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ABSTRACT: We use the framework of generalised global symmetries to study various hy-
drodynamic regimes of hot electromagnetism. We formulate the hydrodynamic theories
with an unbroken or a spontaneously broken U(1) one-form symmetry. The latter of these
describes a one-form superfluid, which is characterised by a vector Goldstone mode and
a two-form superfluid velocity. Two special limits of this theory have been studied in
detail: the string fluid limit where the U(1) one-form symmetry is partly restored, and
the electric limit in which the symmetry is completely broken. The transport properties
of these theories are investigated in depth by studying the constraints arising from the
second law of thermodynamics and Onsager’s relations at first order in derivatives. We
also construct a hydrostatic effective action for the Goldstone modes in these theories and
use it to characterise the space of all equilibrium configurations. To make explicit contact
with hot electromagnetism, the traditional treatment of magnetohydrodynamics, where
the electromagnetic photon is incorporated as dynamical degrees of freedom, is extended
to include parity-violating contributions. We argue that the chemical potential and electric
fields are not independently dynamical in magnetohydrodynamics, and illustrate how to
eliminate these within the hydrodynamic derivative expansion using Maxwell’s equations.
Additionally, a new hydrodynamic theory of non-conducting, but polarised, plasmas is
formulated, focusing primarily on the magnetically dominated sector. Finally, it is shown
that the different limits of one-form superfluids formulated in terms of generalised global
symmetries are exactly equivalent to magnetohydrodynamics and the hydrodynamics of
non-conducting plasmas at the non-linear level.
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1 Introduction

Hot electromagnetism is the theory that describes the interaction between electromagnetic
and thermal degrees of freedom of matter at finite temperature. At sufficiently long wave-
lengths and time scales, this theory admits certain hydrodynamic regimes within which
these interactions are well approximated by the physics of plasmas. Magnetohydrodynam-
ics (MHD) is one of the most well studied of these regimes, applicable to conducting plasmas
for which the electric fields are short range/Debye screened and the plasma is electrically
neutral at hydrodynamic length scales [1]. Over the past decades, MHD has developed
into a framework capable of describing a wide range of phenomena, from the modelling of
accretion disks surrounding astrophysical black holes to the magnetic confinement of hot
plasmas at fusion reactors [2].

Despite its historical success as a phenomenological theory, the traditional treatments
of MHD have only recently began to incorporate some of the modern developments in



hydrodynamics [3], which have proven to be extremely useful to further our understand-
ing of ordinary fluid and superfluid dynamics [4, 5]. These developments, among many
others, include: the understanding of hydrodynamics as an effective field theory [6]; the
relevance of hydrostatic partition functions that describe all equilibrium states in hydro-
dynamics [7, 8]; the role of symmetries and classification schemes in constraining transport
properties [9, 10]; the usefulness of black hole physics and holography in the evaluation of
transport coefficients [11, 12]; a Lagrangian formulation of dissipative hydrodynamics [13—
15]; the incorporation of boundaries/surfaces in hydrodynamic descriptions [16, 17]; a novel
understanding of non-relativistic limits [18, 19]; and the application of the framework of
generalised global symmetries to reformulate hydrodynamic theories [20-25].

The overarching goal of this work is to further develop the effective hydrodynamic
theories of hot electromagnetism under the light of some of these recent developments, and
to investigate another of its hydrodynamic regimes besides MHD. In particular, we provide
a new formulation of dissipative MHD in terms of a system with higher-form conservation
laws, which is better suited for numerical studies, classify all dissipative transport coeffi-
cients that appear at first order in a long-wavelength expansion and resolve standing issues
related to the definition of hydrostatic equilibrium. Besides providing a new framework
for understanding the MHD regime, this work also focuses on a novel formulation of the
hydrodynamic description of non-conducting plasmas that can nevertheless be polarised,
which we refer to as bound-charge plasmas. Physical examples of such systems include a
polarised neutral gas of atoms interacting with a bath of photons.

The main tool used throughout this work is the framework of generalised global sym-
metries [26], which has recently been used in the context of MHD, recasting it as a theory of
hydrodynamics with a global U(1) one-form symmetry [20, 21, 24].! The traditional treat-
ment of MHD involves incorporating the electromagnetic photon A, as a dynamical degree
of freedom in the hydrodynamic description, coupled to an external conserved current JZ
(see e.g. [3]). On the other hand, the corresponding string fluid formulation, originates
from the insight that electromagnetism admits a two-form current J* = e**?9) A, where
F = 20,A,) is the electromagnetic field strength, that is conserved due to the Bianchi
identity Vi, F,y = 0.2 This two-form current gives rise to a dipole charge that counts
the number of magnetic field lines crossing any two-dimensional surface, and couples to an
external two-form gauge field b,,,. The three-form field strength H,,,x = 30|,b, ) associated
= ¢ H,,,/6. Both
these formulations are developed and extended in this work and, in order to avoid any

with by, is seen as related to the external conserved current as J

ambiguity, one of main results obtained here can be summarised as follows:

Under the identification JW = %e’“’p"Fpo and Jb, = %e“”’\pH,,,\p, the
formulation of MHD in terms of generalised global symmetries is ex-
actly equivalent to the traditional treatment of MHD with a dynamical

gauge field.

! Throughout this work, we often refer to to this formulation as the string fluid formulation of MHD.

2This process of dualisation is commonly applied in the context of numerical studies of MHD [27]. The
conservation of the two-form current splits into what is usually denoted as the induction equation and the
no-monopole constraint. However, no formal study of the hydrodynamic properties and expansion in this
context had been performed. This is one of the goals of this paper.



A few remarks are now in order: this equivalence is proven here at the full non-linear level
including parity-violating terms; both the formulations make no assumptions regarding the
strength of the magnetic fields; and both the formulations are developed using the principles
of effective field theory and hydrodynamic expansions. Finally, the traditional treatment
as developed here, following [3], is more general than its corresponding formulation in
terms of generalised global symmetries, as it is capable of describing plasmas that are not
necessarily electrically neutral at the hydrodynamic length scales.?

Despite the formulation of MHD in terms of generalised global symmetries, as thus
far developed, being less general than the corresponding traditional treatment, it should
be noted that there are several important reasons why this different formulation is ac-
tually more useful. Most applications of MHD, specially in the context of astrophysics,
concern themselves with plasmas that are electrically neutral at the hydrodynamic length
scales [1], in which case both of these formulations are equally applicable in general, but the
formulation in terms of generalised global symmetries is easier to implement in numerical
simulations [27]. Moreover, when expressed in terms of generalised global symmetries, the
formulation rests solely on the symmetry principles (and their breaking), without having
to incorporate a microscopic dynamical gauge field. Additionally, the chemical potential p
and electric fields E* that enter the traditional formulation, but not the string fluid for-
mulation, are superfluous and not independently dynamical in the hydrodynamic regime.
As a matter of fact, we show in the course of this work how Maxwell’s equations can be
exactly solved within a derivative expansion, so as to completely remove these fields from
the hydrodynamic description. Finally, within this string fluid formulation, we directly
obtain the fluid constitutive relations for the physically observable electromagnetic fields
in terms of the background current sources, which allow for a cleaner extraction of the
respective correlation functions.

Earlier formulations of MHD within the framework of generalised global symme-
tries [20, 21] (see also [3]) take the viewpoint that MHD is a theory of long fluctuating
strings (i.e. magnetic field lines). The string direction h* and their chemical potential w
serve as fundamental degrees of freedom in the theory, while assuming that the one-form
symmetry is unbroken. As has already been explained in [24], while this treatment is
phenomenologically sufficient to understand the hydrodynamic fluctuations around a given
initial equilibrium fluid configuration, it does not allow for a precise understanding of the
space of allowed equilibrium configurations by means of a hydrostatic effective action (or
partition function). This problem can be resolved, as advocated in [24], by carefully break-
ing the one-form symmetry along the direction of the fluid flow, which leads to the exact
same description for string fluids out of equilibrium as presented in [20, 21]. However, it
is now possible to properly define equilibrium configurations by constructing a hydrostatic
effective action for the a magnetic scalar potential ¢, which can be understood as the

3Tt may be possible to relax the assumptions of the string fluid formulation in order to be able to describe
plasmas that are not electrically neutral. Further comments on this point are left to a more speculative
discussion in section 8.



Neutral Zero-form  Zero-form  One-form One-form One-form
Fluid  Ord. Fluid Superfluid Ord. Fluid String Fluid Superfluid

Hydrostatic 0 0 4 1 5 22
Non-hs Non-diss 0 0 11 0 8 66
Dissipative 2 3 15 4 11 78
Total 2 3 30 5 24 166

Table 1. Comparison between counting of independent transport coefficients at one-derivative
order for various phases of neutral, zero-form, and one-form charged fluids. CPT and Onsager’s
relations have not been implemented in this count. Here Non-hs refers to non-hydrostatic and
Non-diss to non-dissipative.

Goldstone scalar associated with the partially broken one-form symmetry.* The theory is
thus better understood as a theory of one-form superfluidity.

This work introduces a novel framework of one-form superfluids in which the one-form
symmetry is completely broken, giving rise to a vector Goldstone mode ¢,, [26, 28, 29]. A
specific sector of this theory, where part of the one-form symmetry is restored, describes
MHD. In general, however, one-form superfluids characterise many hydrodynamic regimes
of hot electromagnetism without any assumption on the relative strength of electric and
magnetic fields. As an example, the theory will be used to describe the hydrodynamic
regime of magnetically dominated bound-charge plasmas (BCP), whose traditional treat-
ment has also been developed here and shown to be equivalent. Below, the different
connections between one-form superfluids and different aspects of hot electromagnetism
are described in more detail, together with the organisation of this paper and some of its
main results. A comparison between the number of transport coefficient in various phases
of neutral, zero-form, and one-form hydrodynamics is given in table 1.

One-form hydrodynamics and hot electromagnetism. One of main purposes of this
work is to contribute to a systematic study of one-form hydrodynamics and its applica-
tions. As such, this paper begins in section 2 with a discussion on the proper identification
of the degrees of freedom in one-form hydrodynamics, motivated from considerations in
equilibrium thermal field theories. This section also introduces the general methodology
of one-form hydrodynamics (adiabaticity equation, second law of thermodynamics, hydro-
static effective actions, etc) that will be used in later sections to formulate novel theories
of hydrodynamics with generalised global symmetries. The identification of the correct de-
grees of freedom of one-form hydrodynamics leads to a warm up exercise: the formulation
of one-form hydrodynamics for which the one-form symmetry is unbroken, in section 3.
This theory turns out to be quite different from string fluids as formulated in previous

4The conventional formulation of MHD has a massless propagating degree of freedom, namely the photon.
However, electric fields in MHD are screened. This means that in the dual formulation of MHD in terms
of generalised global symmetries, not all the components of the dual photon, which can be seen as the
Goldstone of the spontaneously broken one-form symmetry [26, 28, 29|, are actually present. However,
since the magnetic fields are still unscreened, at least some components of the dual photon must still exist.
Therefore, we refer to this phase as a partially broken phase of a one-form symmetry.
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Figure 1. Schematic representation of the connections between one-form (super)fluids and hot
electromagnetism

works, which are naively assumed to have the one-form symmetry unbroken, and had not
previously been considered in the literature. Having formulated the theory of one-form hy-
drodynamics, this work progresses by incorporating the vector Goldstone mode ¢,, arising
due to the spontaneous breaking the one-form symmetry (see figure 1). This makes up the
core of section 4, where a theory of one-form superfluids is developed and its different limits
described. This theory introduces a two-form superfluid velocity £, (the gauge-invariant
covariant derivative of ¢,) which in four spacetime dimensions can be decomposed into
two vectors, ¢* and (*. These can be understood as electric and magnetic fields associated
with &, respectively.

We study two limits of one-form superfluids in detail: the string fluid limit and the
electric limit. The string fluid limit, discussed in section 5, can be obtained by partially
breaking the one-form symmetry along the fluid velocity u*, which results in the appearance
of a scalar Goldstone mode ¢. The same theory can also be obtained directly from one-form
superfluids by dropping any dependence on (* from the constitutive relations (see figure 1).
The scalar Goldstone ¢, in this interpretation, is understood as the time component of the
vector Goldstone mode, that is ¢ = utp, /T, where T'is the fluid temperature. On the other
hand, the electric limit taken in section 6 does not switch off the (* dependence. Rather, it
assumes a derivative hierarchy ¢# = O(1) and (* = O(9) between the components of &,
rendering ¢* subleading in the hydrodynamic derivative expansion. Though equivalent at
ideal order, string fluids and the electric limit of one-form superfluids deviate considerably
upon including one-derivative corrections.



In section 7, the connections between one-form superfluids, including its limits, and
different hydrodynamic regimes of hot electromagnetism are discussed. We have specially
focused on two regimes: MHD and bound-charge plasmas. The MHD regime, applicable to
conducting plasmas for which the magnetic fields are arbitrary B# = O(1) and electric fields
are weak E# = O(9), is shown to be exactly equivalent to string fluids when J%., = O(9), as
advertised earlier. The full map between the transport coefficients in the two formulations
at first order in derivatives is given, together with the solution to the Maxwell’s equations
that eliminates non-propagating degrees of freedom from the hydrodynamical description.
Here, the traditional treatment of MHD is also extended to include all transport coefficients
at first order in derivatives, taking into account parity-violating terms. Also in section 7,
the traditional treatment of the bound-charge plasma regime is formulated for the first time,
and is applicable to non-conducting plasmas (i.e. plasmas with only bound-charges and no
free charge carriers). These are argued to be exactly equivalent to one-form superfluids,
with the explicit mapping of constitutive relations worked out at ideal order. At first order
in derivatives, attention is given to the magnetic dominated bound-charge plasma, where
Bt = O(1) and E* = O(9), similarly to MHD. These are shown to be exactly equivalent
to the electric limit of one-form superfluids, provided that a certain transport coeflicient
gx is set to zero. These connections have been summarised in figure 1.

Finally, in section 8 a discussion of some of these results is given together with interest-
ing future research directions. Some of the calculational details relevant to this work have
been assembled into appendix A. We have provided a comparison of our results with the
effective action approach of [30] in appendix B. We also clarify the constraints imposed by
discrete symmetries, such as parity and CPT, in various phases of one-form hydrodynamics
in appendix C.

Comments on related work. During the completion of this work, we became aware
of an upcoming related work that investigates different aspects of magnetohydrodynam-
ics [30], and which has considerable overlap with [24]. We have provided a comparison
between our work and that of [30] in appendix B. We also generalised parts of [30] as to
construct an ideal order effective Lagrangian for the hydrodynamic theories of section 3
and 4. Additionally, we have also formulated an order parameter that describes the par-
tial breaking of the one-form symmetry required to formulate MHD in the language of
generalised global symmetries.

2 The setup of one-form hydrodynamics

In this section we introduce the fundamental degrees of freedom associated with one-form
hydrodynamics and the conservation equations that constrain and govern their dynamical
evolution, including in the presence of gapless modes. These degrees of freedom are mo-
tivated by extending the degrees of freedom characterising thermal equilibrium partition
functions into the out-of-equilibrium context. Analogous to the case of usual zero-form
charged hydrodynamics, the symmetry properties of the background fields to which these
fluids couple to are key guiding principles in the identification of the correct degrees of



Dynamical field Symbol
Fluid velocity ut with vfu, = —1
Temperature T
Zero-form chemical potential I

Table 2. Dynamical fields for zero-form charged fluids.

freedom. The requirement that one-form fluids satisfy the second law of thermodynamics
leads to a generalised adiabaticity equation that can be used to constrain the transport
properties of one-form fluids. The formalism described here and associated set of tools
(hydrostatic effective action, adiabaticity equation, etc) is the point of departure for the
construction of novel theories of hydrodynamics with generalised global symmetries that
we provide in later sections of this paper.

2.1 Symmetries, conservation, and hydrodynamic variables

The Noether theorem ascertains that any theory that is invariant under global Poincaré
transformations and U(1) zero-form transformations must admit a conserved energy-
momentum tensor T and charge current J#. Coupling the theory to a spacetime back-
ground with metric g, and gauge field A, the conservation equations associated with
these symmetries take the form®

VT =F"J, , YV, J"=0 . (2.1)

Here V, is the covariant derivative associated with g, and Fy, = 20|,4,) is the field
strength associated with A,. Focusing on the case of four spacetime dimensions, eq. (2.1)
consists of a system of five conservation equations. Hydrodynamics is the low-energy
effective description at finite temperature of such systems and its formulation requires
picking an arbitrary set of five dynamical fields, as in table 2, whose dynamics is governed
by eq. (2.1). If, besides the hydrodynamic modes, the system admits gapless modes at
low energy, collectively represented by ®, then eq. (2.1) must be supplied with additional
equations of motion describing the evolution of ®. Once the dynamical fields have been
chosen and the gapless modes identified, the hydrodynamic theory is obtained by writing
down the most generic “constitutive relations” for T*” and J* in terms of u*, T', u, and
® in a long-wavelength derivative expansion. Empirical physical requirements, such as
the second law of thermodynamics and Onsager’s relations, impose constrains on these
constitutive relations.

The motivation for the choice of hydrodynamic fields as in table 2 originates from
considerations in equilibrium thermal field theories, as we now outline. Under a generic in-
finitesimal symmetry transformation parametrised by X = (x*, AX), where x* is associated
with diffeomorphisms and AX with gauge transformations, the background fields transform

5In writing eq. (2.1) we have assumed that the symmetries are non-anomalous.



according to

5xg;w = £xguzz = 2V(MXV) )

Ay = £ A, + 0N =0, (A +XxPAL) + X" Fupu s (2.2)
while the symmetry parameters themselves transform as®
o0 = [0, X = (L X, £ N — LX) . (2.3)

We assume that the background manifold admits a timelike isometry K = (k*, AX) with
ktk, < 0, i.e. dxgu = dxA, = 0. On such backgrounds, we can define a global thermal
state by the grand-canonical partition function”

Zlgu, Ay] = trexp [/ doy, <TWk,, + (AX + k)‘AA)JMﬂ 7 (2.4)
¥

where the trace is taken over all the equilibrium configurations of ® which satisfy d® = 0.
In eq. (2.4), ¥ denotes an arbitrary Cauchy slice with volume element do,. Using eq. (2.1),
it may be verified that Z is independent of the choice of ¥ and it is also manifestly invariant
under the symmetries of the theory. It is the aim of hydrodynamics to describe slight
departures from the global thermal state by replacing the background isometry X with an
arbitrary set of slowly varying dynamical fields B = (3#, A?), which are related to those in
table 2 via
Bu:ﬁ A ypra, =E (2.5)
T’ A '
This is the more natural way to think of the hydrodynamic degrees of freedom. As detailed
below, the identification of the correct degrees of freedom in the case of one-form fluids
follows a similar reasoning whose starting point is the equilibrium partition function.
Analogous to systems invariant under zero-form U(1) transformations, physical sys-
tems that are invariant under global Poincaré and U(1) one-form transformations admit a
conserved energy-momentum tensor T and two-form charge current J*¥ such that

1
VI = SH Ty, V" =0, (2.6)

where H,,,, = 30),b,, is the field strength associated with a two-form gauge field b,,,. In
order to describe the effective low-energy hydrodynamic theory for systems with a global
U(1) one-form symmetry, a suitable choice of dynamical fields is required. As in the

6Symmetry transformations of the background are required to form a Lie algebra such that [6x, 6x/]gur =
O, x)9pe and [0x, Oxr]A, = djx,x/} Ay, which fixes eq. (2.3). Similarly in the case of one-form symmetries,
requiring [6x, 0x/]gur = Opx,x/1gur and [0x, dxs]bpur = Ofx,x/1bur fixes the transformation properties eq. (2.8)
provided that we require the fields to transform appropriately under diffeomorphisms.

"For example, in the standard case of a static fluid coupled to a flat background guv = NMuv and no
external gauge fields A, = 0, one works with X = (k* = 6*/Tp,A¥ = po/Ty), where Ty and o are
the temperature and chemical potential of the global thermal state. In this case we get the conventional
expression for the grand-canonical partition function Z = trexp [—Ty ' [ d®z (T% — 1oJ°)]. Note that we
can always perform a gauge transformation to set AX = 0 at the expense of A, = uoéf“ leading to the
same result.



