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Abstract: We use the framework of generalised global symmetries to study various hy-

drodynamic regimes of hot electromagnetism. We formulate the hydrodynamic theories

with an unbroken or a spontaneously broken U(1) one-form symmetry. The latter of these

describes a one-form superfluid, which is characterised by a vector Goldstone mode and

a two-form superfluid velocity. Two special limits of this theory have been studied in

detail: the string fluid limit where the U(1) one-form symmetry is partly restored, and

the electric limit in which the symmetry is completely broken. The transport properties

of these theories are investigated in depth by studying the constraints arising from the

second law of thermodynamics and Onsager’s relations at first order in derivatives. We

also construct a hydrostatic effective action for the Goldstone modes in these theories and

use it to characterise the space of all equilibrium configurations. To make explicit contact

with hot electromagnetism, the traditional treatment of magnetohydrodynamics, where

the electromagnetic photon is incorporated as dynamical degrees of freedom, is extended

to include parity-violating contributions. We argue that the chemical potential and electric

fields are not independently dynamical in magnetohydrodynamics, and illustrate how to

eliminate these within the hydrodynamic derivative expansion using Maxwell’s equations.

Additionally, a new hydrodynamic theory of non-conducting, but polarised, plasmas is

formulated, focusing primarily on the magnetically dominated sector. Finally, it is shown

that the different limits of one-form superfluids formulated in terms of generalised global

symmetries are exactly equivalent to magnetohydrodynamics and the hydrodynamics of

non-conducting plasmas at the non-linear level.
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1 Introduction

Hot electromagnetism is the theory that describes the interaction between electromagnetic

and thermal degrees of freedom of matter at finite temperature. At sufficiently long wave-

lengths and time scales, this theory admits certain hydrodynamic regimes within which

these interactions are well approximated by the physics of plasmas. Magnetohydrodynam-

ics (MHD) is one of the most well studied of these regimes, applicable to conducting plasmas

for which the electric fields are short range/Debye screened and the plasma is electrically

neutral at hydrodynamic length scales [1]. Over the past decades, MHD has developed

into a framework capable of describing a wide range of phenomena, from the modelling of

accretion disks surrounding astrophysical black holes to the magnetic confinement of hot

plasmas at fusion reactors [2].

Despite its historical success as a phenomenological theory, the traditional treatments

of MHD have only recently began to incorporate some of the modern developments in
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hydrodynamics [3], which have proven to be extremely useful to further our understand-

ing of ordinary fluid and superfluid dynamics [4, 5]. These developments, among many

others, include: the understanding of hydrodynamics as an effective field theory [6]; the

relevance of hydrostatic partition functions that describe all equilibrium states in hydro-

dynamics [7, 8]; the role of symmetries and classification schemes in constraining transport

properties [9, 10]; the usefulness of black hole physics and holography in the evaluation of

transport coefficients [11, 12]; a Lagrangian formulation of dissipative hydrodynamics [13–

15]; the incorporation of boundaries/surfaces in hydrodynamic descriptions [16, 17]; a novel

understanding of non-relativistic limits [18, 19]; and the application of the framework of

generalised global symmetries to reformulate hydrodynamic theories [20–25].

The overarching goal of this work is to further develop the effective hydrodynamic

theories of hot electromagnetism under the light of some of these recent developments, and

to investigate another of its hydrodynamic regimes besides MHD. In particular, we provide

a new formulation of dissipative MHD in terms of a system with higher-form conservation

laws, which is better suited for numerical studies, classify all dissipative transport coeffi-

cients that appear at first order in a long-wavelength expansion and resolve standing issues

related to the definition of hydrostatic equilibrium. Besides providing a new framework

for understanding the MHD regime, this work also focuses on a novel formulation of the

hydrodynamic description of non-conducting plasmas that can nevertheless be polarised,

which we refer to as bound-charge plasmas. Physical examples of such systems include a

polarised neutral gas of atoms interacting with a bath of photons.

The main tool used throughout this work is the framework of generalised global sym-

metries [26], which has recently been used in the context of MHD, recasting it as a theory of

hydrodynamics with a global U(1) one-form symmetry [20, 21, 24].1 The traditional treat-

ment of MHD involves incorporating the electromagnetic photon Aµ as a dynamical degree

of freedom in the hydrodynamic description, coupled to an external conserved current Jµext

(see e.g. [3]). On the other hand, the corresponding string fluid formulation, originates

from the insight that electromagnetism admits a two-form current Jµν = εµνλρ∂λAρ, where

Fµν = 2∂[µAν] is the electromagnetic field strength, that is conserved due to the Bianchi

identity ∇[µFνλ] = 0.2 This two-form current gives rise to a dipole charge that counts

the number of magnetic field lines crossing any two-dimensional surface, and couples to an

external two-form gauge field bµν . The three-form field strength Hµνλ = 3∂[µbνλ] associated

with bµν is seen as related to the external conserved current as Jµext = εµνλρHνλρ/6. Both

these formulations are developed and extended in this work and, in order to avoid any

ambiguity, one of main results obtained here can be summarised as follows:

Under the identification Jµν = 1
2ε
µνρσFρσ and Jµext = 1

6ε
µνλρHνλρ, the

formulation of MHD in terms of generalised global symmetries is ex-

actly equivalent to the traditional treatment of MHD with a dynamical

gauge field.

1Throughout this work, we often refer to to this formulation as the string fluid formulation of MHD.
2This process of dualisation is commonly applied in the context of numerical studies of MHD [27]. The

conservation of the two-form current splits into what is usually denoted as the induction equation and the

no-monopole constraint. However, no formal study of the hydrodynamic properties and expansion in this

context had been performed. This is one of the goals of this paper.
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A few remarks are now in order: this equivalence is proven here at the full non-linear level

including parity-violating terms; both the formulations make no assumptions regarding the

strength of the magnetic fields; and both the formulations are developed using the principles

of effective field theory and hydrodynamic expansions. Finally, the traditional treatment

as developed here, following [3], is more general than its corresponding formulation in

terms of generalised global symmetries, as it is capable of describing plasmas that are not

necessarily electrically neutral at the hydrodynamic length scales.3

Despite the formulation of MHD in terms of generalised global symmetries, as thus

far developed, being less general than the corresponding traditional treatment, it should

be noted that there are several important reasons why this different formulation is ac-

tually more useful. Most applications of MHD, specially in the context of astrophysics,

concern themselves with plasmas that are electrically neutral at the hydrodynamic length

scales [1], in which case both of these formulations are equally applicable in general, but the

formulation in terms of generalised global symmetries is easier to implement in numerical

simulations [27]. Moreover, when expressed in terms of generalised global symmetries, the

formulation rests solely on the symmetry principles (and their breaking), without having

to incorporate a microscopic dynamical gauge field. Additionally, the chemical potential µ

and electric fields Eµ that enter the traditional formulation, but not the string fluid for-

mulation, are superfluous and not independently dynamical in the hydrodynamic regime.

As a matter of fact, we show in the course of this work how Maxwell’s equations can be

exactly solved within a derivative expansion, so as to completely remove these fields from

the hydrodynamic description. Finally, within this string fluid formulation, we directly

obtain the fluid constitutive relations for the physically observable electromagnetic fields

in terms of the background current sources, which allow for a cleaner extraction of the

respective correlation functions.

Earlier formulations of MHD within the framework of generalised global symme-

tries [20, 21] (see also [3]) take the viewpoint that MHD is a theory of long fluctuating

strings (i.e. magnetic field lines). The string direction hµ and their chemical potential $

serve as fundamental degrees of freedom in the theory, while assuming that the one-form

symmetry is unbroken. As has already been explained in [24], while this treatment is

phenomenologically sufficient to understand the hydrodynamic fluctuations around a given

initial equilibrium fluid configuration, it does not allow for a precise understanding of the

space of allowed equilibrium configurations by means of a hydrostatic effective action (or

partition function). This problem can be resolved, as advocated in [24], by carefully break-

ing the one-form symmetry along the direction of the fluid flow, which leads to the exact

same description for string fluids out of equilibrium as presented in [20, 21]. However, it

is now possible to properly define equilibrium configurations by constructing a hydrostatic

effective action for the a magnetic scalar potential ϕ, which can be understood as the

3It may be possible to relax the assumptions of the string fluid formulation in order to be able to describe

plasmas that are not electrically neutral. Further comments on this point are left to a more speculative

discussion in section 8.
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Neutral Zero-form Zero-form One-form One-form One-form

Fluid Ord. Fluid Superfluid Ord. Fluid String Fluid Superfluid

Hydrostatic 0 0 4 1 5 22

Non-hs Non-diss 0 0 11 0 8 66

Dissipative 2 3 15 4 11 78

Total 2 3 30 5 24 166

Table 1. Comparison between counting of independent transport coefficients at one-derivative

order for various phases of neutral, zero-form, and one-form charged fluids. CPT and Onsager’s

relations have not been implemented in this count. Here Non-hs refers to non-hydrostatic and

Non-diss to non-dissipative.

Goldstone scalar associated with the partially broken one-form symmetry.4 The theory is

thus better understood as a theory of one-form superfluidity.

This work introduces a novel framework of one-form superfluids in which the one-form

symmetry is completely broken, giving rise to a vector Goldstone mode ϕµ [26, 28, 29]. A

specific sector of this theory, where part of the one-form symmetry is restored, describes

MHD. In general, however, one-form superfluids characterise many hydrodynamic regimes

of hot electromagnetism without any assumption on the relative strength of electric and

magnetic fields. As an example, the theory will be used to describe the hydrodynamic

regime of magnetically dominated bound-charge plasmas (BCP), whose traditional treat-

ment has also been developed here and shown to be equivalent. Below, the different

connections between one-form superfluids and different aspects of hot electromagnetism

are described in more detail, together with the organisation of this paper and some of its

main results. A comparison between the number of transport coefficient in various phases

of neutral, zero-form, and one-form hydrodynamics is given in table 1.

One-form hydrodynamics and hot electromagnetism. One of main purposes of this

work is to contribute to a systematic study of one-form hydrodynamics and its applica-

tions. As such, this paper begins in section 2 with a discussion on the proper identification

of the degrees of freedom in one-form hydrodynamics, motivated from considerations in

equilibrium thermal field theories. This section also introduces the general methodology

of one-form hydrodynamics (adiabaticity equation, second law of thermodynamics, hydro-

static effective actions, etc) that will be used in later sections to formulate novel theories

of hydrodynamics with generalised global symmetries. The identification of the correct de-

grees of freedom of one-form hydrodynamics leads to a warm up exercise: the formulation

of one-form hydrodynamics for which the one-form symmetry is unbroken, in section 3.

This theory turns out to be quite different from string fluids as formulated in previous

4The conventional formulation of MHD has a massless propagating degree of freedom, namely the photon.

However, electric fields in MHD are screened. This means that in the dual formulation of MHD in terms

of generalised global symmetries, not all the components of the dual photon, which can be seen as the

Goldstone of the spontaneously broken one-form symmetry [26, 28, 29], are actually present. However,

since the magnetic fields are still unscreened, at least some components of the dual photon must still exist.

Therefore, we refer to this phase as a partially broken phase of a one-form symmetry.
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Figure 1. Schematic representation of the connections between one-form (super)fluids and hot

electromagnetism

works, which are naively assumed to have the one-form symmetry unbroken, and had not

previously been considered in the literature. Having formulated the theory of one-form hy-

drodynamics, this work progresses by incorporating the vector Goldstone mode ϕµ arising

due to the spontaneous breaking the one-form symmetry (see figure 1). This makes up the

core of section 4, where a theory of one-form superfluids is developed and its different limits

described. This theory introduces a two-form superfluid velocity ξµν (the gauge-invariant

covariant derivative of ϕµ) which in four spacetime dimensions can be decomposed into

two vectors, ζµ and ζ̄µ. These can be understood as electric and magnetic fields associated

with ξµν , respectively.

We study two limits of one-form superfluids in detail: the string fluid limit and the

electric limit. The string fluid limit, discussed in section 5, can be obtained by partially

breaking the one-form symmetry along the fluid velocity uµ, which results in the appearance

of a scalar Goldstone mode ϕ. The same theory can also be obtained directly from one-form

superfluids by dropping any dependence on ζ̄µ from the constitutive relations (see figure 1).

The scalar Goldstone ϕ, in this interpretation, is understood as the time component of the

vector Goldstone mode, that is ϕ = uµϕµ/T , where T is the fluid temperature. On the other

hand, the electric limit taken in section 6 does not switch off the ζ̄µ dependence. Rather, it

assumes a derivative hierarchy ζµ = O(1) and ζ̄µ = O(∂) between the components of ξµν ,

rendering ζ̄µ subleading in the hydrodynamic derivative expansion. Though equivalent at

ideal order, string fluids and the electric limit of one-form superfluids deviate considerably

upon including one-derivative corrections.
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In section 7, the connections between one-form superfluids, including its limits, and

different hydrodynamic regimes of hot electromagnetism are discussed. We have specially

focused on two regimes: MHD and bound-charge plasmas. The MHD regime, applicable to

conducting plasmas for which the magnetic fields are arbitrary Bµ = O(1) and electric fields

are weak Eµ = O(∂), is shown to be exactly equivalent to string fluids when Jµext = O(∂), as

advertised earlier. The full map between the transport coefficients in the two formulations

at first order in derivatives is given, together with the solution to the Maxwell’s equations

that eliminates non-propagating degrees of freedom from the hydrodynamical description.

Here, the traditional treatment of MHD is also extended to include all transport coefficients

at first order in derivatives, taking into account parity-violating terms. Also in section 7,

the traditional treatment of the bound-charge plasma regime is formulated for the first time,

and is applicable to non-conducting plasmas (i.e. plasmas with only bound-charges and no

free charge carriers). These are argued to be exactly equivalent to one-form superfluids,

with the explicit mapping of constitutive relations worked out at ideal order. At first order

in derivatives, attention is given to the magnetic dominated bound-charge plasma, where

Bµ = O(1) and Eµ = O(∂), similarly to MHD. These are shown to be exactly equivalent

to the electric limit of one-form superfluids, provided that a certain transport coefficient

q× is set to zero. These connections have been summarised in figure 1.

Finally, in section 8 a discussion of some of these results is given together with interest-

ing future research directions. Some of the calculational details relevant to this work have

been assembled into appendix A. We have provided a comparison of our results with the

effective action approach of [30] in appendix B. We also clarify the constraints imposed by

discrete symmetries, such as parity and CPT, in various phases of one-form hydrodynamics

in appendix C.

Comments on related work. During the completion of this work, we became aware

of an upcoming related work that investigates different aspects of magnetohydrodynam-

ics [30], and which has considerable overlap with [24]. We have provided a comparison

between our work and that of [30] in appendix B. We also generalised parts of [30] as to

construct an ideal order effective Lagrangian for the hydrodynamic theories of section 3

and 4. Additionally, we have also formulated an order parameter that describes the par-

tial breaking of the one-form symmetry required to formulate MHD in the language of

generalised global symmetries.

2 The setup of one-form hydrodynamics

In this section we introduce the fundamental degrees of freedom associated with one-form

hydrodynamics and the conservation equations that constrain and govern their dynamical

evolution, including in the presence of gapless modes. These degrees of freedom are mo-

tivated by extending the degrees of freedom characterising thermal equilibrium partition

functions into the out-of-equilibrium context. Analogous to the case of usual zero-form

charged hydrodynamics, the symmetry properties of the background fields to which these

fluids couple to are key guiding principles in the identification of the correct degrees of

– 6 –
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Dynamical field Symbol

Fluid velocity uµ with uµuµ = −1

Temperature T

Zero-form chemical potential µ

Table 2. Dynamical fields for zero-form charged fluids.

freedom. The requirement that one-form fluids satisfy the second law of thermodynamics

leads to a generalised adiabaticity equation that can be used to constrain the transport

properties of one-form fluids. The formalism described here and associated set of tools

(hydrostatic effective action, adiabaticity equation, etc) is the point of departure for the

construction of novel theories of hydrodynamics with generalised global symmetries that

we provide in later sections of this paper.

2.1 Symmetries, conservation, and hydrodynamic variables

The Noether theorem ascertains that any theory that is invariant under global Poincaré

transformations and U(1) zero-form transformations must admit a conserved energy-

momentum tensor Tµν and charge current Jµ. Coupling the theory to a spacetime back-

ground with metric gµν and gauge field Aµ, the conservation equations associated with

these symmetries take the form5

∇µTµν = F νρJρ , ∇µJµ = 0 . (2.1)

Here ∇µ is the covariant derivative associated with gµν and Fµν = 2∂[µAν] is the field

strength associated with Aµ. Focusing on the case of four spacetime dimensions, eq. (2.1)

consists of a system of five conservation equations. Hydrodynamics is the low-energy

effective description at finite temperature of such systems and its formulation requires

picking an arbitrary set of five dynamical fields, as in table 2, whose dynamics is governed

by eq. (2.1). If, besides the hydrodynamic modes, the system admits gapless modes at

low energy, collectively represented by Φ, then eq. (2.1) must be supplied with additional

equations of motion describing the evolution of Φ. Once the dynamical fields have been

chosen and the gapless modes identified, the hydrodynamic theory is obtained by writing

down the most generic “constitutive relations” for Tµν and Jµ in terms of uµ, T , µ, and

Φ in a long-wavelength derivative expansion. Empirical physical requirements, such as

the second law of thermodynamics and Onsager’s relations, impose constrains on these

constitutive relations.

The motivation for the choice of hydrodynamic fields as in table 2 originates from

considerations in equilibrium thermal field theories, as we now outline. Under a generic in-

finitesimal symmetry transformation parametrised by X = (χµ,Λχ), where χµ is associated

with diffeomorphisms and Λχ with gauge transformations, the background fields transform

5In writing eq. (2.1) we have assumed that the symmetries are non-anomalous.

– 7 –
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according to

δXgµν = £χgµν = 2∇(µχν) ,

δXAµ = £χAµ + ∂µΛχ = ∂µ (Λχ + χµAµ) + χνFνµ , (2.2)

while the symmetry parameters themselves transform as6

δXX
′ = [X,X′] =

(
£χχ

′µ , £χΛ′χ −£χ′Λ
χ
)
. (2.3)

We assume that the background manifold admits a timelike isometry K = (kµ,Λk) with

kµkµ < 0, i.e. δKgµν = δKAµ = 0. On such backgrounds, we can define a global thermal

state by the grand-canonical partition function7

Z[gµν , Aµ] = tr exp

[∫
Σ

dσµ

(
Tµνkν + (Λk + kλAλ)Jµ

)]
, (2.4)

where the trace is taken over all the equilibrium configurations of Φ which satisfy δKΦ = 0.

In eq. (2.4), Σ denotes an arbitrary Cauchy slice with volume element dσµ. Using eq. (2.1),

it may be verified that Z is independent of the choice of Σ and it is also manifestly invariant

under the symmetries of the theory. It is the aim of hydrodynamics to describe slight

departures from the global thermal state by replacing the background isometry K with an

arbitrary set of slowly varying dynamical fields B = (βµ,Λβ), which are related to those in

table 2 via

βµ =
uµ

T
, Λβ + βµAµ =

µ

T
. (2.5)

This is the more natural way to think of the hydrodynamic degrees of freedom. As detailed

below, the identification of the correct degrees of freedom in the case of one-form fluids

follows a similar reasoning whose starting point is the equilibrium partition function.

Analogous to systems invariant under zero-form U(1) transformations, physical sys-

tems that are invariant under global Poincaré and U(1) one-form transformations admit a

conserved energy-momentum tensor Tµν and two-form charge current Jµν such that

∇µTµν =
1

2
HνρσJρσ , ∇µJµν = 0 , (2.6)

where Hµνρ = 3∂[µbνρ] is the field strength associated with a two-form gauge field bµν . In

order to describe the effective low-energy hydrodynamic theory for systems with a global

U(1) one-form symmetry, a suitable choice of dynamical fields is required. As in the

6Symmetry transformations of the background are required to form a Lie algebra such that [δX, δX′ ]gµν =

δ[X,X′]gµν and [δX, δX′ ]Aµ = δ[X,X′]Aµ, which fixes eq. (2.3). Similarly in the case of one-form symmetries,

requiring [δX, δX′ ]gµν = δ[X,X′]gµν and [δX, δX′ ]bµν = δ[X,X′]bµν fixes the transformation properties eq. (2.8)

provided that we require the fields to transform appropriately under diffeomorphisms.
7For example, in the standard case of a static fluid coupled to a flat background gµν = ηµν and no

external gauge fields Aµ = 0, one works with K = (kµ = δµt /T0,Λ
k = µ0/T0), where T0 and µ0 are

the temperature and chemical potential of the global thermal state. In this case we get the conventional

expression for the grand-canonical partition function Z = tr exp
[
−T−1

0

∫
d3x

(
T 00 − µ0J

0
)]

. Note that we

can always perform a gauge transformation to set Λk = 0 at the expense of Aµ = µ0δ
t
µ, leading to the

same result.
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Dynamical field Symbol

Fluid velocity uµ with uµuµ = −1

Temperature T

One-form chemical potential µµ

Table 3. Dynamical fields for one-form charged fluids.

case of zero-form fluids, it is noted that under a generic infinitesimal one-form symmetry

transformation parametrised by X = (χµ,Λχµ), with Λχµ being the parameter associated

with one-form gauge transformations, the background fields transform according to

δXgµν = £χgµν = 2∇(µχν) ,

δXbµν = £χbµν + 2∂[µΛχν] = 2∂[µ

(
Λχν] + χλbλµ

)
+ χλHλµν , (2.7)

while the symmetry parameters transform as (see footnote 6)

δXX
′ = [X,X′] =

(
£χχ

′µ,£χΛ′χµ −£χ′Λ
χ
µ

)
. (2.8)

When coupled to spacetime backgrounds that admit a timelike isometry K = (kµ,Λk
µ), we

can define a global thermal state by means of the grand-canonical partition function

Z[gµν , bµν ] = tr exp

[∫
Σ

dσµ

(
Tµνkν + (Λk

ν + kλbλν)Jµν
)]

. (2.9)

Following the same chain of reasoning as for zero-form symmetries, we are led to the natural

choice of hydrodynamic fields for one-form hydrodynamics as B = (βµ,Λβµ). By defining

βµ =
uµ

T
, Λβµ + βνbνµ =

µµ
T

, (2.10)

these fields can be recast in a more conventional form as in table 3. However, unlike zero-

form fluids, µµ defined in this way is not gauge invariant. Instead, it transforms akin to a

one-form gauge field

δX
µµ
T

= £χ
µµ
T
− ∂µ (βνΛχν ) . (2.11)

This should not come as a surprise since the time-component of the one-form conservation

equation, ∇µJµt, is not a dynamical equation but merely a constraint [22]. Correspond-

ingly, one degree of freedom in µµ is rendered unphysical due to the gauge transformation.

Note that since µµ/T transforms as a one-form gauge field, all of its gauge-invariant physical

information can be captured by the antisymmetric derivative ∂[µ(µν]/T ). Having identified

the dynamical fields for one-form fluids, we proceed by defining the hydrostatic partition

function and deriving the adiabaticity equation.

2.2 Hydrostatic effective action and the second law of thermodynamics

The hydrostatic effective action is an important cornerstone of hydrodynamics. It describes

the entire set of equilibrium configurations admissible by the fluid for a given arrangement
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of the background sources. These configurations can then be used as a starting point for

studying deviations away from equilibrium order by order in the derivative expansion (e.g.

dispersion relations for Alfvén waves in MHD). In this subsection we introduce the gener-

alities of hydrostatic effective action relevant to this work and illustrate their connection

to the second law of thermodynamics.

For the purposes of this paper, it is assumed that the microscopic field theories un-

derlying the hydrodynamic regime are sufficiently well behaved, so that the equilibrium

partition function (2.9) can be computed via a Euclidean path integral

Z[gµν , bµν ] =

∫
DΦ exp

(
−Shs[gµν , bµν ; Φ]

)
. (2.12)

Shs[gµν , bµν ; Φ], known as the hydrostatic effective action, contains all the possible diffeo-

morphism and gauge-invariant terms composed of gµν , bµν , and Φ in the presence of a

timelike isometry K. The variation of the effective action with respect to the background

sources yields the conserved currents

Tµνhs =
2√
−g

δShs[gµν , bµν ; Φ]

δgµν
, Jµνhs =

2√
−g

δShs[gµν , bµν ; Φ]

δbµν
, (2.13)

while the equilibrium configurations of the gapless modes are obtained by extremising the

effective action with respect to Φ leading to

KΦ
hs =

δShs[gµν , bµν ; Φ]

δΦ
= 0 . (2.14)

As a consistency condition on the general hydrodynamic constitutive relations (including

dissipative effects), we require them to match with eq. (2.13) when we revert to the global

thermal state by setting B = K. This requirement yields strict constraints on their form

at every derivative order [7, 8].

