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ZrSiS has been identified as a topological material made from nontoxic and earth-abundant elements. Together
with its extremely large and uniquely angle-dependent magnetoresistance, this makes it an interesting material
for applications. We study the origin of the so-called butterfly magnetoresistance by performing magnetotrans-
port measurements on four different devices made from exfoliated crystalline flakes. We identify near-perfect
electron-hole compensation, tuned by the Zeeman effect, as the source of the butterfly magnetoresistance.
Furthermore, the observed Shubnikov-de Haas oscillations are carefully analyzed using the Lifshitz-Kosevich
equation to determine their Berry phase and thus their topological properties. Although the link between
the butterfly magnetoresistance and the Berry phase remains uncertain, the topological nature of ZrSiS is
confirmed.

DOI: 10.1103/PhysRevMaterials.3.084203

I. INTRODUCTION

ZrSiS belongs to a class of electronic materials known
as nodal-line semimetals [1,2]. These materials are distinct
from topological insulators and Dirac/Weyl semimetals, be-
cause the bands cross more than once in momentum space
to form lines or circles of Dirac nodes. [3–7]. A number of
studies have reported on the enormous, nonsaturating mag-
netoresistance (MR) that ZrSiS displays [8–12], a feature
that makes it a good candidate for sensor applications. The
general usability of ZrSiS is supported by its stability and
elemental abundance. The material contains three nontoxic
and ubiquitous elements and shows no signs of degradation
in ambient conditions [2,13]. Not only is the MR in Zr-
SiS extremely large, it has a peculiar angular dependence
as well, showing a maximum MR when the angle between
the applied magnetic field and the sample surface is 45◦,
instead of a perpendicular field as one would expect. When
plotted, the MR has a distinct butterfly shape and so the
effect has been christened butterfly MR [8–10,14]. Although
numerous studies have addressed the butterfly MR both from
an experimental as well as a theoretical angle, where the
intricate band structure from which the transport properties
arise was examined [1–3,15,16], a clear link between the two
has not yet been established. Due to the high mobility of
the charge carriers in ZrSiS, studying quantum oscillations
provides us with a great opportunity to understand the unique
transport properties of this material, as illustrated by the
number of reports on quantum oscillations in ZrSiS [17–20].
In this paper, we study the origin of the butterfly MR. To
this end, we determine the charge carrier density and mobility
of different ZrSiS thin flakes and discuss how this relates to
MR effects. This is followed by an analysis of the measured
Shubnikov-de Haas (SdH) oscillations, which together lead
to a possible explanation of the butterfly MR. The SdH
oscillations also provide an opportunity to study whether

or not the nodal line in ZrSiS indeed exhibits topological
properties.

II. EXPERIMENTAL DETAILS

To create the devices, we have exfoliated flakes of two
different ZrSiS crystals. The first ZrSiS single crystals were
prepared by a chemical vapor transport method. The stoi-
chiometric mixture of Zr, Si, and S powder was sealed in a
quartz ampoule with iodine as transport agent (20-mg cm3).
The quartz ampoule was placed in a tube furnace with a
temperature gradient from 1000 ◦C to 900 ◦C for ten days.
Crystal 2 was grown with the same method, but in a carbon
coated ampoule to avoid reaction of the samples with the
quartz. This crystal was subsequently annealed at 600 ◦C for
two weeks. The crystal structure of ZrSiS exhibits a natural
cleavage plane perpendicular to the c axis. All exfoliated
flakes therefore show the (001)-plane as their top surface [2].
The flakes were deposited on a silicon substrate coated with
300-nm SiO2. After determining the thickness of the flake
using atomic force microscopy, gold contacts were designed
and deposited on the flakes using e-beam lithography and RF
sputter deposition. In this paper, we describe measurements
performed on four standard six-probe devices made in this
fashion. The first of these uses a flake from crystal 1, the other
three are made from flakes from crystal 2. We have studied
further devices based on crystal 1, including bulk devices
contacted with gold wires and silver epoxy. All measurements
on the devices of crystal 1 showed similar results, so the
results of only one device will be presented here.

The devices were cooled down to 2 K in a Quantum
Design Physical Property Measurement System on an insert
that can be rotated 180◦ in a maximum magnetic field of 9 T
while recording the longitudinal and transversal voltage in the
device in a four-probe configuration. The measurements were
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FIG. 1. Angle dependence of the MR of two samples made from different ZrSiS crystals, where 0◦ is out of plane. Device (a) is made from
a 230-nm-thick flake of crystal 1. The MR does not exceed 2500% and the MR has a maximum at 0◦. (b) ADMR of a 220-nm-thick flake of
crystal 2. The MR has a maximum around 20◦. (c) ADMR of a 70-nm flake of crystal 2 showing a flat maximum MR of 8000% between 0◦

and 45◦. (d) ADMR of the 830-nm-thick flake of crystal 2. The MR reaches values of 20.000%. The ADMR is clearly butterfly shaped, having
a maximum at 45◦.

performed using 100 μA current. Here 0◦ and 180◦ represent
an out-of-plane magnetic field.