Dynamical field Symbol
Fluid velocity uf with ubu, = —1
Temperature T
One-form chemical potential Hu

Table 3. Dynamical fields for one-form charged fluids.

case of zero-form fluids, it is noted that under a generic infinitesimal one-form symmetry
transformation parametrised by X = (x*,A%), with A) being the parameter associated
with one-form gauge transformations, the background fields transform according to

5.’)(9;11/ = £Xg;w = 2V(MXV) )
Oy = £xbyus + 20, N = 20, (Al’f] + XAbM) X Hy (2.7)

while the symmetry parameters transform as (see footnote 6)
S X" = [X, X" = (L1, £ NX — £X/Al>j) . (2.8)

When coupled to spacetime backgrounds that admit a timelike isometry X = (k*, Aﬁ), we
can define a global thermal state by means of the grand-canonical partition function

Z(guvs buw] = trexp [/ doy, (T“"k,, + (A + k’\b,\l,)Julf)] ) (2.9)
P

Following the same chain of reasoning as for zero-form symmetries, we are led to the natural
choice of hydrodynamic fields for one-form hydrodynamics as B = (8#, Aﬁ) By defining
ut "

B = AP+ 87Dy, = ?" , (2.10)
these fields can be recast in a more conventional form as in table 3. However, unlike zero-
form fluids, p,, defined in this way is not gauge invariant. Instead, it transforms akin to a
one-form gauge field

0 Iz v
sttt = £, M~ 0, (57AY) (2.11)

This should not come as a surprise since the time-component of the one-form conservation
equation, VMJ‘“, is not a dynamical equation but merely a constraint [22]. Correspond-
ingly, one degree of freedom in p, is rendered unphysical due to the gauge transformation.
Note that since 41,,/T transforms as a one-form gauge field, all of its gauge-invariant physical
information can be captured by the antisymmetric derivative d),(u,)/T). Having identified
the dynamical fields for one-form fluids, we proceed by defining the hydrostatic partition
function and deriving the adiabaticity equation.

2.2 Hydrostatic effective action and the second law of thermodynamics

The hydrostatic effective action is an important cornerstone of hydrodynamics. It describes
the entire set of equilibrium configurations admissible by the fluid for a given arrangement



of the background sources. These configurations can then be used as a starting point for
studying deviations away from equilibrium order by order in the derivative expansion (e.g.
dispersion relations for Alfvén waves in MHD). In this subsection we introduce the gener-
alities of hydrostatic effective action relevant to this work and illustrate their connection
to the second law of thermodynamics.

For the purposes of this paper, it is assumed that the microscopic field theories un-
derlying the hydrodynamic regime are sufficiently well behaved, so that the equilibrium
partition function (2.9) can be computed via a Euclidean path integral

Z (g bu] = /D@ exp (—Shs[gw,bw;@]) . (2.12)

Ghs (9> b @], known as the hydrostatic effective action, contains all the possible diffeo-
morphism and gauge-invariant terms composed of g, b,,, and ® in the presence of a
timelike isometry K. The variation of the effective action with respect to the background
sources yields the conserved currents

2 5Shs[g,u1/,buu§¢‘] 2 5Shs[gul’vb/¢’/;q)}
V=5 o Voo b

while the equilibrium configurations of the gapless modes are obtained by extremising the

IS = , = (2.13)

effective action with respect to ® leading to

hs Uy b @
ke = [g‘gq’)“’ I_o . (2.14)

As a consistency condition on the general hydrodynamic constitutive relations (including

dissipative effects), we require them to match with eq. (2.13) when we revert to the global
thermal state by setting B = XK. This requirement yields strict constraints on their form
at every derivative order [7, §].

Schematically, the hydrostatic effective action appearing in (2.12) can be
parametrised as

Shs[g,twab,uzz;q)] :/dUuN}ﬁLS y (2.15)
b

where N[ is the hydrostatic free energy current that satisfies V, Nl = 0. As we leave
the global thermal state, the free energy current is no longer conserved. To see this, let us
slightly depart from equilibrium by replacing X with B and performing a B-variation of
Shs We obtain the hydrostatic adiabaticity equation

1w Lo
ViVl = ST 089 + 58 0mby + Kpop® . (2.16)

Physically, it is equivalent to the statement that entropy is conserved in a hydrostatic
configuration. To wit, defining the entropy current as

1
T

and using the conservation equations (2.6), the adiabaticity equation can be rewritten as

1
Sllfs = N}l:s B T}iVuV - le!fsy,uu ) (217)

VMS}’fS = 0. However, in a generic out-of-equilibrium hydrodynamic configuration with
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entropy current S¥, we expect entropy to be produced, leading to the second law of ther-
modynamics
VuSt=A>0 . (2.18)

Here A is a non-negative quadratic form which vanishes in a hydrostatic configuration.
Correspondingly, the generic adiabaticity equation (2.16) in the out-of-equilibrium context
is an extrapolation of its hydrostatic counterpart

1 1
VNt = iT!“QSBgW + 5J’“’dgbwj +K%3d+A, A>0 , (2.19)

where the different quantities involved may also include non-hydrostatic contributions, and
can be viewed as generalisation of the requirement of a hydrostatic effective action. A set
of physical constitutive relations 7", J* K® associated with a hydrodynamic system are
required to be accompanied by a free energy current N* and a quadratic form A such that
eq. (2.19) is satisfied for all fluid configurations. Below we will show how the adiabaticity
equation can be used to obtain constraints on the hydrodynamic constitutive relations.

Traditionally, one takes a slightly different route with the second law of thermodynam-
ics as the starting point in order to arrive at these constraints [31]. Switching off the extra
gapless modes ® for the moment, one requires that for every set of physical constitutive
relations TH, J#, the hydrodynamic system in question must admit an associated entropy
current S* whose divergence is positive semi-definite, V,5* > 0, on the solutions of the
conservation equations. Given such an entropy current, it is always possible to go off-shell
and write down an equivalent statement for the second law by introducing arbitrary linear
combinations of the conservation equations [32] (see also [33])

1
V5" + A, (VHT’“’ - 2H””"Jpg) + B,V I =A>0 . (2.20)

Here A, and B, are arbitrary multipliers composed of the hydrodynamic and background
fields, and introduced as to satisfy this equation offshell. Recall that the hydrodynamic
fields u#, T', and p,, were some arbitrary set of fields chosen to describe the system, and
like in any field theory, can admit arbitrary field redefinitions. We can use this freedom
to set A, = u,/T and B, = p,/T. Having done that, and using the relation between
free-energy and entropy currents, i.e.

1 1
NH = SH + TT'U'VUV + TJ'L“/,MV s (221)

it is easy to see that the offshell second law of thermodynamics (2.20) reduces to the
adiabaticity equation (2.19). Hence the constraints imposed by the second law of ther-
modynamics are equivalent to the ones imposed by the adiabaticity equation. The latter,
however, turns out to be functionally advantageous to implement. An entirely analogous
argument follows in the presence of additional gapless modes [34].

2.3 Constitutive relations up to first order

In the bulk of this paper, we will derive the constitutive relations allowed by the adiabaticity
equation (2.19) up to one-derivative order for several cases of interest. As shall be explained
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Ordinary one-form fluids

N (1) et Pl Hypo
77(W)(pa) 2) pHv ppo. prlepv)o
x el \ealwv) (2% 0) —

oluvllpo] (2) ult pYlleyol - prle prlo

One-form string fluids

N (5) O, T, WO, %, etVP7uy Hypoy €P7 0 by, Optig, €P7uyhy,0phe
77(W)(pv) (8) h*hYhPRe | hEhY APT . ARV PR h(MAu)(pho)7 APV NPT Ap(uAV)o’
R epo)  eplu AV)o
x el \leal(uv) (9% 4) RAVepal plee)lopol  prprers APV ero

olmllea] (3) hleAVIPpol pliellopel  envero

One-form superfluids

N (22) hEOLT, 07U hayOptis €P Uy 0pCoy Pty hay 0y,

REREN 4Gy BERE Y (.G

n()eo) (36) W' hy) hny)
X(uu)[pa] , X/[po’] () (2 X 36) hgﬂth) h[cphg] ’ héﬂh? h([jpua']
gllles] (36) RERRenS) ule Rl g R nloue), e n )

Table 4. One-derivative hydrostatic and non-hydrostatic structures for various phases of one-form
hydrodynamic constitutive relations. Here P*” = ¢gM” + utu”. For string fluids, h* is the string

director field while w is the string chemical potential; A" = gt +utu” — h*hY, "V = " u,h,.

For one form superfluids, ,,,, is the superfluid velocity; (,, = &, u”, CH = %e‘“’”"uyfm. On the other

hand, h% is a set of orthonormal vectors made out of ¢*, ¢*, and €*"??u, (,(,. These constitutive
relations are not generically written in Landau frame, but have been expressed in certain frames
convenient for each case respectively.

in the later sections, for all of these cases, the adiabaticity equation (2.19) can be reduced
to a simpler version

1 1
Vil = 5T 0n g + 5 I 0nbu + & A 20, (222)

where the dg® term has been removed by going onshell and using the available field re-
definition freedom. It is possible to broadly classify the constitutive relations satisfying
eq. (2.22) into hydrostatic, i.e. constitutive relations that remain independent in a hy-
drostatic configuration, and non-hydrostatic, i.e. constitutive relations that vanish in a
hydrostatic configuration.

The hydrostatic constitutive relations are characterised by a hydrostatic free energy
current Nii. = N +©X,, where N is made out of all the independent hydrostatic scalars,
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while ©/ is a non-hydrostatic vector® defined via

1 1 N N
" = ——6q (/— == K+ 2 O8Guw +2——0gb,, — V, 00 .
Vu(Nﬁ) \/ng( gN) 2<Ng + 5ul/> BIu + 6b#l/3,u Vu N
(2.23)
Comparing with eq. (2.22), it is possible to read out the hydrostatic constitutive relations as
T = N 2 N g N (2.24)

0w 0buy

In turn, the non-hydrostatic constitutive relations up to first order are simply given as
the most generic linear combinations of dpg,, and dpb,,. To wit

™ () (o) (uw)[po] 165800
mhe S (2.25)

JH x/vl(eo) gluvllpo] %53%
Here n#)(po) el \1)leal and glvlleo] are the most general zero-derivative struc-
tures, with associated arbitrary transport coefficients, composed of the hydrodynamic fields

identified in the previous section. In particular, there are no zero-derivative non-hydrostatic
constitutive relations. Inserting eq. (2.25) into eq. (2.22) it can be inferred that they satisfy

eq. (2.22) with N} =0 and
(mv)(po)  (wv)[po] 1s
n X BYpo
A =T (46n9 Lonbu) 2T >0 (2.26)
X/[/W](pa) olvllpo] %53500

It follows that the symmetric part of the non-hydrostatic transport coefficient matrix

1 (n(ul/)(pa) + nPo) )y (w)lpa] 4 /lpo] (/W)>

> 2.2
> >0, (227)

Y/ )lpol o\ Hpal(uv) - Gluvllpo] 4 g leolluv]

is a positive semi-definite matrix. This requirement imposes certain inequality constraints
on the transport properties of the hydrodynamic theories that we will study. A summary
of the allowed tensor structures in various phases of one-form hydrodynamics is presented
in table 4.

A priori, the hydrodynamic fields w*, T, and pu, are arbitrary degrees of freedom
chosen to describe the hydrodynamic fluctuations. In equilibrium, these are unambiguously
identified with the timelike isometry X, but in a generic out-of-equilibrium state, they
can admit arbitrary non-hydrostatic field redefinitions. We can use this freedom to our
advantage and simplify the non-hydrostatic constitutive relations by making a choice of
“hydrodynamic frame”. The most common of such frames is the Landau frame, which fixes
the field redefinition in w* and T by choosing 7% u, = 0. The redefinition freedom in p,,
can be similarly used to set J& u, = 0. This leads to

n(“”)(p”)u“ — X(#V)[PU]UN — X’[W](pa)uu — U[W][poluu -0 . (2.28)

8Generically, N/ can also include a hydrostatic part transverse to u*. Known as Class Hy constitutive
relations or transcendental anomalies, these contributions are completely fixed up to a finite number of
constants [10]. For the cases considered here, such terms turn out to be independent of the one-form
symmetry sector altogether, and hence have been switched off for simplicity.
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To complete the quadratic form A in this frame, we need to further eliminate u*dsg,, and
utdpb,,, from the non-hydrostatic constitutive relations (2.25), which can be generically
done using the conservation equations (2.1). Therefore

N P0)y =y 1leoly, = o)y, — glinlledly  — o (2.29)

Hence, all indices in n(#)(Po) el (uw)lpal - and glivllee] can be taken to be pro-
jected orthogonally to the fluid velocity. We will not restrict ourselves to this frame choice
throughout this work. Instead, we will make a judicious choice of basis based on the hy-
drodynamic system under consideration, defaulting to the Landau frame when no such
natural choice is available.

3 Ordinary one-form fluids

The main topic of interest of this work is one-form superfluids. However, before delving
into the intricacies of one-form superfluid dynamics, it is instructive to consider ordinary
one-form hydrodynamics first. Even though it is comparatively simpler than the examples
that will be studied in later sections, this section provides the first formulation of one-form
fluids in which the one-form symmetry is unbroken.

At ideal order, this system is trivial because there are no zero-derivative gauge-
invariants that can be constructed from the ideal order hydrodynamic fields j, and b,
identified in section 2. Consequently, at ideal order one-form fluids are characterised by
the same constitutive relations as ordinary neutral fluids. Precisely

T = (e + p)u'u” +pg"” +0O(0) , J* =0(09) , (3.1)
along with the thermodynamic relations
dp=sdT , e+p=sT , de=Tds . (3.2)

These constitute relations can be derived from their corresponding hydrostatic free energy
density NV = p(T), using (2.23), such that the free energy current is given by N/ =
p/T u*. The coeflicients €, p, and s are identified as the energy density, isotropic pressure,
and entropy density of the fluid respectively. The first-order equations of motion simply
imply that

1
uWVyue+ (e+p)Vyuu' =0, TPW&VT +u'Vyut =0, (3.3)

which can be collectively used to eliminate uégg,, from the first-order non-hydrostatic
constitutive relations.

At one-derivative order, signatures of one-form symmetry begin to appear. In the
hydrostatic sector there is only one gauge-invariant contribution to the hydrostatic free
energy density A at first order, which is given by

N = p(ry — 28

P, Hypy (3.4)
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The transport coefficient « is unconstrained by the adiabaticity equation (second law).

The variation of this corrected free energy density, according to eq. (2.23), leads to the

hydrostatic constitutive relations

O(Ta)
oT

1
TLY = (e +p) ulu” + p g — éeaﬁp"uaHﬁpa ufu’ = %u(uey)/\paH/\pa +0(9%)

T =V (ae?%u,) + O0?) |

_a
6T

Note that all the dependence on p, comes via the antisymmetric derivative 6[N(u,,]/T ),

NI Py — aewwuyap(’;f) + 0% . (3.5)

which is gauge-invariant. The most general non-hydrostatic corrections, in turn, can be
decomposed along and transverse to u* according to

Th. = deutu” + 6 f P* + 2ult k) + ¢
Jh = onltul 4 s (3.6)

Here all the tensor structures are transverse to u*, while t*¥ is symmetric-traceless and
sM is anti-symmetric. It is possible to use the hydrodynamic redefinition freedom in u*
and T to set de = k* = 0. There is also a redefinition freedom in p, but since p, does
not appear in the ideal order constitutive relations, this redefinition cannot be used to
eliminate any first-order structures. Additionaly, the first order equations of motion can
be used to remove u*dgg,, from set of independent first-order structures. Finally, this
leads to the following form for the first-order non-hydrostatic corrections

5f = S PP g = (V|

t = —p TPPH PGy g,, = —2n PP PV (v(pug) - ;PpavAuA> = —not”

nt = —TAP*u’ by, = —2)\P“”u“T8[p% )

s* = —TaP* P §5b,y, = —o P P"7 (ZTﬁ[p'u;} + u’\HApa) . (3.7)

Introducing these into the quadratic form in eq. (2.26), the non-negativity of A requires
that all the non-hydrostatic transport coefficients are non-negative

n,¢GAo=0 . (3.8)
Thus, all in all, the most generic constitutive relations of a one-form ordinary fluid up to
one-derivative order are given as
TH = (e + p) utu’ + pg"’ — ( Vyu PP — ot
O(Ta)
oT
J = Vo (e u,) + QAU[“P”]puUTa[p%

- éeo‘ﬁpauaHﬂpa utu” — %u(“e”)Ap"H,\pa + 0%

— gprepYe <2Ta[p’é;] - uAHAp(,) +0(6%) (3.9)
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and satisfy the adiabaticity equation (2.22) with the free-energy current

Nﬂzguﬂ_i_i

nvpo . nvpo & 2
T T ¢ H, e — e u,,ﬁp< >+O(8) . (3.10)

T

Out of the 5 transport coefficients appearing at one derivative order, 4 are dissipative
and sign definite, while the remaining one does not cause dissipation and is left to be
sign-indefinite.

In a global thermal state, characterised by a timelike isometry K = (k“,A}j), the
dynamical fields arrange in an equilibrium configuration

k1 CAf KDy,

_ B _ Ak
ﬁu_kua A,u_Aua u’u k ) k )U“/J_ k )

(3.11)
where k = /—k#k,,. If we choose a basis (¢,2") such that k* = 6! /Ty, the hydrostatic ef-
fective action generating the respective constitute relations can be read out using eq. (3.10)
and eq. (2.15) leading to

T
o) ey ., | . (3.12)

1
Shs[g;u/;b,ul/] = ?0 /d3x\/ -9 |:p(T) -
In the next section, it will be shown how the one-form symmetry can be broken and

how this breaking can lead to other fields which can modify the ideal order constitutive
relations.

4 One-form superfluids

In the previous section, hydrodynamics in the presence of an unbroken one-form symme-
try was studied. In this section, this study is extended to include hydrodynamics with a
spontaneously broken one-form symmetry by introducing a gapless vector Goldstone mode
¢, into the generic analysis of section 2. It is observed that this theory is self-dual in the
absence of external two-form sources, which is highly reminiscent of the electromagnetic du-
ality of sourceless Maxwell’s equations. In addition to the equation of state at ideal order,
it is found that the one-form superfluid is characterised by a total of 166 transport coeffi-
cients at one-derivative order and hence is not extremely useful from a phenomenological
standpoint. However, the various interesting limits/sectors of the theory are highlighted,
for which the spectrum of transport coefficients is considerably more manageable. These
limits will be investigated in detail in sections 5 and 6. The hydrodynamic theory devel-
oped here finds a direct application in describing various phases of plasma. In a certain
limit, which we refer to as string fluids, one-form superfluid dynamics provides a dual and
conceptually cleaner formulation of magnetohydrodynamics describing plasmas with Debye
screened electric fields. In another limit, it describes plasmas without free charges, which
we refer to as bound-charge plasmas. The details of these applications will be given in
section 7.
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4.1 Hydrodynamics with spontaneously broken one-form symmetry

In this section, the Josephson condition for one-form superfluids is derived along with the
ideal order constitute relations and first-order corrections. The hydrostatic effective action
for one-form superfluids is also given.

4.1.1 Vector Goldstone and the Josephson equation

In the theory of zero-form superfluid dynamics, the spontaneous breaking of the global
U(1) symmetry gives rise to a scalar Goldstone mode ¢. Analogously, the Goldstone mode
corresponding to a broken global U(1) one-form symmetry is the one-form gauge field
¢, [28] that under an infinitesimal symmetry transformation X = (x*, Aj) transforms as

dxiop = L£xpu — A (4.1)
It is useful to introduce the covariant derivative of ¢, according to

§MV = 28[;1,9011] + buu 5 (42)

which is gauge-invariant and transforms covariantly under the action of X, i.e. d0x&,, =
£x&uv- In analogy with zero-form superfluids, for which the superfluid velocity is given by
& = O0uo + Ay, we refer to (4.2) as the two-form “superfluid velocity”. This superfluid
velocity satisfies the Bianchi identity

36[M§Vp] = H/Wp . (4.3)

The existence of ¢, allows for the definition of a gauge-invariant one-form chemical poten-
tial pj; such that

pip = = T (6%p0) (4.4)
where g, was introduced in eq. (2.10). In this symmetry-broken phase, the covariant
information contained in b, p,, and ¢, can be exchanged for &, and pj;.