Schematically, the hydrostatic effective action appearing in (2.12) can be

parametrised as

Shs[gµν , bµν ; Φ] =

∫
Σ

dσµN
µ
hs , (2.15)

where Nµ
hs is the hydrostatic free energy current that satisfies ∇µNµ

hs = 0. As we leave

the global thermal state, the free energy current is no longer conserved. To see this, let us

slightly depart from equilibrium by replacing K with B and performing a B-variation of

Shs. We obtain the hydrostatic adiabaticity equation

∇µNµ
hs =

1

2
Tµνhs δBgµν +

1

2
Jµνhs δBbµν +KΦ

hsδBΦ . (2.16)

Physically, it is equivalent to the statement that entropy is conserved in a hydrostatic

configuration. To wit, defining the entropy current as

Sµhs = Nµ
hs −

1

T
Tµνhs uν −

1

T
Jµνhs µν , (2.17)

and using the conservation equations (2.6), the adiabaticity equation can be rewritten as

∇µSµhs = 0. However, in a generic out-of-equilibrium hydrodynamic configuration with
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entropy current Sµ, we expect entropy to be produced, leading to the second law of ther-

modynamics

∇µSµ = ∆ ≥ 0 . (2.18)

Here ∆ is a non-negative quadratic form which vanishes in a hydrostatic configuration.

Correspondingly, the generic adiabaticity equation (2.16) in the out-of-equilibrium context

is an extrapolation of its hydrostatic counterpart

∇µNµ =
1

2
TµνδBgµν +

1

2
JµνδBbµν +KΦδBΦ + ∆ , ∆ ≥ 0 , (2.19)

where the different quantities involved may also include non-hydrostatic contributions, and

can be viewed as generalisation of the requirement of a hydrostatic effective action. A set

of physical constitutive relations Tµν , Jµν , KΦ associated with a hydrodynamic system are

required to be accompanied by a free energy current Nµ and a quadratic form ∆ such that

eq. (2.19) is satisfied for all fluid configurations. Below we will show how the adiabaticity

equation can be used to obtain constraints on the hydrodynamic constitutive relations.

Traditionally, one takes a slightly different route with the second law of thermodynam-

ics as the starting point in order to arrive at these constraints [31]. Switching off the extra

gapless modes Φ for the moment, one requires that for every set of physical constitutive

relations Tµν , Jµν , the hydrodynamic system in question must admit an associated entropy

current Sµ whose divergence is positive semi-definite, ∇µSµ ≥ 0, on the solutions of the

conservation equations. Given such an entropy current, it is always possible to go off-shell

and write down an equivalent statement for the second law by introducing arbitrary linear

combinations of the conservation equations [32] (see also [33])

∇µSµ +Aν
(
∇µTµν −

1

2
HνρσJρσ

)
+ Bν∇µJµν = ∆ ≥ 0 . (2.20)

Here Aµ and Bµ are arbitrary multipliers composed of the hydrodynamic and background

fields, and introduced as to satisfy this equation offshell. Recall that the hydrodynamic

fields uµ, T , and µµ were some arbitrary set of fields chosen to describe the system, and

like in any field theory, can admit arbitrary field redefinitions. We can use this freedom

to set Aµ = uµ/T and Bµ = µµ/T . Having done that, and using the relation between

free-energy and entropy currents, i.e.

Nµ = Sµ +
1

T
Tµνuν +

1

T
Jµνµν , (2.21)

it is easy to see that the offshell second law of thermodynamics (2.20) reduces to the

adiabaticity equation (2.19). Hence the constraints imposed by the second law of ther-

modynamics are equivalent to the ones imposed by the adiabaticity equation. The latter,

however, turns out to be functionally advantageous to implement. An entirely analogous

argument follows in the presence of additional gapless modes [34].

2.3 Constitutive relations up to first order

In the bulk of this paper, we will derive the constitutive relations allowed by the adiabaticity

equation (2.19) up to one-derivative order for several cases of interest. As shall be explained
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Ordinary one-form fluids

N (1) εµνρσuµHνρσ

η(µν)(ρσ) (2) PµνP ρσ, P ρ(µP ν)σ

χ(µν)[ρσ], χ′[ρσ](µν) (2×0) —

σ[µν][ρσ] (2) u[µP ν][ρuσ], P ρ[µP ν]σ

One-form string fluids

N (5) hµ∂µT , hµ∂µ
$
T , εµνρσuµHνρσ, εµνρσuµhν∂ρuσ, εµνρσuµhν∂ρhσ

η(µν)(ρσ) (8) hµhνhρhσ, hµhν∆ρσ, ∆µνhρhσ, h(µ∆ν)(ρhσ), ∆µν∆ρσ, ∆ρ(µ∆ν)σ,

h(µεν)(ρhσ), ερ(µ∆ν)σ

χ(µν)[ρσ], χ′[ρσ](µν) (2×4) h(µ∆ν)[ρhσ], h(µεν)[ρhσ], hµhνερσ, ∆µνερσ

σ[µν][ρσ] (3) h[µ∆ν][ρhσ], h[µεν][ρhσ], εµνερσ

One-form superfluids

N (22) hµa∂µT , εµνρσuµhaν∂ρuσ, εµνρσuµhaν∂ρζσ, εµνρσuµhaν∂ρζ̄σ,

hµahνb∇(µζν), h
µ
ahνb∇(µζ̄ν)

η(µν)(ρσ) (36) h
(µ
a h

ν)
b h

(ρ
c h

σ)
d

χ(µν)[ρσ], χ′[ρσ](µν) (2×36) h
(µ
a h

ν)
b h

[ρ
c h

σ]
d , h

(µ
a h

ν)
b h

[ρ
c uσ]

σ[µν][ρσ] (36) h
[µ
a h

ν]
b h

[ρ
c h

σ]
d , u[µh

ν]
a h

[ρ
b h

σ]
c , h

[µ
a h

ν]
b h

[ρ
c uσ], u[µh

ν]
a h

[ρ
b u

σ]

Table 4. One-derivative hydrostatic and non-hydrostatic structures for various phases of one-form

hydrodynamic constitutive relations. Here Pµν = gµν + uµuν . For string fluids, hµ is the string

director field while $ is the string chemical potential; ∆µν = gµν + uµuν − hµhν , εµν = εµνρσuρhσ.

For one form superfluids, ξµν is the superfluid velocity; ζµ = ξµνu
ν , ζ̄µ = 1

2ε
µνρσuνξρσ. On the other

hand, hµa is a set of orthonormal vectors made out of ζµ, ζ̄µ, and εµνρσuνζρζ̄σ. These constitutive

relations are not generically written in Landau frame, but have been expressed in certain frames

convenient for each case respectively.

in the later sections, for all of these cases, the adiabaticity equation (2.19) can be reduced

to a simpler version

∇µNµ =
1

2
TµνδBgµν +

1

2
JµνδBbµν + ∆ , ∆ ≥ 0 , (2.22)

where the δBΦ term has been removed by going onshell and using the available field re-

definition freedom. It is possible to broadly classify the constitutive relations satisfying

eq. (2.22) into hydrostatic, i.e. constitutive relations that remain independent in a hy-

drostatic configuration, and non-hydrostatic, i.e. constitutive relations that vanish in a

hydrostatic configuration.

The hydrostatic constitutive relations are characterised by a hydrostatic free energy

current Nµ
hs = Nβµ+ Θµ

N , where N is made out of all the independent hydrostatic scalars,
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while Θµ
N is a non-hydrostatic vector8 defined via

∇µ (Nβµ) =
1√
−g

δB
(√
−gN

)
=

1

2

(
N gµν + 2

δN
δgµν

)
δBgµν + 2

δN
δbµν

δBbµν −∇µΘµ
N .

(2.23)

Comparing with eq. (2.22), it is possible to read out the hydrostatic constitutive relations as

Tµνhs = N gµν + 2
δN
δgµν

, Jµνhs = 2
δN
δbµν

. (2.24)

In turn, the non-hydrostatic constitutive relations up to first order are simply given as

the most generic linear combinations of δBgµν and δBbµν . To wit(
Tµνnhs

Jµνnhs

)
= −T

(
η(µν)(ρσ) χ(µν)[ρσ]

χ′[µν](ρσ) σ[µν][ρσ]

)(
1
2δBgρσ

1
2δBbρσ

)
. (2.25)

Here η(µν)(ρσ), χ(µν)[ρσ], χ′(µν)[ρσ] and σ[µν][ρσ] are the most general zero-derivative struc-

tures, with associated arbitrary transport coefficients, composed of the hydrodynamic fields

identified in the previous section. In particular, there are no zero-derivative non-hydrostatic

constitutive relations. Inserting eq. (2.25) into eq. (2.22) it can be inferred that they satisfy

eq. (2.22) with Nµ
nhs = 0 and

∆ = T
(

1
2δBgµν

1
2δBbµν

)(η(µν)(ρσ) χ(µν)[ρσ]

χ′[µν](ρσ) σ[µν][ρσ]

)(
1
2δBgρσ

1
2δBbρσ

)
≥ 0 . (2.26)

It follows that the symmetric part of the non-hydrostatic transport coefficient matrix

1

2

(
η(µν)(ρσ) + η(ρσ)(µν) χ(µν)[ρσ] + χ′[ρσ](µν)

χ′(µν)[ρσ] + χ′[ρσ](µν) σ[µν][ρσ] + σ[ρσ][µν]

)
≥ 0 , (2.27)

is a positive semi-definite matrix. This requirement imposes certain inequality constraints

on the transport properties of the hydrodynamic theories that we will study. A summary

of the allowed tensor structures in various phases of one-form hydrodynamics is presented

in table 4.

A priori, the hydrodynamic fields uµ, T , and µµ are arbitrary degrees of freedom

chosen to describe the hydrodynamic fluctuations. In equilibrium, these are unambiguously

identified with the timelike isometry K, but in a generic out-of-equilibrium state, they

can admit arbitrary non-hydrostatic field redefinitions. We can use this freedom to our

advantage and simplify the non-hydrostatic constitutive relations by making a choice of

“hydrodynamic frame”. The most common of such frames is the Landau frame, which fixes

the field redefinition in uµ and T by choosing Tµνnhsuν = 0. The redefinition freedom in µµ
can be similarly used to set Jµνnhsuν = 0. This leads to

η(µν)(ρσ)uµ = χ(µν)[ρσ]uµ = χ′[µν](ρσ)uµ = σ[µν][ρσ]uµ = 0 . (2.28)

8Generically, Nµ
hs can also include a hydrostatic part transverse to uµ. Known as Class HV constitutive

relations or transcendental anomalies, these contributions are completely fixed up to a finite number of

constants [10]. For the cases considered here, such terms turn out to be independent of the one-form

symmetry sector altogether, and hence have been switched off for simplicity.
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To complete the quadratic form ∆ in this frame, we need to further eliminate uµδBgµν and

uµδBbµν from the non-hydrostatic constitutive relations (2.25), which can be generically

done using the conservation equations (2.1). Therefore

η(µν)(ρσ)uρ = χ(µν)[ρσ]uρ = χ′[µν](ρσ)uρ = σ[µν][ρσ]uρ = 0 . (2.29)

Hence, all indices in η(µν)(ρσ), χ(µν)[ρσ], χ′(µν)[ρσ], and σ[µν][ρσ] can be taken to be pro-

jected orthogonally to the fluid velocity. We will not restrict ourselves to this frame choice

throughout this work. Instead, we will make a judicious choice of basis based on the hy-

drodynamic system under consideration, defaulting to the Landau frame when no such

natural choice is available.

3 Ordinary one-form fluids

The main topic of interest of this work is one-form superfluids. However, before delving

into the intricacies of one-form superfluid dynamics, it is instructive to consider ordinary

one-form hydrodynamics first. Even though it is comparatively simpler than the examples

that will be studied in later sections, this section provides the first formulation of one-form

fluids in which the one-form symmetry is unbroken.

At ideal order, this system is trivial because there are no zero-derivative gauge-

invariants that can be constructed from the ideal order hydrodynamic fields µµ and bµν
identified in section 2. Consequently, at ideal order one-form fluids are characterised by

the same constitutive relations as ordinary neutral fluids. Precisely

Tµν = (ε+ p)uµuν + p gµν +O(∂) , Jµν = O(∂) , (3.1)

along with the thermodynamic relations

dp = s dT , ε+ p = s T , dε = T ds . (3.2)

These constitute relations can be derived from their corresponding hydrostatic free energy

density N = p(T ), using (2.23), such that the free energy current is given by Nµ =

p/T uµ. The coefficients ε, p, and s are identified as the energy density, isotropic pressure,

and entropy density of the fluid respectively. The first-order equations of motion simply

imply that

uµ∇µε+ (ε+ p)∇µuµ = 0 ,
1

T
Pµν∂νT + uν∇νuµ = 0 , (3.3)

which can be collectively used to eliminate uµδBgµν from the first-order non-hydrostatic

constitutive relations.

At one-derivative order, signatures of one-form symmetry begin to appear. In the

hydrostatic sector there is only one gauge-invariant contribution to the hydrostatic free

energy density N at first order, which is given by

N = p(T )− α(T )

6
εµνρσuµHνρσ . (3.4)
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The transport coefficient α is unconstrained by the adiabaticity equation (second law).

The variation of this corrected free energy density, according to eq. (2.23), leads to the

hydrostatic constitutive relations

Tµνhs = (ε+ p)uµuν + p gµν − 1

6
εαβρσuαHβρσ

∂(Tα)

∂T
uµuν − α

3
u(µεν)λρσHλρσ +O(∂2) ,

Jµνhs = ∇σ (αεµνρσuρ) +O(∂2) ,

Nµ
hs =

α

6T
εµνρσHνρσ − αεµνρσuν∂ρ

(
µσ
T

)
+O(∂2) . (3.5)

Note that all the dependence on µµ comes via the antisymmetric derivative ∂[µ(µν]/T ),

which is gauge-invariant. The most general non-hydrostatic corrections, in turn, can be

decomposed along and transverse to uµ according to

Tµνnhs = δε uµuν + δf P µν + 2u(µkν) + tµν ,

Jµνnhs = 2n[µuν] + sµν . (3.6)

Here all the tensor structures are transverse to uµ, while tµν is symmetric-traceless and

sµν is anti-symmetric. It is possible to use the hydrodynamic redefinition freedom in uµ

and T to set δε = kµ = 0. There is also a redefinition freedom in µµ but since µµ does

not appear in the ideal order constitutive relations, this redefinition cannot be used to

eliminate any first-order structures. Additionaly, the first order equations of motion can

be used to remove uµδBgµν from set of independent first-order structures. Finally, this

leads to the following form for the first-order non-hydrostatic corrections

δf = −ζT
2
PµνδBgµν = −ζ∇µuµ ,

tµν = −η TP ρ〈µP ν〉σδBgρσ = −2η PµρP νσ
(
∇(ρuσ) −

1

3
Pρσ∇λuλ

)
≡ −ησµν ,

nµ = −TλPµρuσδBbρσ = −2λPµρuσT∂[ρ

µσ]

T
,

sµν = −TσPµρP νσδBbρσ = −σPµρP νσ
(

2T∂[ρ

µσ]

T
+ uλHλρσ

)
. (3.7)

Introducing these into the quadratic form in eq. (2.26), the non-negativity of ∆ requires

that all the non-hydrostatic transport coefficients are non-negative

η, ζ, λ, σ ≥ 0 . (3.8)

Thus, all in all, the most generic constitutive relations of a one-form ordinary fluid up to

one-derivative order are given as

Tµν = (ε+ p)uµuν + p gµν − ζ∇λuλPµν − η σµν

− 1

6
εαβρσuαHβρσ

∂(Tα)

∂T
uµuν − α

3
u(µεν)λρσHλρσ +O(∂2) ,

Jµν = ∇σ (αεµνρσuρ) + 2λu[µP ν]ρuσT∂[ρ

µσ]

T

− σPµρP νσ
(

2T∂[ρ

µσ]

T
+ uλHλρσ

)
+O(∂2) , (3.9)
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and satisfy the adiabaticity equation (2.22) with the free-energy current

Nµ =
p

T
uµ +

α

6T
εµνρσHνρσ − αεµνρσuν∂ρ

(
µσ
T

)
+O(∂2) . (3.10)

Out of the 5 transport coefficients appearing at one derivative order, 4 are dissipative

and sign definite, while the remaining one does not cause dissipation and is left to be

sign-indefinite.

In a global thermal state, characterised by a timelike isometry K = (kµ,Λk
µ), the

dynamical fields arrange in an equilibrium configuration

βµ = kµ , Λβµ = Λk
µ , uµ =

kµ

k
, T =

1

k
, µµ =

Λk
µ + kνbνµ

k
, (3.11)

where k =
√
−kµkµ. If we choose a basis (t, xi) such that kµ = δµt /T0, the hydrostatic ef-

fective action generating the respective constitute relations can be read out using eq. (3.10)

and eq. (2.15) leading to

Shs[gµν , bµν ] =
1

T0

∫
d3x
√
−g

[
p(T )− α(T )

6
εµνρσuµHνρσ

]
. (3.12)

In the next section, it will be shown how the one-form symmetry can be broken and

how this breaking can lead to other fields which can modify the ideal order constitutive

relations.

4 One-form superfluids

In the previous section, hydrodynamics in the presence of an unbroken one-form symme-

try was studied. In this section, this study is extended to include hydrodynamics with a

spontaneously broken one-form symmetry by introducing a gapless vector Goldstone mode

ϕµ into the generic analysis of section 2. It is observed that this theory is self-dual in the

absence of external two-form sources, which is highly reminiscent of the electromagnetic du-

ality of sourceless Maxwell’s equations. In addition to the equation of state at ideal order,

it is found that the one-form superfluid is characterised by a total of 166 transport coeffi-

cients at one-derivative order and hence is not extremely useful from a phenomenological

standpoint. However, the various interesting limits/sectors of the theory are highlighted,

for which the spectrum of transport coefficients is considerably more manageable. These

limits will be investigated in detail in sections 5 and 6. The hydrodynamic theory devel-

oped here finds a direct application in describing various phases of plasma. In a certain

limit, which we refer to as string fluids, one-form superfluid dynamics provides a dual and

conceptually cleaner formulation of magnetohydrodynamics describing plasmas with Debye

screened electric fields. In another limit, it describes plasmas without free charges, which

we refer to as bound-charge plasmas. The details of these applications will be given in

section 7.
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4.1 Hydrodynamics with spontaneously broken one-form symmetry

In this section, the Josephson condition for one-form superfluids is derived along with the

ideal order constitute relations and first-order corrections. The hydrostatic effective action

for one-form superfluids is also given.

4.1.1 Vector Goldstone and the Josephson equation

In the theory of zero-form superfluid dynamics, the spontaneous breaking of the global

U(1) symmetry gives rise to a scalar Goldstone mode φ. Analogously, the Goldstone mode

corresponding to a broken global U(1) one-form symmetry is the one-form gauge field

ϕµ [28] that under an infinitesimal symmetry transformation X = (χµ,Λχµ) transforms as

δXϕµ = £χϕµ − Λχµ . (4.1)

It is useful to introduce the covariant derivative of ϕµ according to

ξµν = 2∂[µϕν] + bµν , (4.2)

which is gauge-invariant and transforms covariantly under the action of X, i.e. δXξµν =

£Xξµν . In analogy with zero-form superfluids, for which the superfluid velocity is given by

ξµ = ∂µφ + Aµ, we refer to (4.2) as the two-form “superfluid velocity”. This superfluid

velocity satisfies the Bianchi identity

3∂[µξνρ] = Hµνρ . (4.3)

The existence of ϕµ allows for the definition of a gauge-invariant one-form chemical poten-

tial µϕµ such that

µϕµ = µµ − T∂µ (βνϕν) , (4.4)

where µµ was introduced in eq. (2.10). In this symmetry-broken phase, the covariant

information contained in bµν , µµ, and ϕµ can be exchanged for ξµν and µϕµ .

As mentioned in section 2, the dynamics of the Goldstone mode ϕµ is governed by its

own equation of motion which can be represented as

Kµ = 0 . (4.5)

This, along with the conservation equations (2.6), make the system of dynamical equations

closed. Our ignorance of the underlying microscopic theory does not allow for a first

principle derivation of eq. (4.5). However, using the offshell adiabaticity equation (2.19)

for the case at hand

∇µNµ =
1

2
TµνδBgµν +

1

2
JµνδBbµν +KµδBϕµ + ∆ , ∆ ≥ 0 , (4.6)

where δBϕµ = βνξνµ−µϕµ/T , it is possible to fix the form of eq. (4.5) as in the case of usual

superfluids [33]. In particular, at zero order in derivatives using the available hydrodynamic

data, the above adiabaticity equation reduces to −KµδBϕµ +O(∂) = ∆ ≥ 0, where O(∂)

denotes higher derivative corrections. Therefore, it is possible to infer that

Kµ = −TαµνδBϕν +O(∂) , ∆ = T (δBϕµ)αµν (δBϕν) +O(∂) , (4.7)
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for some positive semi-definite matrix αµν . Since the Goldstone must satisfy eq. (4.5)

onshell, the above implies the relation

δBϕµ = O(∂) =⇒ µϕµ = uνξνµ +O(∂) , (4.8)

which is the one-form equivalent of the Josephson equation in superfluids µ = uµξµ+O(∂).

Thus µϕµ does not account for independent degrees of freedom in one-form hydrodynam-

ics. Additionally, the redefinition freedom associated with µµ (or correspondingly Λβ
µ) can

be used to absorb the potential derivative corrections appearing in eq. (4.8). Hence, by

redefining µµ, the Josephson equation (4.8) can be turned into an exact all-order onshell

statement

δBϕµ = 0 =⇒ µϕµ = uνξνµ , (4.9)

and eliminate µϕµ entirely from the hydrodynamic description. Thus, the energy-momentum

conservation equation in (2.6) provides dynamics for uµ and T , while the one-form conser-

vation governs the dynamics of ϕµ.9 On the other hand, the adiabaticity equation reduces

to its simple form in (2.22) as promised earlier. While the final system appears to be similar

to its symmetry-unbroken counterpart, it should be noted that the constitutive relations

in this case involve ϕµ instead of µµ.

4.1.2 Ideal one-form superfluids

Having identified the independent set of hydrodynamic variables, it is straightforward to

derive the most general constitutive relations at ideal order. Since we are working with

four spacetime dimensions throughout this work, it is useful to introduce an independent

set of vectors

ζµ = ξµνu
ν , ζ̄µ =

1

2
εµνρσuνξρσ , (4.10)

satisfying uµζ
µ = uµζ̄

µ = 0, which can be thought as electric and magnetic fields associated

with ξµν . Here we have introduced the completely antisymmetric Levi-Civita tensor εµνρσ
with conventions ε0123 =

√
−g. In turn, eq. (4.10) can be used to decompose the superfluid

velocity from eq. (4.2) as

ξµν = 2u[µζν] − εµνρσuρζ̄σ , (4.11)

and to rewrite the Josephon equation (4.9) as µϕµ = −ζµ.

Unlike the ordinary one-form fluids studied in section 3, one-form superfluids exhibit

signatures of one-form symmetry at ideal order itself. Using the decomposition in eq. (4.10),

the most generic form of the hydrostatic free energy density can be shown to take the form

N = P (T, ζ2, ζ̄2, ζ · ζ̄) +O(∂) . (4.12)

9To see this, note that when all the µµ dependence has been eliminated from the hydrodynamic descrip-

tion, the entire dependence on bµν in the hydrodynamic constitutive relations comes via ξµν . Since this

is also the source of all ϕµ dependence, for theories admitting an effective action, Kµ = 2∇ν(δS/δξµν) =

2∇ν(δS/δbµν) = ∇νJµν . In essence, the Josephson equation, that used to originally be the equation of mo-

tion for ϕµ, has now been used to algebraically eliminate µµ. Therefore, the one-form charge conservation

now serves as an equation of motion for ϕµ.
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Performing a variation of the functional arguments with respect to the hydrodynamic

variables B leads to

δBT =
T

2
uµuνδBgµν ,

δBζ
2 =

(
ζ2uµuν − ζµζν

)
δBgµν + 2ζ [µuν]δBbµν ,

δBζ̄
2 =

(
−ζ̄2Pµν + ζ̄µζ̄ν + 2u(µεν)ρστuρζ̄σζτ

)
δBgµν − εµνρσuρζ̄σδBbµν ,

δB(ζ · ζ̄) = −1

2
(ζ · ζ̄)gµνδBgµν −

1

4
εµνρσξρσδBbµν . (4.13)

Using eq. (2.23), the one-form ideal superfluid constitutive relations, free energy, and en-

tropy currents are obtained as

Tµν = ε uµuν +
(
P − q̄ ζ̄2 − q× (ζ · ζ̄)

)
Pµν − q ζµζν + q̄

(
ζ̄µζ̄ν + 2u(µεν)ρστuρζ̄σζτ

)
,

Jµν = −2u[µ
(
q ζν] + q× ζ̄

ν]
)
− εµνρσuρ

(
q̄ ζ̄σ + q× ζσ

)
,

Nµ =
P

T
uµ ,

Sµ = Nµ − βνTµν +
1

T
ζνJ

µν = suµ , (4.14)

where the thermodynamic relations

dP = s dT +
1

2
q dζ2 +

1

2
q̄ dζ̄2 + q× d(ζ · ζ̄) , ε+ P = s T + q ζ2 + q× (ζ · ζ̄) , (4.15)

were derived and used to simplify eq. (4.14). From here we can identify P appearing in the

free energy density as the thermodynamic pressure. On the other hand, ε and s stand for

the energy and entropy densities, in addition to the two superfluid densities q and q̄, and

a cross-density q×.10 eqs. (4.14) and (4.15) imply that one-form superfluids are completely

characterised by their equation of state P = P (T, ζ2, ζ̄2, ζ · ζ̄).

