens in the −
branch, involving a metastable state (which close to the merger is in the − branch) and a

state in the purple branch (which is, by default, also a state in the − branch). This merger

occurs now at higher values of T compared to those in regime I. The second observation

is that the blue-black and red-purple branches have moved closer.

Regime II: intermediate p/M̃ . In the second regime, where p/M̃ ∈ (p1, p2), the

phase diagram has clearly rearranged. A representative case is depicted in the left plot of

figure 7. In this diagram, the main metastable branch has joined to the thin unstable (red)

branch. The previous blue-purple branch has joined with the remaining purple branch at

large ψ through a new intermediate metastable set of states. These metastable states are

represented by the black segment between the two green dots at ψ ' 0.6 and 0.7 in the left

plot of figure 7. There are three merger points in this diagram in direct correspondence to

the mergers observed in the left plot of figure 4.

Regime III: high p/M̃ . Above the second critical value p/M̃ = p2, the phase diagram

exhibits the behaviour represented by the right plot of figure 7. In this regime there is

a single thin-thin merger represented by the green dot at the joining point of the black

(metastable) and red (unstable) branches. The combined blue-purple branch has no merger

points and all its states are unstable. This phase diagram is directly related to the features

observed in the right plot of figure 4 and the right plot of figure 5.

6.2 Nature of the merger points

In the previous subsections we distinguished between different branches of solutions by

characterising them as thin or fat depending on the relative size of the Schwarzschild

radius and the radius of the S3 that the black M5 wraps. This characterisation can be

made quantitatively more specific by introducing the dimensionless ratio

d ≡ p1/3r̂0

R̂S3

=

(
p

M̃

) 1
3 1

sinψ(cos θ sinhα coshα)
1
3

, (6.1)

where

r̂0 = r0

(
C
Q5

) 1
3

(6.2)

is a dimensionless quantity proportional to the local Schwarzschild radius of the black hole

and

R̂S3 =
(18π2)

1
3

2π`P
RS3 (6.3)
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Figure 8. On the left, we plot the fatness ratio d for blue unstable and black metastable states

at p/M̃ = 0.03. The merger of the two branches occurs at d ' 1. The near-extremal metastable

configurations are thin (small values of d), whereas the near-extremal unstable ones are fat (large

values of d). On the right, we plot the fatness ratio d (defined in eq. (6.1)) at the merger points

of the metastable states as a function of p/M̃ . In region I, that involves a thin-fat merger, d is

almost constant. In region III, that involves a thin-thin merger, d depends strongly on p/M̃ . The

intermediate regime II involves a multiplet of merger points.

is a dimensionless quantity proportional to the radius RS3 = m
1
3 b0 sinψ of the S3 that the

M5 black brane wraps at an angle ψ. A similar measure of black hole ‘fatness’ was intro-

duced in [30] to describe wrapped NS5 black holes in the Klebanov-Strassler background.

An analogous quantity, called ν, that distinguishes between thin and fat neutral black ring

solutions was introduced in [74].

Black hole states with d � 1 are by definition thin states where the Schwarzschild

radius is comparatively smaller to the S3 radius. States on the opposite part of the spec-

trum with d � 1 are fat states. For example, in the left plot of figure 8 we present the

value of the ratio d for the blue unstable and black metastable branches at p/M̃ = 0.03

that are depicted by blue and black dots in figure 3. We note that the near-extremal (i.e.

large α) metastable states have very low value of d and are therefore thin states, whereas

the corresponding unstable blue states have a very large value of d and are therefore fat

states. The merger occurs at a value of d close to one.

According to the validity analysis of section 3.3, and in particular (3.20), one finds

d�
(
p

N5

)1/3

sinhα−1 . (6.4)

Thus, by appropriately tuning p/N5 � 1 it is always possible to keep the merger points

within our regimes of validity. On the other hand, as α increases, the validity of the

unstable branch (blue curve in the left plot of figure 8) becomes more and more restricted.

A particularly interesting part of our discussion in this paper concerns the physics of

the mergers where the metastable state is lost. The exact analysis of [23] shows that the

existence of metastable anti-M2 states relies on the topology of the horizon. Supergravity

configurations that describe point-like anti-M2s are not allowed by no-go theorems at zero

temperature. At finite temperature anti-M2 black holes with spherical horizon topology
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are in principle allowed but require special boundary conditions for the fluxes on the hori-

zon. Configurations of M5 black branes with non-spherical horizon topology evade these

restrictions and are allowed by no-go theorems at zero temperature. As we thermalise the

state, its horizon grows (namely, d increases). At sufficiently high temperature one expects

a transition where the horizon geometry can play a role. In that case, a scenario where the

metastable state is lost would be consistent with the existing no-go theorems.