As mentioned in section 2, the dynamics of the Goldstone mode ¢,, is governed by its
own equation of motion which can be represented as

Kt=0 . (4.5)

This, along with the conservation equations (2.6), make the system of dynamical equations
closed. Our ignorance of the underlying microscopic theory does not allow for a first
principle derivation of eq. (4.5). However, using the offshell adiabaticity equation (2.19)
for the case at hand

1 1
VHN'M = ile(Sggw, + ij'uy(sgblw + Kuég(pu +A, A>0 , (4.6)

where dgp, = 8”&, — pfi /T, it is possible to fix the form of eq. (4.5) as in the case of usual
superfluids [33]. In particular, at zero order in derivatives using the available hydrodynamic
data, the above adiabaticity equation reduces to —K*dégp, + O(0) = A > 0, where O(0)
denotes higher derivative corrections. Therefore, it is possible to infer that

KM= —TaM g0, +0(0) , A =T (6pp,) o™ (55p,) +O(D) | (4.7)
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for some positive semi-definite matrix . Since the Goldstone must satisfy eq. (4.5)
onshell, the above implies the relation

dppp =0(0) = ,U,f =u"&u + 0(0) (4.8)

which is the one-form equivalent of the Josephson equation in superfluids p = u#§, +O(0).
Thus uj; does not account for independent degrees of freedom in one-form hydrodynam-
ics. Additionally, the redefinition freedom associated with s, (or correspondingly Aﬁ) can
be used to absorb the potential derivative corrections appearing in eq. (4.8). Hence, by
redefining 41, the Josephson equation (4.8) can be turned into an exact all-order onshell
statement

dpppu=0 = ph=u"&, , (4.9)

and eliminate y; entirely from the hydrodynamic description. Thus, the energy-momentum
conservation equation in (2.6) provides dynamics for u* and T', while the one-form conser-
vation governs the dynamics of (p#.g On the other hand, the adiabaticity equation reduces
to its simple form in (2.22) as promised earlier. While the final system appears to be similar
to its symmetry-unbroken counterpart, it should be noted that the constitutive relations
in this case involve ¢, instead of fi,.

4.1.2 Ideal one-form superfluids

Having identified the independent set of hydrodynamic variables, it is straightforward to
derive the most general constitutive relations at ideal order. Since we are working with
four spacetime dimensions throughout this work, it is useful to introduce an independent
set of vectors

v ~ 1 vpo
Cu = Euu’” = §6u p wépo (4.10)

satisfying u, (" = u#C_ # =0, which can be thought as electric and magnetic fields associated
with &,,,. Here we have introduced the completely antisymmetric Levi-Civita tensor €, o
with conventions €pj23 = /—¢g. In turn, eq. (4.10) can be used to decompose the superfluid
velocity from eq. (4.2) as

v = 2u,C) — €upott’C7 (4.11)

and to rewrite the Josephon equation (4.9) as puj, = —Cy.

Unlike the ordinary one-form fluids studied in section 3, one-form superfluids exhibit
signatures of one-form symmetry at ideal order itself. Using the decomposition in eq. (4.10),
the most generic form of the hydrostatic free energy density can be shown to take the form

N =P(T,¢%3,¢-0)+000) . (4.12)

9To see this, note that when all the 1 dependence has been eliminated from the hydrodynamic descrip-
tion, the entire dependence on b,, in the hydrodynamic constitutive relations comes via £,,. Since this
is also the source of all ¢, dependence, for theories admitting an effective action, K* = 2V, (85/68..) =
2V, (8S/0bu,) = V,J*. In essence, the Josephson equation, that used to originally be the equation of mo-
tion for ¢,, has now been used to algebraically eliminate x,,. Therefore, the one-form charge conservation
now serves as an equation of motion for ¢,,.
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Performing a variation of the functional arguments with respect to the hydrodynamic
variables B leads to

T
opT = Eu“u”égguy,
05¢% = (Cutu? — ¢¢Y) Opguu + 2 u65b,,
5352 = <_€2PWI + 5”611 + 2U(M€V)pm—up§agf) 539#1/ - e'uypgupgaéﬁb,ul/ )

- 1
53(C €)= —5(C - 019" 09 — 7" Epadnby - (4.13)

1

2
Using eq. (2.23), the one-form ideal superfluid constitutive relations, free energy, and en-
tropy currents are obtained as

™" = eutu” + (P — q¢* —qx (¢ Q) P —q¢"¢" +q (@TJ + 2U(M5V)pm“p§tacf> )

7 = =2 (g ¢+ gx C) = 7uy (76 +4x o)

P
NM = TUH s
1
S = N* = BT 4 =G " = sl (4.14)

where the thermodynamic relations
1 1_ - _ ~
AP = sdT + 5qdC® + 5qd +axd(C- (), e+ P=sT+qC +qx(C-C) , (415)

were derived and used to simplify eq. (4.14). From here we can identify P appearing in the
free energy density as the thermodynamic pressure. On the other hand, ¢ and s stand for
the energy and entropy densities, in addition to the two superfluid densities ¢ and ¢, and
a cross-density gx.'" eqs. (4.14) and (4.15) imply that one-form superfluids are completely
characterised by their equation of state P = P(T,(?,(2,¢ - ().

4.1.3 One derivative corrections

Having derived the constitutive relations for an ideal one-form superfluid, it is possible to
tackle the marginally more complicated first-order derivative corrections. This complication
originates from the fact that there are 3 ideal order mutually orthogonal spatial vectors in
one-form superfluids

hlf . g hg _ E,u — (C ) E)C”/CZ héf _ €“VPUUVCPEU (4.18)

IR /S (S I V(02

0These thermodynamic relations can take a more appealing form if we define

w:|<|7 ﬁ:|E|7 p:q|<|7 ﬁ:lﬂa, AZCC? Px = d4x , p:P_QQTQ_qX(CE)v (416)

which leads to
e+tp=sT+pw—pw , dp=sdT +pdw —wdp— Adpx . (4.17)

However, in the subsequent sections, limits for which ¢, or C* is taken to be of higher-order in derivatives
will be explored. In those situations, these definitions are ill-defined.
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thereby completely breaking the SO(3) rotational symmetry and providing a decomposition
for the metric

g = —utu’ + SPhERY . hERY = Gay (4.19)

In terms of these, the corrections to the hydrostatic free energy density (4.12) can be
written as

N =P+ fEhEO,T + f§ P u,ha,Opuy + f8 P u,ha0,Co + F P u,hay0,Cs
+ 280 REREN Gy + 2080 hEREN (G, + O(07) (4.20)

Here f; are the hydrostatic transport coefficients, with fgb and fgb being symmetric and
traceless. The respective trace parts lead to total derivative terms which do not lead to
independent constitutive relations upon taking a variation. We have not considered any
corrections involving H,,, explicitly, as they can be related to 39|,&,, using the Bianchi
identity. Thus, in total, there are 22 transport coefficients in the hydrostatic sector.!’ As
in the ideal order case, it is possible to use eq. (2.23) in order to read out the respective
constitutive relations at first order in derivatives but we do not perform this exercise here.

Using the approach detailed in section 2.3, we can derive the constitutive relations in
the non-hydrostatic sector. It is convenient to parametrise the stress tensor and charge
current as

T — Seutu” + 20k uWhy) + 610 BERY)

nhs

T = 25¢% ulth?) 4 550 BlpY (4.21)

The terms involving de and J0k® can be set to zero using the field redefinition freedom
inherent to T" and u#. The field redefinition freedom inherent to 4, has been exhausted
when turning the Josephson equation into an exact all-order statement (4.9), thus dg®
is generically non-zero. These considerations lead to the set of non-hydrostatic constitu-
tive relations

5q° Age ASD XD\ e sgb,,
stab | = —T )\lza(cd) n(ab)(cd) X(ab)[cd] %hghg(gﬁguy , (4.22)
55 ngledl ylabl(ed) slatlled) |\ SRERGpby.,

where A1, Ao, Ay, 7, x, X/, and o are matrices of transport coefficients. There is a total
of 12 x 12 = 144 non-hydrostatic transport coefficients. Positive semi-definiteness of A
requires that the symmetric part of the transport coefficient matrix must have all its
eigenvalues non-negative. This gives 12 inequality constraints in the non-hydrostatic sector.
Onsager’s relations may impose further restrictions on the non-hydrostatic transport which
we have not considered in this analysis.

"Tn principle, we can remove some terms from the free energy density using the ¢,, equation of motion.
The respective contributions to the constitutive relations can be absorbed by redefining ¢,. We have not
analysed these issues here.
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4.1.4 Hydrostatic effective action

At ideal order, the exact same constitutive relations (4.14) along with the thermodynamic
relations (4.15) can be obtained from a hydrostatic effective action. Under the assumption
that the background manifold admits a timelike isometry X = (k*, Allj), we can infer the
equilibrium configuration for the hydrodynamic fields using eq. (2.10) as
Kk 1 AY + Kby,

T=_,

_ B _ Ak
5#_kﬂv A/,L_Aua u“ k) k Mu_?)

(4.23)
where k = /—k*k,, is the modulus of the timelike Killing vector field k*. In turn, the
hydrostatic effective action, using eq. (4.12) and eq. (2.15), reads

Shs[g,uu’buu;gpu] = /d4x\/ng(T7 C27§27< ) g_) . (4'24)

Using (2.13) we can readily obtain the currents (4.14). Additionally, by varying the effective
action with respect to ¢, (see eq. (2.14)) yields the equation of motion for equilibrium
configurations of ¢, specifically

- 1 1
BVVM (qTC“) = _6yﬂpavu (qupga) - §eyupafpaauQ>< - EQX 6V'upgj—fupa , (4'25)

where the reader may be reminded of the defining relation in eq. (4.4) which leads to
Cu =T0, (B"py) — py. Similarly at one-derivative order, the hydrostatic effective action
obtains corrections due to eq. (4.20)

ShslGuv, buvs oul = /d4x\/—g [P + fIhEOLT + f3 P uyha,Opus + f3 €P7uuha0,Cs
+ ff elwpguuhauapéa + 2f§b hffhzv(y@) + Qfélb hlalhgv(ufy) ) (4'26)

which can be used to derive the hydrostatic constitutive relations and ¢,, profiles.

It should be noted that no assumptions were made on the background metric and gauge
fields other than the existence of a timelike isometry. As shall be explained in section 5,
upon taking appropriate limits, this action describes all equilibrium configurations in string
fluids, which includes those of [21, 22, 35] as special cases.

4.2 Special limits of one-form superfluids

An effective theory with 166 arbitrary transport coefficients (and 12 inequalities) at first
order in derivatives is perhaps not the most useful effective theory. However, it is possible
to identify limits of this general theory with a tractable number of transport coefficients
and interesting applications, which are now described:

e FElectromagnetism. The simplest example encompassed by this general theory is that
of electromagnetic fields living alongside a neutral ideal fluid. By simply turning
off the coupling between electromagnetic and fluid degrees of freedom, and setting
Fuy =20, A, = &, the gauge field ¢, is directly identified with the electromagnetic
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photon A,. The identification Fy, = (xJ),, yields the same theory, with the two
being related by electromagnetic duality. This case will be described in more detail
in section 4.4.

e String fluid limit. An interesting limit of one-form superfluids, which will be studied
in section 5, is the limit in which ¢* enters the constitutive relations while ¢ is
simply removed from the theory. As shall be explained in section 5, this limit can be
understood as a partial breaking of the one-form symmetry along 8" in which only
the timelike component of the Goldstone mode ¢ = ¢, (in terms of which (, is
defined — see eq. (4.4) and eq. (4.9)) enters the constitutive relations. This limit,
which will be shown to be exactly equivalent to magnetohydrodynamics in which
the electric fields are Debye screened, is characterised by 23 independent transport
coefficients.

e FElectric limit. The electric limit is attained by considering the hierarchy of scales
(" = O(1) and ¢* = O(9), implying that electric fields ¢(* can be arbitrary but
magnetic fields ¢# are weak. In this context, the one-form symmetry is completely
broken. This limit is equivalent to the hydrodynamics of magnetically dominated
bound-charge plasmas, i.e. plasmas that do not contain free charge carriers and have
electric fields derivative suppressed. We will return to this in detail in section 6.

In general, the formalism of one-form superfluids finds applications in many phases of (hot)
electromagnetism. A more detailed description and derivation of these connections is given
in section 7.

4.3 Self-duality of one-form superfluids

To summarise, the theory of one-form superfluid dynamics developed in the previous sec-

tions is governed by the following set of equations'?

3
Energy-momentum conservation : V,T"" = §V["§’”] Joo —E"PN Iy s
¢y equation of motion: V,J" =0,

¢, Bianchi identity : V%" = xH" |

1 1
Second law of thermodynamics : V, N = -T"6g5g,, + §JW5T5£;W +A, A>0,

T2
(4.27)
where due to dgp,, = 0, the following identity holds d5¢,, = ds b,w.13 When the background
field strength H,, vanishes, it is possible to check that under the mapping
1 1
JH — JHE = %W = 56“"""{,)0 ) Ep — &y = %y = 5e,u,pm]’w ,

1
Nt = NIt = N — 236 (4.28)

"?The Hodge duality operation is defined as (kw)! 1 #d=k = Le/tvhbtbd—by,

131n the first equation in (4.27), the term involving the charge current divergence has been included in
order to make the self-duality manifest. Onshell, this equation is identical to eq. (2.6) upon using the
Bianchi identity and one-form conservation equation.
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these equations map to themselves.'* This is the self-duality of one-form superfluid dynam-
ics. The operation (4.28) can be seen as a Legendre transform in the one-form sector, so
that J# become background sources while §,,, are seen as the respective responses. What

used to be the ¢, equation of motion, in the Legendre transformed picture becomes the
o)
of motion for ¢y, is given by what previously used to be the Bianchi identity. It is inter-

Bianchi identity for some auxiliary gauge field ¢, such that &, = 29),¢;,. The equation
esting to note that even though the free-energy current is Legendre transformed according
to (4.28), the physical entropy current in the two pictures is exactly the same, namely

St = NF —TH'B, — JWBPE,, = NI — TH'B, — JHBPer, . (4.29)

Thus, irrespective of the formulation being used, entropy production remains the same.
Additionally, it also ensures that if the constitutive relations in one formalism are tuned
in order to satisfy the second law of thermodynamics, then the coefficients in the Legendre
transformed picture automatically respect the second law.

The realisation of the self-duality of one-form superfluids has been phrased in ab-
stract terms by means of (4.28). In practice, however, the exact map between transport
coefficients in both pictures can be non-trivial. In order to illustrate this, we apply the
map (4.28) to one-form superfluids at ideal order in section 4.1.2. The two-form superfluid
velocity in the Legendre transformed picture is given by

& =T = 2up, (GG + 4xC)) — €urpot” (4C7 +¢xC7) (4.30)

Comparison with eq. (4.10), where ((#,(*) have been replaced by their corresponding
Legendre transform vectors (¢¥, (') that ought to be determined, it is possible to infer that

G =qCu+axCu G =qCu+axCu

q % q>< * s q * qX %
Cu=—= Cp— — Cu s Cu=— Cp— — Cp - 4.31
gt qa— 27" gt qa— 2" (4.31)

Using these and comparing with (4.14), it is possible to find the respective two-form current
via the relation

T = = 2 (.00 4 g &) =, (@G 0 ) L (432)

where the Legendre transformed transport coefficients were identified according to

B B _ e
*x — ) *k T — *k T —
qq — 4> a7 — %’ qq — ¢>

P.=P—qC*—qC*—2¢x(¢-C) . (4.33)

This identification brings the Legendre transformed stress tensor and charge current to the

) €x = €, P«=D,

same form as in eq. (4.14) but with transport coefficients and (¢#,(*) replaced by their
Legendre transformed counterparts. It is worth noticing that the transformation (4.33) is
not defined if ¢ — ¢2 = 0.

141n d spacetime dimensions, a similar Legendre transform is expected to map a g-form superfluid to a
(d — ¢ — 2)-form superfluid.
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4.4 Application to hot electromagnetism

As a simple application of one-form superfluid dynamics, consider a neutral fluid subjected
to dynamical electromagnetic fields. This is the simplest example of a hot electromagnetic
plasma, which we consider in detail in section 7, where the electromagnetic fields are
completely decoupled from the fluid degrees of freedom. The dynamics of this system is
governed by the energy-momentum conservation and the familiar Maxwell’s equations

VM =0, V" =0, V,F, =0 . (4.34)

The third equation (Bianchi identity) in (4.34) is solved by introducing the photon A, such
that F,, = 20,A4,). The energy-momentum tensor of this theory receives contributions
from both the fluid component as well as the electromagnetic fields

1
T = en(T)ua” + pua(T) (9" +u'a?) + FF F" — 2" Fyp P

= em(T)u'v” + pum(T) (g + u*u”)

1 1
+ 5 (E? + BAutu? + S (E? + BY)P" — BB — (B“B” + Qu(“e”)pUTupBUET) :
(4.35)
where we have defined the electric fields E* = F"u, and magnetic fields B* =

%e’“’p" u,F,s. The electromagnetic part trivially satisfies the conservation equations for
the photon configurations that satisfy the Maxwell’s equations (second equation in (4.34)),
while the conservation of the fluid part governs the dynamics of u* and T'.

This setup can be equivalently described by ideal one-form superfluid dynamics. To
this aim, we perform the identification F),, = &,,, which implies

EM=(t | BF=(M . (4.36)

Comparing the energy-momentum tensor in eq. (4.35) with eq. (4.14) we can read out that

1 - _ 1 -
Pzpm(T)+§(C2—CQ) ., q=-q=1, g« =0, ezem(T)+§(C2+C2) . (4.37)
It follows that the two-form current J#” = —&* = —F#*. Having made the identifica-

tion, the equations of one-form superfluid dynamics in (4.27) with H,,, = 0 map directly
to (4.34). The respective energy-momentum tensors and Bianchi identities map to each
other, while the equation of motion for ¢, is equivalent to Maxwell’s equations. There-
fore, the one-form Goldstone ¢, can be identified with the photon A,. The associated
hydrostatic free-energy density for this one-form superfluid is given by

1 1
N =P =pu(T) = 16" = pu(T) = 7FuF" . (4.38)

This is precisely the Lagrangian density for electromagnetism minimally coupled to a neu-
tral fluid, where the vacuum permeability has been set to unity.
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Due to the self-duality of one-form superfluids (4.30) at H,,,, = 0, we can also make the
identification F),, = £, = *Jy,. The electric and magnetic fields now reverse their roles

Bt=-C", Br=(", (4.39)

while the mapping for transport coefficients remains the same (see eq. (4.33)). This dual
description is essentially the consequence of electromagnetic duality of vacuum Maxwell’s
equations under E¥ — B* and B* — —E". In this case, the Bianchi identity in (4.27)
maps to Maxwell equations in (4.34), while the equation of motion for ¢, maps to the
electromagnetic Bianchi identity. In this picture the vector Goldstone ¢, can be under-
stood as an auxiliary “magnetic photon”. The energy momentum tensor (4.35) and the
Lagrangian density (4.38), when defined with respect to the Legendre transformed P, in
eq. (4.33), remain invariant.

The relations between one-form superfluids at finite temperature and hot electromag-
netism will be considered in more generality in section 7. In any case, the relations estab-
lished here should provide confidence to the reader that one-form superfluids can be used
to construct effective theories where the electromagnetic degrees of freedom interact with
the mechanical and thermal degrees of freedom of relativistic matter.

5 String fluids

In this section a theory of parity-violating string fluids is formulated up to first order in
derivatives, extending and completing earlier formulations [3, 20, 21]. This theory can
be formulated by partially breaking the one-form symmetry along the fluid velocity £*,
yielding a scalar Goldstone mode ¢, or by a direct limit of one-form superfluids as discussed
in section 4.2. Both these directions will be described in this section. String fluids provide
a dual formulation of MHD that is cast only in terms of symmetries, eliminating the
need of introducing the non-propagating degrees of freedom g (chemical potential) and EH
(electric fields) in traditional treatments of MHD [24]. The exact relation between the two
formulations will be described in detail in section 7.

5.1 Partial breaking of one-form symmetry

String fluids can be obtained directly from one-form fluids discussed in section 3 where the
one-form symmetry is spontaneously broken in the direction of the fluid flow. In practice, it
implies that the theory admits a scalar Goldstone ¢ in the hydrodynamic regime along with
the usual hydrodynamic fields u*, T', and p,, introduced in section 2. Under a symmetry
transformation X, ¢ transforms as

oxp = Lyp — BHAY . (5.1)

This new mode allows for the introduction of a new gauge-invariant vector combination

wht that captures the covariant derivatives of ¢, namely

why = p —TOup . (5.2)
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Here h*h, = 1 and we have isolated the norm w of the vector. It can be verified that, at
this stage, u* and h* are not necessarily orthogonal, instead their inner product satisfies
uthy, = ~T?/wépp. The hydrodynamic systems built using these degrees of freedom are
referred to as string fluids. In particular, the vector h, characterises the direction of the
strings while w is interpreted as a string chemical potential.