4.1.3 One derivative corrections

Having derived the constitutive relations for an ideal one-form superfluid, it is possible to

tackle the marginally more complicated first-order derivative corrections. This complication

originates from the fact that there are 3 ideal order mutually orthogonal spatial vectors in

one-form superfluids

hµ1 =
ζµ

|ζ|
, hµ2 =

ζ̄µ − (ζ · ζ̄)ζµ/ζ2√
ζ̄2 − (ζ · ζ̄)2/ζ2

, hµ3 =
εµνρσuνζρζ̄σ√
ζ2ζ̄2 − (ζ · ζ̄)2

, (4.18)

10These thermodynamic relations can take a more appealing form if we define

$ = |ζ| , $̄ = |ζ̄| , ρ = q|ζ| , ρ̄ = q̄|ζ̄| , λ = ζ · ζ̄ , ρ× = q× , p = P − q̄ ζ̄2 − q× (ζ · ζ̄), (4.16)

which leads to

ε+ p = sT + ρ$ − ρ̄$̄ , dp = s dT + ρ d$ − $̄ dρ̄− λ dρ× . (4.17)

However, in the subsequent sections, limits for which ζµ or ζ̄µ is taken to be of higher-order in derivatives

will be explored. In those situations, these definitions are ill-defined.
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thereby completely breaking the SO(3) rotational symmetry and providing a decomposition

for the metric

gµν = −uµuν + δabhµah
ν
b , hµah

ν
b = δab . (4.19)

In terms of these, the corrections to the hydrostatic free energy density (4.12) can be

written as

N =P + fa1 h
µ
a∂µT + fa2 ε

µνρσuµhaν∂ρuσ + fa3 ε
µνρσuµhaν∂ρζσ + fa4 ε

µνρσuµhaν∂ρζ̄σ

+ 2fab5 hµah
ν
b∇(µζν) + 2fab6 hµah

ν
b∇(µζ̄ν) +O(∂2) . (4.20)

Here fi are the hydrostatic transport coefficients, with fab5 and fab6 being symmetric and

traceless. The respective trace parts lead to total derivative terms which do not lead to

independent constitutive relations upon taking a variation. We have not considered any

corrections involving Hµνρ explicitly, as they can be related to 3∂[µξνρ] using the Bianchi

identity. Thus, in total, there are 22 transport coefficients in the hydrostatic sector.11 As

in the ideal order case, it is possible to use eq. (2.23) in order to read out the respective

constitutive relations at first order in derivatives but we do not perform this exercise here.

Using the approach detailed in section 2.3, we can derive the constitutive relations in

the non-hydrostatic sector. It is convenient to parametrise the stress tensor and charge

current as

Tµνnhs = δε uµuν + 2δka u(µhν)
a + δtab h(µ

a h
ν)
b ,

Jµνnhs = 2δqa u[µhν]
a + δsab h[µ

a h
ν]
b . (4.21)

The terms involving δε and δka can be set to zero using the field redefinition freedom

inherent to T and uµ. The field redefinition freedom inherent to µµ has been exhausted

when turning the Josephson equation into an exact all-order statement (4.9), thus δqa

is generically non-zero. These considerations lead to the set of non-hydrostatic constitu-

tive relations  δqa

δtab

δsab

 = −T

 λac1 λ
a(cd)
2 λ

a[cd]
2

λ
′a(cd)
2 η(ab)(cd) χ(ab)[cd]

λ
′a[cd]
2 χ′[ab](cd) σ[ab][cd]


 uµhνc δBbµν

1
2h

µ
c hνdδBgµν

1
2h

µ
c hνdδBbµν

 , (4.22)

where λ1, λ2, λ′2, η, χ, χ′, and σ are matrices of transport coefficients. There is a total

of 12 × 12 = 144 non-hydrostatic transport coefficients. Positive semi-definiteness of ∆

requires that the symmetric part of the transport coefficient matrix must have all its

eigenvalues non-negative. This gives 12 inequality constraints in the non-hydrostatic sector.

Onsager’s relations may impose further restrictions on the non-hydrostatic transport which

we have not considered in this analysis.

11In principle, we can remove some terms from the free energy density using the ϕµ equation of motion.

The respective contributions to the constitutive relations can be absorbed by redefining ϕµ. We have not

analysed these issues here.
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4.1.4 Hydrostatic effective action

At ideal order, the exact same constitutive relations (4.14) along with the thermodynamic

relations (4.15) can be obtained from a hydrostatic effective action. Under the assumption

that the background manifold admits a timelike isometry K = (kµ,Λk
µ), we can infer the

equilibrium configuration for the hydrodynamic fields using eq. (2.10) as

βµ = kµ , Λβµ = Λk
µ , uµ =

kµ

k
, T =

1

k
, µµ =

Λk
µ + kνbνµ

k
, (4.23)

where k =
√
−kµkµ is the modulus of the timelike Killing vector field kµ. In turn, the

hydrostatic effective action, using eq. (4.12) and eq. (2.15), reads

Shs[gµν , bµν ;ϕµ] =

∫
d4x
√
−g P (T, ζ2, ζ̄2, ζ · ζ̄) . (4.24)

Using (2.13) we can readily obtain the currents (4.14). Additionally, by varying the effective

action with respect to ϕµ (see eq. (2.14)) yields the equation of motion for equilibrium

configurations of ϕµ, specifically

βν∇µ (qTζµ) = −ενµρσ∇µ
(
q̄uρζ̄σ

)
− 1

2
ενµρσξρσ∂µq× −

1

6
q×ε

νµρσHµρσ , (4.25)

where the reader may be reminded of the defining relation in eq. (4.4) which leads to

ζµ = T∂µ (βνϕν) − µµ. Similarly at one-derivative order, the hydrostatic effective action

obtains corrections due to eq. (4.20)

Shs[gµν , bµν ;ϕµ] =

∫
d4x
√
−g
[
P + fa1 h

µ
a∂µT + fa2 ε

µνρσuµhaν∂ρuσ + fa3 ε
µνρσuµhaν∂ρζσ

+ fa4 ε
µνρσuµhaν∂ρζ̄σ + 2fab5 hµah

ν
b∇(µζν) + 2fab6 hµah

ν
b∇(µζ̄ν)

]
, (4.26)

which can be used to derive the hydrostatic constitutive relations and ϕµ profiles.

It should be noted that no assumptions were made on the background metric and gauge

fields other than the existence of a timelike isometry. As shall be explained in section 5,

upon taking appropriate limits, this action describes all equilibrium configurations in string

fluids, which includes those of [21, 22, 35] as special cases.

4.2 Special limits of one-form superfluids

An effective theory with 166 arbitrary transport coefficients (and 12 inequalities) at first

order in derivatives is perhaps not the most useful effective theory. However, it is possible

to identify limits of this general theory with a tractable number of transport coefficients

and interesting applications, which are now described:

• Electromagnetism. The simplest example encompassed by this general theory is that

of electromagnetic fields living alongside a neutral ideal fluid. By simply turning

off the coupling between electromagnetic and fluid degrees of freedom, and setting

Fµν = 2∂[µAν] = ξµν , the gauge field ϕµ is directly identified with the electromagnetic
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photon Aµ. The identification Fµν = (?J)µν yields the same theory, with the two

being related by electromagnetic duality. This case will be described in more detail

in section 4.4.

• String fluid limit. An interesting limit of one-form superfluids, which will be studied

in section 5, is the limit in which ζµ enters the constitutive relations while ζ̄µ is

simply removed from the theory. As shall be explained in section 5, this limit can be

understood as a partial breaking of the one-form symmetry along βµ in which only

the timelike component of the Goldstone mode ϕ = βµϕµ (in terms of which ζµ is

defined — see eq. (4.4) and eq. (4.9)) enters the constitutive relations. This limit,

which will be shown to be exactly equivalent to magnetohydrodynamics in which

the electric fields are Debye screened, is characterised by 23 independent transport

coefficients.

• Electric limit. The electric limit is attained by considering the hierarchy of scales

ζµ = O (1) and ζ̄µ = O (∂), implying that electric fields ζµ can be arbitrary but

magnetic fields ζ̄µ are weak. In this context, the one-form symmetry is completely

broken. This limit is equivalent to the hydrodynamics of magnetically dominated

bound-charge plasmas, i.e. plasmas that do not contain free charge carriers and have

electric fields derivative suppressed. We will return to this in detail in section 6.

In general, the formalism of one-form superfluids finds applications in many phases of (hot)

electromagnetism. A more detailed description and derivation of these connections is given

in section 7.

4.3 Self-duality of one-form superfluids

To summarise, the theory of one-form superfluid dynamics developed in the previous sec-

tions is governed by the following set of equations12

Energy-momentum conservation : ∇µTµν =
3

2
∇[νξρσ]Jρσ − ξνρ∇σJσρ ,

ϕµ equation of motion : ∇µJµν = 0 ,

ϕµ Bianchi identity : ∇µ?ξµν = ?Hν ,

Second law of thermodynamics : ∇µNµ =
1

2
TµνδBgµν +

1

2
JµνδBξµν + ∆ , ∆ ≥ 0 ,

(4.27)

where due to δBϕµ = 0, the following identity holds δBξµν = δBbµν .13 When the background

field strength Hµνρ vanishes, it is possible to check that under the mapping

Jµν → Jµν∗ = ?ξµν =
1

2
εµνρσξρσ , ξµν → ξ∗µν = ?Jµν =

1

2
εµνρσJ

ρσ ,

Nµ → Nµ
∗ = Nµ − 1

2
βµJρσξρσ , (4.28)

12The Hodge duality operation is defined as (?ω)µ1...µd−k = 1
k!
εν1...νkµ1...µd−kων1...νk .

13In the first equation in (4.27), the term involving the charge current divergence has been included in

order to make the self-duality manifest. Onshell, this equation is identical to eq. (2.6) upon using the

Bianchi identity and one-form conservation equation.
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these equations map to themselves.14 This is the self-duality of one-form superfluid dynam-

ics. The operation (4.28) can be seen as a Legendre transform in the one-form sector, so

that Jµν become background sources while ξµν are seen as the respective responses. What

used to be the ϕµ equation of motion, in the Legendre transformed picture becomes the

Bianchi identity for some auxiliary gauge field ϕ∗µ such that ξ∗µν = 2∂[µϕ
∗
ν]. The equation

of motion for ϕ∗µ is given by what previously used to be the Bianchi identity. It is inter-

esting to note that even though the free-energy current is Legendre transformed according

to (4.28), the physical entropy current in the two pictures is exactly the same, namely

Sµ = Nµ − Tµνβν − Jµνβρξρν = Nµ
∗ − Tµνβν − Jµν∗ βρξ∗ρν . (4.29)

Thus, irrespective of the formulation being used, entropy production remains the same.

Additionally, it also ensures that if the constitutive relations in one formalism are tuned

in order to satisfy the second law of thermodynamics, then the coefficients in the Legendre

transformed picture automatically respect the second law.

The realisation of the self-duality of one-form superfluids has been phrased in ab-

stract terms by means of (4.28). In practice, however, the exact map between transport

coefficients in both pictures can be non-trivial. In order to illustrate this, we apply the

map (4.28) to one-form superfluids at ideal order in section 4.1.2. The two-form superfluid

velocity in the Legendre transformed picture is given by

ξ∗µν = ?Jµν = 2u[µ

(
q̄ ζ̄ν] + q×ζν]

)
− εµνρσuρ

(
qζσ + q×ζ̄

σ
)
. (4.30)

Comparison with eq. (4.10), where (ζµ, ζ̄µ) have been replaced by their corresponding

Legendre transform vectors (ζµ∗ , ζ̄
µ
∗ ) that ought to be determined, it is possible to infer that

ζ∗µ = q̄ ζ̄µ + q×ζµ , ζ̄∗µ = q ζµ + q×ζ̄µ ,

ζµ =
q̄

qq̄ − q2
×
ζ̄∗µ −

q×
qq̄ − q2

×
ζ∗µ , ζ̄µ =

q

qq̄ − q2
×
ζ∗µ −

q×
qq̄ − q2

×
ζ̄∗µ . (4.31)

Using these and comparing with (4.14), it is possible to find the respective two-form current

via the relation

Jµν∗ = ?ξµν = −2u[µ
(
q∗ ζ

ν]
∗ + q×∗ ζ̄

ν]
∗

)
− εµνρσuρ

(
q̄∗ ζ̄

∗
σ + q×∗ ζ

∗
σ

)
, (4.32)

where the Legendre transformed transport coefficients were identified according to

q∗ = − q

qq̄ − q2
×
, q̄∗ = − q̄

qq̄ − q2
×
, q×∗ =

q×
qq̄ − q2

×
, ε∗ = ε, p∗ = p ,

P∗ = P − qζ2 − q̄ζ̄2 − 2q×(ζ · ζ̄) . (4.33)

This identification brings the Legendre transformed stress tensor and charge current to the

same form as in eq. (4.14) but with transport coefficients and (ζµ, ζ̄µ) replaced by their

Legendre transformed counterparts. It is worth noticing that the transformation (4.33) is

not defined if qq̄ − q2
× = 0.

14In d spacetime dimensions, a similar Legendre transform is expected to map a q-form superfluid to a

(d− q − 2)-form superfluid.
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4.4 Application to hot electromagnetism

As a simple application of one-form superfluid dynamics, consider a neutral fluid subjected

to dynamical electromagnetic fields. This is the simplest example of a hot electromagnetic

plasma, which we consider in detail in section 7, where the electromagnetic fields are

completely decoupled from the fluid degrees of freedom. The dynamics of this system is

governed by the energy-momentum conservation and the familiar Maxwell’s equations

∇µTµν = 0 , ∇µFµν = 0 , ∇[ρFµν] = 0 . (4.34)

The third equation (Bianchi identity) in (4.34) is solved by introducing the photon Aµ such

that Fµν = 2∂[µAν]. The energy-momentum tensor of this theory receives contributions

from both the fluid component as well as the electromagnetic fields

Tµν = εm(T )uµuν + pm(T )(gµν + uµuν) + FµρF
νρ − 1

4
gµνFρσF

ρσ

= εm(T )uµuν + pm(T )(gµν + uµuν)

+
1

2
(E2 +B2)uµuν +

1

2
(E2 +B2)Pµν − EµEν −

(
BµBν + 2u(µεν)ρστuρBσEτ

)
,

(4.35)

where we have defined the electric fields Eµ = Fµνuν and magnetic fields Bµ =
1
2ε
µνρσuνFρσ. The electromagnetic part trivially satisfies the conservation equations for

the photon configurations that satisfy the Maxwell’s equations (second equation in (4.34)),

while the conservation of the fluid part governs the dynamics of uµ and T .

This setup can be equivalently described by ideal one-form superfluid dynamics. To

this aim, we perform the identification Fµν = ξµν , which implies

Eµ = ζµ , Bµ = ζ̄µ . (4.36)

Comparing the energy-momentum tensor in eq. (4.35) with eq. (4.14) we can read out that

P = pm(T ) +
1

2
(ζ2 − ζ̄2) , q = −q̄ = 1 , q× = 0 , ε = εm(T ) +

1

2

(
ζ2 + ζ̄2

)
. (4.37)

It follows that the two-form current Jµν = −ξµν = −Fµν . Having made the identifica-

tion, the equations of one-form superfluid dynamics in (4.27) with Hµνρ = 0 map directly

to (4.34). The respective energy-momentum tensors and Bianchi identities map to each

other, while the equation of motion for ϕµ is equivalent to Maxwell’s equations. There-

fore, the one-form Goldstone ϕµ can be identified with the photon Aµ. The associated

hydrostatic free-energy density for this one-form superfluid is given by

N = P = pm(T )− 1

4
ξµνξ

µν = pm(T )− 1

4
FµνF

µν . (4.38)

This is precisely the Lagrangian density for electromagnetism minimally coupled to a neu-

tral fluid, where the vacuum permeability has been set to unity.
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Due to the self-duality of one-form superfluids (4.30) at Hµνρ = 0, we can also make the

identification Fµν = ξ∗µν = ?Jµν . The electric and magnetic fields now reverse their roles

Eµ = −ζ̄µ , Bµ = ζµ , (4.39)

while the mapping for transport coefficients remains the same (see eq. (4.33)). This dual

description is essentially the consequence of electromagnetic duality of vacuum Maxwell’s

equations under Eµ → Bµ and Bµ → −Eµ. In this case, the Bianchi identity in (4.27)

maps to Maxwell equations in (4.34), while the equation of motion for ϕµ maps to the

electromagnetic Bianchi identity. In this picture the vector Goldstone ϕµ can be under-

stood as an auxiliary “magnetic photon”. The energy momentum tensor (4.35) and the

Lagrangian density (4.38), when defined with respect to the Legendre transformed P∗ in

eq. (4.33), remain invariant.

The relations between one-form superfluids at finite temperature and hot electromag-

netism will be considered in more generality in section 7. In any case, the relations estab-

lished here should provide confidence to the reader that one-form superfluids can be used

to construct effective theories where the electromagnetic degrees of freedom interact with

the mechanical and thermal degrees of freedom of relativistic matter.

5 String fluids

In this section a theory of parity-violating string fluids is formulated up to first order in

derivatives, extending and completing earlier formulations [3, 20, 21]. This theory can

be formulated by partially breaking the one-form symmetry along the fluid velocity βµ,

yielding a scalar Goldstone mode ϕ, or by a direct limit of one-form superfluids as discussed

in section 4.2. Both these directions will be described in this section. String fluids provide

a dual formulation of MHD that is cast only in terms of symmetries, eliminating the

need of introducing the non-propagating degrees of freedom µ (chemical potential) and Eµ

(electric fields) in traditional treatments of MHD [24]. The exact relation between the two

formulations will be described in detail in section 7.

5.1 Partial breaking of one-form symmetry

String fluids can be obtained directly from one-form fluids discussed in section 3 where the

one-form symmetry is spontaneously broken in the direction of the fluid flow. In practice, it

implies that the theory admits a scalar Goldstone ϕ in the hydrodynamic regime along with

the usual hydrodynamic fields uµ, T , and µµ introduced in section 2. Under a symmetry

transformation X, ϕ transforms as

δXϕ = £χϕ− βµΛχµ . (5.1)

This new mode allows for the introduction of a new gauge-invariant vector combination

$hµ that captures the covariant derivatives of ϕ, namely

$hµ = µµ − T∂µϕ . (5.2)
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Here hµhµ = 1 and we have isolated the norm $ of the vector. It can be verified that, at

this stage, uµ and hµ are not necessarily orthogonal, instead their inner product satisfies

uµhµ = −T 2/$δBϕ. The hydrodynamic systems built using these degrees of freedom are

referred to as string fluids. In particular, the vector hµ characterises the direction of the

strings while $ is interpreted as a string chemical potential.

Following a similar procedure as in section 4.1 we can determine the Josephson equation

for string fluids. The Goldstone mode ϕ is accompanied by its equation of motion K = 0,

which can be used to write down the offshell adiabaticity equation (2.19) in the form

∇µNµ =
1

2
TµνδBgµν +

1

2
JµνδBbµν +KδBϕ+ ∆ , ∆ ≥ 0 . (5.3)

Using the available hydrodynamic data, at ideal order this equation becomes −KδBϕ =

∆ ≥ 0, implying that

K = −αδBϕ+O(∂) , ∆ = α(δBϕ)2 +O(∂) , α ≥ 0 , (5.4)

where α is some transport coefficient. Imposing the ϕ equation of motion K = 0, it

follows that δBϕ = O(∂), which in turn implies the Josephson equation for string fluids

uµhµ = O(∂). Analogous to section 4.1, it is possible to use the redefinition freedom

associated with µµ to absorb potential derivative corrections and to turn it into the exact

statement

δBϕ = 0 =⇒ uµhµ = 0 . (5.5)

Thus, the string direction can generically be chosen to be transverse to the fluid flow.

Therefore, the independent dynamical fields in string fluids, just like the previous consid-

erations of [21], are uµ, T , $, and hµ with uµuµ = −1, hµhµ = 1, and uµhµ = 0. The

dynamics for uµ and T is governed by the energy-momentum conservation in eq. (2.6), while

that for $ and hµ by the components of the one-form conservation transverse to uµ. The

component of the one-form conservation along uµ, on the other hand, acts as a constraint

on the allowed field configurations on an initial Cauchy slice. In our picture, this constraint

is seen as determining the configurations of the scalar Goldstone ϕ.15 Additionally, once

eq. (5.5) is imposed, the adiabaticity equation (2.19) reduces to (2.22).

5.2 Ideal string fluids

At ideal order, string fluids are characterised by the free energy density N = p(T,$). The

δB variations of T and $ read

δBT =
T

2
uµuνδBgµν , δB$ =

$

2
(uµuν − hµhν) δBgµν + u[µhν]δBξµν , (5.6)

15To see this, note that there are two sources of bµν dependence in string fluids: Hµνρ and $hµ. Therefore,

for theories admitting an effective action, we can infer that Jµν = −3∇λ(δS/δHλµν) + 2u[µ(δS/δ($hν])).

On the other hand, all the ϕ dependence comes from $hµ leading to K = ∇µ(TδS/δ($hµ)) =

(δS/δ($hµ))T 2uνδBgµν + Tuν∇µJµν . We have used that uµ(δS/δ($hµ)) = 0. Therefore, after the time

component of µµ has been algebraically eliminated using the ϕ equation of motion, the time component of

the one-form conservation equation serves as the equation of motion for ϕ.
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and can be used, together with eq. (2.25), to derive the respective constitutive relations.

Specifically, these read

Tµν = (ε+ p)uµuν + p gµν −$ρhµhν +O(∂) ,

Jµν = 2ρ u[µhν] +O(∂) , (5.7)

where the thermodynamic relations

dp = s dT + ρ d$ , ε+ p = s T + ρ$ , (5.8)

were defined and led to the identification of p as pressure, ε as energy density, ρ as string

density and s as entropy density. The associated free energy and entropy currents are

given as

Nµ =
p

T
uµ , Sµ = s uµ . (5.9)

Since ∆ at ideal order vanishes, ideal string fluids are non-dissipative.

It is instructive to work out the ideal order equations of motion governing the dynamics

of the string fluid hydrodynamic fields. In particular, the components of the energy-

momentum conservation imply

∇µTµν =
1

2
HνρσJρσ + 2ζ [νuρ]∇µJµρ

=⇒ δBs+
s

2
PµνδBgµν = O(∂2) , (5.10a)

uµhνδBgµν = O(∂2) , (5.10b)

(ε+ p)uµ∆ρνδBgµν − ρhµ∆ρνδBbµν = O(∂2) , (5.10c)

while those of the one-form current conservation reduce to

∇µJµν = 0 =⇒ δBρ+
ρ

2
∆µνδBgµν = O(∂2) , (5.11a)

∆ρµuνδBbµν +$∆ρµhνδBgµν = O(∂2) , (5.11b)

1

T
∇µ (Tρhµ)− ρTuµhνδBgµν = O(∂2) . (5.11c)

Here ∆µν = gµν + uµuν − hµhν and

δBgµν = 2∇(µ

(
uν)

T

)
, δBbµν = 2∂[µ

(
$hν]

T

)
+
uσ

T
Hσµν , (5.12)

were used to simplify the expressions. Eqs. (5.10a) to (5.10c), (5.11a)–(5.11b) can be used

to eliminate uµδBgµν and uµδBbµν from the set of independent first order non-hydrostatic

tensors. On the other hand, eq. (5.11c), upon using eq. (5.10b), gives a constraint equation

for ϕ configurations on an initial Cauchy slice

∇µ (Tρhµ) = 0 , (5.13)
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which is the no-monopole constraint of [27]. Additionally, the second equation in (5.11) is

the induction equation of [27].

As already explained in [24], the introduction of ϕ in the formulation of string fluid

dynamics allows for a well-defined hydrostatic effective action (2.15), where Nµ
hs = (p/T )uµ

and from which (5.13) arises as the variation with respect to ϕ (see eq. (2.14)).

5.2.1 Strings fluids as a limit of one-form superfluids

As mentioned in section 4.2, string fluids as described above can be obtained as a limit

of one-form superfluids introduced in section 4.1. This limit is obtained by removing

any dependence on ζ̄µ from the one-form superfluid theory, in which case the Bianchi

identity (4.3) looses its meaning. Comparing (5.1) with (4.1), it is straightforwardly inferred

that the Goldstone scalar ϕ is the component of the Goldstone vector ϕµ along βµ, i.e.

ϕ = βµϕµ. The complete equivalence is made by comparing (5.2) with (4.4) under the

light of the Josephson equations (4.9) and (5.5) leading to the identification

ζµ = −$hµ , q =
ρ

$
, (5.14)

while the conditions q̄ = q× = 0 arise due to the removal of any dependence on ζ̄ from the

constitutive relations of section 4.1.2, thus recovering (5.7) from eq. (4.14). Additionally,

eq. (5.13) can be obtained from the equilibrium equation (4.25) for ϕµ.

5.3 One derivative corrections to string fluids

Having established the ideal order constitutive relations, it is possible to continue the hy-

drodynamic expansion to one higher order. The results will be a sector of the transport

coefficients given in section 4.1.3, which also includes parity-violating terms, hence provid-

ing an extension of earlier literature [3, 20, 21].

5.3.1 Hydrostatic corrections

Hydrostatic corrections to ideal string fluids are composed of the first order scalars that

can appear in the hydrostatic free energy N and are non-vanishing in equilibrium. At first

order, it is possible to identify a total of 5 transport coefficients

N = p− α

6
εµνρσuµHνρσ − βεµνρσuµhν∂ρuσ − β̃1h

µ∂µT − β̃2h
µ∂µ

$

T
− β̃3ε

µνρσuµhν∂ρhσ .