We have already seen that the blackfold analysis verifies the expectation that the

metastable state is lost at sufficiently high temperatures. The idea that the loss of the

metastable state occurs because of a horizon-driven transition can be tested quantitatively

by evaluating the fatness ratio d at the merger points of the metastable states. Two things

should happen if the above expectations are correct. Firstly, if the mergers are fat-thin

mergers the transitions should occur at some value of d of order 1. Secondly, some feature,

e.g. a weak dependence of d on p/M̃ , should signal the dominant role of the horizon

geometry. This is a highly non-trivial expectation.

In the right plot of figure 8 we present numerical data on d evaluated at the merger

points of the metastable states as a function of p/M̃ . We observe that the above expectation

is verified extremely well in regime I, where the metastable state is lost via a fat-thin merger.

Exactly the same type of physics was observed also in the case of polarised anti-D3 branes in

the Klebanov-Strassler background in [30]. These results are very suggestive about the va-

lidity of the overall picture that emerges from the use of the leading order blackfold analysis.

A new feature of the M2-M5 system in CGLP compared to the D3-NS5 system in

Klebanov-Strassler is the existence of regimes II and III. In Regime III the metastable

state is lost in a thin-thin merger via a completely different mechanism. In this case, the

metastable state does not disappear because of the horizon-related effects, but because it

develops a classical instability at some critical temperature. Consistently with this picture,

in the right plot of figure 8 we observe that the values of d at those mergers in regime III are

much smaller and exhibit strong dependence on p/M̃ . In the intermediate regime II, where

multiple metastable branches occur, we observe an interesting feature of multi-valuedness

in the dependence of d on p/M̃ .

The co-existence of these patterns of mergers in the M2-M5 system is an interesting

new prediction of the blackfold formalism. It would be very interesting to uncover further

evidence for these transitions in supergravity (perhaps with numerical methods) and to

understand the implications of these features in the three-dimensional QFT dual.

7 Conclusions

The results of this paper, in conjunction with the exact Smarr relations in [22, 23], provide

new evidence in favor of the existence of metastable states of polarised anti-M2 branes in

the CGLP background. In addition, our analysis uncovered a previously unknown pattern

of black hole transitions that involve mergers of the metastable state with unstable states

of wrapped M5 black branes. We presented data that support the expectation that the

transition is controlled by properties of the horizon geometry when there is a merger of the
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metastable state with a fat M5 state. We view this observation as favourable evidence for

the consistency of the proposed picture.

Our work has led to a number of questions. We conclude with a short summary of

these questions and some of the relevant open problems.

Firstly, it would be very interesting to complete the leading order blackfold analysis by

constructing the full leading-order backreacted solution of wrapped M5 (black) branes in

the appropriate scheme of matched asymptotic expansions. This would prove the conjecture

that the constraint equations imply a regular perturbative solution of all the supergravity

equations re-affirming the blackfold conjecture also in the case of anti-brane backreaction.

As we noted in the main text, this exercise would not produce additional data for the

leading order thermodynamic properties of the black holes of interest (beyond what has

been presented in this paper), but the result could be used to determine higher derivative

corrections to the blackfold equations.

Another interesting question has to do with the stability of the solutions we described.

Our analysis provides evidence (e.g. through the form of the fixed-entropy potential VS) that

under long-wavelength deformations of a certain type the metastable vacua are classically

stable. It would be useful to perform a more general classical stability of the leading order

blackfold equations around the metastable vacua to determine if there are other modes

that can render the metastable vacua unstable. This would help clarify previous claims of

instability of the metastable vacua in [7, 75].

For unstable vacua, as well as semiclassically for the metastable ones, it is interesting to

ask how the corresponding instabilities evolve dynamically and what is the end-state of the

instability. When the solutions are extremal, there is an obvious end-point of the instability

— the supersymmetric vacuum at the south pole. For example, the metastable vacuum is

expected to evolve through vacuum tunnelling to the supersymmetric state through a pro-

cess that is known as brane/flux annihilation [2]. In the blackfold effective description of the

thermal physics we have seen that the north and south poles are strictly outside the regime

of validity. However, even with this issue set aside for a moment, we notice that unlike the

extremal case, the potential VS does not have any naive extrema at the two poles. Because

of these features it is rather unclear what happens at the end-point of these instabilities.