Following a similar procedure as in section 4.1 we can determine the Josephson equation
for string fluids. The Goldstone mode ¢ is accompanied by its equation of motion K = 0,
which can be used to write down the offshell adiabaticity equation (2.19) in the form

1 1
V, Nt = §TW539“” + iju'fdgbu,, + Kégp+A , A>0 . (5.3)

Using the available hydrodynamic data, at ideal order this equation becomes —Kdgp =
A > 0, implying that

K= _0553()0 + 0(8) ) A= a((SB(P)Q + O(a) y o >0 ) (54)

where « is some transport coefficient. Imposing the ¢ equation of motion K = 0, it
follows that dgp = O(9), which in turn implies the Josephson equation for string fluids
uth, = O(0). Analogous to section 4.1, it is possible to use the redefinition freedom
associated with 1, to absorb potential derivative corrections and to turn it into the exact
statement

dpp=0 = u'h,=0 . (5.5)

Thus, the string direction can generically be chosen to be transverse to the fluid flow.
Therefore, the independent dynamical fields in string fluids, just like the previous consid-
erations of [21], are u#, T, w, and h, with uu, = —1, h*h, = 1, and u’h, = 0. The
dynamics for u# and T is governed by the energy-momentum conservation in eq. (2.6), while
that for @ and h, by the components of the one-form conservation transverse to u*. The
component of the one-form conservation along u*, on the other hand, acts as a constraint
on the allowed field configurations on an initial Cauchy slice. In our picture, this constraint
is seen as determining the configurations of the scalar Goldstone ¢.!> Additionally, once
eq. (5.5) is imposed, the adiabaticity equation (2.19) reduces to (2.22).

5.2 Ideal string fluids

At ideal order, string fluids are characterised by the free energy density N’ = p(T, ). The
og variations of T and w read

T
0T = §u“u”(5§;gwj , Opww = % (wu” — h*hY) 0B g + u[“h”](sgfw , (5.6)

5To see this, note that there are two sources of b, dependence in string fluids: H,,, and wh,,. Therefore,
for theories admitting an effective action, we can infer that J** = —3V(6S/0Hxu) + 2ul” (05/6(zwhyy)).
On the other hand, all the ¢ dependence comes from wh, leading to K = V,(T6S/é(wh,)) =
(65/6(wh,))T?*u” 65 gun + Tu, V,, J* . We have used that u"(6S/8(wh,)) = 0. Therefore, after the time
component of y,, has been algebraically eliminated using the ¢ equation of motion, the time component of
the one-form conservation equation serves as the equation of motion for ¢.
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and can be used, together with eq. (2.25), to derive the respective constitutive relations.
Specifically, these read

T = (e + p) ulu” 4+ pg" — wp h*R” + O(0)
JW = 2pulrn¥l + 0(0) | (5.7)

where the thermodynamic relations
dp=sdT+pdw , e+p=sT+pw , (5.8)

were defined and led to the identification of p as pressure, € as energy density, p as string
density and s as entropy density. The associated free energy and entropy currents are
given as
N = Pon
T )

Since A at ideal order vanishes, ideal string fluids are non-dissipative.

SH=sut . (5.9)

It is instructive to work out the ideal order equations of motion governing the dynamics
of the string fluid hydrodynamic fields. In particular, the components of the energy-
momentum conservation imply

1
VT = SH Jyo + 20000,

— Ons+ gP’W(Sng, = 0(?) , (5.10a)
u'hY dp g = 0(9%) (5.10b)
(€ + p)ul AP 5., — ph* AP Sgb,,, = O(0%) (5.10c)

while those of the one-form current conservation reduce to

VI =0 = dpp+ gAwaggW = 0(3%) , (5.11a)
APEYY §byy 4+ WAPERY $5.9,,, = O(0?) (5.11b)
1
fvu (Tpht) — pTuth" 559, = O(0?) . (5.11¢)

Here AM = g" + w#u” — h*hY and

g

Uy) why u
5ng, = QV(M T ) 5Bb'u1/ = QQ[M T + ?Ha/.u/ ) (5'12)

were used to simplify the expressions. Egs. (5.10a) to (5.10¢), (5.11a)—(5.11b) can be used
to eliminate u*dgg,, and u*dgb,, from the set of independent first order non-hydrostatic
tensors. On the other hand, eq. (5.11¢), upon using eq. (5.10b), gives a constraint equation
for ¢ configurations on an initial Cauchy slice

Y, (Tpht*) =0 | (5.13)
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which is the no-monopole constraint of [27]. Additionally, the second equation in (5.11) is
the induction equation of [27].

As already explained in [24], the introduction of ¢ in the formulation of string fluid
dynamics allows for a well-defined hydrostatic effective action (2.15), where N[\ = (p/T)u*
and from which (5.13) arises as the variation with respect to ¢ (see eq. (2.14)).

5.2.1 Strings fluids as a limit of one-form superfluids

As mentioned in section 4.2, string fluids as described above can be obtained as a limit
of one-form superfluids introduced in section 4.1. This limit is obtained by removing
any dependence on (* from the one-form superfluid theory, in which case the Bianchi
identity (4.3) looses its meaning. Comparing (5.1) with (4.1), it is straightforwardly inferred
that the Goldstone scalar ¢ is the component of the Goldstone vector ¢, along 3, i.e.
¢ = P*p,. The complete equivalence is made by comparing (5.2) with (4.4) under the
light of the Josephson equations (4.9) and (5.5) leading to the identification

C/.L = _Wh;t y = ﬁ ) (514)

w

while the conditions § = ¢x = 0 arise due to the removal of any dependence on ¢ from the
constitutive relations of section 4.1.2, thus recovering (5.7) from eq. (4.14). Additionally,
eq. (5.13) can be obtained from the equilibrium equation (4.25) for ¢,,.

5.3 One derivative corrections to string fluids

Having established the ideal order constitutive relations, it is possible to continue the hy-
drodynamic expansion to one higher order. The results will be a sector of the transport
coefficients given in section 4.1.3, which also includes parity-violating terms, hence provid-
ing an extension of earlier literature [3, 20, 21].

5.3.1 Hydrostatic corrections

Hydrostatic corrections to ideal string fluids are composed of the first order scalars that
can appear in the hydrostatic free energy N and are non-vanishing in equilibrium. At first
order, it is possible to identify a total of 5 transport coefficients

N=p-— %e“”pautum — BeP7u,h,0pu, — B1h O, T — th“a,% — B3P, h,0,h,
(5.15)
Since boundary transport is not being considered, total derivative scalars such as V,h*
can be removed from the independent set. Additionally, the equilibrium condition (5.13)
allows us to set 82 = 0 and hence only 4 scalars are independent. However, allowing for a
non-zero (32 will ease comparison with earlier literature in section 7. The terms coupling to
« and § are CP-even while those coupling to B, B2, B3 are CP-0dd.’® The distinguished

The discrete parity symmetry P acts on various quantities as usual, while the quantities odd under
the one-form charge conjugation C are by, Huvp, Euv, Cu, C*, hy, and J*. We are interested in CP-odd
terms in string fluids because when relating string fluids to magnetohydrodynamics in section 7.2, these
correspond to P-odd terms in magnetohydrodynamics. We have deferred a more exhaustive discussion of
the action of discrete symmetries, including CPT, to appendix C.
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CP Transport coefficients

CP-even | C1, Cxy Chy Qs 75 s Ts Ty Ty ML, 7L

-~ ~/ -~ ~/ / /
CP-odd K1, Ky, Ko, Ry, I'x, 'y, Tx, Ty

Table 5. Transformation properties under CP for non-hydrostatic transport coefficients in string
fluids.

notation « for the first transport coefficient is due to the fact that it will play a crucial role
later in the mapping to magnetohydrodynamics in section 7. Performing the dp variation
of all the one-derivative terms in eq. (5.15) and using eq. (2.23), the contributions of each
term to the constitutive relations and free energy current can be obtained, and are given
in appendix A.

5.3.2 Non-hydrostatic corrections
In order to derive non-hydrostatic constitutive relations, it is useful to decompose the
currents in this sector of the theory along and transverse to u* and h*, such that

T = Se ulu” + SFAM + 57 hHhY + 200 RY) + 2k Wy?) 4 v

nhs

S = 20p ultp?! 4 2mlt ) 4 2l 4 5s e (5.16)

where e/ = e/"P7u,h, is a parity-odd contribution. In particular, any antisymmetric ten-
sor transverse to u” and h” in 4 spacetime dimensions only has one degree of freedom and
is always proportional to e*”. Choosing to work in the Landau frame following the discus-
sion in section 2.3, and eliminating u/dpg,, and u*dgb,, using the first order equations of
motion, the non-hydrostatic constitutive relations can be represented as

of T (1L Cx A1 A" g g1
oT = —5 C; C” 1%2 huhl/(;'BgMV y
Js Ry Ry 7| " 65
Aughlj(gﬁgau
o+ —_T m Tx ﬁH T'x Aughyéﬁga'u
mt T/>< rL 7:,>< T e* hYdpgoy ’
" hY dp€sy
1 = AP A Gy, 47, TP B AV 5, (5.17)

The redefinition freedom in u* and T has been used to set de = k* = 0, whereas the
residual freedom in p,, after setting u#h, = 0 is used to set dp = n* = 0. Here we have
introduced 19 non-hydrostatic transport coefficients, which are functions of 7" and w. In
table 5, the transformation properties of these coefficients under CP transformations is
summarised. Thus, the first 11 coefficients already identified in [3] are in the CP-even
sector and the remaining new 8 coefficients (in blue) are in the CP-odd sector and had not
been previously identified in the literature. Of these 8 coefficients, 4 can be understood as
new current resistivities and are related to the remaining 4 via Onsager’s relations under
certain assumptions as will be explained in section 5.4.
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CP-even | CP-odd

Non-dissipative non-hydrostatic 4 4

Dissipative 7 4

Table 6. Classes of non-hydrostatic transport coefficients in string fluids

Using the adiabaticity equation (2.22) and after some non-trivial algebra, it is possible
to derive that

T

1 A'wjfsﬁg,uu CL %(CX + C;) %(Rl + ’%/1) AMV&BQ#V
TA =1 h¥hY 65 g %(Cx +¢%) Q| %(%2 + Ry) hHhY 659,
M nE, s(Ri+ ) S(Re+Rh) o M58,

v s o 1V T 1 /
1 (A“"h 0BGy + i€"h 535(,”) ( ull 5 (T’X +TX)>

2 A1 R G5y 3 (retrl) ro—ity
" AMThY dg gy + 1€HRY 05y
A'LwhyéBgm/
1
+ §nLéBguuAp<“Ay>053.gpa > (5.18)

where ¢ = %” (FX — 7 ) Out of the 19 non-hydrostatic transport coefficients, the following
8 linear combinations trivially drop out of the quadratic form

/ ~ ~/ ~ ~/ / - - - - -
CX_CX , K1 — Ry, R2—Rg , Tx =Ty, 7ﬁ><_|_"n>< ) 77|| , Lo, Nl (519)

and hence are left totally unconstrained. These combinations can be identified as the non-
hydrostatic non-dissipative transport coefficients, as they do not contribute to dissipation.
Finally, requiring A > 0 gives 6 inequality constraints among the remaining 11 dissipative
transport coefficients. In terms of matrices of transport coefficients they can be expressed as

CL %(CX +¢%) %(’%1 + &) 0 1 (7" Ly )
~ ~ X
(¢ + <) q s(Re+ &) [ >0, L Lr,)Qr —iQnX >0,n.>0,
TR+ /) YR+ Ry rL 2\ i) Tl I

(5.20)
whereby positive semi-definiteness of a matrix is understood as the requirement that all its
eigenvalues are non-negative. In total, therefore, the number of non-hydrostatic transport
coefficients can be summarised as in table 6. Under certain assumptions, not all of these 19
transport coefficients are independent as it will be shown via Kubo formulae and Onsager’s

relations.

5.4 Kubo formulae

Using the variational background method of [36] it is possible to derive Kubo formulae
for string fluids, which are of particular interest for evaluating transport coefficients in
holographic setups. In what follows, the hydrostatic corrections of section 5.3.2 have been
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ignored and only the non-hydrostatic have been taken into account.'” It is convenient
to split the background coordinates x* into the set (¢,z%,2z) and to consider a simple
equilibrium configuration in a flat background spacetime with vanishing b, and velocity
profile u* = 6*¢, h* = £6*,. In order to obtain Kubo formulae, the one-point functions
are introduced

T — =g (T™) |, J" = /=g (") | (5.21)

and a small time-dependent but homogeneous in space perturbation around the equilibrium
state is performed such that u* — w* + dut, h* — h* 4 6h*, g — N + dhy,, and
byy — 0bys.'® These perturbations should be understood as small deformations that
generically take the form by, = Ay,e ! for some amplitude matrix A,,. According
to linear response theory, small variations of (5.21) can be written in terms of retarded
Green’s functions of frequency w such that

1 1
OTH = JG Yol + 5 Lamogh,, 0T = SGUF oIg + SG b, (522)

Evaluating (5.22) for the specific initial equilibrium configuration and writing it in compo-

nents, it is found that

1 i 1
/ lim — Im Q%% — lim = Im Q%%
Cx = lim = Im Grp~ G = lim ~Im Gpz™
1 g
Rosign(h) = }}L% » Im G757,
.1 I 1
= UIJ%; Im G2 7 sign(h) = i%; Im G227
1
ry = lim — Im GZ”Z ,
w—0 W
. .1 cigz s .1 ij kk
Txsign(h) = c};lg%) o Im G5~ risign(h) = Uljlg%) " Im G537

1 y
Rrosign(h) = ul)li)lfb " Im G957,

1

‘ o 1
| = 335%)5 Im G977, r, = EJIL%; Im G7%
1 .
rL —}Jlgha Im G5,
1 iy 1
~) . 7 - 12,)2 . . ~ . —1; - lZ,jZ
7 sign(h) = ¢L1Jl—>mo - Im G777 (i #7) , 7 sign(h) Lll_% - Im G (i#j) ,
(d—3) 1 ii i . i2z
=lim —1I ’ = lim — I ’
CJ_ + 2(d - 2) . wlg%) w m T > CX wl—% w m >
1 y
Fasign(h) = lim ~ Im (el
1 ij,ij . . -~ . IRT 1 z],m
nL = (llirb; Im GTT 5 (Z 7é .7) 5 ULSlgn(h) - }}13%); Im G TT > ( 7£ j)

(5.23)

In the particular holographic setup of [37], the 4 independent hydrostatic transport coeflicients of

section 5.3.2 vanished.
"Explicitly we find du’ = J6hst, 0vf = 0u’ + hsi, 0h* = —16h.. and & (V(;uj)) = 0:6hi; /2.
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If the microscopic theory in question has some sort of discrete symmetry © including
time-reversal, we can use the Onsager’s relations to relate some of the transport coefficients.
For operators O, = {T%, J¥}, the Onsager’s relations state (see e.g. [6])

Go,0,(w; h) = i4isGo,0,(w, Oh) , (5.24)

where i, are eigenvalues of O, under ©. For ® = CT (which is just time-reversal in the
dual hot electromagnetism picture), ip = iy = 1 and ©h = —h; see appendix C for more
details. This leads to the following relations among transport coefficients

CX:<;7 TX:T/Xa 7:><:7:/><7 Rlz_’l’%/lv RQ:_’%IQ . (525)

On the other hand, for © = CPT, ip =iy = 1 and ©h = h. In this case, the constraints
are slightly different and we get

gng;a TX:T/X? 7:><:_7:/><7 Rlzk/17 ’%2:/%/2 . (526)

Thus, within either of these contexts, there are 4 independent hydrostatic transport coeffi-
cients and 14 non-hydrostatic transport coefficients. Hence, string fluids are characterised
by a total of 18 transport coefficients at first order in derivatives.

While other phenomenological realisations of string fluids are possible, here we consider
it in the context in which J** has a positive eigenvalue under time-reversal symmetry and
h* has a negative eigenvalue. These considerations are motivated by the mapping of string
fluids to MHD as will be discussed in section 7. In this context, Onsager’s relations for the
operators require that

6 Electric limit of one-form superfluids

This section explores the electric limit of one-form superfluids discussed in section 4.2. This
limit is characterised by the derivative hierarchy ¢* = O (1) and (* = O (9), in which case,
contrary to the previous section, the Bianchi identity (4.3) plays a relevant role. A discus-
sion on the Bianchi identity and its consequences allows the determination of the relevant
hydrodynamic structures. This is followed by the derivation of the first order corrections in
the electric limit, yielding a total of 29 transport coefficients (modulo Onsager’s relations).
As shall be established in section 7.4, this limit provides a dual formulation of magnetic-
dominated bound-charge plasmas, which under particular assumptions are directly related
to MHD without free charges.

6.1 Bianchi identity and order mixing

The electric limit of one-form superfluids is defined as the regime where the ¢, components
of £, are treated at ideal order, while the components C* are treated at one-derivative
order. Naively, this may appear to be qualitatively similar to string fluids where (,, was
treated at ideal order while (* was entirely removed from the hydrodynamic description.
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However, there is an important distinction. In particular, note that the Bianchi identities
(4.3) relate certain derivatives of (,, to those of (*. In components

1
Vpo vV po
e"Plu, (0 us — 66“ PoupHypo

= VM(?” — E”uyvyuu ,

1 1 o
e"P7u,C, (T(‘?UT + uAV)\ua) + 56‘“’””1@ <2T5p§1 + u’\H,\pJ>
— (MY, ¥ + TPF, <B”V,jf)‘ - E”V,,ﬁ’\) : (6.1)

In string fluids, where ¢* is not a dynamical field, these equations are irrelevant. On
the other hand, in the electric limit, these equations become important. Upon setting

" = 0(9), these read
1
EGMVPUUMH,,M = e"P7u,(,0pus + 0(8%),
PP PV §5b,y = —2CH PYIOuP 39, + O(8?) . (6.2)

Therefore, the first order terms appearing on the left hand side, which used to be indepen-
dent in string fluids, are no longer independent in the electric limit. This has an important
consequence which is referred here as “order mixing” between consecutive derivative or-
ders in the electric fluid constitutive relations. Noting that dgb,, = d5&,., it is possible to
massage the adiabaticity equation (2.22) into

1
V=2 (TW n Qu(”PV)pC”Jpc,) S5 — JP7u, PV out) 55E

1
+ 37 PryPrs (P”“P“”dgfw + 2C[pPU]”u”5939W> +A (6.3)

This equation implies, in general, the appearance of k-derivative order terms in 7" and
JH if N* was being studied at k-derivative order. Since the term in the parentheses in the
second line in (6.3) is two-derivative order, we could also have a (k — 1)-derivative contri-
bution to J#¥. Furthermore, since dgg,, is one-derivative order, terms in the parentheses
in the first line in (6.3) must be k-derivative order, leading to certain (k — 1) derivative
contributions in T"” as well. In turn, this could lead to the same transport coefficient
appearing across consecutive derivative orders.

In the hydrostatic sector, such order-mixing only comes from the terms in N dependent
on (*. Generically, if attention is being focused on the kth order terms in A" and define

ON
(k—1) _ 2¥(K)
R, = 5n (6.4)
such order-mixing contributions are given by
T(;:_l) ~ _QU(Hel/)pUTupCURS_k—l) ’ ‘](l;cy—l) ~ _E,uupauprgk—l) ) (65)

In the non-hydrostatic sector, on the other hand, no independent transport coefficient
appear across derivative orders. However, whereas the inequality constraints imposed by
A > 0 usually only apply to one-derivative dissipative transport coefficients, in this case
they can also involve transport coefficients from two-derivative order. This will be made
explicit below.
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6.2 Ideal one-form superfluids in the electric limit

Defining (,, = —wh,, for later convenience and suppressing C* to one-derivative order, the
ideal one-form superfluid constitutive relations (4.14) become

™ = eutu” + p P* — pw h*h” + O(0)
JH — 2pu[.“h1/] + g« Euvpaupha + O(a) ’

NH = %u“ +0(9) , (6.6)

where p = qw was defined. All the coefficients appearing here are now seen as functions of
T and w. Except for the ¢x term highlighted in blue, the constitutive relations of an ideal
one-form superfluid in the electric limit are precisely the same as for string fluids given in
eq. (5.7) and satisfy the thermodynamic relations (5.8).