(5.15)

Since boundary transport is not being considered, total derivative scalars such as ∇µhµ

can be removed from the independent set. Additionally, the equilibrium condition (5.13)

allows us to set β̃2 = 0 and hence only 4 scalars are independent. However, allowing for a

non-zero β̃2 will ease comparison with earlier literature in section 7. The terms coupling to

α and β are CP-even while those coupling to β̃1, β̃2, β̃3 are CP-odd.16 The distinguished

16The discrete parity symmetry P acts on various quantities as usual, while the quantities odd under

the one-form charge conjugation C are bµν , Hµνρ, ξµν , ζµ, ζ̄µ, hµ, and Jµν . We are interested in CP-odd

terms in string fluids because when relating string fluids to magnetohydrodynamics in section 7.2, these

correspond to P-odd terms in magnetohydrodynamics. We have deferred a more exhaustive discussion of

the action of discrete symmetries, including CPT, to appendix C.
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CP Transport coefficients

CP-even ζ⊥ , ζ× , ζ
′
× , ζ‖ , r‖ , η‖ , η̃‖ , r⊥ , r̃⊥ , η⊥ , η̃⊥

CP-odd κ̃1 , κ̃
′
1 , κ̃2 , κ̃

′
2 , r× , r

′
× , r̃× , r̃

′
×

Table 5. Transformation properties under CP for non-hydrostatic transport coefficients in string

fluids.

notation α for the first transport coefficient is due to the fact that it will play a crucial role

later in the mapping to magnetohydrodynamics in section 7. Performing the δB variation

of all the one-derivative terms in eq. (5.15) and using eq. (2.23), the contributions of each

term to the constitutive relations and free energy current can be obtained, and are given

in appendix A.

5.3.2 Non-hydrostatic corrections

In order to derive non-hydrostatic constitutive relations, it is useful to decompose the

currents in this sector of the theory along and transverse to uµ and hµ, such that

Tµνnhs = δε uµuν + δf∆µν + δτ hµhν + 2`(µhν) + 2k(µuν) + tµν ,

Jµνnhs = 2δρ u[µhν] + 2m[µhν] + 2n[µuν] + δs εµν , (5.16)

where εµν = εµνρσuρhσ is a parity-odd contribution. In particular, any antisymmetric ten-

sor transverse to uµ and hν in 4 spacetime dimensions only has one degree of freedom and

is always proportional to εµν . Choosing to work in the Landau frame following the discus-

sion in section 2.3, and eliminating uµδBgµν and uµδBbµν using the first order equations of

motion, the non-hydrostatic constitutive relations can be represented asδfδτ
δs

 = −T
2

ζ⊥ ζ× κ̃1

ζ ′× ζ‖ κ̃2

κ̃′1 κ̃′2 r‖


∆µνδBgµν
hµhνδBgµν
εµνδBξµν

 ,

(
`µ

mµ

)
= −T

(
η‖ r× η̃‖ r̃×
r′× r⊥ r̃′× r̃⊥

)
∆µσhνδBgσν
∆µσhνδBξσν
εµσhνδBgσν
εµσhνδBξσν

 ,

tµν = −η⊥T∆ρ〈µ∆ν〉σδBgρσ + η̃⊥Tε
ρ〈µ∆ν〉σδBgρσ . (5.17)

The redefinition freedom in uµ and T has been used to set δε = kµ = 0, whereas the

residual freedom in µµ after setting uµhµ = 0 is used to set δρ = nµ = 0. Here we have

introduced 19 non-hydrostatic transport coefficients, which are functions of T and $. In

table 5, the transformation properties of these coefficients under CP transformations is

summarised. Thus, the first 11 coefficients already identified in [3] are in the CP-even

sector and the remaining new 8 coefficients (in blue) are in the CP-odd sector and had not

been previously identified in the literature. Of these 8 coefficients, 4 can be understood as

new current resistivities and are related to the remaining 4 via Onsager’s relations under

certain assumptions as will be explained in section 5.4.
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CP-even CP-odd

Non-dissipative non-hydrostatic 4 4

Dissipative 7 4

Table 6. Classes of non-hydrostatic transport coefficients in string fluids

Using the adiabaticity equation (2.22) and after some non-trivial algebra, it is possible

to derive that

1

T
∆ =

1

4

∆µνδBgµν
hµhνδBgµν
εµνδBξµν


T ζ⊥

1
2(ζ× + ζ ′×) 1

2(κ̃1 + κ̃′1)
1
2(ζ× + ζ ′×) ζ‖

1
2(κ̃2 + κ̃′2)

1
2(κ̃1 + κ̃′1) 1

2(κ̃2 + κ̃′2) r⊥


∆µνδBgµν
hµhνδBgµν
εµνδBξµν


+

1

2

(
∆µσhνδBgσν + iεµσhνδBξσν

∆µσhνδBξσν

)T(
η‖

1
2

(
r× + r′×

)
1
2

(
r× + r′×

)
r⊥ − i2η‖

)

×

(
∆µσhνδBgσν + iεµσhνδBξσν

∆µσhνδBξσν

)
+

1

2
η⊥δBgµν∆ρ〈µ∆ν〉σδBgρσ , (5.18)

where i = 1
2η‖

(
r̃× − r̃′×

)
. Out of the 19 non-hydrostatic transport coefficients, the following

8 linear combinations trivially drop out of the quadratic form

ζ× − ζ ′× , κ̃1 − κ̃′1 , κ̃2 − κ̃′2 , r× − r′× , r̃× + r̃′× , η̃‖ , r̃⊥ , η̃⊥ , (5.19)

and hence are left totally unconstrained. These combinations can be identified as the non-

hydrostatic non-dissipative transport coefficients, as they do not contribute to dissipation.

Finally, requiring ∆ ≥ 0 gives 6 inequality constraints among the remaining 11 dissipative

transport coefficients. In terms of matrices of transport coefficients they can be expressed as ζ⊥
1
2(ζ× + ζ ′×) 1

2(κ̃1 + κ̃′1)
1
2(ζ× + ζ ′×) ζ‖

1
2(κ̃2 + κ̃′2)

1
2(κ̃1 + κ̃′1) 1

2(κ̃2 + κ̃′2) r⊥

 ≥ 0 ,

(
η‖

1
2

(
r× + r′×

)
1
2

(
r× + r′×

)
r⊥ − i2η‖

)
≥ 0 , η⊥ ≥ 0 ,

(5.20)

whereby positive semi-definiteness of a matrix is understood as the requirement that all its

eigenvalues are non-negative. In total, therefore, the number of non-hydrostatic transport

coefficients can be summarised as in table 6. Under certain assumptions, not all of these 19

transport coefficients are independent as it will be shown via Kubo formulae and Onsager’s

relations.

5.4 Kubo formulae

Using the variational background method of [36] it is possible to derive Kubo formulae

for string fluids, which are of particular interest for evaluating transport coefficients in

holographic setups. In what follows, the hydrostatic corrections of section 5.3.2 have been
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ignored and only the non-hydrostatic have been taken into account.17 It is convenient

to split the background coordinates xµ into the set (t, xi, z) and to consider a simple

equilibrium configuration in a flat background spacetime with vanishing bµν and velocity

profile uµ = δµt, h
µ = ±δµz. In order to obtain Kubo formulae, the one-point functions

are introduced

Tµν =
√
−g 〈Tµν〉 , Jµν =

√
−g 〈Jµν〉 , (5.21)

and a small time-dependent but homogeneous in space perturbation around the equilibrium

state is performed such that uµ → uµ + δuµ, hµ → hµ + δhµ, gµν → ηµν + δhµν , and

bλσ → δbλσ.18 These perturbations should be understood as small deformations that

generically take the form δbλσ = Aλσe
−ωt for some amplitude matrix Aλσ. According

to linear response theory, small variations of (5.21) can be written in terms of retarded

Green’s functions of frequency ω such that

δTµν =
1

2
Gµν,λρTT δhλρ +

1

2
Gµν,λρTJ δbλρ , δJµν =

1

2
Gµν,λρJT δhλρ +

1

2
Gµν,λρJJ δbλρ . (5.22)

Evaluating (5.22) for the specific initial equilibrium configuration and writing it in compo-

nents, it is found that

ζ ′× = lim
ω→0

1

ω
Im Gzz,iiTT , ζ|| = lim

ω→0

1

ω
Im Gzz,zzTT ,

κ̃2sign(h) = lim
ω→0

1

ω
Im Gzz,ijTJ ,

η|| = lim
ω→0

1

ω
Im Gzi,ziTT , η̃||sign(h) = lim

ω→0

1

ω
Im Gzi,zjTT ,

r× = lim
ω→0

1

ω
Im Gzi,izTJ ,

r̃×sign(h) = lim
ω→0

1

ω
Im Gzi,jzTJ , κ̃′1sign(h) = lim

ω→0

1

ω
Im Gij,kkJT ,

κ̃′2sign(h) = lim
ω→0

1

ω
Im Gij,zzJT ,

r|| = lim
ω→0

1

ω
Im Gij,ijJJ , r′× = lim

ω→0

1

ω
Im Giz,izJT ,

r⊥ = lim
ω→0

1

ω
Im Giz,izJJ ,

r̃′×sign(h) = lim
ω→0

1

ω
Im Giz,jzJT (i 6= j) , r̃⊥sign(h) = lim

ω→0

1

ω
Im Giz,jzJJ (i 6= j) ,

ζ⊥ +
(d− 3)

2(d− 2)
η⊥ = lim

ω→0

1

ω
Im Gii,iiTT , ζ× = lim

ω→0

1

ω
Im Gii,zzTT ,

κ̃1sign(h) = lim
ω→0

1

ω
Im Gii,jkTJ ,

η⊥ = lim
ω→0

1

ω
Im Gij,ijTT , (i 6= j) , η̃⊥sign(h) = lim

ω→0

1

ω
Im Gij,iiTT , (i 6= j) .

(5.23)

17In the particular holographic setup of [37], the 4 independent hydrostatic transport coefficients of

section 5.3.2 vanished.
18Explicitly we find δut = 1

2
δhtt , δv

t
i = δui + δhti , δh

z = − 1
2
δhzz and δ

(
∇(iuj)

)
= ∂tδhij/2.
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If the microscopic theory in question has some sort of discrete symmetry Θ including

time-reversal, we can use the Onsager’s relations to relate some of the transport coefficients.

For operators Oa = {T ij , J ij}, the Onsager’s relations state (see e.g. [6])

GOaOb(ω, h) = iaibGObOa(ω,Θh) , (5.24)

where ia are eigenvalues of Oa under Θ. For Θ = CT (which is just time-reversal in the

dual hot electromagnetism picture), iT = iJ = 1 and Θh = −h; see appendix C for more

details. This leads to the following relations among transport coefficients

ζ× = ζ ′× , r× = r′× , r̃× = r̃′× , κ̃1 = −κ̃′1 , κ̃2 = −κ̃′2 . (5.25)

On the other hand, for Θ = CPT, iT = iJ = 1 and Θh = h. In this case, the constraints

are slightly different and we get

ζ× = ζ ′× , r× = r′× , r̃× = −r̃′× , κ̃1 = κ̃′1 , κ̃2 = κ̃′2 . (5.26)

Thus, within either of these contexts, there are 4 independent hydrostatic transport coeffi-

cients and 14 non-hydrostatic transport coefficients. Hence, string fluids are characterised

by a total of 18 transport coefficients at first order in derivatives.

While other phenomenological realisations of string fluids are possible, here we consider

it in the context in which Jµν has a positive eigenvalue under time-reversal symmetry and

hµ has a negative eigenvalue. These considerations are motivated by the mapping of string

fluids to MHD as will be discussed in section 7. In this context, Onsager’s relations for the

operators require that

6 Electric limit of one-form superfluids

This section explores the electric limit of one-form superfluids discussed in section 4.2. This

limit is characterised by the derivative hierarchy ζµ = O (1) and ζ̄µ = O (∂), in which case,

contrary to the previous section, the Bianchi identity (4.3) plays a relevant role. A discus-

sion on the Bianchi identity and its consequences allows the determination of the relevant

hydrodynamic structures. This is followed by the derivation of the first order corrections in

the electric limit, yielding a total of 29 transport coefficients (modulo Onsager’s relations).

As shall be established in section 7.4, this limit provides a dual formulation of magnetic-

dominated bound-charge plasmas, which under particular assumptions are directly related

to MHD without free charges.

6.1 Bianchi identity and order mixing

The electric limit of one-form superfluids is defined as the regime where the ζµ components

of ξµν are treated at ideal order, while the components ζ̄µ are treated at one-derivative

order. Naively, this may appear to be qualitatively similar to string fluids where ζµ was

treated at ideal order while ζ̄µ was entirely removed from the hydrodynamic description.
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However, there is an important distinction. In particular, note that the Bianchi identities

(4.3) relate certain derivatives of ζµ to those of ζ̄µ. In components

εµνρσuµζν∂ρuσ −
1

6
εµνρσuµHνρσ

= ∇µζ̄µ − ζ̄µuν∇νuµ ,

εµνρσuνζρ

(
1

T
∂σT + uλ∇λuσ

)
+

1

2
εµνρσuν

(
−2T∂ρ

ζσ
T

+ uλHλρσ

)
= ζ̄µ∇νuν + TPµλ

(
βν∇ν ζ̄λ − ζ̄ν∇νβλ

)
. (6.1)

In string fluids, where ζ̄µ is not a dynamical field, these equations are irrelevant. On

the other hand, in the electric limit, these equations become important. Upon setting

ζ̄µ = O(∂), these read

1

6
εµνρσuµHνρσ = εµνρσuµζν∂ρuσ +O(∂2),

PµρP νσδBbρσ = −2ζ [µP ν]σuρδBgρσ +O(∂2) . (6.2)

Therefore, the first order terms appearing on the left hand side, which used to be indepen-

dent in string fluids, are no longer independent in the electric limit. This has an important

consequence which is referred here as “order mixing” between consecutive derivative or-

ders in the electric fluid constitutive relations. Noting that δBbµν = δBξµν , it is possible to

massage the adiabaticity equation (2.22) into

∇µNµ =
1

2

(
Tµν + 2u(µP ν)ρζσJρσ

)
δBgµν − JρσuρP [ν

σu
µ]δBξµν

+
1

2
JτλPτρPλσ

(
P ρµP σνδBξµν + 2ζ [ρP σ]νuµδBgµν

)
+ ∆ . (6.3)

This equation implies, in general, the appearance of k-derivative order terms in Tµν and

Jµν if Nµ was being studied at k-derivative order. Since the term in the parentheses in the

second line in (6.3) is two-derivative order, we could also have a (k − 1)-derivative contri-

bution to Jµν . Furthermore, since δBgµν is one-derivative order, terms in the parentheses

in the first line in (6.3) must be k-derivative order, leading to certain (k − 1) derivative

contributions in Tµν as well. In turn, this could lead to the same transport coefficient

appearing across consecutive derivative orders.

In the hydrostatic sector, such order-mixing only comes from the terms in N dependent

on ζ̄µ. Generically, if attention is being focused on the kth order terms in N and define

R(k−1)
µ =

δN(k)

δζ̄µ
, (6.4)

such order-mixing contributions are given by

Tµν(k−1) ∼ −2u(µεν)ρστuρζσR(k−1)
τ , Jµν(k−1) ∼ −ε

µνρσuρR(k−1)
σ . (6.5)

In the non-hydrostatic sector, on the other hand, no independent transport coefficient

appear across derivative orders. However, whereas the inequality constraints imposed by

∆ ≥ 0 usually only apply to one-derivative dissipative transport coefficients, in this case

they can also involve transport coefficients from two-derivative order. This will be made

explicit below.
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6.2 Ideal one-form superfluids in the electric limit

Defining ζµ = −$hµ for later convenience and suppressing ζ̄µ to one-derivative order, the

ideal one-form superfluid constitutive relations (4.14) become

Tµν = ε uµuν + pPµν − ρ$ hµhν +O(∂) ,

Jµν = 2ρ u[µhν] +$q× ε
µνρσuρhσ +O(∂) ,

Nµ =
p

T
uµ +O(∂) , (6.6)

where ρ = q$ was defined. All the coefficients appearing here are now seen as functions of

T and $. Except for the q× term highlighted in blue, the constitutive relations of an ideal

one-form superfluid in the electric limit are precisely the same as for string fluids given in

eq. (5.7) and satisfy the thermodynamic relations (5.8).

The q× term, on the other hand, is a manifestation of the order-mixing that was alluded

to above. Comparing its form with eq. (6.5), it is possible to infer that it originates from

a one-derivative term q×ζµζ̄
µ in the free energy density. This is, in fact, the case as it can

be verified by expanding the ideal one-form superfluid free-energy density (4.12) up to one

derivative order, obtaining

P (T, ζ2, ζ̄2, ζ · ζ̄) = p(T,$) + q×(T,$) ζ · ζ̄ +O(∂2) . (6.7)

Additionally, due to the presence of the q× term, the first order equations of motion sig-

nificantly modify compared to string fluids. The components of the energy-momentum

conservation stay the same as in eq. (5.10), while those of the one-form conservation re-

ceive contributions from the q× term. Precisely, it is found

∇µJµν = 0

=⇒ δBρ+
ρ

2
∆µνδBgµν +

q×
6T

εµνρσhµHνρσ = O(∂2) , (6.8a)

∆µρuσδBbρσ +$∆µρhσδBgρσ +
$2

Tρ
εµν∂νq× −

q×$

6Tρ
∆µ

λε
λνρσHνρσ = O(∂2) ,

(6.8b)

1

T
∇µ (Tρhµ)− ρTuµhνδBgµν +

q×
6
εµνρσuµHνρσ = O(∂2) . (6.8c)

These equations imply that, as in the string fluid case, it is still possible to eliminate

uµδBgµν using the first order energy-momentum conservation equations. However, it is

no longer possible to eliminate uµδBbµν in terms of other non-hydrostatic data. This has

important consequences for one-derivative non-hydrostatic corrections.

Since the study of one-derivative corrections is the subject of our attention below,

it is instructive to expand the ideal one-form superfluid constitutive relations (4.14) to

one-derivative order. This expansion gives rise to

Tµν = ε uµuν + pPµν − ρ$ hµhν + ζ · ζ̄
(
T
∂q×
∂T

+$
∂q×
∂$

)
uµuν − ζ · ζ̄ $∂q×

∂$
hµhν

− 2q̄ u(µεν)ρστuρζσ ζ̄τ +O(∂2) ,
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Jµν = 2ρ u[µhν] + ζ · ζ̄ ∂q×
∂$

2u[µhν] − 2q×u
[µζ̄ν] − q×εµνρσuρζσ

− εµνρσuρ
(
q̄ ζ̄σ + q′×(ζ · ζ̄) ζσ

)
+O(∂2) ,

Nµ =
p

T
uµ +

q×
T
ζ · ζ̄ uµ +O(∂2) . (6.9)

The contributions from the one-derivative order term q× are now complete, while two new

order-mixing contributions, q′× and q̄, from two-derivative order appear. Their origin can

be traced back to the free energy density (4.12) expanded up to two-derivative order as

P (T, ζ2, ζ̄2, ζ ·ζ̄) = p(T,$)+q×(T,$)ζ ·ζ̄+
1

2
q′×(T,$)(ζ ·ζ̄)2+

1

2
q̄(T,$)ζ̄2+O(∂3) . (6.10)

It is clear from these considerations that order mixing significantly increases the difficulty

of studying these hydrodynamic systems, nevertheless it is possible to keep track of it

precisely and to obtain constitutive relations in a hydrodynamic expansion.

6.3 One-derivative corrections

6.3.1 Hydrostatic corrections

Above it was shown that taking electric limit of ideal one-form superfluids generates some

one-derivative corrections to the respective constitutive relations. However, the constitutive

relations can also receive more generic one-derivative corrections allowed by the adiabaticity

equation (2.22). Consider first the order mixing terms, whose general expression was given

in eq. (6.5). The most generic two-derivative terms in the hydrostatic free energy density

involving ζ̄µ can be represented as

N(2) =
1

2

(
q′×ζµζν + q̄Pµν

)
ζ̄µζ̄ν +Rµζ̄

µ + . . . . (6.11)

Here the quadratic terms in ζ̄µ, i.e. q′× and q̄, are the same as those obtained in eq. (6.10)

in ideal one-form superfluids. The linear terms in ζ̄µ are parametrised by a generic one-

derivative vector structure Rµ which involves an explicit derivative. It will contain, for

example, terms proportional to Pµν∇νT and εµνρσu
ν∇ρuσ among many others. Using

eq. (6.5), their contribution to one-derivative constitutive relations is given as

Tµνhs,order-mixing = −2u(µεν)ρστuρζσ
(
q̄ζ̄τ +Rτ

)
+O(∂2) ,

Jµνhs,order-mixing = −εµνρσuρ
(
q̄ζ̄σ + q′×(ζ · ζ̄)ζσ +Rσ

)
+O(∂2) ,

Nµ
hs,order-mixing = O(∂2) . (6.12)

Secondly, it is necessary to consider explicitly one-derivative order terms in the hydrostatic

free-energy density. It is possible to import all the terms directly from string fluids in

eq. (5.15), except the α term which is no longer independent due to the Bianchi identity

(6.2). Taking into account the contributions mentioned above, the total hydrostatic free

energy density for one-derivative constitutive relations reads

N = p+ q×ζµζ̄
µ +

1

2

(
q′×ζµζν + q̄Pµν

)
ζ̄µζ̄ν +Rµζ̄

µ

− βεµνρσuµhν∂ρuσ − β̃1h
µ∂µT − β̃2h

µ∂µ
$

T
− β̃3ε

µνρσuµhν∂ρhσ . (6.13)
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The contributions from p, q×, q′×, and q̄ are given in eq. (6.9), from Rµ in eq. (6.12), while

those from β and β̃i can be directly imported from appendix A.1.1. As in the case of string

fluids, the equation of motion (6.8c) together with the Bianchi identity (6.2) allow to set

β̃2 = 0, thus leading to 3 independent hydrostatic transport coefficients at first order in

derivatives. This completes the analysis of first order hydrostatic corrections.

6.3.2 Non-hydrostatic corrections

For the non-hydrostatic contributions, it is useful to parametric the stress tensor and charge

current as

Tµνnhs = δε uµuν + δf∆µν + δτ hµhν + 2`(µhν) + 2k(µuν) + tµν ,

Jµνnhs = 2δρ u[µhν] + 2m[µhν] + 2n[µuν] + δs εµν . (6.14)

Introducing these into (6.3), it is possible to massage the adiabaticity equation into

∇µNµ =

(
δε− δρ

∂ρ/∂$

(
T
∂ρ

∂T
+$

∂ρ

∂$

))
1

2
uµuνδBgµν + (kµ −$mµ)uνδBgµν

+ δρ

(
δBρ+

1

2
ρ∆µνδBgµν

)
+ nµ (uνδBbµν +$hνδBgµν)

+ δs
1

2
εµνδBbµν +mµ (hνδBbµν +$uνδBgµν)

+

(
δf − ρδρ

∂ρ/∂$

)
1

2
∆µνδBgµν + (δτ +$δρ)

1

2
hµhνδBgµν + (`µ −$nµ)hνδBgµν

+
1

2
tµνδBgµν + ∆ . (6.15)

The rationale behind this arrangement is that the terms in the third line in (6.15) drop

out using the Bianchi identities (6.2), while those in the second line in (6.15) drop out

using the first order equations of motion (6.8) when q× is zero. However, these terms are

important to complete the quadratic form ∆. It is possible to use the redefinition freedom

in uµ and T to set

δε =
δρ

∂ρ/∂$

(
T
∂ρ

∂T
+$

∂ρ

∂$

)
, kµ = $mµ , (6.16)

and eliminate terms in the first line in (6.15). In string fluids, it was possible to use the

residual redefinition freedom in µµ to set δρ = nµ = 0 as well. However, in the current

context there is no such freedom as it was already used to make the Josephson equation (4.9)

exact. Schematically, the non-hydrostatic corrections can be written as
δρ

δf − ρδρ
∂ρ/∂$

δτ +$δρ

δs

 = −T
2


λ1 λ2 λ3 λ4

λ′2 ζ⊥ ζ× κ̃1

λ′3 ζ
′
× ζ‖ κ̃2

λ′4 κ̃
′
1 κ̃′2 r‖




2δBρ+ ρ∆µνδBgµν
∆µνδBgµν
hµhνδBgµν
εµνδBbµν

 ,
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 nµ

`µ −$nµ

mµ

 = −T

λ5 λ6 λ7 λ8 λ9 λ10

λ′6 η‖ r× λ′9 η̃‖ r̃×
λ′7 r

′
× r⊥ λ′10 r̃

′
× r̃⊥




∆µσuνδBbσν +$∆µσhνδBgσν
∆µσhνδBgσν

∆µσhνδBbσν +$∆µσuνδBgσν
εµσuνδBbσν +$εµσhνδBgσν

εµσhνδBgσν
εµσhνδBbσν +$εµσuνδBgσν


,

tµν = −η⊥T∆ρ〈µ∆ν〉σδBgρσ + η̃⊥Tε
ρ〈µ∆ν〉σδBgρσ . (6.17)

Since the tensor structures

εµνδBbµν , ∆µσhνδBbσν +$∆µσuνδBgσν , εµσhνδBbσν +$εµσuνδBgσν , (6.18)

are second order due to the Bianchi identities (6.2), the transport coefficients highlighted

in blue are actually second order, but are required for positive definiteness of ∆. The

terms highlighted in purple are first order in general but become second order when using

the first order equations of motion (6.8) if q× = 0. In general, the positive definiteness

of ∆ gives 9 inequalities among these transport coefficients and at first order there is a

total of 26 non-hydrostatic transport coefficients. However, the application of this theory

to magnetic dominated bound-charge plasmas that is provided in section 7.4 consists of

setting q× = 0 and leads to, upon appropriate identification, 8 non-hydrostatic transport

coefficients, namely ζ⊥, ζ×, ζ ′×, ζ||, η||, ζ̃||, η⊥, η̃⊥.