What kind of thermal solution, or black hole lies at the end of the evolution process of

classical and semiclassical instabilities for the wrapped M5 black branes that we described?

Finally, it would be interesting to elaborate further on the dual QFT interpretation

of our results. We have uncovered an intricate, previously inaccessible, pattern of thermal

transitions of black hole phases in the bulk. What is the interpretation of these transitions

in QFT? In this context, it would be useful to gain a more complete understanding of

the nature of the finite-temperature merger points already in the gravity description. For

the fat-metastable mergers, besides the features of the ratio d that we reported above, we

have not detected any other characteristic feature of the merger. For the thin-metastable

mergers one may note the similarity with the zero-temperature case at the maximum value

of the anti-brane charge where the metastable vacuum is lost. In [30] we observed that this

occurs close to a point where the local anti-D3 charge density vanishes. Similar observations

can be made in the anti-M2 system in CGLP, but their significance is unclear.
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A Note on Smarr relations

In this appendix we discuss in more detail the thermodynamic properties of stationary

M2-M5 brane configurations in the CGLP background. We begin by identifying the local

conserved currents that lead to global thermodynamic quantities. This can be done by

requiring diffeomorphism invariance of the effective action along Killing directions as in [76],

or by direct manipulation of the blackfold equations (3.15) as in [77]. This exercise leads

to the conserved currents

P ak = T aνkν +
1

3!
J̃aνλ3 A3ρνλk

ρ +
1

6!
J aµ1...µ56 A6λµ1...µ5k

λ , (A.1)

for some Killing vector field kµ. For the specific static configurations that we considered

in this paper, the only relevant charge obtainable from this current is the total energy

E =

∫
B5
dV5P

a
kua =

∫
B5

(
dV(p)ε−Q5P̃[A6]

)
, (A.2)

where dV5 is the volume form on B5 and P̃[A6] = P[A6]/dt. We notice that this expression

is the same as (minus) the Wick rotated effective action at constant entropy (5.9), given

that P||[A3] vanishes for these configurations as well as the contribution of the second term

in (A.1). Thus, as earlier advertised, minimising (5.9) is minimising the total energy E.

In order to proceed further, we must identify the remaining thermodynamic quantities

of relevance. These are the global chemical potentials Φ5
H and Φ2

H, which are the ther-

modynamic conjugates of Q5 and Q2 respectively. As such, they are derivable from the

effective action (5.9) itself according to

Φ5
H = −

∂SES
∂Q5

∣∣∣∣
S,Q2

, Φ2
H = −

∂SES
∂Q2

∣∣∣∣
S,Q5

, (A.3)

where the superscript E denotes the fact that we performed a Wick rotation in (5.9) and

integrated over the time circle with size 1/T . Using (A.3) we find

Φ5
H =

∫
B5
dV5|k|

(
Φ5 −

Φ2

Vol⊥

∫
M⊥

3

P⊥[A3]

)
−
∫
B5

P̃[A6] , Φ2
H =

∫
B5
dV5|k|

Φ2

Vol⊥
, (A.4)
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where Vol⊥ is the volume of M⊥3 and we again used that P||[A3] = 0. The form of Φ2
H, in

particular, is the expected form of the global chemical potential of a higher-form fluid [59].

Using all thermodynamic quantities, one may construct the Gibbs free energy

IE = E − TS − Φ5
HQ5 − Φ2

HQ2 =
Ω4

16πG

∫
B5
dV5|k|r3

0 =
TS

3
, (A.5)

and from here we derive the Smarr relation for polarised M2 branes into M5 branes

E =
4

3
TS + Φ5

HQ5 + Φ2
HQ2 , (A.6)

which agrees with the corresponding Smarr relation derived in [23]. The definition of Gibbs

free energy (A.5) allows for the construction of an effective action at constant T,Φ5
H,Φ

2
H,

which takes the form

SG = −
∫
M6

√
−γG , G =

Ω4

16πG
r3

0 . (A.7)

Minimising SG implies the first law of black hole thermodynamics dE = TdS + Φ5
HdQ5 +

Φ2
HdQ2.
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