The g« term, on the other hand, is a manifestation of the order-mixing that was alluded
to above. Comparing its form with eq. (6.5), it is possible to infer that it originates from
a one-derivative term g CuC_“ in the free energy density. This is, in fact, the case as it can
be verified by expanding the ideal one-form superfluid free-energy density (4.12) up to one
derivative order, obtaining

Additionally, due to the presence of the gx term, the first order equations of motion sig-
nificantly modify compared to string fluids. The components of the energy-momentum
conservation stay the same as in eq. (5.10), while those of the one-form conservation re-
ceive contributions from the gx term. Precisely, it is found

VJ" =0
— dpp+ gA’“’dggW + g—;e“”p"htupg =0 , (6.8a)
o o w2 v axw Avpo
AFPy 5Bbpa + wAFPh 539,00' + Tipe'u vdx — 6}’,0 AP Hl/pa = 0(82) )
(6.8b)
1
Tv“ (Tpht) — pTuth” dp gy + %e“”pgutum = 0(0?) . (6.8¢)

These equations imply that, as in the string fluid case, it is still possible to eliminate
u!dp gy, using the first order energy-momentum conservation equations. However, it is
no longer possible to eliminate u#dgb,, in terms of other non-hydrostatic data. This has
important consequences for one-derivative non-hydrostatic corrections.

Since the study of one-derivative corrections is the subject of our attention below,
it is instructive to expand the ideal one-form superfluid constitutive relations (4.14) to
one-derivative order. This expansion gives rise to

0qx
Ow

0qx 4 W8Q><

wiv
oT Oow Wh

T/“’zgu“uy—}—pP“V—pwh“hV-l—C'C<T >u“u”—C-Cw

_ QQU(Meu)pUTupCUET 4 (’)(82) ’
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JH = 2pu[ RY! + (- C 2u[“h”} —2qxu“C — qx€"Pu,(,

— "7, (7 Co + q; (C-Q&) +0@%

N# = :1; "y qxg Cul + O(8?) . (6.9)

The contributions from the one-derivative order term gy are now complete, while two new
order-mixing contributions, ¢/, and g, from two-derivative order appear. Their origin can
be traced back to the free energy density (4.12) expanded up to two-derivative order as

P(T,¢%,¢%,¢¢) = p(T, @) +qx (T, @)¢-C+ 5 qx< @)(¢¢)*+ ( ,@)¢*+0(0%) . (6.10)

It is clear from these considerations that order mixing s1gn1ﬁcantly increases the difficulty
of studying these hydrodynamic systems, nevertheless it is possible to keep track of it
precisely and to obtain constitutive relations in a hydrodynamic expansion.

6.3 One-derivative corrections
6.3.1 Hydrostatic corrections

Above it was shown that taking electric limit of ideal one-form superfluids generates some
one-derivative corrections to the respective constitutive relations. However, the constitutive
relations can also receive more generic one-derivative corrections allowed by the adiabaticity
equation (2.22). Consider first the order mixing terms, whose general expression was given
in eq. (6.5). The most generic two-derivative terms in the hydrostatic free energy density
involving (* can be represented as

N = ! (qX Culv + @Pu) CHCY + RuCH + ... (6.11)

Here the quadratic terms in ¥, i.e. ¢/, and @, are the same as those obtained in eq. (6.10)
in ideal one-form superfluids. The linear terms in (* are parametrised by a generic one-
derivative vector structure R, which involves an explicit derivative. It will contain, for
example, terms proportional to P,, VYT and €,,p,u”Vu? among many others. Using
eq. (6.5), their contribution to one-derivative constitutive relations is given as

TH i = —2uWePTy ¢ (GG, + Ry) + O(9?)

hs,order-mixing

J}Tsyorder-mlxmg - euupaup (qga + q,>< (C : 5)@7 + RU) + 0(82) )
N¥ o =0(9%) . (6.12)

hs,order-mixing

Secondly, it is necessary to consider explicitly one-derivative order terms in the hydrostatic
free-energy density. It is possible to import all the terms directly from string fluids in
eq. (5.15), except the o term which is no longer independent due to the Bianchi identity
(6.2). Taking into account the contributions mentioned above, the total hydrostatic free
energy density for one-derivative constitutive relations reads

N =+ 0xGul? + 5 (dGuo + aPo) CHCY + RO

— Be" P, by Opus — Pih"0,T — Bzh“au% — B3P u,h,0phy (6.13)
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The contributions from p, ¢x, ¢, and g are given in eq. (6.9), from R, in eq. (6.12), while
those from 8 and 5; can be directly imported from appendix A.1.1. As in the case of string
fluids, the equation of motion (6.8c) together with the Bianchi identity (6.2) allow to set

B2 = 0, thus leading to 3 independent hydrostatic transport coefficients at first order in
derivatives. This completes the analysis of first order hydrostatic corrections.

6.3.2 Non-hydrostatic corrections
For the non-hydrostatic contributions, it is useful to parametric the stress tensor and charge

current as

TH = §e ufu” + S AP + 57 WHRY + 200 pY) 4 2 ly?) 4 g

nhs

Sl = 20p ultpl - omlrp) 4 oplrut) 4 5s e (6.14)

Introducing these into (6.3), it is possible to massage the adiabaticity equation into

) 0 0 1
VN = ((56 - ap/gw (TB; + w&i)) §u“uydggﬂy + (k" — omt) u”dp g

1
+dp (53/) + QPANV5BQMV> + nt (uV(SBb;w + Whyéﬁguu)

1
+ 5856/“/(53[)/“/ + mt (h"dpbu, + wu”dsg,)

pop 1 1
_ 7AMV .y R NINZ 5 wo 1 v ,
+ <5f 8p/(9w) 5 O Guy + (0T + wdp) 2h hYép g + (0 — wnt) h”dzg,

1
+ St Ongu + A (6.15)

The rationale behind this arrangement is that the terms in the third line in (6.15) drop
out using the Bianchi identities (6.2), while those in the second line in (6.15) drop out
using the first order equations of motion (6.8) when ¢y is zero. However, these terms are
important to complete the quadratic form A. It is possible to use the redefinition freedom
in 4* and T to set

oo (0 ) o
56_8p/8w <T8T+w8w) , Et = wmt | (6.16)

and eliminate terms in the first line in (6.15). In string fluids, it was possible to use the
residual redefinition freedom in p, to set dp = n* = 0 as well. However, in the current
context there is no such freedom as it was already used to make the Josephson equation (4.9)
exact. Schematically, the non-hydrostatic corrections can be written as

op S A1 A2 A3 Ay [208p + pAFYop g
f-g2 | TN &R AP g0
0T + wdp 2 | A5 Ck Q) Re h*h" o5 gy ’
ds /\,/1 I%ll ,%/2 7| Elwégblw
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APTYY Sb, + AP Y g
AN g Yo

H A5 Adg A7 Ag Ag A
om " n d By o /\? IOV | ARORY Sy, + @APTUY S gy,
— Ton = — 5 n T C 77 T o o 3
B f /” ) /\/) ~/H - MU’ dpbgy + wel hY o5 9oy
m T TL Ao Tx TL 1 Y 553G
e'uahV(SBbaV + weMUuV(SBgO_V
t = —n TAPEAY 59,0 + L TP F AV 53.0,, . (6.17)
Since the tensor structures
e opbu, , AMTRY08bsy + WAF U SR Gs, , €' 08bs, + we' U IBG (6.18)

are second order due to the Bianchi identities (6.2), the transport coefficients highlighted
in blue are actually second order, but are required for positive definiteness of A. The
terms highlighted in purple are first order in general but become second order when using
the first order equations of motion (6.8) if gx = 0. In general, the positive definiteness
of A gives 9 inequalities among these transport coefficients and at first order there is a
total of 26 non-hydrostatic transport coefficients. However, the application of this theory
to magnetic dominated bound-charge plasmas that is provided in section 7.4 consists of
setting ¢x = 0 and leads to, upon appropriate identification, 8 non-hydrostatic transport

coefficients, namely C1, Cx, Cle, ¢j 1> C)js MLy 7L-

7 Hot electromagnetism

Hot electromagnetism is the theory that results from the interaction of electromagnetic
degrees of freedom with mechanical and thermal degrees of freedom of matter. At long
wavelength and large timescales compared to the mean free path of the microscopic theories,
matter can be approximated by a hot plasma and hydrodynamic theory determines the
dynamical evolution of fluctuations around equilibrium. In this section, the term hot
electromagnetism is used to denote the traditional treatments of hydrodynamic regimes of
plasmas where the electromagnetic gauge field A, is incorporated as dynamical degrees
of freedom. After a brief exposure of the different types of regimes that are considered
in this work, namely MHD where electric fields are Debye screened, and bound-charge
plasmas where they are not, exact dualities between different limits of one-form superfluids
considered in the previous sections and the these two regimes are derived.

7.1 Heating up Maxwell’s equations

Consider an electromagnetic plasma heated up to a finite temperature. The near equilib-
rium physics of such a plasma is governed by charged hydrodynamics coupled to dynami-
cal electromagnetic fields. The dynamics of the electromagnetic fields F,, is governed by
Maxwell equations in matter!'®

VVFWL + ngatter + Jg{t =0 ) (713‘)

9¢q. (7.1) is a modified version of the second equation in (4.34) that accounts for the presence of matter
and couplings to external currents.
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along with the Bianchi identity
V[MFVP] =0 . (7.1b)

Here J!, denotes an identically conserved background charge current distribution coupled

n

to the plasma such that V,J., = 0. Prime examples of JI; include a lattice of ions or

ext e
an auxiliary field theory source that facilitates the computation of correlation functions.

JM

matter 15 the charge current associated with the matter component of the plasma and it

is not required to be trivially conserved at finite temperature. In fact, the conservation
equation V,J% .= 0, which can be seen as the divergence of eq. (7.la), serves as an
equation of motion for the hydrodynamic chemical potential p. As already commented
in section 4.4, the Bianchi identity (7.1b) is solved by introducing the dynamical photon
field A, such that F,, = 20),A,). Having done that, eq. (7.1a) provides dynamics for 4
physical degrees of freedom in A, and p. In addition, the plasma is characterised by the

usual hydrodynamic fields u* and T, whose dynamics is governed by energy-momentum

conservation

v, " =F"], (7.1c)
where the total dynamical charge current of the plasma Jt = V,F"F* + Jh .. = was
introduced.

The constitutive relations of hot electromagnetism are written as expressions for T*"
and J# in terms of w#, T, u, and F),,, arranged in a derivative expansion. A priori, these
may be expected to be exactly the same as ordinary charged fluids with background elec-
tromagnetic fields. However, since the electromagnetic fields are dynamical, they can be
relevant at ideal order in the derivative expansion, i.e. Fj,, = O(1). This considerably
modifies the actual constitutive relations [3, 38]. Similar to ordinary hydrodynamics, the
constitutive relations of a plasma are also required to satisfy the second law of thermody-
namics. This requirement is formulated in terms of the zero-form version of the adiabaticity
equation (2.22), namely

1
VN = ST o g + T A+ A, A>0, (7.2)

which has to be satisfied for some free energy current N* and quadratic form A. Here
6g denotes an infinitesimal symmetry transformation along B = (8*, A?) introduced in
eq. (2.5), which when applied to the metric and gauge field read

Uy) u 1
(539,“, = 2V(H T s 5BAM = 8"6? — TEM y (73)
where the electric E* and magnetic fields B* are defined as
1
Bt = F*y, , BY = ie“ymupro , Fuy = 2up, By — €wpot’ B (7.4)

Provided that eq. (7.2) is satisfied, the entropy current, defined as S = N# — TH,, /T —
JPu/T, has positive semi-definite divergence onshell (i.e. once the equations of motion
are satisfied).

— 38 —



7.1.1 Ideal fluid minimally coupled to electromagnetism

As a working example, and to aid intuition, consider the well-known model in the con-
text of MHD [1] of an ideal fluid minimally coupled to Maxwell’s electromagnetism via a
conductivity term ¢ in the constitutive relations

1
T = PP, EY — Ep P g 4 (T, g + p(T, ) (¢ + wu)

JH =V, F"" 4+ (T, p) u" — o(T, 1) P* <Ta,,§f - El,> : (7.5)

where the fluid part of the currents satisfies the usual thermodynamic relations dp = sdT +
qdu and €+p = sT+qu. The energy-momentum tensor includes the purely electromagnetic
contribution given in eq. (7.4) alongside the usual fluid contributions. These relations
satisfy eq. (7.2) with

1 1 Iz p(T, p)
Nt =— g+ (1ol g ) ¢ B
gt T < T >+ T
A= 2D g (g g Y (1o, — B, (7.6)
T kp H T ’

provided that the conductivity obeys the positivity constraint o(u,T’) > 0. In general, the
constitutive relations of the plasma (7.5) could admit further derivative corrections and
exhibit more intricate couplings between the electromagnetic and fluid sectors as it will be
described later.

Using eq. (7.1), it is possible to work out the equations of motion for this simple plasma
model. For the purposes of the current discussion, it suffices to look at eq. (7.1a) which
leads to

(T, p) = u, Vy F"" +u, gL

€

o(T, p)E* = —P*\V, F* — Pl A + To(T, u)P“”@V% . (7.7)
The first equation expresses the point that, to leading order in derivatives, the charge
density of the plasma organises itself according to the charge density of the background.
The second equation states that, to leading order, the electric fields in the plasma are
induced by external currents. Additionally, these two equations algebraically determine the
plasma dynamical fields g and E* in terms of the other dynamical and background fields
of the theory order by order in the derivative expansion.?? Therefore, ;1 and E* do not in
general obtain independent dynamics in the hydrodynamic regime of hot electromagnetism.
In fact, this statement continues to hold when the most general coupling and derivative
corrections are taken into account (see section 7.2). An interesting exception to this, which
will be studied below, is the case of plasmas which have ¢(T, u) = o(T, ) = 0.

20The rationale here is that if a dynamical field f satisfies an equation f = fo + F(V, f), where F(V, f)
is at least one order in derivatives, then we can algebraically determine it recursively within the derivative
expansion as f = fo + F(V, fo+ F(V, fo+ F(V, fo+ F(V, fo+...)))).
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7.1.2 The magnetohydrodynamics regime

Consider the sector of hot electromagnetism for which the background currents are station-
ary to leading order, i.e. the spatial currents are derivative suppressed P, J5; = 0(09).%
An example of such backgrounds is the case of a fixed lattice of ions. From eq. (7.7), it
follows that the electric fields in such plasmas are derivative suppressed, i.e. E, = O(0),
while the magnetic fields can be arbitrarily large. This is the hydrodynamic incarnation of
Debye screening: electric fields are screened over large distances due to the presence of free
charges.?? Such hydrodynamic systems are commonly referred to as magnetohydrodynam-
ics (MHD) (see e.g. [3]). Under the MHD limit, the energy-momentum tensor in eq. (7.5)
becomes

T = (e(T, p) + p(T', p)) ut'u” + <p(T, W) — ;BQ> g" + B?B*™ + 0(9) , (7.8)

where B# = PH — BEBY PM = ghv 4 yiy¥ and B* = BF/|B|, with |B| being the
modulus of B*. For most applications of MHD, it is useful to consider the scenario where
the background charge current is entirely derivative suppressed, i.e. J., = O(9), making
the requirement of sub-leading external currents “covariant”. Such models are applicable
when the background charge currents are either non-existent or negligible, as in the case
of solar physics. Thus, in addition to the electric fields being screened, such plasmas are
electrically neutral over large length scales, i.e. ¢(T, n) = O(9). In this regime, MHD can
be reformulated in terms of a string fluid with a global one-form symmetry [24]. This
connection will be developed further in section 7.3.

7.1.3 The bound-charge plasma regime

An often unstated requirement for the MHD regime to dominate the hydrodynamics of
plasmas is that the plasmas are conducting, i.e. o(T, u) # 0, otherwise the second equation
in eq. (7.7) would not impose any restriction on electric fields, and hence they could be
arbitrarily large. Consider a fluid which does not contain any free charges. For instance, a
gas of neutral atoms which can nonetheless be polarised. In the absence of any free charge
carriers, the conductivity o(7, p) is identically zero. Over large distances, the charge
density q(T, 1) also adds up to zero. More rigorously, these are plasmas whose constitutive
relations do not depend on p. That is, in the simple case of eq. (7.5), p =p(T) and 0 =0
leading to € = ¢(T") and ¢ = 0 by means of the thermodynamic relations. Consequently,
p drops out from the set of independent degrees of freedom and the charge conservation
V,J# = 0, which had the role of providing dynamics to u, becomes identically satisfied
implying that

V,JJb =0 = Jt=V,M*" | MW =—-F"+ M 7.9
o

matter >

210ne can show that this requirement is frame-invariant by noting that under u* — u* + du*, where
du* = O(0) such that u,du” = 0, it remains invariant.

22The usual requirement for Debye screening, found in traditional textbooks of MHD, is to take the limit
o — 0o. From the second equation in (7.7), it is obvious that this has the same effect as that attained by
requiring Py, Ji, = O(0). However, this “infinite conductivity limit” breaks the hydrodynamic derivative

expansion. For this reason, it appears that the requirement P,, J5; = O(9) is more physically sound.
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where ME”.. is the antisymmetric polarisation tensor characteristic of the material that
constitutes the plasma. The physical content of the leading order Maxwell’s equations (7.7)
is then that such a system can only be described by hydrodynamics when the background
charge current is weak, i.e. J. . = O(9). The dynamical equations (7.1) and adiabaticity

equation (7.2) for a bound-charge plasma can be recast as

VI = —F"PJ5 NV MM = 4, PV, Fe =0,

ext »
1 1
VNNM _= §THV(S~BQ“V + iMuy(S'BFuy + A 9 A Z 0 9 (710)

where N#* — NH — MMz A, was redefined. Maxwell’s electromagnetism in vacuum is self-
dual under electromagnetic duality. There is a version of this duality that is still respected
by the bound-charge plasma. It may be verified that under the transformation

1 1 1
Fo — QGWWMPU , MM — ie“”p"Fpg , NH — NH— §B“M””FW ) (7.11)

the equations of motion (7.10) map to themselves when J, = 0 and with the same energy-
momentum tensor T#. In section 7.4, it will be shown that egs. (7.10) are essentially the
governing equations of one-form superfluid dynamics.

7.2 Magnetohydrodynamics

This section deals with the MHD regime of hot electromagnetic plasmas described in sec-
tion 7.1.2. The ideal order constitutive relations of these plasmas are essentially the same as
the constitutive relations of ordinary charged hydrodynamics, except that magnetic fields
can be arbitrary large, i.e. B¥ = (1), and the electric fields are derivative suppressed,
i.e. EF = O(0). Though many of the results that will be presented in this section already
appeared in [3], the details given here provide a cleaner derivation of these results and
extends the traditional treatment of MHD to include parity-violating terms.

7.2.1 Ideal magnetohydrodynamics
At ideal order, MHD is characterised by a hydrostatic free energy density of the form
N = P(T,pu,B?). This free energy is the most general at ideal order and makes no
assumptions on the strength of the coupling between electromagnetic degrees of freedom
and thermal degrees of freedom. Using the dg variations of the free arguments with respect
to the fields (2.5)

55T = Lututs Sy = Sururs Koy A

B —EUU BIuv B,U/_guu BYuw T UTOBA,

55 B2 = (B“B” — B*pm — QU(HEV)APUBAUPEU) S50 — 2677 Bug VoA, | (7.12)

together with the zero-form version of eq. (2.23) (i.e. with b,, — A,), it is possible to

infer the respective constitutive relations, free energy, and entropy currents. These take
the form

T = (e + P)utu” + Pg" + w|B[B* + 2wulte) Byu,E,
JH=qut -V, <we’“’pa§pua> )
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P A 1
NH = fu“ + we"?? Byu, <8V; - TEV> ,

SH— sut +V, (‘?ewoépua) , (7.13)
where the thermodynamics can be expressed as

dP:sdT+qdu—%dB2 L et P=sT+qu . (7.14)

Here w is being defined as —2|B|0P/0B? and will later be identified with the string chem-
ical potential in the dual higher-form language. Note that from eq. (2.23), the first order
terms appear in the ideal MHD constitutive relations but these can be ignored when focus-
ing on zero derivative order. These constitutive relations reduce to the simple model (7.5)
upon using P(T, i, B?) = —B?/2 + p(T, ).