7 Hot electromagnetism

Hot electromagnetism is the theory that results from the interaction of electromagnetic

degrees of freedom with mechanical and thermal degrees of freedom of matter. At long

wavelength and large timescales compared to the mean free path of the microscopic theories,

matter can be approximated by a hot plasma and hydrodynamic theory determines the

dynamical evolution of fluctuations around equilibrium. In this section, the term hot

electromagnetism is used to denote the traditional treatments of hydrodynamic regimes of

plasmas where the electromagnetic gauge field Aµ is incorporated as dynamical degrees

of freedom. After a brief exposure of the different types of regimes that are considered

in this work, namely MHD where electric fields are Debye screened, and bound-charge

plasmas where they are not, exact dualities between different limits of one-form superfluids

considered in the previous sections and the these two regimes are derived.

7.1 Heating up Maxwell’s equations

Consider an electromagnetic plasma heated up to a finite temperature. The near equilib-

rium physics of such a plasma is governed by charged hydrodynamics coupled to dynami-

cal electromagnetic fields. The dynamics of the electromagnetic fields Fµν is governed by

Maxwell equations in matter19

∇νF νµ + Jµmatter + Jµext = 0 , (7.1a)

19eq. (7.1) is a modified version of the second equation in (4.34) that accounts for the presence of matter

and couplings to external currents.
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along with the Bianchi identity

∇[µFνρ] = 0 . (7.1b)

Here Jµext denotes an identically conserved background charge current distribution coupled

to the plasma such that ∇µJµext = 0. Prime examples of Jµext include a lattice of ions or

an auxiliary field theory source that facilitates the computation of correlation functions.

Jµmatter is the charge current associated with the matter component of the plasma and it

is not required to be trivially conserved at finite temperature. In fact, the conservation

equation ∇µJµmatter = 0, which can be seen as the divergence of eq. (7.1a), serves as an

equation of motion for the hydrodynamic chemical potential µ. As already commented

in section 4.4, the Bianchi identity (7.1b) is solved by introducing the dynamical photon

field Aµ such that Fµν = 2∂[µAν]. Having done that, eq. (7.1a) provides dynamics for 4

physical degrees of freedom in Aµ and µ. In addition, the plasma is characterised by the

usual hydrodynamic fields uµ and T , whose dynamics is governed by energy-momentum

conservation

∇µTµν = F νρJρ , (7.1c)

where the total dynamical charge current of the plasma Jµ = ∇νF νµ + Jµmatter was

introduced.

The constitutive relations of hot electromagnetism are written as expressions for Tµν

and Jµ in terms of uµ, T , µ, and Fµν , arranged in a derivative expansion. A priori, these

may be expected to be exactly the same as ordinary charged fluids with background elec-

tromagnetic fields. However, since the electromagnetic fields are dynamical, they can be

relevant at ideal order in the derivative expansion, i.e. Fµν = O(1). This considerably

modifies the actual constitutive relations [3, 38]. Similar to ordinary hydrodynamics, the

constitutive relations of a plasma are also required to satisfy the second law of thermody-

namics. This requirement is formulated in terms of the zero-form version of the adiabaticity

equation (2.22), namely

∇µNµ =
1

2
TµνδBgµν + JµδBAµ + ∆ , ∆ ≥ 0 , (7.2)

which has to be satisfied for some free energy current Nµ and quadratic form ∆. Here

δB denotes an infinitesimal symmetry transformation along B = (βµ,Λβ) introduced in

eq. (2.5), which when applied to the metric and gauge field read

δBgµν = 2∇(µ

(
uν)

T

)
, δBAµ = ∂µ

µ

T
− 1

T
Eµ , (7.3)

where the electric Eµ and magnetic fields Bµ are defined as

Eµ = Fµνuν , Bµ =
1

2
εµνρσuνFρσ , Fµν = 2u[µ]Eν − εµνρσuρBσ. (7.4)

Provided that eq. (7.2) is satisfied, the entropy current, defined as Sµ = Nµ − Tµνuν/T −
Jµµ/T , has positive semi-definite divergence onshell (i.e. once the equations of motion

are satisfied).
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7.1.1 Ideal fluid minimally coupled to electromagnetism

As a working example, and to aid intuition, consider the well-known model in the con-

text of MHD [1] of an ideal fluid minimally coupled to Maxwell’s electromagnetism via a

conductivity term σ in the constitutive relations

Tµν = FµρF
νρ − 1

4
FρσF

ρσgµν + ε(T, µ)uµuν + p(T, µ) (gµν + uµuν) ,

Jµ = ∇νF νµ + q(T, µ)uµ − σ(T, µ)Pµν
(
T∂ν

µ

T
− Eν

)
, (7.5)

where the fluid part of the currents satisfies the usual thermodynamic relations dp = sdT +

qdµ and ε+p = sT+qµ. The energy-momentum tensor includes the purely electromagnetic

contribution given in eq. (7.4) alongside the usual fluid contributions. These relations

satisfy eq. (7.2) with

Nµ = − 1

4T
FρσF

ρσ uµ +
1

T
Fµν

(
T∂ν

µ

T
− Eν

)
+
p(T, µ)

T
uµ ,

∆ =
σ(µ, T )

T
Pµν

(
T∂µ

µ

T
− Eµ

)(
T∂ν

µ

T
− Eν

)
, (7.6)

provided that the conductivity obeys the positivity constraint σ(µ, T ) > 0. In general, the

constitutive relations of the plasma (7.5) could admit further derivative corrections and

exhibit more intricate couplings between the electromagnetic and fluid sectors as it will be

described later.

Using eq. (7.1), it is possible to work out the equations of motion for this simple plasma

model. For the purposes of the current discussion, it suffices to look at eq. (7.1a) which

leads to

q(T, µ) = uµ∇νF νµ + uµJ
µ
ext ,

σ(T, µ)Eµ = −Pµλ∇νF νλ − PµλJλext + Tσ(T, µ)Pµν∂ν
µ

T
. (7.7)

The first equation expresses the point that, to leading order in derivatives, the charge

density of the plasma organises itself according to the charge density of the background.

The second equation states that, to leading order, the electric fields in the plasma are

induced by external currents. Additionally, these two equations algebraically determine the

plasma dynamical fields µ and Eµ in terms of the other dynamical and background fields

of the theory order by order in the derivative expansion.20 Therefore, µ and Eµ do not in

general obtain independent dynamics in the hydrodynamic regime of hot electromagnetism.

In fact, this statement continues to hold when the most general coupling and derivative

corrections are taken into account (see section 7.2). An interesting exception to this, which

will be studied below, is the case of plasmas which have q(T, µ) = σ(T, µ) = 0.

20The rationale here is that if a dynamical field f satisfies an equation f = f0 +F(∇, f), where F(∇, f)

is at least one order in derivatives, then we can algebraically determine it recursively within the derivative

expansion as f = f0 + F(∇, f0 + F(∇, f0 + F(∇, f0 + F(∇, f0 + . . .)))).
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7.1.2 The magnetohydrodynamics regime

Consider the sector of hot electromagnetism for which the background currents are station-

ary to leading order, i.e. the spatial currents are derivative suppressed PµνJ
ν
ext = O(∂).21

An example of such backgrounds is the case of a fixed lattice of ions. From eq. (7.7), it

follows that the electric fields in such plasmas are derivative suppressed, i.e. Eµ = O(∂),

while the magnetic fields can be arbitrarily large. This is the hydrodynamic incarnation of

Debye screening : electric fields are screened over large distances due to the presence of free

charges.22 Such hydrodynamic systems are commonly referred to as magnetohydrodynam-

ics (MHD) (see e.g. [3]). Under the MHD limit, the energy-momentum tensor in eq. (7.5)

becomes

Tµν = (ε(T, µ) + p(T, µ))uµuν +

(
p(T, µ)− 1

2
B2

)
gµν +B2Bµν +O(∂) , (7.8)

where Bµν = Pµν − B̂µB̂ν , Pµν = gµν + uµuν and B̂µ = Bµ/|B|, with |B| being the

modulus of Bµ. For most applications of MHD, it is useful to consider the scenario where

the background charge current is entirely derivative suppressed, i.e. Jµext = O(∂), making

the requirement of sub-leading external currents “covariant”. Such models are applicable

when the background charge currents are either non-existent or negligible, as in the case

of solar physics. Thus, in addition to the electric fields being screened, such plasmas are

electrically neutral over large length scales, i.e. q(T, µ) = O(∂). In this regime, MHD can

be reformulated in terms of a string fluid with a global one-form symmetry [24]. This

connection will be developed further in section 7.3.

7.1.3 The bound-charge plasma regime

An often unstated requirement for the MHD regime to dominate the hydrodynamics of

plasmas is that the plasmas are conducting, i.e. σ(T, µ) 6= 0, otherwise the second equation

in eq. (7.7) would not impose any restriction on electric fields, and hence they could be

arbitrarily large. Consider a fluid which does not contain any free charges. For instance, a

gas of neutral atoms which can nonetheless be polarised. In the absence of any free charge

carriers, the conductivity σ(T, µ) is identically zero. Over large distances, the charge

density q(T, µ) also adds up to zero. More rigorously, these are plasmas whose constitutive

relations do not depend on µ. That is, in the simple case of eq. (7.5), p = p(T ) and σ = 0

leading to ε = ε(T ) and q = 0 by means of the thermodynamic relations. Consequently,

µ drops out from the set of independent degrees of freedom and the charge conservation

∇µJµ = 0, which had the role of providing dynamics to µ, becomes identically satisfied

implying that

∇µJµ = 0 =⇒ Jµ = ∇νMµν , Mµν = −Fµν +Mµν
matter , (7.9)

21One can show that this requirement is frame-invariant by noting that under uµ → uµ + δuµ, where

δuµ = O(∂) such that uµδu
µ = 0, it remains invariant.

22The usual requirement for Debye screening, found in traditional textbooks of MHD, is to take the limit

σ → ∞. From the second equation in (7.7), it is obvious that this has the same effect as that attained by

requiring PµνJ
ν
ext = O(∂). However, this “infinite conductivity limit” breaks the hydrodynamic derivative

expansion. For this reason, it appears that the requirement PµνJ
ν
ext = O(∂) is more physically sound.

– 40 –



J
H
E
P
0
1
(
2
0
2
0
)
0
4
1

where Mµν
matter is the antisymmetric polarisation tensor characteristic of the material that

constitutes the plasma. The physical content of the leading order Maxwell’s equations (7.7)

is then that such a system can only be described by hydrodynamics when the background

charge current is weak, i.e. Jµext = O(∂). The dynamical equations (7.1) and adiabaticity

equation (7.2) for a bound-charge plasma can be recast as

∇µTµν = −F νρJext
ρ , ∇µMµν = Jνext , εµνρσ∇νFρσ = 0 ,

∇µNµ =
1

2
TµνδBgµν +

1

2
MµνδBFµν + ∆ , ∆ ≥ 0 , (7.10)

where Nµ → Nµ−MµνδBAν was redefined. Maxwell’s electromagnetism in vacuum is self-

dual under electromagnetic duality. There is a version of this duality that is still respected

by the bound-charge plasma. It may be verified that under the transformation

Fµν →
1

2
εµνρσM

ρσ , Mµν → 1

2
εµνρσFρσ , Nµ → Nµ − 1

2
βµMµνFµν , (7.11)

the equations of motion (7.10) map to themselves when Jµext = 0 and with the same energy-

momentum tensor Tµν . In section 7.4, it will be shown that eqs. (7.10) are essentially the

governing equations of one-form superfluid dynamics.

7.2 Magnetohydrodynamics

This section deals with the MHD regime of hot electromagnetic plasmas described in sec-

tion 7.1.2. The ideal order constitutive relations of these plasmas are essentially the same as

the constitutive relations of ordinary charged hydrodynamics, except that magnetic fields

can be arbitrary large, i.e. Bµ = O(1), and the electric fields are derivative suppressed,

i.e. Eµ = O(∂). Though many of the results that will be presented in this section already

appeared in [3], the details given here provide a cleaner derivation of these results and

extends the traditional treatment of MHD to include parity-violating terms.

7.2.1 Ideal magnetohydrodynamics

At ideal order, MHD is characterised by a hydrostatic free energy density of the form

N = P (T, µ,B2). This free energy is the most general at ideal order and makes no

assumptions on the strength of the coupling between electromagnetic degrees of freedom

and thermal degrees of freedom. Using the δB variations of the free arguments with respect

to the fields (2.5)

δBT =
T

2
uµuνδBgµν , δBµ =

µ

2
uµuνδBgµν + uµδBAµ ,

δBB
2 =

(
BµBν −B2Pµν − 2u(µεν)λρσBλuρEσ

)
δBgµν − 2εµνρσBρuσ∇νδBAµ , (7.12)

together with the zero-form version of eq. (2.23) (i.e. with bµν → Aµ), it is possible to

infer the respective constitutive relations, free energy, and entropy currents. These take

the form

Tµν = (ε+ P )uµuν + Pgµν +$|B|Bµν + 2$u(µεν)λρσB̂λuρEσ ,

Jµ = quµ −∇ν
(
$εµνρσB̂ρuσ

)
,
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Nµ =
P

T
uµ +$εµνρσB̂ρuσ

(
∂ν
µ

T
− 1

T
Eν

)
,

Sµ = suµ +∇ν
(
µ$

T
εµνρσB̂ρuσ

)
, (7.13)

where the thermodynamics can be expressed as

dP = sdT + qdµ− $

2|B|
dB2 , ε+ P = sT + qµ . (7.14)

Here $ is being defined as −2|B|∂P/∂B2 and will later be identified with the string chem-

ical potential in the dual higher-form language. Note that from eq. (2.23), the first order

terms appear in the ideal MHD constitutive relations but these can be ignored when focus-

ing on zero derivative order. These constitutive relations reduce to the simple model (7.5)

upon using P (T, µ,B2) = −B2/2 + p(T, µ).

The equations of motion (7.1)–(7.1c) at ideal order take the form

∇µTµν = F νρJρ =⇒ − uµ∇µε− (ε+ P )∇µuµ −$|B|Bµν∇µuν = O(∂2) ,

(ε+ P )Pµν
(

1

T
∂νT + uλ∇λuν

)
+ qPµν

(
T∂ν

µ

T
− Eν

)
+ ενραβuαBβJ

(1)
ρ = O(∂2) ,

Jµ + Jµext = 0 =⇒ q(T, µ,B2) = uµJ
µ
ext +O(∂) ,

PµνJ
ν
ext = O(∂) . (7.15)

where a component of the Bianchi identity (7.1b)

∇µBµ = Bµuν∇νuµ − εµνρσEµuν∂ρuσ , (7.16)

was used. In particular, note the appearance of one derivative corrections to the charge

current Jµ(1) in the transverse components to uµ of the energy-momentum conservation.

The transverse components of the Maxwell’s equations imply that the transverse compo-

nents of the external current sources Jµext must be derivative suppressed, as earlier adver-

tised in section 7.1.2. The component along the velocity, on the other hand, implies that

q(T, µ,B2) = uµJ
µ
ext onshell at ideal order. This equation can be formally solved for µ and

leads to the inference

µ = µ0(T,B2, uµJ
µ
ext) +O(∂) . (7.17)

Therefore, µ is not a true independent degree of freedom of the theory. At first order

in derivatives, it will be seen that this statement also holds true for electric fields. Thus

the magnetic fields are the only true dynamical degrees of freedom in the U(1) sector of

magnetohydrodynamics.

– 42 –



J
H
E
P
0
1
(
2
0
2
0
)
0
4
1

7.2.2 One derivative corrections

The ideal MHD theory described above can be extended to one derivative order in both the

hydrostatic and non-hydrostatic sectors. The most generic hydrostatic free energy density

at first order is given by

N =P +M1B
µ∂µ

B2

T 4
+M2ε

µνρσuµBν∂ρBσ

− M3

T
Bµ∂µT −M4ε

µνρσuµBν∂ρuσ + TM5B
µ∂µ

µ

T
+O(∂2) , (7.18)

where all the coefficients Mi (i = 1, . . . , 5) are functions of T , µ, and B2. It is possi-

ble to vary these first order contributions so as to obtain the respective contributions to

the constitutive relations, which are detailed in appendix A.1.2. The hydrostatic free en-

ergy (7.18) had been considered in [3]. However, it is noted here that due to the Bianchi

identity (7.1b), the term involving M1 is not independent and hence M1 can be set to zero.

This has led to an over-counting of independent hydrostatic coefficients in [3]. Neverthe-

less, for the purposes of comparison with earlier literature, a non-vanishing M1 coefficient

is considered here.

In turn, the non-hydrostatic corrections can be obtained as in previous sections. As

in earlier cases, the equations of motion allow to remove uµδBgµν and uµδBAµ from the

independent non-hydrostatic tensor structures. The most generic corrections can then be

written as

Tµνnhs = δFBµν + δT B̂µB̂ν + 2L(µB̂ν) + T µν ,

Jµnhs = δSB̂µ +Mµ , (7.19)

where the different components of the stress tensor and charge current can be written in

terms of matrices of transport coefficientsδFδT
δS

 = −T

ζ11 ζ12 χ̃1

ζ ′12 ζ22 χ̃2

χ̃′1 χ̃′2 σ‖




1
2B

µνδBgµν
1
2B̂

µB̂νδBgµν

B̂µδBAµ

 ,

(
Lµ

Mµ

)
= −T

(
η11 σ× η̃11 σ̃×

σ′× σ⊥ σ̃′× σ̃⊥

)
BµσB̂νδBgσν

BµσδBAσ
εµαβσuαB̂βB̂

νδBgσν

εµαβσuαB̂βδBAσ

 , (7.20)

T µν = −η22TBρ〈µBν〉σδBgρσ + η̃22Tε
ραβ〈µuαB̂βBν〉σδBgρσ . (7.21)

The 8 coefficients in blue are parity-violating terms whose existence had been identified

in [3] but were not studied in any detail.

7.2.3 Maxwell’s equations

In this section it is shown that µ and Eµ are not dynamical degrees of freedom in MHD.

Assembling all the contributions from the previous subsections, the most general charge
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current Jµ up to first order in derivatives can be written in the form

Jµ = quµ −∇ν
(
$εµνρσB̂ρuσ

)
+

(
Bλ∂λ

B2

T 4

∂M1

∂µ
+ ελνρσuλBν∂ρBσ

∂M2

∂µ

− 1

T
Bλ∂λT

∂M3

∂µ
− ελνρσuλBν∂ρuσ

∂M4

∂µ
+ TBλ∂λ

µ

T

∂M5

∂µ
− 1

T
∇λ
(
TM5B

λ
))

uµ

−
(
χ̃′1B̂

µBρσ + χ̃′2B̂
µB̂ρB̂σ + 2σ′×Bµ(ρB̂σ) + 2σ̃′×ε

µαβ(ρuαB̂βB̂
σ)
) T

2
δBgρσ

−
(
σ‖B̂

µB̂ν + σ⊥Bµν + σ̃⊥ε
µναβuαB̂β

)
TδBAν +O(∂2) . (7.22)

Inserting this current into Maxwell’s equations eq. (7.1a), the different components read

q(T, µ,B2) = uµJ
µ
ext −Bλ∂λ

B2

T 4

∂M1

∂µ
− ελνρσuλBν∂ρBσ

∂M2

∂µ

+
1

T
Bλ∂λT

∂M3

∂µ
−
(
∂M4

∂µ
+

$

|B|

)
Bµuν∂ρuσ

− TBλ∂λ
µ

T

∂M5

∂µ
+

1

T
∇λ
(
TM5B

λ
)

+O(∂2),

σ‖B̂
νδBAν =

1

2
EµνXµν −

(
χ̃′1Bρσ + χ̃′2B̂

ρB̂σ
) 1

2
δBgρσ +O(∂2) ,

(σ⊥Bµν + σ̃⊥Eµν) δBAν = EµσB̂νXσν − 2
(
σ′×Bµ(ρB̂σ)+σ̃′×Eµ(ρB̂σ)−$Eµ(ρuσ)

) 1

2
δBgρσ

+O(∂2) , (7.23)

where Eµν was defined according to Eµν = εµνρσuρB̂σ along with

Xµν = 2∂[µ

(
$B̂ν]

T

)
+
uλ

T
ελµνρJ

ρ
ext . (7.24)

Recalling that TδBAµ = T∂µ(µ/T ) − Eµ, these equations can be used to algebraically

determine µ and Eµ in MHD. Below, it is shown precisely how this can be accomplished.

Introducing Jµ(1), i.e. one-derivative corrections appearing in the charge current (7.22),

into the first order equations of motion (7.15) and eliminating PµνδBAν using eq. (7.23),

it is possible to derive the onshell relation

Pµ(ρuσ)δBgρσ = −
(

|B|
ε+ P +$|B|

)
Bµ[ρB̂σ]Xρσ +O(∂2) , (7.25)

which will be useful in solving for µ and Eµ. For the remainder of this subsection, it is

assumed that uµJ
µ
ext = O(∂) for simplicity, leading to all the components of the background

currents to be derivative suppressed. Under this assumption, eq. (7.23) can be solved for

µ and Eµ within the derivative expansion leading to

µ = µ0(T,B2) +
1

∂q/∂µ

[
uµJ

µ
ext −Bλ∂λ

B2

T 4

∂M1

∂µ
− ελνρσuλBν∂ρBσ

∂M2

∂µ

+
1

T
Bλ∂λT

∂M3

∂µ
−
(
∂M4

∂µ
+

$

|B|

)
ελνρσBλuν∂ρuσ − TBλ∂λ

µ

T

∂M5

∂µ

+
1

T
∇λ
(
TM5B

λ
)]

µ=µ0

+O(∂2) ,
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Eµ = TPµν∂ν
µ

T
− T

2σ‖
B̂µEρσXρσ +

T

σ‖
B̂µ
(
χ̃′1Bρσ + χ̃′2B̂

ρB̂σ
) 1

2
δBgρσ

− T
(

ε+ P

ε+ P +$|B|

)(
σ⊥

σ2
⊥ + σ̃2

⊥
EµρB̂σ +

σ̃⊥
σ2
⊥ + σ̃2

⊥
BµρB̂σ

)
Xρσ

− 2T

(
σ̃⊥σ

′
× − σ⊥σ̃′×
σ2
⊥ + σ̃2

⊥
Eµ(ρB̂σ) −

σ̃⊥σ̃
′
× + σ⊥σ

′
×

σ2
⊥ + σ̃2

⊥
Bµ(ρB̂σ)

)
1

2
δBgρσ +O(∂2) , (7.26)

where eq. (7.25) was used to derive the second equation above and µ0(T,B2) was defined

as the root of the equation

q(T, µ0(T,B2), B2) =
∂P (T, µ,B2)

∂µ

∣∣∣∣
µ=µ0(T,B2)

= 0 . (7.27)

Therefore, within the MHD derivative expansion, Maxwell’s equations can be used to

explicitly eliminate the chemical potential and the electric fields from the hydrodynamic

description. As it will be shown in section 7.3, this elimination is the backbone for recasting

MHD as the string fluid of section 5.