The equations of motion (7.1)—(7.1c) at ideal order take the form

V,TH = F"J, = —u"'V,e— (e + P)V,ut — w|B|B*V u, = O(0%) ,
1
(e + P)PH <T8VT + u/\VAuV>
+qP" (T&,; - E> + PPy, Bg IV = 0(0%)
JE4+ Jh =0 = q(T, p, B®) = u,Jhy +0(0)

PuJie =0(00) . (7.15)
where a component of the Bianchi identity (7.1b)
V,.B" = B*"u'V,u, — P’ E,u,0,uq (7.16)

was used. In particular, note the appearance of one derivative corrections to the charge
current Jé) in the transverse components to u” of the energy-momentum conservation.
The transverse components of the Maxwell’s equations imply that the transverse compo-
nents of the external current sources J',

tised in section 7.1.2. The component along the velocity, on the other hand, implies that
Q(Ta Ma BZ) = U‘MJ:

X

must be derivative suppressed, as earlier adver-

. onshell at ideal order. This equation can be formally solved for ; and
leads to the inference

n= NO(Ta B27uﬂjg(t) + O(a) : (717)

Therefore, 1 is not a true independent degree of freedom of the theory. At first order
in derivatives, it will be seen that this statement also holds true for electric fields. Thus
the magnetic fields are the only true dynamical degrees of freedom in the U(1) sector of
magnetohydrodynamics.
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7.2.2 One derivative corrections

The ideal MHD theory described above can be extended to one derivative order in both the
hydrostatic and non-hydrostatic sectors. The most generic hydrostatic free energy density
at first order is given by

32
N =P+ M B"0y—; + Mye""*°u,B,0,B,

T4
M3 L Qv po m I 2
— T BHO,T — Mac"""uy B dgug + TM5 B9y + O(9) (7.18)

where all the coefficients M; (i = 1,...,5) are functions of T, u, and B2. It is possi-
ble to vary these first order contributions so as to obtain the respective contributions to
the constitutive relations, which are detailed in appendix A.1.2. The hydrostatic free en-
ergy (7.18) had been considered in [3]. However, it is noted here that due to the Bianchi
identity (7.1b), the term involving Mj is not independent and hence M; can be set to zero.
This has led to an over-counting of independent hydrostatic coefficients in [3]. Neverthe-
less, for the purposes of comparison with earlier literature, a non-vanishing M; coefficient
is considered here.

In turn, the non-hydrostatic corrections can be obtained as in previous sections. As
in earlier cases, the equations of motion allow to remove u*dpg,, and u*dépA, from the
independent non-hydrostatic tensor structures. The most generic corrections can then be
written as

Th = 6FBM + 6T BB +2LWB") + T

nhs

JH = 6SBH + M* (7.19)

nhs

where the different components of the stress tensor and charge current can be written in

terms of matrices of transport coefficients

oF C11 C12 X1 SBM S50,
0T | =T | iy Co2 X2 sB*BYSpg |
58 o)\ Brosa,
IB'LLUBV&BQJV

L M1 Ox M1 0 B A

=TV 7 N s, A , (7.20)
M o oL 0y 61 ) | ¥ uaBgBYdsgsy

E‘uaﬁouaBg(SBAg
TH = —n22TBp<“BV>U5ﬁgpa + ﬁ22T€pa/B<”UaBﬁBV>U5ngo . (7.21)

The 8 coeflicients in blue are parity-violating terms whose existence had been identified
in [3] but were not studied in any detail.

7.2.3 Maxwell’s equations

In this section it is shown that p and E* are not dynamical degrees of freedom in MHD.
Assembling all the contributions from the previous subsections, the most general charge
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current J* up to first order in derivatives can be written in the form

B B2OM; .. OM,

JH = qu — Y, (we” p Bpuc,) (BA(‘?A o Py, B, 3, By o
1 hY 8M3 )\Vpa 6 4 by /,L 8M5 by I
— FBINTE = B Oue o THN AR VA (TM5B> u

— (iB"B + 4B BB + 20/ B0 B + 25, e#aﬂ(f’uaégéﬂ) 598900

. (UHB”B" +o B 45 Leﬂ”aﬁuQB@ Tog A, + O(8%) . (7.22)
Inserting this current into Maxwell’s equations eq. (7.1a), the different components read
q(T, i, B?) = upJby — B0, b 8(;\/{1 EA”’)“UABuapBaaaj\f
+ ,}B)‘@)\Ta;\ig - (8M4 + Z|> By u,0pus
—TB9, ;6;\45 + TVA (TM5B>‘> +0(8%),

1 ] 1
0| B dn A, = SE X, (Xlpr" + XZBPB"> 598950 + 0(8°).,

) . . 1
(0 B* + & E*) 65 A, = EF BV X, — 2 (o—; B B?) 5 Ere ) —wE“(pu")> 505950
+0(0%) , (7.23)

where E*” was defined according to E*Y = eV p"upBU along with
WB u>‘
X = 28[#( T”]> + O - (7.24)
Recalling that T9sA, = T0,(u/T) — E,, these equations can be used to algebraically
determine p and F, in MHD. Below, it is shown precisely how this can be accomplished.
Introducing J(Ml), i.e. one-derivative corrections appearing in the charge current (7.22),

into the first order equations of motion (7.15) and eliminating P*”ég A, using eq. (7.23),
it is possible to derive the onshell relation

o B Ho
PPy g,y = — <€+P|+|W|B|> B BIX,, + 0% , (7.25)

which will be useful in solving for 4 and E*. For the remainder of this subsection, it is
assumed that u, J&, = O(9) for simplicity, leading to all the components of the background
currents to be derivative suppressed. Under this assumption, eq. (7.23) can be solved for
p and E), within the derivative expansion leading to

1 B oM, OMy
= uo(T, B> Jt — B AP\ B0y By —2
lu’ IU’O( I )+ a /a |: ext /\ 8/,L — € 'l,L/\ P 8/,1,
oMy  [(OM;, w pOM;
1 pro,r?Ms AP? Byuy Opug — T B
BT, < yB\>€ A Oy NT o

1 A 2
+ 2V (TM5B )L:m +0(8?)
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H T - T au(w <1 pppo) L
gt =Tpwy B L pugeox 4 2 pe ( BPO B”B") =5
T 20_” po + O'” X1 + X2 2 BYIpo

P a o A
T< €+ > ( 20'J_~2 E”pBU+2UL~QB'“pBU> Xpa
e+ P+w|B|) \o] +57 o2 +52
~ ! / R ~ o~y + , R 1
_or (wwm _ %BW BO-)) L g + 0% . (126)
1 1 T L

where eq. (7.25) was used to derive the second equation above and po(7T, B?) was defined
as the root of the equation

OP(T, p, B?)

Q(T7/'L0(T7-BQ)’B2) = a/JJ

=0 . (7.27)

H=[0 (TzBQ)

Therefore, within the MHD derivative expansion, Maxwell’s equations can be used to
explicitly eliminate the chemical potential and the electric fields from the hydrodynamic
description. As it will be shown in section 7.3, this elimination is the backbone for recasting
MHD as the string fluid of section 5.

7.2.4 Kubo formulae and Onsager’s relations

Analogously to section 5.4, Kubo formulae can be obtained by perturbing around an
initial equilibrium configuration. In the context of MHD, the relevant operators are
O, = {T",F,,}, whose one point functions are defined as

T =\/—g (), Fp = V=g <F,u1/> : (7.28)

In order to obtain Kubo formulas in MHD, perturbations of the background metric g,,, and
the external currents J!., are performed. Thus, solving for the electric field as in (7.26) is
required, at least at the linearised level. The retarded Green’s functions, for small time-
dependent and spatially homogeneous perturbations dhy, and 6J!, are defined as in [3]

1
STH = iaf;;kp(w)ahm — iwGTE" 00T

1 .
OF . = 5GFTWM’MW — WG FF 0000 - (7.29)

Considering an equilibrium configuration with u# = 6, u = o = 0, and magnetic field
aligned in the z-direction with magnitude B? = By, it is straightforward to derive the
Kubo formulae

1 t
Zsign(By) = lim — Im G2~°
0'” Slgn( 0) w1—>0 w FT ’

o/

X2 . . 1 tz,zz
== Bp) = lim — Im G/
o sign(Bo) 030 W L

/ ~/ ~ 1
—< ol >sign(Bo) = lim ~ Im G5
g

02 +5% o2 +52 w0 W
- ;-
Lo | o 1
— 2X — - 2X~2 :hm—ImG%yz,
O'J_+O' O'J_+O' w—0 W
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(o) = limy = G

~sn(Bo) = Iy~ G

(o—gixj ;2 B J{T:&a—?) - iﬂ%% t G

o= AN <t I G

o~ X8 =ty 1m G

A G &xixi):;(ox&; R0 i L g3
Ay o (G40 —I—axa(}i)i-;(&xé’x — ox0h) _ i{}%% tn G (i £ J) | (7.30)

while the remaining Grp correlators were given in [3]. In evaluating the above, the con-
tributions arising from the hydrostatic coefficients M; were ignored and the assumption
€ + P > w|B| was made for the sake of simplicity.

For the case at hand, if the microscopic theory has a discrete symmetry O, the On-
sager’s relations require that

Go,0,(w, Bo) = i4isGo,0, (w, ©By) , (7.31)

where i, is the eigenvalue of O, under ©. See details in appendix C. If © is simply time-
reversal, we find the constraints from Onsager’s relations to be

Cl? == C:{Z 9 Ox = U/>< 9 &X = 5-/>< 9 )21 = jal ) 5(42 = )2/2 ) (732)

which in turn means that parity-violating MHD is characterised by 4 hydrostatic transport
coefficients and 14 non-hydrostatic transport coefficients. This is the exact same number
as for string fluids in section 5. In the next section, it will be shown how (7.30) can be
used to map to transport coefficients in string fluids.

7.3 Magnetohydrodynamics as string fluids

7.3.1 The algorithm of mapping

We now show that magnetohydrodynamics, as formulated above, can be equivalently for-

mulated as a string fluid discussed in section 5, when the external current J%

« is derivative
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suppressed. To begin with, note that after using Maxwell’s equations to eliminate p and
E, in (7.26), the MHD constitutive relations can be schematically represented as

Tﬂ”[u#’T’BH7g#V’Jé§(t] )
Eulul, T, B*, gy, Jbi] = 2up, By [u”, T, B¥, gy, L,

ext ext

,LL[U“,T, B”ag;mjé;t] . (7.33)

g
| — €upoeu’ B,

They satisfy the adiabaticity equation eq. (7.2) with J# replaced with —JZ ..
ical evolution of u* and T is governed by the energy-momentum conservation (7.1c), while
the evolution of B* is governed by the Bianchi identity (7.1b). Note that the constitutive

relations for p do not enter the dynamical equations and hence are not relevant for the

The dynam-

hydrodynamic description.
In order to establish a connection between MHD and string fluids, it is appropriate to
follow the insight of [20] and note that MHD admits the following two-form current

T — lewm F

2 pPoT (734)
which is conserved due to the Bianchi identity (7.1b). Physically, the integration of this
current over any codimension-2 surface counts the number of magnetic fields lines crossing
a given area element. The absence of magnetic monopoles in Maxwell’s electromagnetism
implies that these magnetic field lines are conserved. Furthermore, since the external

current JZ,

« satisfies V,JE = 0, it can be locally re-expressed as

1
Jé;(t = gﬁwjngypo y Hz/po = ga[ybpg] . (735)

In this language, the background charge current J!., is traded for a two-form background
gauge field by, which admits a one-form gauge transformation by, — by, +209),A,). In this
section, we assume that J., = O(9), leading to b,, = O(1), which is sufficient for most
applications of MHD.?3 Armed with the mappings (7.34) and (7.35), it can be verified that
the MHD dynamical equations (7.1b) and (7.1c¢) arrange themselves into

1
VT = SH Ty VT =0, (7.36)

while the constitutive relations (7.33) can now be represented as

™ [uﬂ7 T, BY, Guv, b;w] )
JH [t Ty BR, g, b)) = 2ulP B P70, B, [u!, T, BX, gy b - (7.37)
In eq. (7.37), the constitutive relations for u have been ignored since, as stressed earlier,

they do not contribute to the dynamical equations. Eq. (7.36) and (7.37) are precisely
those encountered in the context of string fluids in section 5. Eq. (7.36) constitute the

Z3This assumption does not allow us to describe MHD with non-vanishing charge density ¢. However,
in most applications of MHD, like in solar physics, the plasma is assumed to be electrically neutral at the
hydrodynamical length scales [1].
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dynamical equations of one-form hydrodynamics given in eq. (2.6), while eq. (7.37) are the
respective constitutive relations upon identifying B* = p(T,w)h* + O(9).

In order to establish an exact equivalence between the two formulations, it is necessary
to ensure that the constraints that follow from the adiabaticity equation, or the second law
of thermodynamics, are the same in both the formulations. Consider the following map
between the free energy currents

Nslérmg Nl\lj[HD + ﬁe HPTh FPO' + = Je/jxt + V < T 6'Ull/pguph > ) (738)

m
where NStrlng

current in MHD. The last term in eq. (7.38) has a trivially vanishing divergence and has

denotes the free energy current in string fluids and N{jy the free energy

only been included for convenience. It is easily checked that

V. NE

string —

hy,
= VN + T4, (WT ) Tt + A

5314” + A

ext

1
= VuNmp + i'ﬂw%buv + J4
1 1
= iT}“/(S'Bg#V =+ iJ'uV(Sgb/W —+ A s (739)

and thus we recover the string fluid adiabaticity equation (2.22). This establishes that
MHD with J., = O(9) is entirely equivalent to one-form string fluids.

7.3.2 Mapping of transport coefficients up to first order

The above discussion established the map between MHD and string fluids in quite abstract
terms. However, the explicit mapping between the transport coefficients at first order
in derivatives is highly non-trivial. This is the purpose of this section. To begin with,
it is necessary to derive the exact map between the magnetic field B* in MHD and the
string fluid fields h* and w at first order in derivatives. As we have already shown below
eq. (7.37), at ideal order this is just B* = p(T,w)h* + O(9). The first order derivative
corrections to string fluids in section 5.3 together with (7.34) and the definition of magnetic
fields in (7.4) allow to determine

]' (07 g 80[ vpo (07 g aﬁ
B* =ph* — h* |:6€ Br uaHBpga—w — aeP uxh,Opus + € Br uahgapuga—w
861 @ 0fs 9Ps
RAONT oy — == — n Broy,  hsdyhe
TR S + 0TS v(@) g hyphy s
— Al Ty Opug + ﬁAﬂye”*ﬂUuAapug i —AM9,T ~ i 2o,
Tﬁg wh Tﬁg
n _vApo - 2
+ AF e (w )\ap T V (w urho )) +(9(6 ) . (740)

Due to our choice of frame in the non-hydrostatic sector of string fluids, note that the first
order corrections to B* arise only due to hydrostatic corrections. It is useful to note that
X, defined in eq. (7.24) maps to

X = by + O(9%) . (7.41)
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Substituting B* in the constitutive relations (7.37) allows us to determine the mapping
between transport coefficients. Consider first the hydrostatic sector of the two formulations.
It is useful to re-express eq. (7.38) as

N

string —

Nl\lj[HD pr ( NGAVPUU)\HVPU + *E)ngwu)\h Fpo + HWE)‘VpUU)\h 0 UU>
4 Py, <whp53Ag - 5/151—;1),;0— + ,uwhpu)‘égg)\g> ) (7.42)

Given that all the transverse components are purely non-hydrostatic, it is straightforward
to derive the mapping for the hydrostatic free-energy density between the two formulations

Avpo Avpo

1
-N’string = NMuup — 6#6 U)\Hupcr - WJMVUuhV — pwe U)\huapua > (7'43)
where Ngring 18 given in eq. (5.15) and Nyap in (7.18). Introducing eq. (7.40) into Myup

n (7.43), it is possible to infer at ideal order that

2 2
2p2aP(T7MO(T7p )7p )

p(Ta w) = P(Tv MO(T7 ,02),,02) - apg ’

(7.44)

where, on the right hand side, we understand that p = p(T,w). Given that p(T,w) =
Op(T,w) /0w we can find that?*

0 OP(T, puo(T, p*), p*) 1
= — | P(T, uo(T, p?), p?) — 2p* ’ AL 7.46
P 8p2 ( aMO( » P )ap) P 8p2 8W(T,p2)/ap2 ) ( )
which can be solved by
P(T, uo(T, p?), p*

0p? ’

yielding the functional definition of w in terms of the MHD thermodynamic potentials.
Extending the free-energy density mapping (7.43) to one derivative order leads to the
determination of the map between hydrostatic transport coefficients

a = uo ,

ﬂ:M4P+,U0wa

P MSP 2 M, 8#0 8/) w

br=—7—% <T4+M582 o " T ow

= My Ouo'\ 9p
= —2p°T M

Pe= 2 ( " ap)@w

Bg = —Mgp y (7.48)

24The partial derivatives of w(T), p?) and p(T, w) are related by

9w (T, p°)
oT

_ 0p(T,w)/0T ow(T,p®) 1 1
=3 (7.45)

p(T,@)/0w *  0p>  2p0p(T,@)[0w
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where all the functions on the right hand side are evaluated at u = pg. Interestingly, the
string fluid transport coefficient o maps to the ideal order chemical potential solution pg.
This implies that if string fluids are to describe MHD configurations at non-zero chemical
potential, the « term in (5.15) is required. This observation was lacking in all previous
studies [3, 20, 21]. Note also that the 5 MHD transport coefficients Mj 2345 map to just
4 string fluid transport coefficients 8 and 5172,3. The reason is that, when working in a
regime where J%, = O(0), substituting u = po(T, B%) + O(0) in eq. (7.18) makes Ms
linearly dependent on the other terms.

On the other hand, the mapping in the non-hydrostatic sector is slightly more involved.
When deriving the mapping (7.48) in the hydrostatic sector, it was inherently assumed that
the fluid variables T" and u* are the same in both the formulations. In the hydrostatic sector,
this assumption is well founded, as these hydrodynamical fields are fixed to the requirement
of u*/T aligning along the timelike isometry of the background defining the equilibrium
state. However, in full generality, the fields 7" and u* can admit a relative non-hydrostatic
redefinition between the two formulations. Since T in both the formulations is chosen
such that T/} u, = 0 (i.e. the constitutive relations were expressed in the Landau frame),
to find this relative redefinition it suffices to compare

Titp pslt = w + 6u, T — T + 6T u,, = ThY, o wy + O(0%) (7.49)

After a straight-forward, yet involved, computation it can be inferred that the relative
change in the fluid velocity du* reads

1 T

o2 +5% (e+p)?