7.2.4 Kubo formulae and Onsager’s relations

Analogously to section 5.4, Kubo formulae can be obtained by perturbing around an

initial equilibrium configuration. In the context of MHD, the relevant operators are

Oa = {Tµν , Fµν}, whose one point functions are defined as

Tµν =
√
−g 〈Tµν〉 , Fµν =

√
−g 〈Fµν〉 . (7.28)

In order to obtain Kubo formulas in MHD, perturbations of the background metric gµν and

the external currents Jµext are performed. Thus, solving for the electric field as in (7.26) is

required, at least at the linearised level. The retarded Green’s functions, for small time-

dependent and spatially homogeneous perturbations δhλρ and δJµext are defined as in [3]

δTµν =
1

2
Gµν,λρTT (ω)δhλρ − iωGTF µν0λδJ

λ
ext ,

δFµν =
1

2
GFT µν

λρδhλρ − iωGFF µν,0λδJλext . (7.29)

Considering an equilibrium configuration with uµ = δµt , µ = µ0 = 0, and magnetic field

aligned in the z-direction with magnitude Bz = B0, it is straightforward to derive the

Kubo formulae

χ̃′1
σ||

sign(B0) = lim
ω→0

1

ω
Im Gtz,xxFT ,

χ̃′2
σ||

sign(B0) = lim
ω→0

1

ω
Im Gtz,zzFT ,

−
(

σ′×σ⊥

σ2
⊥ + σ̃2

+
σ̃′×σ̃

σ2
⊥ + σ̃2

)
sign(B0) = lim

ω→0

1

ω
Im Gxt,xzFT ,

−
(

σ̃′×σ⊥

σ2
⊥ + σ̃2

−
σ′×σ̃

σ2
⊥ + σ̃2

)
= lim

ω→0

1

ω
Im Gxt,yzFT ,
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− χ̃1

σ||
sign(B0) = lim

ω→0

1

ω
Im Gxx,tzTF ,

− χ̃2

σ||
sign(B0) = lim

ω→0

1

ω
Im Gzz,tzTF ,(

σ×σ⊥
σ2
⊥ + σ̃2

+
σ̃×σ̃

σ2
⊥ + σ̃2

)
sign(B0) = lim

ω→0

1

ω
Im Gxz,xtTF ,(

σ̃×σ⊥
σ2
⊥ + σ̃2

− σ×σ̃

σ2
⊥ + σ̃2

)
= lim

ω→0

1

ω
Im Gyz,xtTF ,

ζ22 −
χ̃2χ̃

′
2

σ||
= lim

ω→0

1

ω
Im Gzz,zzTT ,

ζ ′12 −
χ̃2χ̃

′
1

σ||
= lim

ω→0

1

ω
Im Gzz,iiTT ,

ζ12 −
χ̃1χ̃

′
2

σ||
= lim

ω→0

1

ω
Im Gii,zzTT ,

ζ11 −
χ̃1χ̃

′
1

σ||
= lim

ω→0

1

ω
Im Gii,iiTT ,

η11 −
σ⊥
(
σ×σ

′
× − σ̃×σ̃′×

)
+ σ̃

(
σ×σ̃

′
× + σ̃×σ

′
×
)

σ2
⊥ + σ̃2

= lim
ω→0

1

ω
Im Gzi,ziTT ,

η̃11 −
σ⊥
(
σ̃×σ

′
× + σ×σ̃

′
×
)

+ σ̃
(
σ̃×σ̃

′
× − σ×σ′×

)
σ2
⊥ + σ̃2

= lim
ω→0

1

ω
Im Gzi,zjTT (i 6= j) , (7.30)

while the remaining GFF correlators were given in [3]. In evaluating the above, the con-

tributions arising from the hydrostatic coefficients Mi were ignored and the assumption

ε+ P � $|B| was made for the sake of simplicity.

For the case at hand, if the microscopic theory has a discrete symmetry Θ, the On-

sager’s relations require that

GOaOb(ω,B0) = iaibGObOa(ω,ΘB0) , (7.31)

where ia is the eigenvalue of Oa under Θ. See details in appendix C. If Θ is simply time-

reversal, we find the constraints from Onsager’s relations to be

ζ12 = ζ ′12 , σ× = σ′× , σ̃× = σ̃′× , χ̃1 = χ̃′1 , χ̃2 = χ̃′2 , (7.32)

which in turn means that parity-violating MHD is characterised by 4 hydrostatic transport

coefficients and 14 non-hydrostatic transport coefficients. This is the exact same number

as for string fluids in section 5. In the next section, it will be shown how (7.30) can be

used to map to transport coefficients in string fluids.

7.3 Magnetohydrodynamics as string fluids

7.3.1 The algorithm of mapping

We now show that magnetohydrodynamics, as formulated above, can be equivalently for-

mulated as a string fluid discussed in section 5, when the external current Jµext is derivative
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suppressed. To begin with, note that after using Maxwell’s equations to eliminate µ and

Eµ in (7.26), the MHD constitutive relations can be schematically represented as

Tµν [uµ, T, Bµ, gµν , J
µ
ext] ,

Fµν [uµ, T, Bµ, gµν , J
µ
ext] = 2u[µEν][u

µ, T, Bµ, gµν , J
µ
ext]− εµνρσuρBσ ,

µ[uµ, T, Bµ, gµν , J
µ
ext] . (7.33)

They satisfy the adiabaticity equation eq. (7.2) with Jµ replaced with −Jµext. The dynam-

ical evolution of uµ and T is governed by the energy-momentum conservation (7.1c), while

the evolution of Bµ is governed by the Bianchi identity (7.1b). Note that the constitutive

relations for µ do not enter the dynamical equations and hence are not relevant for the

hydrodynamic description.

In order to establish a connection between MHD and string fluids, it is appropriate to

follow the insight of [20] and note that MHD admits the following two-form current

Jµν =
1

2
εµνρσFρσ , (7.34)

which is conserved due to the Bianchi identity (7.1b). Physically, the integration of this

current over any codimension-2 surface counts the number of magnetic fields lines crossing

a given area element. The absence of magnetic monopoles in Maxwell’s electromagnetism

implies that these magnetic field lines are conserved. Furthermore, since the external

current Jµext satisfies ∇µJµext = 0, it can be locally re-expressed as

Jµext =
1

6
εµνρσHνρσ , Hνρσ = 3∂[νbρσ] . (7.35)

In this language, the background charge current Jµext is traded for a two-form background

gauge field bµν , which admits a one-form gauge transformation bµν → bµν +2∂[µΛν]. In this

section, we assume that Jµext = O(∂), leading to bµν = O(1), which is sufficient for most

applications of MHD.23 Armed with the mappings (7.34) and (7.35), it can be verified that

the MHD dynamical equations (7.1b) and (7.1c) arrange themselves into

∇µTµν =
1

2
HνρσJρσ , ∇µJµν = 0 , (7.36)

while the constitutive relations (7.33) can now be represented as

Tµν [uµ, T, Bµ, gµν , bµν ] ,

Jµν [uµ, T, Bµ, gµν , bµν ] = 2u[µBν] + εµνρσuρEσ[uµ, T, Bµ, gµν , bµν ] . (7.37)

In eq. (7.37), the constitutive relations for µ have been ignored since, as stressed earlier,

they do not contribute to the dynamical equations. Eq. (7.36) and (7.37) are precisely

those encountered in the context of string fluids in section 5. Eq. (7.36) constitute the

23This assumption does not allow us to describe MHD with non-vanishing charge density q. However,

in most applications of MHD, like in solar physics, the plasma is assumed to be electrically neutral at the

hydrodynamical length scales [1].
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dynamical equations of one-form hydrodynamics given in eq. (2.6), while eq. (7.37) are the

respective constitutive relations upon identifying Bµ = ρ(T,$)hµ +O(∂).

In order to establish an exact equivalence between the two formulations, it is necessary

to ensure that the constraints that follow from the adiabaticity equation, or the second law

of thermodynamics, are the same in both the formulations. Consider the following map

between the free energy currents

Nµ
string = Nµ

MHD +
$

2T
εµνρσhνFρσ +

µ

T
Jµext +∇ν

(
µ$

T
εµνρσuρhσ

)
, (7.38)

where Nµ
string denotes the free energy current in string fluids and Nµ

MHD the free energy

current in MHD. The last term in eq. (7.38) has a trivially vanishing divergence and has

only been included for convenience. It is easily checked that

∇µNµ
string = ∇µNµ

MHD + Jµν∂µ

(
$hν
T

)
+ Jµext∂µ

µ

T
+ ∆

= ∇µNµ
MHD +

1

2
JµνδBbµν + JµextδBAµ + ∆

=
1

2
TµνδBgµν +

1

2
JµνδBbµν + ∆ , (7.39)

and thus we recover the string fluid adiabaticity equation (2.22). This establishes that

MHD with Jµext = O(∂) is entirely equivalent to one-form string fluids.

7.3.2 Mapping of transport coefficients up to first order

The above discussion established the map between MHD and string fluids in quite abstract

terms. However, the explicit mapping between the transport coefficients at first order

in derivatives is highly non-trivial. This is the purpose of this section. To begin with,

it is necessary to derive the exact map between the magnetic field Bµ in MHD and the

string fluid fields hµ and $ at first order in derivatives. As we have already shown below

eq. (7.37), at ideal order this is just Bµ = ρ(T,$)hµ + O(∂). The first order derivative

corrections to string fluids in section 5.3 together with (7.34) and the definition of magnetic

fields in (7.4) allow to determine

Bµ = ρhµ − hµ
[

1

6
εαβρσuαHβρσ

∂α

∂$
− αελνρσuλhν∂ρuσ + εαβρσuαhβ∂ρuσ

∂β

∂$

+hλ∂λT
∂β̃1

∂$
+ hλ∂λ

$

T

∂β̃2

∂$
−∇λ

(
β̃2h

λ
) 1

T
+ εαβρσuαhβ∂ρhσ

∂β̃3

∂$

]

− α∆µ
νε
νλρσuλ∂ρuσ +

β

$
∆µ

νε
νλρσuλ∂ρuσ −

β̃1

$
∆µν∂νT −

β̃2

$
∆µν∂ν

$

T

+ ∆µ
νε
νλρσ

(
T β̃3

$2
uλ∂ρ

$hσ
T

+
1

T
∇ρ

(
T β̃3

$
uλhσ

))
+O(∂2) . (7.40)

Due to our choice of frame in the non-hydrostatic sector of string fluids, note that the first

order corrections to Bµ arise only due to hydrostatic corrections. It is useful to note that

Xµν defined in eq. (7.24) maps to

Xµν = δBbµν +O(∂2) . (7.41)
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Substituting Bµ in the constitutive relations (7.37) allows us to determine the mapping

between transport coefficients. Consider first the hydrostatic sector of the two formulations.

It is useful to re-express eq. (7.38) as

Nµ
string = Nµ

MHD − β
µ

(
1

6
µελνρσuλHνρσ +

1

2
ελνρσ$uλhνFρσ + µ$ελνρσuλhν∂ρuσ

)
+ εµνρσuν

(
$hρδBAσ −

1

2
µδBbρσ + µ$hρu

λδBgλσ

)
. (7.42)

Given that all the transverse components are purely non-hydrostatic, it is straightforward

to derive the mapping for the hydrostatic free-energy density between the two formulations

Nstring = NMHD −
1

6
µελνρσuλHνρσ −$Jµνuµhν − µ$ελνρσuλhν∂ρuσ , (7.43)

where Nstring is given in eq. (5.15) and NMHD in (7.18). Introducing eq. (7.40) into NMHD

in (7.43), it is possible to infer at ideal order that

p(T,$) = P (T, µ0(T, ρ2), ρ2)− 2ρ2∂P (T, µ0(T, ρ2), ρ2)

∂ρ2
, (7.44)

where, on the right hand side, we understand that ρ = ρ(T,$). Given that ρ(T,$) =

∂p(T,$)/∂$ we can find that24

ρ =
∂

∂ρ2

[
P (T, µ0(T, ρ2), ρ2)− 2ρ2∂P (T, µ0(T, ρ2), ρ2)

∂ρ2

]
1

∂$(T, ρ2)/∂ρ2
, (7.46)

which can be solved by

$(T, ρ2) = −2ρ
∂P (T, µ0(T, ρ2), ρ2)

∂ρ2
, (7.47)

yielding the functional definition of $ in terms of the MHD thermodynamic potentials.

Extending the free-energy density mapping (7.43) to one derivative order leads to the

determination of the map between hydrostatic transport coefficients

α = µ0 ,

β = M4ρ+ µ0$ ,

β̃1 =
M3ρ

T
− 2ρ2

(
M1

T 4
+M5

∂µ0

∂ρ2

)(
∂ρ

∂T
+
$

T

∂ρ

∂$

)
+

4M1

T 5
ρ3 − TM5ρ

∂(µ0/T )

∂T
,

β̃2 = −2ρ2T

(
M1

T 4
+M5

∂µ0

∂ρ2

)
∂ρ

∂$
,

β̃3 = −M2ρ
2 , (7.48)

24The partial derivatives of $(T, ρ2) and ρ(T,$) are related by

∂$(T, ρ2)

∂T
= − ∂ρ(T,$)/∂T

∂ρ(T,$)/∂$
,
∂$(T, ρ2)

∂ρ2
=

1

2ρ

1

∂ρ(T,$)/∂$
. (7.45)
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where all the functions on the right hand side are evaluated at µ = µ0. Interestingly, the

string fluid transport coefficient α maps to the ideal order chemical potential solution µ0.

This implies that if string fluids are to describe MHD configurations at non-zero chemical

potential, the α term in (5.15) is required. This observation was lacking in all previous

studies [3, 20, 21]. Note also that the 5 MHD transport coefficients M1,2,3,4,5 map to just

4 string fluid transport coefficients β and β̃1,2,3. The reason is that, when working in a

regime where Jµext = O(∂), substituting µ = µ0(T,B2) + O(∂) in eq. (7.18) makes M5

linearly dependent on the other terms.

On the other hand, the mapping in the non-hydrostatic sector is slightly more involved.

When deriving the mapping (7.48) in the hydrostatic sector, it was inherently assumed that

the fluid variables T and uµ are the same in both the formulations. In the hydrostatic sector,

this assumption is well founded, as these hydrodynamical fields are fixed to the requirement

of uµ/T aligning along the timelike isometry of the background defining the equilibrium

state. However, in full generality, the fields T and uµ can admit a relative non-hydrostatic

redefinition between the two formulations. Since Tµνnhs in both the formulations is chosen

such that Tµνnhsuν = 0 (i.e. the constitutive relations were expressed in the Landau frame),

to find this relative redefinition it suffices to compare

TµνMHD,hs[u
µ → uµ + δuµ, T → T + δT ]uν = Tµνstring,hsuν +O(∂2) . (7.49)

After a straight-forward, yet involved, computation it can be inferred that the relative

change in the fluid velocity δuµ reads

δuµ = −α
s
hµ

1

2
ερσδBbρσ +

σ⊥
σ2
⊥ + σ̃2

⊥

$T 2s

(ε+ p)2
∆µρhσδBbρσ

− T$

(ε+ p)

(
σ̃⊥

σ2
⊥ + σ̃2

⊥

(
Ts

ε+ p

)
+
α

$

(
1− 2$ρ

ε+ p

))
εµρhσδBbρσ

+
2T$

ε+ p

(
σ̃⊥σ

′
× − σ⊥σ̃′×
σ2
⊥ + σ̃2

⊥
∆µ(ρhσ) +

σ̃⊥σ
′
× + σ⊥σ̃

′
×

σ2
⊥ + σ̃2

⊥
εµ(ρhσ)

)
1

2
δBgρσ , (7.50)

while the relative change in temperature vanishes, i.e. δT = 0. In fact, given the informed

choice of parametrisation of the hydrostatic sector in the two formulations, it turns out that

TµνMHD,hs[u
µ → uµ + δuµ, T → T + δT ] = Tµνstring,hs +O(∂2) , (7.51)

holds exactly without further non-hydrostatic corrections. For the benefit of inquisitive

readers, these details have been relegated to appendix A.2. The remaining step consists of

comparing Tµνnhs in the two formulations, along with Eµ in MHD to −1
2εµνρσu

νJρσ, taking

into account the potential redefinition in Eµ induced by (7.50). In particular, it is found

that the field redefinition of uµ non-trivially mixes Eµ and Bµ leading to a one derivative

shift in Eµ such that

Eµ → Eµ − |B|Eµνδuν +O(∂2) . (7.52)

Consequently, the comparison must be performed according to

Eµ − |B|Eµνδuν = −1

2
εµνρσu

νJρσ +O(∂2) ,

TµνMHD,nhs[Eµ → Eµ − |B|Eµνδuν ] = Tµνstring,nhs , (7.53)
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which leads to a straightforward derivation of the map for non-hydrostatic transport

coefficients

ζ⊥ = ζ11 −
χ̃1χ̃

′
1

σ‖
, ζ× = ζ12 −

χ̃1χ̃
′
2

σ‖
,

ζ ′× = ζ ′12 −
χ̃2χ̃

′
1

σ‖
, ζ‖ = ζ22 −

χ̃2χ̃
′
2

σ‖
,

κ̃1 =
χ̃1

σ‖
, κ̃2 =

χ̃2

σ‖
,

κ̃′1 = − χ̃
′
1

σ‖
, κ̃′2 = − χ̃

′
2

σ‖
, r‖ =

1

σ‖
,

η‖ = η11 −
σ⊥(σ×σ

′
× − σ̃×σ̃′×) + σ̃⊥(σ×σ̃

′
× + σ̃×σ

′
×)

σ2
⊥ + σ̃2

⊥
,

r⊥ =

(
sT

ε+ p

)2 σ⊥
σ2
⊥ + σ̃2

⊥
,

η̃‖ = η̃11 −
σ⊥(σ×σ̃

′
× + σ̃×σ

′
×)− σ̃⊥(σ×σ

′
× − σ̃×σ̃′×)

σ2
⊥ + σ̃2

⊥
,

r̃⊥ =

(
sT

ε+ p

)2( −σ̃⊥
σ2
⊥ + σ̃2

⊥
+

2αρ

sT

)
,

r× =
sT

ε+ p

−σ⊥σ̃× + σ̃⊥σ×
σ2
⊥ + σ̃2

⊥
, r′× =

sT

ε+ p

−σ⊥σ̃′× + σ̃⊥σ
′
×

σ2
⊥ + σ̃2

⊥
,

r̃× =
sT

ε+ p

σ⊥σ× + σ̃⊥σ̃×
σ2
⊥ + σ̃2

⊥
, r̃′× =

sT

ε+ p

σ⊥σ
′
× + σ̃⊥σ̃

′
×

σ2
⊥ + σ̃2

⊥
,

η⊥ = η22, η̃⊥ = η̃22 . (7.54)

This map expresses the fact that the that non-hydrostatic transport coefficients are quite

non-trivially related to each other. In addition, the map also embodies the mapping of

Onsager’s relations found in (5.25) and (7.32). In particular, given that the Onsager

relations (7.32) hold in MHD, the relations (5.25) are deduced from this map. Additionally,

under the assumptions of α = 0 and ε + P � $|B|, direct comparison of the Kubo

formulae (7.30) in MHD with the Kubo formulae in string fluids (5.23) by means of (7.34)

leads to a particular case of the map derived above, as expected. The results in this section

conclude that MHD with Jµext = O(∂) is completely equivalent to the hydrodynamic theory

of string fluids formulated in section 5.

7.4 Bound-charge plasma and one-form superfluids

In this section, we formulate a new hydrodynamic theory describing bound-charge plasmas

(i.e. plasmas with only bound charges and no free charge carriers) in the conventional

language. We then argue how this theory can be equivalently formulated in terms of

one-form superfluids. Because the full details of one-derivative corrections in one-form

superfluid dynamics are quite involved, we focus on the ideal sector. However, as an

illustration of the robustness of this formulation, we provide the first-order corrections in
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the electric limit of one-form superfluids discussed in section 6, and show that is maps to

a certain magnetically dominated sector of bound-charge plasmas.

7.4.1 Ideal bound-charge plasma

In order to obtain the constitutive relations for a bound-charge plasma, it should be noted

that the adiabaticity equation in eq. (7.10) is precisely the same in form as eq. (2.22) with

δBbµν = δBξµν replaced with δBFµν and Jµν replaced with Mµν (defined below eq. (7.9)).

Note, however, that this naive identification is only true at the level of the adiabatic-

ity equation. It does not hold true at the level of equations of motion because Mµν is

not conserved. A better, albeit slightly non-trivial, relation to one-form superfluids will

be proposed in the next subsection. Regardless, this naive identification can be used to

write down the constitutive relations of bound charge plasmas. At ideal order, following

section 4.1.2, we find that

Tµν = ε uµuν +
(
P − αBBB2 − αEB(E ·B)

)
Pµν − αEEEµEν

+ αBB

(
BµBν + 2u(µεν)ρστuρBσEτ

)
,

Mµν = −2u[µ
(
αEEE

ν] + αEBB
ν]
)
− εµνρσuρ (αBBBσ + αEBEσ) ,

Nµ =
P

T
uµ ,

Sµ = Nµ − βνTµν +
1

T
EνM

µν = suµ , (7.55)

where P = P (T,E2, B2, E ·B), while the other thermodynamic functions were defined via

dP = s dT +
1

2
αEEdE2 +

1

2
αBBdB2 + αEBd(E ·B) ,

ε+ P = s T + αEEE
2 + αEB(E ·B) . (7.56)

P , ε, and s are identified as the thermodynamic pressure, energy, and entropy density of

the plasma. On the other hand, the coefficients αEE , αEB, and αBB are known as electro-

magnetic susceptibilities of the plasma. These thermodynamic relations and constitutive

relations have been derived earlier in [38], though in a slightly different way. In the special

case of an ideal fluid minimally coupled to electromagnetic fields in eq. (7.5), one chooses

P (T,E2, B2, E ·B) = (E2 −B2)/2 + p(T ), leading to αEE = 1, αBB = −1 and αEB = 0.

It is also possible to work out the one-derivative corrections but they can be trivially

read out from section 4.1.3. In particular, there are 166 first order transport coefficients,

hinting towards the fact that one-form superfluids and bound-charge plasmas are exactly

equivalent theories.

7.4.2 Reinterpretation as one-form superfluids

In deriving the one-form superfluid constitutive relations above, we used the naive similarity

between the adiabaticity equations of bound-charge plasmas under the identification ξµν →
Fµν and Jµν →Mµν . However, as noted earlier, this identification does not follow through
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to the dynamics of the system. In order to get the correct dynamics, we propose the

mapping with the respective Hodge duals

Jµν =
1

2
εµνρσFρσ , ξµν =

1

2
εµνρσM

ρσ . (7.57)

This is a non-trivial mapping because, in bound-charge plasmas, Fµν is being treated as

a constituent field and the constitutive relations are expressed in terms of Mµν , while in

one-form superfluids ξµν is treated as a constituent field and the constitutive relations are

expressed in terms of Jµν . Nonetheless, it is possible to show that under this identification,

the defining equations of bound-charge plasmas map to those of a one-form superfluid,

provided the following map of background fields

Jµext =
1

6
εµνρσHνρσ , (7.58)

and the map of the free-energy current

Nµ
1SF = Nµ

BCP −
1

2
βµMρσFρσ . (7.59)

It is worth noting that this is precisely the self-duality operation of one-form superfluid

dynamics discussed in section 4.3, except that Hµνρ is no longer required to vanish. It

instead maps to the background currents in bound-charge plasmas.

Since the algebraic operation of the self-duality is the same as the map proposed above,

it is possible to directly read out the map between fields and transport coefficients

ζµ = αBBBµ + αEBEµ , ζ̄µ = αEEEµ + αEBBµ , (7.60)

and

q = − αEE
αEEαBB − α2

EB

, q̄ = − αBB
αEEαBB − α2

EB

, q× =
αEB

αEEαBB − α2
EB

,

P1SF = PBCP − αEEE2 − αBBB2 − 2αEB(E ·B) . (7.61)

Note that this map is only well-defined if the determinant of magnetic susceptibilities is

non-zero, that is

αEEαBB − α2
EB =

1

qq̄ − q2
×
6= 0 . (7.62)

In particular, as outlined in section 5.2.1, in the string fluid limit of one-form superfluids,

the coefficients q̄ and q× are zero, leading to a violation of this condition. Therefore, they

do not map to a bound-charge plasma, but are instead dual to magnetohydrodynamics as

discussed in section 7.3.

7.4.3 Magnetically dominated bound-charge plasma

As an interesting case, consider the regime of bound-charge plasmas where the electric fields

are derivative suppressed. The reason for focusing on this case is because of its qualitative
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similarity to magnetohydrodynamics. Expanding eq. (7.55) to one-derivative order we find

that

Tµν = ε uµuν + P Pµν + E ·B
[(
T
∂αEB
∂T

)
uµuν − 2B2∂αEB

∂B2
Bµν

]
+ αBB

(
−B2Bµν + 2u(µεν)ρστuρBσEτ

)
+O(∂2) ,

Mµν = −αBBεµνρσuρBσ − 2E ·B ∂αEB
∂B2

εµνρσuρBσ − 2αEB u
[µBν] − αEBεµνρσuρEσ

− 2u[µ
(
αEEE

ν] + α′EBB
ν]E ·B

)
+O(∂2) ,

Nµ =
P

T
uµ +

αEB
T

E ·B uµ +O(∂2) . (7.63)

All the transport coefficients appearing here are functions of T and B2 and satisfy the

thermodynamics

dP = sdT +
1

2
αBBdB2 , ε+ P = Ts . (7.64)

In writing these, the ideal superfluid pressure was expanded according to

P (T,E2, B2, E ·B) = P + αEBE ·B +
1

2

(
α′EBBµBν + αEEPµν

)
EµEν +O(∂3) . (7.65)

Note that there are order-mixing terms coupled to αEE and α′EB in eq. (7.63), high-

lighted in blue, arising from the second order free-energy density affecting the one-derivative

constitutive relations. It is possible to add more such terms by introducing a term like SµEµ
in N such that Sµ includes all the possible one-derivative hydrostatic structures barring

Eµ. Generically, such order-mixing terms only give contributions to the polarisation tensor

Mµν
hs,order-mixing = −2u[µ

(
α′EBB

ν]E ·B + αEEE
ν] + Sν]

)
. (7.66)

Including the explicitly one-derivative terms, it is further possible to write down 4 hydro-

static derivative corrections, namely

N =P + αEBE ·B +
1

2

(
α′EBBµBν + αEEPµν

)
EµEν +RµEµ

+M1B
µ∂µ

B2

T 4
+M2ε

µνρσuµBν∂ρBσ −
M3

T
Bµ∂µT −M4ε

µνρσuµBν∂ρuσ . (7.67)

The contributions from the Mi terms to the constitutive relations have been recorded in

appendix A.1.2. This completes the hydrostatic sector.