Tw 153 Ts « 2w
(e+p) \of +67 \e+p w e+p

2T G0, — 0,0 g0 + 0,0 1
D (TR =TT awlepe)  TETX T TLTx nlopo) ) Z6g,, , (7.50)
€E+Dp ol +o1 o| +o7 2

while the relative change in temperature vanishes, i.e. 47" = 0. In fact, given the informed
choice of parametrisation of the hydrostatic sector in the two formulations, it turns out that

Tl w804 T > T4 0T) = T 4O . (751)

holds exactly without further non-hydrostatic corrections. For the benefit of inquisitive
readers, these details have been relegated to appendix A.2. The remaining step consists of
comparing 77} in the two formulations, along with E, in MHD to —%€,,p0u” J#7, taking
into account the potential redefinition in £, induced by (7.50). In particular, it is found
that the field redefinition of u# non-trivially mixes £, and B* leading to a one derivative
shift in £, such that

E, — E, — |B|E,,6u” + O(0%) . (7.52)

Consequently, the comparison must be performed according to
1
Ep = BB 0u” = = €upott” J¥ + 0(6%) ,
Tl\lj[lfiD nhs [EM - El/« - ’B“Ew/éuy] = TMV (753)

string,nhs >
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which leads to a straightforward derivation of the map for non-hydrostatic transport

coefficients
X1X] X1X-
1 2
1L =11 — ) Cx =12 — ;
9] g
S S ol
) X2X1 G =C¢ X2X2
CX - C12 - p 3 H — (22 — o )
Il I
N X1 ~ X2
R = —, R = —
9] 9]
=~/ =/
~/ X1 ~/ X2 1
Iil = —— y /432 = ——— s T|| = — s
9] 9] 9]
/ ~ ~ ~/ ~
B oi(oxoly —oxdl )+ (oxdl +Tx0)))
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2 ~2
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sT \? oL
ry = ,
L €E+Dp 0%—#6%

o1 (oxdl, +0xol) —ci(oxol, —axdl)

m =m1— Ui‘i‘&i )

. sT \? -0 +20¢p

T =

+ €e+p ol +e%  sT )’
ST —0 0x +010x , sT —o,0, +0,0)

I'x = 2 2 ’ 'x = 2 =2 ’
€E+p of +o7 €E+p ol +o7

_ sT oi0x+0,0x% ~, sT O'LO'/XJra'L&/X

'x = 2 ~2 ; 'x = 2 ~2 J
et+tp o] +o0] €E+p o] +07

nL = N2, ML =Tz . (7.54)

This map expresses the fact that the that non-hydrostatic transport coefficients are quite
non-trivially related to each other. In addition, the map also embodies the mapping of
Onsager’s relations found in (5.25) and (7.32). In particular, given that the Onsager
relations (7.32) hold in MHD, the relations (5.25) are deduced from this map. Additionally,
under the assumptions of @« = 0 and ¢ + P > w|B)|, direct comparison of the Kubo
formulae (7.30) in MHD with the Kubo formulae in string fluids (5.23) by means of (7.34)
leads to a particular case of the map derived above, as expected. The results in this section
conclude that MHD with J£, = O(9) is completely equivalent to the hydrodynamic theory
of string fluids formulated in section 5.

7.4 Bound-charge plasma and one-form superfluids

In this section, we formulate a new hydrodynamic theory describing bound-charge plasmas
(i.e. plasmas with only bound charges and no free charge carriers) in the conventional
language. We then argue how this theory can be equivalently formulated in terms of
one-form superfluids. Because the full details of one-derivative corrections in one-form
superfluid dynamics are quite involved, we focus on the ideal sector. However, as an
illustration of the robustness of this formulation, we provide the first-order corrections in
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the electric limit of one-form superfluids discussed in section 6, and show that is maps to
a certain magnetically dominated sector of bound-charge plasmas.

7.4.1 Ideal bound-charge plasma

In order to obtain the constitutive relations for a bound-charge plasma, it should be noted
that the adiabaticity equation in eq. (7.10) is precisely the same in form as eq. (2.22) with
dpbu = d8€, replaced with dgF),, and J* replaced with M* (defined below eq. (7.9)).
Note, however, that this naive identification is only true at the level of the adiabatic-
ity equation. It does not hold true at the level of equations of motion because M*” is
not conserved. A better, albeit slightly non-trivial, relation to one-form superfluids will
be proposed in the next subsection. Regardless, this naive identification can be used to
write down the constitutive relations of bound charge plasmas. At ideal order, following
section 4.1.2, we find that

T" = ew'u” + (P — appB® — app(E - B)) P* — agpE"EY
+agpp (B“B” + 2u(“el’)p‘”upBaET> ,

MHY — —QU[M (OzEEEV] —+ OzEBBV}) — e,uupaup (aBBBa + aEBEa) R

P
N’u = Tu‘u s
1
St = N = B, + —E,M" = su | (7.55)

where P = P(T, E?, B2 E - B), while the other thermodynamic functions were defined via

1 1
dP = sdT + §aEEdE2 + §aBBdBQ +agpd(E- B)

¢e+P=sT+appE* +app(E-B) . (7.56)

P, e, and s are identified as the thermodynamic pressure, energy, and entropy density of
the plasma. On the other hand, the coefficients agg, agp, and agp are known as electro-
magnetic susceptibilities of the plasma. These thermodynamic relations and constitutive
relations have been derived earlier in [38], though in a slightly different way. In the special
case of an ideal fluid minimally coupled to electromagnetic fields in eq. (7.5), one chooses
P(T,E? B% E-B) = (E? - B?)/2 + p(T), leading to agg = 1, apg = —1 and agp = 0.

It is also possible to work out the one-derivative corrections but they can be trivially
read out from section 4.1.3. In particular, there are 166 first order transport coefficients,
hinting towards the fact that one-form superfluids and bound-charge plasmas are exactly
equivalent theories.

7.4.2 Reinterpretation as one-form superfluids

In deriving the one-form superfluid constitutive relations above, we used the naive similarity
between the adiabaticity equations of bound-charge plasmas under the identification §,, —
F,, and J#¥ — M*". However, as noted earlier, this identification does not follow through
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to the dynamics of the system. In order to get the correct dynamics, we propose the
mapping with the respective Hodge duals
1 1

JH = ie“”pUFpa y & = §e,wpaM'M . (7.57)
This is a non-trivial mapping because, in bound-charge plasmas, F},, is being treated as
a constituent field and the constitutive relations are expressed in terms of M*¥, while in
one-form superfluids &, is treated as a constituent field and the constitutive relations are
expressed in terms of J*¥. Nonetheless, it is possible to show that under this identification,
the defining equations of bound-charge plasmas map to those of a one-form superfluid,
provided the following map of background fields

1
Text = g€ Hupo (7.58)

and the map of the free-energy current
1 g
Nisp = Ncp — §B“MP Fpo (7.59)

It is worth noting that this is precisely the self-duality operation of one-form superfluid
dynamics discussed in section 4.3, except that H,,, is no longer required to vanish. It
instead maps to the background currents in bound-charge plasmas.

Since the algebraic operation of the self-duality is the same as the map proposed above,
it is possible to directly read out the map between fields and transport coefficients

Cu=appB, +agpE, , (u=aggE,+agpB, , (7.60)
and
QEE _ QBB QEB
q=— 5 y 4= — 5 y dx = ) )
OFEQpBp — Qpp OpEQapp — Qpp QOFEEQBB — Ofpp
Pisp = Pscp — appE? — appB® — 2app(E - B) . (7.61)

Note that this map is only well-defined if the determinant of magnetic susceptibilities is
non-zero, that is
QEEQABR — Ahp = % #0 . (7.62)
—
In particular, as outlined in section 5.2.1, in the string fluid limit of one-form superfluids,
the coefficients ¢ and g« are zero, leading to a violation of this condition. Therefore, they
do not map to a bound-charge plasma, but are instead dual to magnetohydrodynamics as

discussed in section 7.3.

7.4.3 Magnetically dominated bound-charge plasma

As an interesting case, consider the regime of bound-charge plasmas where the electric fields
are derivative suppressed. The reason for focusing on this case is because of its qualitative
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similarity to magnetohydrodynamics. Expanding eq. (7.55) to one-derivative order we find
that

Jagp
0B?

OJagp
oT

+app (-B?BW + 2u(“e”)p“upBgET> + 0 ,

T = eutv” + PP* +FE-B [(T )u“u”—232 B+

0
M"Y = —appe"’u,B, —2E - B ;523 e"P?u,Bs — 20EB ult Bl — appe"P’u,E,
— ZU[M (OéEEEV] -+ O/EBBV]E . B) + 0(02) s
P
N = Zut 4 O‘%E - But + O(?) . (7.63)

All the transport coefficients appearing here are functions of 7' and B? and satisfy the
thermodynamics

1
dP = sdT + EaBBdB2 , e+ P=Ts . (7.64)

In writing these, the ideal superfluid pressure was expanded according to
1
P(T,E* B>,E-B)=P+agpE- B+ 3 (appBuBy + appPu) EFE + O(0°) . (7.65)

Note that there are order-mixing terms coupled to agp and o/ p in eq. (7.63), high-
lighted in blue, arising from the second order free-energy density affecting the one-derivative
constitutive relations. It is possible to add more such terms by introducing a term like S* £,
in NV such that S* includes all the possible one-derivative hydrostatic structures barring
E,,. Generically, such order-mixing terms only give contributions to the polarisation tensor

M = 20l (appBYE - B+ appB’ + 57) . (7.66)

hs,order-mixing —

Including the explicitly one-derivative terms, it is further possible to write down 4 hydro-
static derivative corrections, namely

1
N =P+appE B+ (d5pBuBy + appPu) EFEY + RME,

B? M.
+ M1B“8Hﬁ + Mae"P?u, B,0,B, — T?)B”@“T — My u,B,0puy . (7.67)
The contributions from the M; terms to the constitutive relations have been recorded in
appendix A.1.2. This completes the hydrostatic sector.
For the non-hydrostatic terms, we express the constitutive relations as

TH = §& u'u’ + 0FBM + 6T BFBY +2LWBY) 4 2cy?) 4 TH

nhs

M = 26R B 4 oM BY) 4 o) 4 GS B (7.68)

It is possible to use the redefinition freedom in uw* and T to set §& and K* to zero. The
residual terms can be expanded according to

oR T T2 T3 T4 QU”BV(ngMV
SF | _ T |7 CuGz2xa B39,
oT 2 (75 Q2 Cax2| | B*B 39w
0S T X1 Xa O EX 6 F)
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MH T ol ol Ty 0 T B*u"0p Fou
7Ox VL 710 Ox OL EF hY 65y
EX?hY dpbgy,

TH = oo TBPHBY)7 55,0, + 1o TEPUBY 7 05,9,y - (7.69)

The blue terms have been considered here in order to complete the quadratic form. How-
ever, they are actually second order contributions to the constitutive relations. This mixing
of derivative orders in positivity of the quadratic form is a manifestation of the order mixing
considerations explained in section 6.

Having discussed the one-derivative corrections to a bound-charge plasma in the mag-
netically dominated limit, we now establish a map between these and one-form superfluids.
Identifying F),, = —%EWWJ P7 at ideal order one can trivially find that

(M =appB" +0(0) , ENZCMEBB“-FO(B) . (7.70)

Thus, on the one-form superfluid side, a linear combination of (* and (* is derivative
suppressed. One such limit was studied in section 6, namely the electric limit. In order to
map to this limit, it is necessary to set app(T, B?) = 0. Having done that, it is possible
to show that the theory is exactly equivalent to the electric limit of one-form superfluids.
Suppressing the details, the following map is found in the hydrostatic sector

p(T, @) = P(T,p*) +wp ,

_ 1 , 1 ( 1 1 >
gx =0, q=—-—— qy = ——% — : 7.71a
8 QEE X w? 04393,02 +agg QpE ( )

together with the order mixing vectors

Ryl A
R, = ( — + £ >S” : (7.71b)
Qppp” + QpE  QEE

and the pure first-order coefficients

Y B— 2Mp* Op | 2Mip°w dp  AMy 5 Msp
T L= " oT ' 15 9w 180 T )
5 2M102 dp 3 2
= - i = —Myp® . 71
B2 5 5o B3 20 (7.71c)
Here p = wq = |B|, h* = —(*/w = B*/|B| and
P(T, p?)

For the first-order terms in the non-hydrostatic sector, the following trivial map is obtained
for the energy-momentum tensor

CL==0C, Q= C22 , (x =Ci2 ¢ =G s
n=mi , n=m , nL="mn2 , L =122 , (7.73a)
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while for the polarisation tensor we have

T = (app + dgB)&), 75 = (app + dggB?)iy, 16 =appi,, To=—appr,
. A2 N A3 w . w
/ = — ! = — s / = —)\ s / = ——)\ .
(7.73b)

Note that the first order terms in the polarisation tensor appear at second order in the
charge current. Hence, if we were interested in only the one-derivative corrections to the
charge current, as in MHD, these terms can be ignored. Taking this into account, at
first order in derivatives there are a total of 8 transport coefficients in the non-hydrostatic
sector, given in (7.73a), out of which the Onsager’s relation set (12 = (j,. This exactly
matches the number of transport coefficients found in MHD in section 7.2, provided that
the current of free charges is removed by setting &y = &) = ko = &y =0, 7| =7 =7, =0,

and 7y =7, =ry =1, =0.

8 Outlook

This paper has dealt with the formulation of new hydrodynamic theories with generalised
global symmetries capable of describing different hydrodynamic regimes of hot electromag-
netism. The precise correspondence between these two classes of theories also required the
formulation and extension of hydrodynamic theories with dynamical gauge fields. This
included the extension of MHD to the parity-violating sector in section 7.2 and a new
effective theory that describes the hydrodynamic regime of non-conducting plasmas (i.e.
plasmas without free charge carriers) in section 7.4. Though four out of five hydrodynamic
theories that were formulated in this work can be seen as different limits of one theory, the
explicit construction of each of them actually required a case-by-case analysis.

The connections between hydrodynamics with generalised global symmetries and hot
electromagnetism were made in the sector of the theory where the U(1) one-form symmetry
is partially or entirely spontaneously broken. It was proven that the theory of one-form
superfluids in the electric limit in section 6, in which the one-form symmetry is completely
broken, is equivalent to a theory of magnetically dominated non-conducting plasmas with
bound charges in section 7.4. It was also proven that a theory of one-form superfluids
in the string fluid limit as in section 5, in which the U(1) one-form symmetry is only
partially broken along u*, is exactly equivalent to MHD with sub-leading external currents
(see section 7.2). This equivalence has thus shown that the U(1) one-form symmetry is
spontaneously broken in these two hydrodynamic regimes of hot plasmas.

These two theories described above were focused on the magnetic dominated phase
of hot electromagnetism in which the magnetic fields can be arbitrary and the electric
fields are weak. The opposite regime, that of electrohydrodynamics, in which the hydrody-
namics of plasmas is electrically dominated, is still unexplored but could have interesting
applications. This type of theories will also be described by one-form superfluids of sec-
tion 4 in a different regime or specific limits of one-form superfluids. In certain cases, the
theories describing these regimes will be directly related to the theories developed here

— 56 —



due to electromagnetic dualities or variations thereof, as discussed in section 4.2. This
suggests that the connections depicted in figure 1 between one-form (super)fluids and hot
electromagnetism admit many other unexplored regimes and intricate relations between
them. It would be interesting to understand this broader diagram more precisely by, for
instance, classifying all the different hydrodynamic regimes of hot electromagnetism and
to investigate whether fluids with generalised global symmetries can actually provide dual
formulations for all these different hydrodynamic regimes.

The results of section 5, together with the map given in 7.3, provide a formulation
of MHD entirely in terms of conservation laws, including all possible dissipative effects.
This has the potential to aid numerical simulations of MHD, as numerical codes are better
suited for working with conservation equations instead of dynamical Maxwell equations [27].
As such, the work we have presented here has the potential of aiding progress in the
astrophysical context, not only by allowing for numerical studies of dissipative effects in
accretion disk physics but also by providing the necessary and sufficient conditions (see
section 5) for having equilibrium solutions (without dissipation), which serve as starting
points in numerical simulations. In particular, besides providing a time-like Killing vector
field, one must solve the no-monopole constraint (5.13) in order to have an equilibrium
solution for a scalar Goldstone ¢ (magnetic scalar potential). This has been used in [24]
in order to obtain a new solution of a slowly rotating magnetised star but many other
possibilities, such as new accretion disk solutions, are yet to be explored. We also expect
this formulation to be useful in the study of stability properties of accretion disk solutions
and in probing mechanisms for energy transport with analytic control. We intend to pursue
some of these directions elsewhere.

Related to the exploration of the scope of hydrodynamics with generalised global sym-
metries and its connections with electromagnetism, it was noted throughout this paper
that the traditional treatment of MHD, where the electromagnetic photon is incorporated
as a dynamical field in the hydrodynamic description, has so far been formulated in greater
generality than its counterpart as the string fluid of section 5. The traditional MHD formu-
lation given in section 7.2, extending that of [3], allows for the description of hot plasmas
that are not electrically neutral at hydrodynamic length scales, i.e. it is possible to consider

a situation in which wu,,J%,

. = O(1). It may be the case that the string fluid formulation
of section 5 can be generalised in order to incorporate the description of non-electrically
neutral plasmas. For instance, treating some of the components of H,, as O(1) instead of
O(0) may provide the required generalisation. However, at the present moment, it is not
clear whether or not such a formulation exists and whether it would be useful. Nevertheless,
we plan on returning to this issue in the future.

A theory of ordinary one-form fluids has also been developed in section 3. This theory,
which is rather different from the theory of string fluids of section 5, has unbroken one-
form symmetry and had not been considered previously in the literature. It is suggestive to
speculate that this effective description could describe yet another hydrodynamic regime
of hot plasmas in which the U(1) one-form symmetry is unbroken. A back of the envelope
calculation suggests that one-form fluids in the unbroken phase do not describe MHD with
weak magnetic fields, as could have been naively expected. It would be interesting to pursue
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this direction further and understand whether one-form fluids could find applications in
other phases of matter.

Fluid/gravity dualities have been used to describe earlier versions of string fluids (with-
out the Goldstone mode ¢) both in the context of Anti-de Sitter black branes charged
under a two-form gauge field [37] and in the context of asymptotically flat supergravity
black branes, obtained by a series of duality transformations [39, 40]. Pursuing this line of
research further, it would be extremely interesting to construct gravity duals to both the
string fluids of section 5, explicitly understanding what ¢ relates to in the gravity dual,
and to the one-form superfluids of section 4, identifying ¢, in the gravity theory. The
analogous fluid/gravity considerations in the case of zero-form superfluids [4, 41] will be
useful. It is likely that gravity duals to string fluids, as formulated in section 5, will involve
black branes charged under a two-form gauge field and with scalar hair.

The long wavelength perturbations of black branes in supergravity are governed by
effective fluid theories with multiple higher-form currents [42]. Starting with the work
of [22], it would be interesting to develop higher-form superfluid theories that could be used
to study the stability of these gravitational solutions and to aid in finding new stationary
black hole solutions via hydrostatic effective actions for the Goldstone modes.

Finally, it should be mentioned that the tools developed here and the viewpoint ex-
pressed has repercussions to other hydrodynamic theories with generalised global symme-
tries such as theories of viscoelasticity [23] and with weakly broken symmetries [25]. In
particular, it is likely that some of these theories require the introduction of the vector
Goldstone mode ¢, in order to define a hydrostatic effective action. We leave this line of
inquire to future work.
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A Calculational details

A.1 Hydrostatic corrections

In this appendix, the explicit expressions for the first order hydrostatic corrections to
various hydrodynamic systems studied in this work are derived. Along with being of
inherent phenomenological relevance, these corrections are important when comparing the
constitutive relations between one-form superfluids and hot electromagnetism.
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A.1.1 String fluids and electric limit of one-form superfluids

Using the free energy density for string fluids in (5.15), performing a d5 variation of each
of the terms and using eq. (2.23), it is possible to work out their effect on the hydrostatic
constitutive relations. It is useful to parametrise these corrections as

Ty = (e+p)uru’ +pg" —wp B + T, + Ty, + T1Y s + 100 + 1075 +0(07),
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The hydrostatic corrections in the electric limit of one-form superfluids are obtained

from the respective hydrostatic free energy density given in eq. (6.13). The contributions
from all terms except 8 and §; have already been discussed in section 6.3.1. The contribu-
tion from the remaining terms is precisely the same as in eq. (A.2) for string fluids.

A.1.2 Magnetohydrodynamics and magnetically dominated bound-charge
plasma

Using the MHD free energy density (7.18), performing the relevant variations and ignor-
ing certain second order contributions to the energy-momentum tensor, the constitutive

relations are the sum of the following contributions
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In the case of magnetically dominated bound-charge plasmas with the hydrostatic free
energy density (7.67), the contributions from M; 234 to the respective hydrostatic consti-
tutive relations are just given in terms of the MHD expressions in eq. (A.3), except that
the transport coefficients are taken to be independent of .

A.2 Mapping MHD to string fluids

In this appendix the details of the mapping between MHD and string fluid constitutive
relations at first order in derivatives given in section 7.3.2 are provided.

A.2.1 Eliminating chemical potential and electric field

To begin with, we take the hydrostatic energy-momentum tensor for MHD from ap-
pendix A.1.2 and introduce it in the solutions for x for E,, given in eq. (7.26) coming from
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Maxwell’s equations. These are described in terms of 6 transport coefficients P(T, i, B?)
and M 2345(T, p, B%). We expand P(T, u, B?) around p = uo(T, B%) up to second order
in derivatives

P(T,p, BY) = P(T, B) + S Po(T, B (s — (T, BY)* + O@) . (A4)

Here we have used the defining relation of g from eq. (7.27). Representing the p solution
in eq. (7.26) as pu = po + dp, up to the first order in derivatives, we can work out

P(T,p, B?) = Py(T, B?) + 0(8%) ,
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2\ o\+ . 2 2 0 2 2
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In an analogous manner, we can expand M 2345(7, 1, B?) up to the first order in
derivatives

M;(T, pu, B*) = M;o(T, B*) + M; 1 (T, B?) (1 — po(T, B?)) + 0(8?) , (A.6)
which after eliminating u leads to
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Schematically, splitting the first order hydrostatic contributions to the MHD energy-
momentum tensor as Ty, = T}‘ILSVMZO + Tﬁtslem and plugging in the p and E,, solution
from eq. (7.26), after a straight-forward computation, we can show that
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Interestingly, the M; 1 contributions entirely drop out. On the other hand, for the remaining
hydrostatic contributions we have
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A.2.2 Velocity field redefinition

As we suggested in section 7.3.2, the map between string fluids and MHD can involve a
non-trivial non-hydrostatic redefinition of u* and T. In the following, we find that it is
sufficient to perform a redefinition of u* alone. With this hindsight, consider a redefinition
of the fluid velocity

ut = uf + out (A.10)
such that u,0u* = 0, where du* is purely non-hydrostatic. The electromagnetic fields get

a contribution from du* via
B" — B" +u'B,u” + O(0%) , E, — E, —|B[E,é6u" + O(d?) . (A.11)

Note that B? is invariant to first order. Interestingly, despite being itself first order, E,
shifts with a first-order piece. Therefore, the equation determining the E, in eq. (7.26)
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modifies to
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where we have used the mapping for X, given in eq. (7.41). The hydrostatic constitutive
relations discussed in the previous subsection get corrected by these redefinition and obtain
a du* contribution to the energy-momentum tensor

8P0 ~ ~ 0P, 0 OF 0
T = 2ut | TIBY) By + ( T—y — 2B> 20 | BV | 0u* . A13
o “[aT Y\ ar oz )" " (A.13)
To find what the relative field redefinition for u* between MHD and string fluid is,
we need to compare the energy-momentum tensor in the two formulations. Substituting
B" in egs. (A.8) and A.9 using eq. (7.40), and invoking the mapping between hydrostatic

transport coefficients given in eq. (7.48), we can show that

v 12 s 111
TMHD,hS + Téu - Tstring,hs ’ (A14)
for dut given in eq. (7.50). Here Ts’éruin&hs are the hydrostatic corrections to string fluid

constitutive relations worked out in appendix A.1.1.

A.2.3 Mapping of non-hydrostatic transport coefficients

We have already mapped the hydrostatic transport coefficients between the two formula-
tions in eq. (7.48) using the hydrostatic free-energy density. To find the mapping between
non-hydrostatic transport coefficients, let us substitute Ju* from eq. (7.50) into eq. (A.12)

and obtain
Py A, =~ APV 4 L e sy — (R A7 + Zhh7h°) L 5ng
v € +p v 2 J” re UH 1 2 2 re

sT &lOJX—O—J_&/X p 5J_5/><+UJ_U/X .

(e+p) ( S ar @ = T AR ) G

1 1
sT \? —0 2ap
— APPR 65D,

<e+p> <0i+52+sT> 5%

sT 2 o
HPho by A.15

Comparing it to the version obtained via the identification with string fluids

w1
P"egA, = Po,E — —pr
. T T
1
= PO, 5+ e T + O(0)
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ap ~/
= P AR S, ( popf _ Mahﬁ) 5500
c+p B + € T BYaf

+ (rien — 7L APR? ) dgbag
1 pof gzt ACB L 2 Y 1 Koo OB
5 (RAA 4 RRRY) O gy + ST ePombag ,  (A16)

we can read out part of the non-hydrostatic map in eq. (7.54). For the remaining part, we
need to compare the non-hydrostatic energy-momentum tensors in the two pictures. This
is done trivially by taking the MHD non-hydrostatic energy-momentum tensor, before the
field redefinition, from eq. (7.19), substitute for the electric fields using eq. (7.26), and
comparing it with the string fluid expressions in eq. (5.16). This finishes the mapping of
all the first-order transport coefficients presented in section 7.3.2.

A.3 Mapping magnetically dominated BCP to one-form superfluids

The mapping from magnetically dominated bound-charge plasma to one-form superfluids
is considerably less involved because we do not have to eliminate the chemical potential.
Furthermore, as it turns out, we do not need to perform a hydrodynamic field redefini-
tion to map the two formulations. Firstly, we note that the magnetic and electric fields
in a magnetically dominated plasma are given in terms of the electric limit of one-form
superfluids discussed in section 6 according to

Bt = JHMy,

= (Pt Spht —

afpo 85 8&1 waﬁQ
— h¥ [e P70 hgOpty—— - + P NT = o + 1?0y T
JpBs
_ A aBpo
Va (ﬂzh ) T + € uahga he 8w]
+ EAMVGMPUUA(% Uy — @A’“’@ T — B2 A’“’@
w
vApo Tﬁ3 TB?)
s (Dot L, (T )) cow)
R S
2 uvpo
= —qx (" — (g5 CHCY + qP*™) ¢, — R* + h*5s + é'm, + O(8?) . (A.17)

Unlike the MHD mapping in eq. (7.40), the magnetic fields do get a non-hydrostatic con-
tribution in a magnetically dominated plasma. Note that for E* to be O(0), we need to
set gx = 0. Using the map between free energy currents in the two formulations given in
eq. (7.59), we can find a mapping for hydrostatic free-energy densities according to

Npcp = Nigr + B*¢, + E, (. (A.18)

Plugging in the expressions for B* and E* from above, this trivially leads to the hydrostatic
sector mapping given in eq. (7.71).
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To map the respective non-hydrostatic sector transport coefficients, we need to ex-
plicitly compare the constitutive relations for the energy-momentum tensor in the two

formulations, along with the map M*" = —%e‘“’p”ﬁpa. After an involved algebra, we find

Wy v
TBCP - TISF

- <5f _ P 6]-') A — (67 + wdp — 6T ) h'hY

0p/ 0w
— 2000 — on — LRV — (1 — T L O(8?)
1
M'LLV = _56/,LVPU£pU
v op v
+2(0R - (/g B? + apE)ds) ulthv) + ((53 + 8p/8w> et
_oplw (MV} + fEV}%%r) — oyl (/\/’V] + OZEEGVP\mA> + (9(82) . (A.19)

Various non-hydrostatic corrections appearing here are defined in egs. (6.17) and (7.69).
Since for the map to work the last two lines in both the expressions above must vanish,
this trivially leads to the mapping in the non-hydrostatic sector given in eq. (7.73).

B Comparison with the effective action approach

In this appendix we perform a comparison between the work of [30] and the equilibrium
partition function construction that we provided in [24]. Additionally, we use the construc-
tion of [30] in order to generalise their results so as to obtain an ideal order effective action
for the one-form hydrodynamic theories of section 3 (unbroken phase) and section 4 (fully
broken phase).

Following [30, 43], we introduce a “fluid spacetime” with coordinates ¢®. A point

i=1,2,3

on this spacetime represents a “fluid element” parametrised by o at some choice of

internal time o

. On this fluid spacetime, we define the coordinate fields x*(o) which
represent the physical spacetime coordinates of the fluid element. Under a spacetime

diffeomorphism x*(x), these fields transform as
2t(o) = at(0) + x"(x(0)) (B.1)

When the fluid is charged under a U(1) zero-form symmetry, we also associate with every
fluid element a phase field ¢(o). In the case of a one-form symmetry, we instead intro-
duce a one-form phase ¢,(c) as in [30]. These phases do not transform under spacetime
diffeomorphisms,?> but shift under the respective gauge transformations AX(x) and A¥(x)

oxH (o)
¢(o) = ¢(o) = AX(2(0)),  @al0) = walo) = —5 = Aji(z(0)) - (B.2)

?We can pushforward these phases onto the physical spacetime as ¢(x) = é(o(x)) and p,(z) =
%g@a(a(m)), which have the expected transformation properties dxd(z) = £y¢p(x) — AX(z) and
dxpu(z) = £ypu(x) — AX(z). In this case, the field ¢,, already introduced in [24], coincides with that

defined in (4.1).
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The fields z# (o) together with ¢(0), or ¢,(c) for the one-form case, form the effective
dynamical fields of hydrodynamics. Given the background fields g, (x), A,(x), and by, (x)
on the physical spacetime, we can define their pullbacks onto the fluid spacetime as

hae) = 2200210 o ator)) |
Bu(o) = &g;(aa) Ap(z(o)) + agéz) ’
Bu(0) = 8"2’;(;’) a”;;(f by (2(0)) + ‘9?;_(;’ ) ag‘;(f ) (B.3)

These fields have been defined such that they are invariant under the symmetry transfor-
mations of the physical spacetime. In fact, they constitute the most general invariants
made out of dynamical and background fields.

Given these elements, we wish to construct a Wilsonian effective action for hydro-
dynamics involving the fields in eq. (B.3), with certain symmetries imposed on the fluid
spacetime, so that we can recover the hydrodynamic dynamical equations via a variational
principle [43]. The physical picture to keep in mind is that every distinct fluid element,
parametrised by ¢?, is evolving along the internal time ¢°. We expect the hydrodynamic
description to be invariant under an arbitrary relabelling of the fluid elements and the
choice of internal time for each fluid element, leading to the symmetries

ot = 0% + fU(F) . (B.4)

Note that we are not allowing for a time-dependent redefinition of ¢?, since we require each
fluid element and its choice of internal time to stay the same as it moves through time.
The transformations eq. (B.4) are the most general fluid spacetime diffeomorphisms which
leave the internal time vector 9/9c” invariant.

In addition, we allow each fluid element to independently choose the associated U(1)
phase, leading to the shift symmetry

¢(0) = ¢(0) + A(@) , @a(0) = pa(0) + Aa(F) - (B.5)

Note that we are also requiring the choice of phase to remain the same as the fluid element
moves through time. We expect the symmetries (B.5) to hold when the underlying U(1)
symmetry is not spontaneously broken. To motivate this, let us consider the zero-form case
first. At each point p = (0j) in the fluid spacetime, we can define a charged operator

V, = explio(y)) - (B.6)
Under the shift (B.5), these operators admit a phase rotation
Vp = exp(iA(6})) Vp (B.7)

which is independent for every fluid element, but remains fixed as the charged operator
moves through time. When the symmetry is spontaneously broken, the system picks a
random preferred phase in the ground state and the respective shift symmetry in eq. (B.5)
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should be dropped. In this case, the phase pushforward onto the physical spacetime ¢(z) =
¢(o(x)) acts as the Goldstone mode of the broken symmetry, and we are led to the physics
of zero-form superfluid dynamics.

In the one-form case, on the other hand, the charged operators are defined over non-
local “strings” of fluid elements. Let us consider a space-like curve C' in the fluid spacetime
defined in terms of an internal length parameter £ as 0* = o&(¢). We can then define the

Ve = exp (z /C (o) da“) ~ exp (z / cpa(ac(ﬁ))dafe(z) ow> . (B.8)

Under the shift (B.5), this charged operator acquires a phase rotation given by operator

operator

Ve — exp <z / Aa(ac(e))d”i(@ d£> Vo | (B.9)

which is independent for every string of fluid elements, but remains fixed if a string moves
uniformly in time: o&(¢) = o2(¢) + 7, where 7 is independent of ¢. Using the analogy
with the zero-form case, we understand that when the shift symmetry (B.5) is dropped,
the system picks up a preferred one-form phase in its ground state spontaneously breaking

the symmetry. The pushforward of the one-form phase ¢, (z) = agi(f) @a(o(x)) can be
identified with the Goldstone mode of this broken symmetry. Interestingly, in this case
there is another choice available to us. We can require the choice of phase to be fixed
under a non-uniform movement of the string in time: o2 (¢) — 02(¢) 4+ 7(£), which implies
dropping the time component of the one-form shift in eq. (B.5) setting A\g(c) = 0. Since the
©o(0) component of the phase does not admit any redefinition in this case, we can interpret
its pushforward onto the physical spacetime ¢(z) = ¢o(o(z)) as a scalar Goldstone. This
is the partial symmetry breaking of one-form hydrodynamics eluded to in section 5.2
Having identified the dynamical degrees of freedom and symmetries, one can construct
the most generic hydrodynamic effective action arranged in a derivative expansion leading
to a particular subsector of non-dissipative constitutive relations. We do not repeat this
exercise here and we encourage interested readers to consult the relevant papers such
as [30, 43]. However, to make contact with the hydrodynamic formulation used in the bulk
of this paper, it is instructive to map the dynamical degrees of freedom in the two pictures.
Starting with the symmetry unbroken phase, we can identify the hydrodynamic fields
B = (B AP)or B = (B“,Aﬁ) introduced around eq. (2.5) and eq. (2.10) respectively as

gy = 220

o=o(x)

M@ =29

o=0(x)

0c(x) Opa(0)
B _
A“(x) - Qxt Qo0

o=o(z)

(B.10)

26The effective action framework of [30] for MHD /string fluids deals with this partially broken picture of
one-form hydrodynamics where Ao(c) = 0. The authors rightly note that the pullback of the full one-form
phase @, (x) is not a Goldstone in this picture, as we see that the one-form symmetry is only partially
broken. However, the authors do not identify the pullback of the time component () as a Goldstone
mode either. Note that v1 of [30] on arXiv has a typo in equation (2.18) as we confirmed with the authors:
the shift symmetry is only imposed in the spatial directions.
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These are invariant under the fluid spacetime symmetries in eqs. (B.4) and (B.5). In terms
of the conventional fields, we equivalently have

T p——C.E ()=
—hoo(o(x)) 900 |oeo(a) —hoo(o(2))
o _Bilo@) oy _ Z5e Buu(o(2)) + grpo(o(2)
M) = T o) ) ~Foofo (o)

(B.11)

As noted in section 2, the one-form chemical potential f,(x) is not gauge-invariant.
When the symmetry is spontaneously broken and eq. (B.5) is relaxed, we can iden-
tify the respective Goldstone modes and superfluid velocity as additional fluid spacetime

invariants
4(z) = 6(o(z) &)= 27D B o)) |
oz o%(x) 0o’ (x
o) =T Do) ) =22 DT D g 0w - Baz)

Interestingly, the respective Josephson equations u*{, = p and u”&,,, = p, — TOu(BY¢u)

given in section 4.1.1 are automatically satisfied. Finally, in the case when the one-form

symmetry is only partially broken, the respective scalar Goldstone and string fluid variables

can be read out as

0c%(x) Boa(o(x))
9zt \/—hoo(o(2))

p(x) = pol(o(z)) , why, = (B.13)
Order parameter. The question of whether a global symmetry is spontaneously broken
or unbroken can be articulated in terms of an order parameter charged under the symmetry.
In the zero-form case, such an order parameter is provided by the expectation value of the
vertex operator eq. (B.6), i.e.

(exp(ip(0p))) - (B.14)
If this happens to be non-zero when computed within the effective action framework of
hydrodynamics, we understand that the symmetry is spontaneously broken and we are in

the superfluid phase, otherwise the symmetry is unbroken and we are in the ordinary fluid
phase. A similar construction can be extended to one-form symmetries using eq. (B.8) to

(exo (i [ wuleraa)) (B.15)

If, for large spacelike loops, the expectation value scales as the perimeter of the loop we

obtain an order parameter

are in the symmetry broken phase, otherwise we are in the symmetry unbroken or partially
broken phase. This order parameter will not distinguish between the partially broken
and unbroken phases of one-form symmetry. If we were at equilibrium, we could obtain
a plausible operator that will make such distinction by integrating over the Euclidean

(0 (= [ wuldract) ) = (e (Fn(@) ) - (B.16)

time circle
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C P T CPT C P T CPT

C P T CPT oo+ + + & -+ + -

T, 9 + + + + v o+ - -+ & - - - =
T, g + - — + T 4+ + + + Fu, E;, B® — — 4+ +
T, 95 + + + + 7 + + - Fy, BLE' - + - 4+
Jt, Ay + + - - + - + @ + 4+ + o+
JLA - - = - it - + - + hiy &y Gi 8 — =+ +
JU by — =+ + i - - + + &ijy ¢ hey & — + — +
JU, bi; — + - + b, — + + - Hy;j - + + -
bi - - - - Hijr - - - -

Table 7. Transformation properties of various quantities under the discrete symmetries C, P,
and T. The first table summarises properties of conserved currents and the associated sources, the
second table of dynamical fields, while the third table of various derived quantities.

Generically, there is no notion of preferred time outside thermal equilibrium to define such
an order parameter but within the regime of hydrodynamics, we can use the fluid velocity
to define this operator?”

(ex0 (uen(@)) ) = texp (o)) (B.17)

Whether or not this operator is the required order parameter can be settled by computing it
within the effective field theory outlined in this appendix. We leave it here as a speculative
note and plan to come back to this question in the future.

C Discrete symmetries

If the physical system in question is invariant under certain discrete symmetries, like chi-
rality (parity) or CPT, on top of the continuous Poincaré and zero/one-form symmetries,
they can be used to further constraint the number of allowed transport coefficients. The
formulations of one-form hydrodynamics and hot electromagnetism involves distinct sets of
conserved quantities and are mapped to each other via a Hodge duality operation, therefore
discrete symmetries in the respective pictures do not map to each other trivially. Already
in section 5.3, we discussed the action of CP symmetry in string fluids, later noting in sec-
tion 7.3 that CP-preserving string fluids map to parity or Pgy-preserving sector of MHD.
Therefore, we devote this appendix to a more careful treatment of discrete symmetries in
hot electromagnetism and one-form hydrodynamics.

In order to do so, the first step is to define the action of discrete symmetries on
the field content. We introduce three operations: charge conjugation C, parity P, and
time-reversal T. Their action on the conserved currents and field content is summarised
in table 7. Note that h* transforms as a vector under parity, which under the duality
operation gets mapped to an axial-vector B¥. Therefore, on the electromagnetism side,

*"The effective action construction of [30] contains a gauge symmetry @q(o) = @a(0) + A(c), which
doesn’t leave the out-of-equilibrium order parameter in eq. (B.17) invariant. Arriving at a correct gauge-
invariant order parameter might need some more work which we leave for future considerations. We thank
P. Glorioso and D. T. Son for pointing this out to us.
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the parity operation is actually defined in terms of the one-form discrete symmetries as
Pem = CP. The holds for the time-reversal operator, and we find

Cem=C, Pgu=CP, Tgy=CT . (C.1)

The charge conjugation operator, of course, is the same in both pictures. Interestingly, the
full (CPT)gy is mapped to CPT in the one-form picture.

With table 7 in place, we can easily work out the nature of various transport coefficients
under CP (i.e. Pgy) and CPT. Firstly, all the transport coefficients in ordinary one-form
hydrodynamics are CP-even. For string fluids, we have already discussed the CP properties
of various transport coefficients in section 5.3. Lastly, for generic one-form superfluids, since
the transport coefficients can arbitrarily depend on a zero-derivative CP-odd scalar (¢ - (),
no terms in the constitutive relations have a definite CP behaviour.

As for CPT, it is easy to check that all zero derivative tensor structures in any phase
of one-form hydrodynamics are CPT-even. Consequently, all one-derivative transport co-
efficients are CPT-odd. Before we draw any conclusions from this result, it is worth noting
that the shear and bulk viscosity terms in neutral relativistic hydrodynamics are CPT-odd
as well (or equivalently PT-odd due to neutrality). This is not surprising due to the dissipa-
tive nature of these coefficients. However, this CPT is distinct from the “microscopic” CPT
that is implemented, not at the level of the constitutive relations, but more fundamentally
at the level of an effective action, hydrostatic partition function, or correlation functions
(see for instance [43]). In the hydrostatic sector, microscopic CPT-invariance requires that
all the CPT-violating terms in the hydrostatic partition function vanish. Since all the
hydrostatic one-derivative scalars are CPT-odd, all the hydrostatic transport coefficients
are turned off by requiring microscopic CPT-invariance in all the phases of one-form hy-
drodynamics. Due to the map between and MHD and string fluids in eqs. (7.48) and 7.54,
microscopic CPT-invariance implies, in particular, that the chemical potential g in MHD
must vanish. In the non-hydrostatic sector, on the other hand, microscopic CPT can be
implemented using Onsager’s relations. For instance, for string fluids, these constraints
have been worked out in section 5.4. We leave a more detailed analysis of microscopic
CPT in generic one-form superfluids to a future work.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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