For the non-hydrostatic terms, we express the constitutive relations as

Tµνnhs = δE uµuν + δFBµν + δT B̂µB̂ν + 2L(µB̂ν) + 2K(µuν) + T µν ,

Mµν
nhs = 2δR u[µB̂ν] + 2M[µB̂ν] + 2N [µuν] + δS Eµν . (7.68)

It is possible to use the redefinition freedom in uµ and T to set δE and Kµ to zero. The

residual terms can be expanded according to
δR
δF
δT
δS

 = −T
2


τ1 τ2 τ3 τ4

τ ′2 ζ11 ζ12 χ̃1

τ ′3 ζ
′
12 ζ22 χ̃2

τ ′4 χ̃′1 χ̃′2 σ‖




2uµB̂νδBFµν
BµνδBgµν
B̂µB̂νδBgµν
EµνδBFµν

 ,
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N µ

Lµ

Mµ

 = −T

τ5 τ6 τ7 τ8 τ9 τ10

τ ′6 η11 σ× τ ′9 η̃11 σ̃×
τ ′7 σ

′
× σ⊥ τ ′10 σ̃

′
× σ̃⊥




BµσuνδBFσν
BµσB̂νδBgσν
BµσB̂νδBFσν
EµσuνδBFσν
EµσhνδBgσν
EµσhνδBbσν


,

T µν = −η22TBρ〈µBν〉σδBgρσ + η̃22TEρ〈µBν〉σδBgρσ . (7.69)

The blue terms have been considered here in order to complete the quadratic form. How-

ever, they are actually second order contributions to the constitutive relations. This mixing

of derivative orders in positivity of the quadratic form is a manifestation of the order mixing

considerations explained in section 6.

Having discussed the one-derivative corrections to a bound-charge plasma in the mag-

netically dominated limit, we now establish a map between these and one-form superfluids.

Identifying Fµν = −1
2εµνρσJ

ρσ at ideal order one can trivially find that

ζµ = αBBB
µ +O(∂) , ζ̄µ = αEBB

µ +O(∂) . (7.70)

Thus, on the one-form superfluid side, a linear combination of ζµ and ζ̄µ is derivative

suppressed. One such limit was studied in section 6, namely the electric limit. In order to

map to this limit, it is necessary to set αEB(T,B2) = 0. Having done that, it is possible

to show that the theory is exactly equivalent to the electric limit of one-form superfluids.

Suppressing the details, the following map is found in the hydrostatic sector

p(T,$) = P (T, ρ2) +$ρ ,

q× = 0 , q̄ = − 1

αEE
, q′× = − 1

$2

(
1

α′EBρ
2 + αEE

− 1

αEE

)
, (7.71a)

together with the order mixing vectors

Rµ =

(
hµhν

α′EBρ
2 + αEE

+
∆µν

αEE

)
Sν , (7.71b)

and the pure first-order coefficients

β = M4ρ , β̃1 = −
(

2M1ρ
2

T 4

∂ρ

∂T
+

2M1ρ
2$

T 5

∂ρ

∂$
− 4M1

T 5
ρ3 − M3ρ

T

)
,

β̃2 = −2M1ρ
2

T 3

∂ρ

∂$
, β̃3 = −M2ρ

2 . (7.71c)

Here ρ = $q = |B|, hµ = −ζµ/$ = Bµ/|B| and

$ = −2ρ
P (T, ρ2)

∂ρ2
. (7.72)

For the first-order terms in the non-hydrostatic sector, the following trivial map is obtained

for the energy-momentum tensor

ζ⊥ = ζ11 , ζ‖ = ζ22 , ζ× = ζ12 , ζ ′× = ζ ′12 ,

η‖ = η11 , η̃‖ = η̃11 , η⊥ = η22 , η̃⊥ = η̃22 , (7.73a)
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while for the polarisation tensor we have

τ2 = (αEE + α′EBB
2)κ̃′1 , τ3 = (αEE + α′EBB

2)κ̃′2 , τ6 = αEE r̃
′
× , τ9 = −αEEr′× ,

χ̃′1 = − λ2

δρ/δ$
, χ̃′2 = − λ3

δρ/δ$
, σ′× =

$

ρ
λ9 , σ̃′× = −$

ρ
λ6 .

(7.73b)

Note that the first order terms in the polarisation tensor appear at second order in the

charge current. Hence, if we were interested in only the one-derivative corrections to the

charge current, as in MHD, these terms can be ignored. Taking this into account, at

first order in derivatives there are a total of 8 transport coefficients in the non-hydrostatic

sector, given in (7.73a), out of which the Onsager’s relation set ζ12 = ζ ′12. This exactly

matches the number of transport coefficients found in MHD in section 7.2, provided that

the current of free charges is removed by setting κ̃1 = κ̃′1 = κ̃2 = κ̃′2 = 0, r|| = r⊥ = r̃⊥ = 0,

and r̃× = r̃′× = r× = r′× = 0.

8 Outlook

This paper has dealt with the formulation of new hydrodynamic theories with generalised

global symmetries capable of describing different hydrodynamic regimes of hot electromag-

netism. The precise correspondence between these two classes of theories also required the

formulation and extension of hydrodynamic theories with dynamical gauge fields. This

included the extension of MHD to the parity-violating sector in section 7.2 and a new

effective theory that describes the hydrodynamic regime of non-conducting plasmas (i.e.

plasmas without free charge carriers) in section 7.4. Though four out of five hydrodynamic

theories that were formulated in this work can be seen as different limits of one theory, the

explicit construction of each of them actually required a case-by-case analysis.

The connections between hydrodynamics with generalised global symmetries and hot

electromagnetism were made in the sector of the theory where the U(1) one-form symmetry

is partially or entirely spontaneously broken. It was proven that the theory of one-form

superfluids in the electric limit in section 6, in which the one-form symmetry is completely

broken, is equivalent to a theory of magnetically dominated non-conducting plasmas with

bound charges in section 7.4. It was also proven that a theory of one-form superfluids

in the string fluid limit as in section 5, in which the U(1) one-form symmetry is only

partially broken along uµ, is exactly equivalent to MHD with sub-leading external currents

(see section 7.2). This equivalence has thus shown that the U(1) one-form symmetry is

spontaneously broken in these two hydrodynamic regimes of hot plasmas.

These two theories described above were focused on the magnetic dominated phase

of hot electromagnetism in which the magnetic fields can be arbitrary and the electric

fields are weak. The opposite regime, that of electrohydrodynamics, in which the hydrody-

namics of plasmas is electrically dominated, is still unexplored but could have interesting

applications. This type of theories will also be described by one-form superfluids of sec-

tion 4 in a different regime or specific limits of one-form superfluids. In certain cases, the

theories describing these regimes will be directly related to the theories developed here
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due to electromagnetic dualities or variations thereof, as discussed in section 4.2. This

suggests that the connections depicted in figure 1 between one-form (super)fluids and hot

electromagnetism admit many other unexplored regimes and intricate relations between

them. It would be interesting to understand this broader diagram more precisely by, for

instance, classifying all the different hydrodynamic regimes of hot electromagnetism and

to investigate whether fluids with generalised global symmetries can actually provide dual

formulations for all these different hydrodynamic regimes.

The results of section 5, together with the map given in 7.3, provide a formulation

of MHD entirely in terms of conservation laws, including all possible dissipative effects.

This has the potential to aid numerical simulations of MHD, as numerical codes are better

suited for working with conservation equations instead of dynamical Maxwell equations [27].

As such, the work we have presented here has the potential of aiding progress in the

astrophysical context, not only by allowing for numerical studies of dissipative effects in

accretion disk physics but also by providing the necessary and sufficient conditions (see

section 5) for having equilibrium solutions (without dissipation), which serve as starting

points in numerical simulations. In particular, besides providing a time-like Killing vector

field, one must solve the no-monopole constraint (5.13) in order to have an equilibrium

solution for a scalar Goldstone ϕ (magnetic scalar potential). This has been used in [24]

in order to obtain a new solution of a slowly rotating magnetised star but many other

possibilities, such as new accretion disk solutions, are yet to be explored. We also expect

this formulation to be useful in the study of stability properties of accretion disk solutions

and in probing mechanisms for energy transport with analytic control. We intend to pursue

some of these directions elsewhere.

Related to the exploration of the scope of hydrodynamics with generalised global sym-

metries and its connections with electromagnetism, it was noted throughout this paper

that the traditional treatment of MHD, where the electromagnetic photon is incorporated

as a dynamical field in the hydrodynamic description, has so far been formulated in greater

generality than its counterpart as the string fluid of section 5. The traditional MHD formu-

lation given in section 7.2, extending that of [3], allows for the description of hot plasmas

that are not electrically neutral at hydrodynamic length scales, i.e. it is possible to consider

a situation in which uµJ
µ
ext = O(1). It may be the case that the string fluid formulation

of section 5 can be generalised in order to incorporate the description of non-electrically

neutral plasmas. For instance, treating some of the components of Hµνλ as O(1) instead of

O(∂) may provide the required generalisation. However, at the present moment, it is not

clear whether or not such a formulation exists and whether it would be useful. Nevertheless,

we plan on returning to this issue in the future.

A theory of ordinary one-form fluids has also been developed in section 3. This theory,

which is rather different from the theory of string fluids of section 5, has unbroken one-

form symmetry and had not been considered previously in the literature. It is suggestive to

speculate that this effective description could describe yet another hydrodynamic regime

of hot plasmas in which the U(1) one-form symmetry is unbroken. A back of the envelope

calculation suggests that one-form fluids in the unbroken phase do not describe MHD with

weak magnetic fields, as could have been naively expected. It would be interesting to pursue
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this direction further and understand whether one-form fluids could find applications in

other phases of matter.

Fluid/gravity dualities have been used to describe earlier versions of string fluids (with-

out the Goldstone mode ϕ) both in the context of Anti-de Sitter black branes charged

under a two-form gauge field [37] and in the context of asymptotically flat supergravity

black branes, obtained by a series of duality transformations [39, 40]. Pursuing this line of

research further, it would be extremely interesting to construct gravity duals to both the

string fluids of section 5, explicitly understanding what ϕ relates to in the gravity dual,

and to the one-form superfluids of section 4, identifying ϕµ in the gravity theory. The

analogous fluid/gravity considerations in the case of zero-form superfluids [4, 41] will be

useful. It is likely that gravity duals to string fluids, as formulated in section 5, will involve

black branes charged under a two-form gauge field and with scalar hair.

The long wavelength perturbations of black branes in supergravity are governed by

effective fluid theories with multiple higher-form currents [42]. Starting with the work

of [22], it would be interesting to develop higher-form superfluid theories that could be used

to study the stability of these gravitational solutions and to aid in finding new stationary

black hole solutions via hydrostatic effective actions for the Goldstone modes.

Finally, it should be mentioned that the tools developed here and the viewpoint ex-

pressed has repercussions to other hydrodynamic theories with generalised global symme-

tries such as theories of viscoelasticity [23] and with weakly broken symmetries [25]. In

particular, it is likely that some of these theories require the introduction of the vector

Goldstone mode ϕµ in order to define a hydrostatic effective action. We leave this line of

inquire to future work.

Acknowledgments

We would like to thank J. Bhattacharya, J. Hernandez, P. Kovtun, P. Glorioso and specially

N. Iqbal for various helpful discussions. We would also like to thank an anonymous referee

for useful comments to this manuscript. JA is partly supported by the Netherlands Or-

ganization for Scientific Research (NWO). AJ would like to thank Perimeter Institute and

Durham University, where part of this project was done, for hospitality. AJ is supported

by the NSERC Discovery Grant program of Canada.

A Calculational details

A.1 Hydrostatic corrections

In this appendix, the explicit expressions for the first order hydrostatic corrections to

various hydrodynamic systems studied in this work are derived. Along with being of

inherent phenomenological relevance, these corrections are important when comparing the

constitutive relations between one-form superfluids and hot electromagnetism.
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A.1.1 String fluids and electric limit of one-form superfluids

Using the free energy density for string fluids in (5.15), performing a δB variation of each

of the terms and using eq. (2.23), it is possible to work out their effect on the hydrostatic

constitutive relations. It is useful to parametrise these corrections as

Tµνhs = (ε+ p)uµuν + p gµν −$ρhµhν + Tµνhs,α + Tµνhs,β + Tµν
hs,β̃1

+ Tµν
hs,β̃2

+ Tµν
hs,β̃3

+O(∂2) ,

Jµνhs = 2ρ u[µhν] + Jµνhs,α + Jµνhs,β + Jµν
hs,β̃1

+ Jµν
hs,β̃2

+ Jµν
hs,β̃3

+O(∂2) ,

Nµ
hs =

p

T
uµ +Nµ

hs,α +Nµ
hs,β +Nµ

hs,β̃1
+Nµ

hs,β̃2
+Nµ

hs,β̃3
+O(∂2) , (A.1)

where all the explicit terms are given below, specifically

Tµνhs,α = −1

6
εαβρσuαHβρσ

[(
∂(Tα)

∂T
+$

∂α

∂$

)
uµuν −$ ∂α

∂$
hµhν

]
− α

3
u(µεν)λρσHλρσ ,

Jµνhs,α = −1

3
εµνρσuµHνρσ

∂α

∂$
u[µhν] +∇σ (αεµνρσuρ) ,

Nµ
hs,α =

α

6T
εµνρσHνρσ − αεµνρσuν∂ρ

(
$hσ
T

)
,

Tµνhs,β = −εαβρσuαhβ∂ρuσ
[(

1

T 2

∂(T 3β)

∂T
+$2∂(β/$)

∂$

)
uµuν −$2∂(β/$)

∂$
hµhν

]
− 2u(µεν)λρσ

(
Tβhλ∂ρ

uσ
T

+
1

T
∇ρ (Tβhλuσ)

)
,

Jµνhs,β = −εαβρσuαhβ∂ρuσ2$
∂(β/$)

∂$
u[µhν] + 2

β

$
u[µεν]λρσuλ∂ρuσ ,

Nµ
hs,β =

β

T 2
εµνρσhν∂ρ(Tuσ) ,

Tµν
hs,β̃1

= −hλ∂λT

[(
∂(T β̃1)

∂T
+$2∂(β̃1/$)

∂$

)
uµuν −$2∂(β̃1/$)

∂$
hµhν

]
− β̃1h

λ∂λTg
µν + 2β̃1h

(µ∇ν)T + T∇λ
(
β̃1h

λ
)
uµuν ,

Jµν
hs,β̃1

= −hλ∂λT2$
∂(β̃1/$)

∂$
u[µhν] − 2

β̃1

$
u[µ∇ν]T ,

Nµ

hs,β̃1
= −2β̃1

T
u[µhλ]∂λT ,

Tµν
hs,β̃2

= −hλ∂λ
$

T

[(
∂(T β̃2)

∂T
+$2∂(β̃2/$)

∂$

)
uµuν −$2∂(β̃2/$)

∂$
hµhν

]
− β̃2h

λ∂λ
$

T
gµν + 2β̃2h

(µ∇ν)$

T
−∇λ

(
β̃2h

λ
) $
T
hµhν ,

Jµν
hs,β̃2

= −hλ∂λ
$

T
2$

∂(β̃2/$)

∂$
u[µhν] − 2

β̃2

$
u[µ∇ν]$

T
+ 2∇λ

(
β̃2h

λ
) 1

T
u[µhν] ,

Nµ

hs,β̃2
= −2β̃2

T
u[µhλ]∂λ

$

T
,
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Tµν
hs,β̃3

= −εαβρσuαhβ∂ρhσ

[(
1

T 2

∂(T 3β̃3)

∂T
+$3∂(β̃3/$

2)

∂$

)
uµuν −$3∂(β̃3/$

2)

∂$
hµhν

]
− 2β̃3u

(µεν)λρσhλ∂ρhσ ,

Jµν
hs,β̃3

= −εαβρσuαhβ∂ρhσ2$2∂(β̃3/$
2)

∂$
u[µhν]

+ 2u[µεν]λρσ

(
T β̃3

$2
uλ∂ρ

$hσ
T

+
1

T
∇ρ

(
T β̃3

$
uλhσ

))
,

Nµ

hs,β̃3
=
β̃3

T
εµνρσuλhν∂ρhσ . (A.2)

The hydrostatic corrections in the electric limit of one-form superfluids are obtained

from the respective hydrostatic free energy density given in eq. (6.13). The contributions

from all terms except β and β̃i have already been discussed in section 6.3.1. The contribu-

tion from the remaining terms is precisely the same as in eq. (A.2) for string fluids.

A.1.2 Magnetohydrodynamics and magnetically dominated bound-charge

plasma

Using the MHD free energy density (7.18), performing the relevant variations and ignor-

ing certain second order contributions to the energy-momentum tensor, the constitutive

relations are the sum of the following contributions

Tµνhs,M1
=

[(
T
∂M1

∂T
+ µ

∂M1

∂µ

)
uµuν − 2B2∂M1

∂B2
Bµν

]
Bλ∂λ

B2

T 4

+ 2M1u
λ∂λ

B2

T 4
u(µBν) −M1B

λ∂λ
B2

T 4
uµuν +

2B2

T 4
∇λ
(
M1B

λ
)

(Bµν + 2uµuν) ,

Mµν
hs,M1

= −2|B|Eµν ∂M1

∂B2
Bλ∂λ

B2

T 4
−M1ε

µνρσuρ∂σ
B2

T 4
+

2|B|
T 4
∇λ
(
M1B

λ
)
Eµν ,

Jµhs,M1
= uµBλ∂λ

B2

T 4

∂M1

∂µ
+∇νMµν

hs,M1
,

Nµ
hs,M1

=
2M1

T
u[µBν]∂ν

B2

T 4
,

Tµνhs,M2
=

[(
1

T 2

∂(T 3M2)

∂T
+ µ

∂M2

∂µ

)
uµuν − 2B2∂M2

∂B2
Bµν

]
εαβρσuαBβ∂ρBσ

+ 2u(µεν)λρσM2Bλ∂ρBσ

− εαβρσ
(
TM2uα∂ρ

Bβ
T

+
1

T
∇ρ (TM2uαBβ)

)(
2B(µP ν)

σ −Bσ(Pµν + uµuν)
)
,

Mµν
hs,M2

= −2|B|Eµν ∂M2

∂B2
ελτρσuλBτ∂ρBσ + εµνλτuλε

abρ
τ (M2ua∂ρBb +∇ρ (M2uaBb)) ,

Jµhs,M2
= uµελνρσuλBν∂ρBσ

∂M2

∂µ
+∇νMµν

hs,M2
,

Nµ
hs,M2

= −M2

T
εµνρσBν∂ρBσ ,
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Tµνhs,M3
= −

[(
T
∂(M3/T )

∂T
+
µ

T

∂M3

∂µ

)
uµuν − 2

B2

T

∂M3

∂B2
Bµν

]
Bλ∂λT

− 2
M3

T
uλ∂λTu

(µBν) +
M3

T
Bλ∂λTu

µuν + T∇λ
(
M3

T
Bλ

)
uµuν ,

Mµν
hs,M3

= 2|B|Eµν ∂M3

∂B2

1

T
Bλ∂λT +

M3

T
εµνρσuρ∂σT ,

Jµhs,M3
= − 1

T
uµBλ∂λT

∂M3

∂µ
+∇νMµν

hs,M3
,

Nµ
hs,M3

= −2M3

T 2
u[µBν]∂νT ,

Tµνhs,M4
= −

[(
1

T 2

∂(T 3M4

∂T
+ µ

∂M4

∂µ

)
uµuν − 2B2∂M4

∂B2
Bµν

]
εαβρσuαBβ∂ρuσ

+ εβαρσM4uα∂ρuσ

(
2B(µP ν)

β −Bβ(Pµν + uµuν)
)

− 2u(µεν)λρσ

(
TM4Bλ∂ρ

uσ
T

+
1

T
∇ρ (TM4uσBλ)

)
,

Mµν
hs,M4

= 2|B|Eµν ∂M4

∂B2
ελτρσuλBτ∂ρuσ + 2M4P

µρP νσ∂[ρuσ] ,

Jµhs,M4
= −uµελνρσuλBν∂ρuσ

∂M4

∂µ
+∇νMµν

hs,M4
,

Nµ
hs,M4

=
M4

T 2
εµνρσBν∂ρ(Tuσ) ,

Tµνhs,M5
=

[(
T
∂(TM5)

∂T
+ Tµ

∂M5

∂µ

)
uµuν − 2TB2∂M5

∂B2
Bµν

]
Bλ∂λ

µ

T

+ 2TM5u
λ∂λ

µ

T
u(µBν) − TM5B

λ∂λ
µ

T
uµuν ,

Mµν
hs,M5

= −2|B|Eµν ∂M5

∂B2
TBλ∂λ

µ

T
− TM5ε

µνρσuρ∂σ
µ

T
,

Jµhs,M5
= TuµBλ∂λ

µ

T

∂M5

∂µ
− 1

T
uµ∇λ

(
TM5B

λ
)

+∇νMµν
hs,M5

,

Nµ
hs,M5

= 2M5u
[µBν]∂ν

µ

T
. (A.3)

In the case of magnetically dominated bound-charge plasmas with the hydrostatic free

energy density (7.67), the contributions from M1,2,3,4 to the respective hydrostatic consti-

tutive relations are just given in terms of the MHD expressions in eq. (A.3), except that

the transport coefficients are taken to be independent of µ.

A.2 Mapping MHD to string fluids

In this appendix the details of the mapping between MHD and string fluid constitutive

relations at first order in derivatives given in section 7.3.2 are provided.

A.2.1 Eliminating chemical potential and electric field

To begin with, we take the hydrostatic energy-momentum tensor for MHD from ap-

pendix A.1.2 and introduce it in the solutions for µ for Eµ given in eq. (7.26) coming from
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Maxwell’s equations. These are described in terms of 6 transport coefficients P (T, µ,B2)

and M1,2,3,4,5(T, µ,B2). We expand P (T, µ,B2) around µ = µ0(T,B2) up to second order

in derivatives

P (T, µ,B2) = P0(T,B2) +
1

2
P2(T,B2)

(
µ− µ0(T,B2)

)2
+O(∂3) . (A.4)

Here we have used the defining relation of µ0 from eq. (7.27). Representing the µ solution

in eq. (7.26) as µ = µ0 + δµ, up to the first order in derivatives, we can work out

P (T, µ,B2) = P0(T,B2) +O(∂2) ,

$(T, µ,B2) = −2|B|∂P0(T,B2)

∂B2
+ 2|B|P2(T,B2)

∂µ0(T,B2)

∂B2
δµ+O(∂2) , (A.5)

ε(T, µ,B2) = T
∂P0(T,B2)

∂T
− P0(T,B2)− T 2 ∂

∂T

(
µ0(T,B2)

T

)
P2(T,B2)δµ+O(∂2) .

In an analogous manner, we can expand M1,2,3,4,5(T, µ,B2) up to the first order in

derivatives

Mi(T, µ,B
2) = Mi,0(T,B2) +Mi,1(T,B2)

(
µ− µ0(T,B2)

)
+O(∂2) , (A.6)

which after eliminating µ leads to

Mi(T, µ,B
2) = Mi,0(T,B2) +O(∂) ,

∂Mi(T, µ,B
2)

∂T
=
∂Mi,0(T,B2)

∂T
−Mi,1(T,B2)

∂µ0(T,B2)

∂T
+O(∂) ,

∂Mi(T, µ,B
2)

∂B2
=
∂Mi,0(T,B2)

∂B2
−Mi,1(T,B2)

∂µ0(T,B2)

∂B2
+O(∂) ,

∂Mi(T, µ,B
2)

∂µ
= Mi,1(T,B2) +O(∂) . (A.7)

Schematically, splitting the first order hydrostatic contributions to the MHD energy-

momentum tensor as Tµνhs,Mi
= Tµνhs,Mi,0

+ Tµνhs,Mi,1
and plugging in the µ and Eµ solution

from eq. (7.26), after a straight-forward computation, we can show that

Tµνhs,P +
∑
i

Tµνhs,Mi,1

=

(
T
∂P0

∂T

)
uµuν + P0g

µν − 2B2 ∂P0

∂B2
Bµν + 4T |B| ∂P0

∂B2
u(µEν)σ∂σ

µ0

T

+

(
2B2 ∂µ0

∂B2
Bµν − T 2∂(µ0/T )

∂T
uµuν

)
×
[
uµJ

µ
ext +

1

T
∇λ
(
TM5,0B

λ
)

+ 2
∂P0

∂B2
ελτρσBλuτ∂ρuσ

]
− 4T |B| ∂P0

∂B2
u(µ

[
1

σ2
⊥ + σ̃2

(
T∂P0/∂T

T∂P0/∂T − 2B2∂P0/∂B2

)
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×
(
−σ⊥Bν)ρB̂σ + σ̃⊥Eν)ρB̂σ

)
Xρσ

+
2

σ2
⊥ + σ̃2

⊥

(
−
(
σ̃⊥σ

′
× − σ⊥σ̃′×

)
Bν)(ρB̂σ) −

(
σ̃σ̃′× + σ⊥σ

′
×
)
Eν)(ρB̂σ)

) 1

2
δBgρσ

]
.

(A.8)

Interestingly, the Mi,1 contributions entirely drop out. On the other hand, for the remaining

hydrostatic contributions we have

Tµνhs,M1,0
=

[
T
∂M1,0

∂T
uµuν − 2B2∂M1,0

∂B2
Bµν

]
Bλ∂λ

B2

T 4
+ 2M1,0u

λ∂λ
B2

T 4
u(µBν)

−M1,0B
λ∂λ

B2

T 4
uµuν +

2B2

T 4
∇λ
(
M1,0B

λ
)

(Bµν + 2uµuν) ,

Tµνhs,M2,0
=

[
1

T 2

∂(T 3M2,0)

∂T
uµuν − 2B2∂M2,0

∂B2
Bµν

]
εαβρσuαBβ∂ρBσ

+ 2M2,0u
(µεν)λρσBλ∂ρBσ

− εαβρσ
(
TM2,0uα∂ρ

Bβ
T

+
1

T
∇ρ (TM2,0uαBβ)

)(
2B(µP ν)

σ−Bσ(Pµν + uµuν)
)
,

Tµνhs,M3,0
= −

[
T
∂(M3,0/T )

∂T
uµuν − 2

B2

T

∂M3,0

∂B2
Bµν

]
Bλ∂λT

− 2
M3,0

T
uλ∂λTu

(µBν) +
M3,0

T
Bλ∂λTu

µuν + T∇λ
(
M3,0

T
Bλ

)
uµuν ,

Tµνhs,M4,0
= −

[
1

T 2

∂(T 3M4,0)

∂T
uµuν − 2B2∂M4,0

∂B2
Bµν

]
εαβρσuαBβ∂ρuσ

+ εβαρσM4,0uα∂ρuσ

(
2B(µP ν)

β −Bβ(Pµν + uµuν)
)

− 2u(µεν)λρσ

(
TM4,0Bλ∂ρ

uσ
T

+
1

T
∇ρ (TM4,0uσBλ)

)
,

Tµνhs,M5,0
=

[
T
∂(TM5,0)

∂T
uµuν − 2TB2∂M5,0

∂B2
Bµν

]
Bλ∂λ

µ0

T

+ 2TM5,0u
λ∂λ

µ0

T
u(µBν) − TM5,0B

λ∂λ
µ0

T
uµuν . (A.9)

A.2.2 Velocity field redefinition

As we suggested in section 7.3.2, the map between string fluids and MHD can involve a

non-trivial non-hydrostatic redefinition of uµ and T . In the following, we find that it is

sufficient to perform a redefinition of uµ alone. With this hindsight, consider a redefinition

of the fluid velocity

uµ → uµ + δuµ , (A.10)

such that uµδu
µ = 0, where δuµ is purely non-hydrostatic. The electromagnetic fields get

a contribution from δuµ via

Bµ → Bµ + uµBνδu
ν +O(∂2) , Eµ → Eµ − |B|Eµνδuν +O(∂2) . (A.11)

Note that B2 is invariant to first order. Interestingly, despite being itself first order, Eµ
shifts with a first-order piece. Therefore, the equation determining the Eµ in eq. (7.26)
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modifies to

PµνδBAν =
1

2

1

σ‖
B̂µEρσδBbρσ −

1

σ‖
B̂µ
(
χ̃′1Bρσ + χ̃′2B̂

ρB̂σ
) 1

2
δBgρσ

+

(
ε+ P

ε+ P +$|B|

)(
σ⊥

σ2
⊥ + σ̃2

EµρB̂σ +
σ̃⊥

σ2
⊥ + σ̃2

BµρB̂σ

)
δBbρσ

+

(
σ̃⊥σ

′
× − σ⊥σ̃′×
σ2
⊥ + σ̃2

Eµ(ρB̂σ) −
σ̃⊥σ̃

′
× + σ⊥σ

′
×

σ2
⊥ + σ̃2

Bµ(ρB̂σ)

)
δBgρσ

− |B|
T

Eµνδuν , (A.12)

where we have used the mapping for Xµν given in eq. (7.41). The hydrostatic constitutive

relations discussed in the previous subsection get corrected by these redefinition and obtain

a δuµ contribution to the energy-momentum tensor

Tµνδu = 2u(µ

[
T
∂P0

∂T
B̂ν)B̂λ +

(
T
∂P0

∂T
− 2B2 ∂P0

∂B2

)
Bν)

λ

]
δuλ . (A.13)

To find what the relative field redefinition for uµ between MHD and string fluid is,

we need to compare the energy-momentum tensor in the two formulations. Substituting

Bµ in eqs. (A.8) and A.9 using eq. (7.40), and invoking the mapping between hydrostatic

transport coefficients given in eq. (7.48), we can show that

TµνMHD,hs + Tµνδu = Tµνstring,hs , (A.14)

for δuµ given in eq. (7.50). Here Tµνstring,hs are the hydrostatic corrections to string fluid

constitutive relations worked out in appendix A.1.1.

A.2.3 Mapping of non-hydrostatic transport coefficients

We have already mapped the hydrostatic transport coefficients between the two formula-

tions in eq. (7.48) using the hydrostatic free-energy density. To find the mapping between

non-hydrostatic transport coefficients, let us substitute δuµ from eq. (7.50) into eq. (A.12)

and obtain

PµνδBAν =
αρ

ε+ p
∆µσhνδBbσν +

1

2

1

σ‖
hµερσδBbρσ −

1

σ‖
hµ
(
χ̃′1∆ρσ + χ̃′2h

ρhσ
) 1

2
δBgρσ

+
sT

(ε+ p)

(
σ̃⊥σ

′
× − σ⊥σ̃′×
σ2
⊥ + σ̃2

εµ(ρhσ) −
σ̃⊥σ̃

′
× + σ⊥σ

′
×

σ2
⊥ + σ̃2

∆µ(ρhσ)

)
δBgρσ

−
(

sT

ε+ p

)2( −σ̃⊥
σ2
⊥ + σ̃2

+
2αρ

sT

)
∆µρhσδBbρσ

+

(
sT

ε+ p

)2 σ⊥
σ2
⊥ + σ̃2

εµρhσδBbρσ . (A.15)

Comparing it to the version obtained via the identification with string fluids

PµνδBAν = Pµν∂ν
µ

T
− 1

T
Eµ

= Pµν∂ν
α

T
+

1

2T
εµνρσuνJρσ +O(∂2)
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=
αρ

ε+ p
∆µσhνδBbσν +

(
r′×ε

µαhβ − r̃′×∆µαhβ
)
δBgαβ

+
(
r⊥ε

µαhβ − r̃⊥∆µαhβ
)
δBbαβ

+
1

2
hµ
(
κ̃′1∆αβ + κ̃′2h

µhν
)
δBgµν +

1

2
hµr‖ε

αβδBbαβ , (A.16)

we can read out part of the non-hydrostatic map in eq. (7.54). For the remaining part, we

need to compare the non-hydrostatic energy-momentum tensors in the two pictures. This

is done trivially by taking the MHD non-hydrostatic energy-momentum tensor, before the

field redefinition, from eq. (7.19), substitute for the electric fields using eq. (7.26), and

comparing it with the string fluid expressions in eq. (5.16). This finishes the mapping of

all the first-order transport coefficients presented in section 7.3.2.

A.3 Mapping magnetically dominated BCP to one-form superfluids

The mapping from magnetically dominated bound-charge plasma to one-form superfluids

is considerably less involved because we do not have to eliminate the chemical potential.

Furthermore, as it turns out, we do not need to perform a hydrodynamic field redefini-

tion to map the two formulations. Firstly, we note that the magnetic and electric fields

in a magnetically dominated plasma are given in terms of the electric limit of one-form

superfluids discussed in section 6 according to

Bµ = Jµνuν

= −q ζµ + δρ hµ − nµ

− hµ
[
εαβρσuαhβ∂ρuσ

∂β

∂$
+ hλ∂λT

∂β̃1

∂$
+ hλ∂λ

$

T

∂β̃2

∂$

−∇λ
(
β̃2h

λ
) 1

T
+ εαβρσuαhβ∂ρhσ

∂β̃3

∂$

]
+
β

$
∆µ

νε
νλρσuλ∂ρuσ −

β̃1

$
∆µν∂νT −

β̃2

$
∆µν∂ν

$

T

+ ∆µ
νε
νλρσ

(
T β̃3

$2
uλ∂ρ

$hσ
T

+
1

T
∇ρ

(
T β̃3

$
uλhσ

))
+O(∂2) ,

Eµ = −1

2
εµνρσu

νJρσ

= −q×ζµ −
(
q′×ζ

µζν + q̄Pµν
)
ζ̄ν −Rµ + hµδs+ εµνmν +O(∂2) . (A.17)

Unlike the MHD mapping in eq. (7.40), the magnetic fields do get a non-hydrostatic con-

tribution in a magnetically dominated plasma. Note that for Eµ to be O(∂), we need to

set q× = 0. Using the map between free energy currents in the two formulations given in

eq. (7.59), we can find a mapping for hydrostatic free-energy densities according to

NBCP = N1SF +Bµζµ + Eµζ̄
µ . (A.18)

Plugging in the expressions for Bµ and Eµ from above, this trivially leads to the hydrostatic

sector mapping given in eq. (7.71).
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To map the respective non-hydrostatic sector transport coefficients, we need to ex-

plicitly compare the constitutive relations for the energy-momentum tensor in the two

formulations, along with the map Mµν = −1
2ε
µνρσξρσ. After an involved algebra, we find

TµνBCP = Tµν1SF

−
(
δf − ρδρ

∂ρ/∂$
− δF

)
∆µν − (δτ +$δρ− δT )hµhν

− 2(`(µ −$n(µ − L(µ)hν) − (tµν − T µν) +O(∂2) ,

Mµν = −1

2
εµνρσξρσ

+ 2
(
δR− (α′EBB

2 + αEE)δs
)
u[µhν] +

(
δS +

δρ

∂ρ/∂$

)
εµν

− 2h[µ

(
Mν] +

$

ρ
εν]σnσ

)
− 2u[µ

(
N ν] + αEEε

ν]λmλ

)
+O(∂2) . (A.19)

Various non-hydrostatic corrections appearing here are defined in eqs. (6.17) and (7.69).

Since for the map to work the last two lines in both the expressions above must vanish,

this trivially leads to the mapping in the non-hydrostatic sector given in eq. (7.73).

B Comparison with the effective action approach

In this appendix we perform a comparison between the work of [30] and the equilibrium

partition function construction that we provided in [24]. Additionally, we use the construc-

tion of [30] in order to generalise their results so as to obtain an ideal order effective action

for the one-form hydrodynamic theories of section 3 (unbroken phase) and section 4 (fully

broken phase).

Following [30, 43], we introduce a “fluid spacetime” with coordinates σa. A point

on this spacetime represents a “fluid element” parametrised by σi=1,2,3 at some choice of

internal time σ0. On this fluid spacetime, we define the coordinate fields xµ(σ) which

represent the physical spacetime coordinates of the fluid element. Under a spacetime

diffeomorphism χµ(x), these fields transform as

xµ(σ)→ xµ(σ) + χµ(x(σ)) . (B.1)

When the fluid is charged under a U(1) zero-form symmetry, we also associate with every

fluid element a phase field φ(σ). In the case of a one-form symmetry, we instead intro-

duce a one-form phase ϕa(σ) as in [30]. These phases do not transform under spacetime

diffeomorphisms,25 but shift under the respective gauge transformations Λχ(x) and Λχµ(x)

φ(σ)→ φ(σ)− Λχ(x(σ)), ϕa(σ)→ ϕa(σ)− ∂xµ(σ)

∂σa
Λχµ(x(σ)) . (B.2)

25We can pushforward these phases onto the physical spacetime as φ(x) = φ(σ(x)) and ϕµ(x) =
∂σa(x)
∂xµ

ϕa(σ(x)), which have the expected transformation properties δXφ(x) = £χφ(x) − Λχ(x) and

δXϕµ(x) = £χϕµ(x) − Λχµ(x). In this case, the field ϕµ, already introduced in [24], coincides with that

defined in (4.1).
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The fields xµ(σ) together with φ(σ), or ϕa(σ) for the one-form case, form the effective

dynamical fields of hydrodynamics. Given the background fields gµν(x), Aµ(x), and bµν(x)

on the physical spacetime, we can define their pullbacks onto the fluid spacetime as

hab(σ) =
∂xµ(σ)

∂σa
∂xν(σ)

∂σb
gµν(x(σ)) ,

Ba(σ) =
∂xµ(σ)

∂σa
Aµ(x(σ)) +

∂φ(σ)

∂σa
,

Bab(σ) =
∂xµ(σ)

∂σa
∂xν(σ)

∂σb
bµν(x(σ)) +

∂ϕb(σ)

∂σa
− ∂ϕa(σ)

∂σb
. (B.3)

These fields have been defined such that they are invariant under the symmetry transfor-

mations of the physical spacetime. In fact, they constitute the most general invariants

made out of dynamical and background fields.

Given these elements, we wish to construct a Wilsonian effective action for hydro-

dynamics involving the fields in eq. (B.3), with certain symmetries imposed on the fluid

spacetime, so that we can recover the hydrodynamic dynamical equations via a variational

principle [43]. The physical picture to keep in mind is that every distinct fluid element,

parametrised by σi, is evolving along the internal time σ0. We expect the hydrodynamic

description to be invariant under an arbitrary relabelling of the fluid elements and the

choice of internal time for each fluid element, leading to the symmetries

σa → σa + fa(~σ) . (B.4)

Note that we are not allowing for a time-dependent redefinition of σa, since we require each

fluid element and its choice of internal time to stay the same as it moves through time.

The transformations eq. (B.4) are the most general fluid spacetime diffeomorphisms which

leave the internal time vector ∂/∂σ0 invariant.

In addition, we allow each fluid element to independently choose the associated U(1)

phase, leading to the shift symmetry

φ(σ)→ φ(σ) + λ(~σ) , ϕa(σ)→ ϕa(σ) + λa(~σ) . (B.5)

Note that we are also requiring the choice of phase to remain the same as the fluid element

moves through time. We expect the symmetries (B.5) to hold when the underlying U(1)

symmetry is not spontaneously broken. To motivate this, let us consider the zero-form case

first. At each point p = (σap) in the fluid spacetime, we can define a charged operator

Vp = exp(iφ(σp)) . (B.6)

Under the shift (B.5), these operators admit a phase rotation

Vp → exp(iλ(~σp))Vp , (B.7)

which is independent for every fluid element, but remains fixed as the charged operator

moves through time. When the symmetry is spontaneously broken, the system picks a

random preferred phase in the ground state and the respective shift symmetry in eq. (B.5)
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should be dropped. In this case, the phase pushforward onto the physical spacetime φ(x) =

φ(σ(x)) acts as the Goldstone mode of the broken symmetry, and we are led to the physics

of zero-form superfluid dynamics.

In the one-form case, on the other hand, the charged operators are defined over non-

local “strings” of fluid elements. Let us consider a space-like curve C in the fluid spacetime

defined in terms of an internal length parameter ` as σa = σaC(`). We can then define the

operator

VC = exp

(
i

∫
C
ϕa(σ) dσa

)
= exp

(
i

∫
ϕa(σC(`))

dσaC(`)

d`
d`

)
. (B.8)

Under the shift (B.5), this charged operator acquires a phase rotation given by operator

VC → exp

(
i

∫
λa(~σC(`))

dσaC(`)

d`
d`

)
VC , (B.9)

which is independent for every string of fluid elements, but remains fixed if a string moves

uniformly in time: σ0
C(`) → σ0

C(`) + τ , where τ is independent of `. Using the analogy

with the zero-form case, we understand that when the shift symmetry (B.5) is dropped,

the system picks up a preferred one-form phase in its ground state spontaneously breaking

the symmetry. The pushforward of the one-form phase ϕµ(x) = ∂σa(x)
∂xµ ϕa(σ(x)) can be

identified with the Goldstone mode of this broken symmetry. Interestingly, in this case

there is another choice available to us. We can require the choice of phase to be fixed

under a non-uniform movement of the string in time: σ0
C(`)→ σ0

C(`) + τ(`), which implies

dropping the time component of the one-form shift in eq. (B.5) setting λ0(σ) = 0. Since the

ϕ0(σ) component of the phase does not admit any redefinition in this case, we can interpret

its pushforward onto the physical spacetime ϕ(x) = ϕ0(σ(x)) as a scalar Goldstone. This

is the partial symmetry breaking of one-form hydrodynamics eluded to in section 5.26

Having identified the dynamical degrees of freedom and symmetries, one can construct

the most generic hydrodynamic effective action arranged in a derivative expansion leading

to a particular subsector of non-dissipative constitutive relations. We do not repeat this

exercise here and we encourage interested readers to consult the relevant papers such

as [30, 43]. However, to make contact with the hydrodynamic formulation used in the bulk

of this paper, it is instructive to map the dynamical degrees of freedom in the two pictures.

Starting with the symmetry unbroken phase, we can identify the hydrodynamic fields

B = (βµ,Λβ) or B = (βµ,Λβµ) introduced around eq. (2.5) and eq. (2.10) respectively as

βµ(x) =
∂xµ(σ)

∂σ0

∣∣∣∣
σ=σ(x)

, Λβ(x) =
∂φ(σ)

∂σ0

∣∣∣∣
σ=σ(x)

, Λβµ(x) =
∂σa(x)

∂xµ
∂ϕa(σ)

∂σ0

∣∣∣∣
σ=σ(x)

.

(B.10)

26The effective action framework of [30] for MHD/string fluids deals with this partially broken picture of

one-form hydrodynamics where λ0(σ) = 0. The authors rightly note that the pullback of the full one-form

phase ϕµ(x) is not a Goldstone in this picture, as we see that the one-form symmetry is only partially

broken. However, the authors do not identify the pullback of the time component ϕ(x) as a Goldstone

mode either. Note that v1 of [30] on arXiv has a typo in equation (2.18) as we confirmed with the authors:

the shift symmetry is only imposed in the spatial directions.
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These are invariant under the fluid spacetime symmetries in eqs. (B.4) and (B.5). In terms

of the conventional fields, we equivalently have

uµ(x) =
1√

−h00(σ(x))

∂xµ(σ)

∂σ0

∣∣∣∣
σ=σ(x)

, T (x) =
1√

−h00(σ(x))
,

µ(x) =
B0(σ(x))√
−h00(σ(x))

, µµ(x) =
∂σa(x)
∂xµ B0a(σ(x)) + ∂

∂xµϕ0(σ(x))√
−h00(σ(x))

.

(B.11)

As noted in section 2, the one-form chemical potential µµ(x) is not gauge-invariant.

When the symmetry is spontaneously broken and eq. (B.5) is relaxed, we can iden-

tify the respective Goldstone modes and superfluid velocity as additional fluid spacetime

invariants

φ(x) = φ(σ(x)) , ξµ(x) =
∂σa(x)

∂xµ
Ba(σ(x)) ,

ϕµ(x) =
∂σa(x)

∂xµ
ϕa(σ(x)) , ξµν(x) =

∂σa(x)

∂xµ
∂σb(x)

∂xν
Bab(σ(x)) . (B.12)

Interestingly, the respective Josephson equations uµξµ = µ and uνξνµ = µµ − T∂µ(βνϕν)

given in section 4.1.1 are automatically satisfied. Finally, in the case when the one-form

symmetry is only partially broken, the respective scalar Goldstone and string fluid variables

can be read out as

ϕ(x) = ϕ0(σ(x)) , $hµ =
∂σa(x)

∂xµ
B0a(σ(x))√
−h00(σ(x))

. (B.13)

Order parameter. The question of whether a global symmetry is spontaneously broken

or unbroken can be articulated in terms of an order parameter charged under the symmetry.

In the zero-form case, such an order parameter is provided by the expectation value of the

vertex operator eq. (B.6), i.e.

〈exp(iφ(σp))〉 . (B.14)

If this happens to be non-zero when computed within the effective action framework of

hydrodynamics, we understand that the symmetry is spontaneously broken and we are in

the superfluid phase, otherwise the symmetry is unbroken and we are in the ordinary fluid

phase. A similar construction can be extended to one-form symmetries using eq. (B.8) to

obtain an order parameter 〈
exp

(
i

∫
C
ϕa(σ) dσa

)〉
. (B.15)

If, for large spacelike loops, the expectation value scales as the perimeter of the loop we

are in the symmetry broken phase, otherwise we are in the symmetry unbroken or partially

broken phase. This order parameter will not distinguish between the partially broken

and unbroken phases of one-form symmetry. If we were at equilibrium, we could obtain

a plausible operator that will make such distinction by integrating over the Euclidean

time circle 〈
exp

(
−
∫
S1

ϕa(~σ) dσaE

)〉
=

〈
exp

(
i

T0
ϕ0(~σ)

)〉
. (B.16)
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C P T CPT

T tt, gtt + + + +

T ti, gti + − − +

T ij , gij + + + +

J t, At − + + −
J i, Ai − − − −
J ti, bti − − + +

J ij , bij − + − +

C P T CPT

ut + + + +

ui + − − +

T + + + +

µ − + + −
φ − + − +

µt − + − +

µi − − + +

φt, ϕ − + + −
φi − − − −

C P T CPT

ξt − + + −
ξi − − − −

Fti, Ei, B
t − − + +

Fij , B
i, Et − + − +

$ + + + +

hi, ξti, ζi, ζ̄
t − − + +

ξij , ζ̄
i, ht, ζt − + − +

Htij − + + −
Hijk − − − −

Table 7. Transformation properties of various quantities under the discrete symmetries C, P,

and T. The first table summarises properties of conserved currents and the associated sources, the

second table of dynamical fields, while the third table of various derived quantities.

Generically, there is no notion of preferred time outside thermal equilibrium to define such

an order parameter but within the regime of hydrodynamics, we can use the fluid velocity

to define this operator27 〈
exp

(
i

T
uµϕµ(σ)

)〉
= 〈exp (iϕ(σ))〉 . (B.17)

Whether or not this operator is the required order parameter can be settled by computing it

within the effective field theory outlined in this appendix. We leave it here as a speculative

note and plan to come back to this question in the future.

C Discrete symmetries

If the physical system in question is invariant under certain discrete symmetries, like chi-

rality (parity) or CPT, on top of the continuous Poincaré and zero/one-form symmetries,

they can be used to further constraint the number of allowed transport coefficients. The

formulations of one-form hydrodynamics and hot electromagnetism involves distinct sets of

conserved quantities and are mapped to each other via a Hodge duality operation, therefore

discrete symmetries in the respective pictures do not map to each other trivially. Already

in section 5.3, we discussed the action of CP symmetry in string fluids, later noting in sec-

tion 7.3 that CP-preserving string fluids map to parity or PEM-preserving sector of MHD.

Therefore, we devote this appendix to a more careful treatment of discrete symmetries in

hot electromagnetism and one-form hydrodynamics.

In order to do so, the first step is to define the action of discrete symmetries on

the field content. We introduce three operations: charge conjugation C, parity P, and

time-reversal T. Their action on the conserved currents and field content is summarised

in table 7. Note that hµ transforms as a vector under parity, which under the duality

operation gets mapped to an axial-vector Bµ. Therefore, on the electromagnetism side,

27The effective action construction of [30] contains a gauge symmetry ϕa(σ) → ϕa(σ) + ∂aΛ(σ), which

doesn’t leave the out-of-equilibrium order parameter in eq. (B.17) invariant. Arriving at a correct gauge-

invariant order parameter might need some more work which we leave for future considerations. We thank

P. Glorioso and D. T. Son for pointing this out to us.
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the parity operation is actually defined in terms of the one-form discrete symmetries as

PEM = CP. The holds for the time-reversal operator, and we find

CEM = C , PEM = CP , TEM = CT . (C.1)

The charge conjugation operator, of course, is the same in both pictures. Interestingly, the

full (CPT)EM is mapped to CPT in the one-form picture.

With table 7 in place, we can easily work out the nature of various transport coefficients

under CP (i.e. PEM) and CPT. Firstly, all the transport coefficients in ordinary one-form

hydrodynamics are CP-even. For string fluids, we have already discussed the CP properties

of various transport coefficients in section 5.3. Lastly, for generic one-form superfluids, since

the transport coefficients can arbitrarily depend on a zero-derivative CP-odd scalar (ζ · ζ̄),

no terms in the constitutive relations have a definite CP behaviour.

As for CPT, it is easy to check that all zero derivative tensor structures in any phase

of one-form hydrodynamics are CPT-even. Consequently, all one-derivative transport co-

efficients are CPT-odd. Before we draw any conclusions from this result, it is worth noting

that the shear and bulk viscosity terms in neutral relativistic hydrodynamics are CPT-odd

as well (or equivalently PT-odd due to neutrality). This is not surprising due to the dissipa-

tive nature of these coefficients. However, this CPT is distinct from the “microscopic” CPT

that is implemented, not at the level of the constitutive relations, but more fundamentally

at the level of an effective action, hydrostatic partition function, or correlation functions

(see for instance [43]). In the hydrostatic sector, microscopic CPT-invariance requires that

all the CPT-violating terms in the hydrostatic partition function vanish. Since all the

hydrostatic one-derivative scalars are CPT-odd, all the hydrostatic transport coefficients

are turned off by requiring microscopic CPT-invariance in all the phases of one-form hy-

drodynamics. Due to the map between and MHD and string fluids in eqs. (7.48) and 7.54,

microscopic CPT-invariance implies, in particular, that the chemical potential µ0 in MHD

must vanish. In the non-hydrostatic sector, on the other hand, microscopic CPT can be

implemented using Onsager’s relations. For instance, for string fluids, these constraints

have been worked out in section 5.4. We leave a more detailed analysis of microscopic

CPT in generic one-form superfluids to a future work.
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