III. ANGLE-DEPENDENT MAGNETORESISTANCE

Figure 1 shows the angle-dependent magnetoresistance
(ADMR) of all four devices. The MR is calculated as 100% ×
[R(B) − R(0)]/R(0). The results for the different devices dif-
fer on two points: the magnitude of the MR and the shape
of the ADMR. Although slightly obscured by the SdH oscil-
lations that are present for high magnetic fields and angles
close to 0◦, the maximum MR in Fig. 1(a) is observed at 0◦
and 180◦, as one would expect for a regular homogeneous
conductor. The maximum MR in Fig. 1(d) lies around 45◦, a
feature that is known as the butterfly MR. The size of the MR
varies by a factor of 8 between the two graphs. The device
made from the first crystal of ZrSiS shows an MR of about
2500%, which can be seen in Fig. 1(a), whereas a device
from the second crystal of ZrSiS shows an MR exceeding
20.000%. The ADMR of the 220-nm and 70-nm-thick devices
of crystal 2 is plotted in Figs. 1(b) and 1(c), respectively. The
device based on the 830-nm-thick flake, shown in Fig. 1(d),
exhibits the clearest butterfly MR. The device based on the
70-nm-thick flake also shows signs of butterfly MR, but we
find that the 220-nm-thick flake device does not exhibit any
butterfly MR, indicating that the observability of the butter-
fly MR is not thickness dependent per se. The maximum
MR of both the 70-nm and 220-nm-thick devices is around
8000%, 2.5 times lower than for the 830-nm-thick device.
Futhermore, this maximum is not centered around at 45◦, as
it is in Fig. 1(d). For the 220-nm-thick device [Fig. 1(b)], the
maximum MR at 45◦ is absent altogether and the 70-nm-thick
device [Fig. 1(c)] does reach a maximum at 45◦, but keeps this

value toward 0◦ (perpendicular field) instead of decreasing.
It effectively displays a combination of the regular ADMR
and the butterfly MR. Comparing all measurements, we can
conclude that crystal 2 exhibits a butterfly MR similar to what
was observed by Ali et al. [9].

Having observed a butterfly MR in some, but not in all
samples, provides a great opportunity to study this anomalous
version of the extremely large MR. Such a large increase in
resistance can be found in other materials as well and can be
caused by a number of effects. One effect is Abrikosov’s linear
MR, which is present in situations where only the lowest
Landau level is occupied [21,22]. But while the charge carrier
mobilities of the ZrSiS may be high enough for this effect
to arise, the carrier density in ZrSiS is rather high to be in
the extreme quantum limit and the MR has a strong parabolic
component. It has been shown that inhomogeneous thin films
can be modeled as a resistor network and that these can exhibit
very large MR of mixed linear and parabolic character [23,24].
However, with the mobilities typically found for ZrSiS, this
situation seems unlikely. Another candidate source for the
large MR in ZrSiS is a near-perfect balance between electron
and hole densities [8,25,26]. Even though the assumptions
made within the Drude model are not fully justifiable for an
anisotropic system like ZrSiS, we use the Drude two-band
model to obtain approximate charge carrier densities and
mobilities for the system to provide further insight. In this
model, the longitudinal resistivity is given by

ρxx(B) = 1

e

(nhμh + neμe) + (nhμe + neμh)μhμeB2

(nhμh + neμe)2 + (nh − ne)2μ2
hμ

2
eB2

. (1)

For large fields, the rightmost terms of the numerator and
denominator dominate the leftmost terms, so we can focus on
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FIG. 2. Two-band Drude fits (red lines) of the longitudinal (black circles) and transverse (blue circles) conductivity for four devices
measured using a bias current of 100 μA. All fitting parameters are indicated in the top-right corner. (a) Measurement data of the 230-nm-thick
flake of crystal 1. (b) Measurement data of the 220-nm-thick flake of crystal 2. (c) Measurement data of the 70-nm-thick flake of crystal 2.
(d) Measurement data of the 830-nm-thick flake of crystal 2.

the former. From the denominator, it is clear that when the
hole and electron density become equal, the resistivity has a
maximum. The exact value of the resistance still depends on
the mobilities of the two bands. Figure 2 shows the fit of the
two-band Drude model to the longitudinal and transverse con-
ductivities of the devices for which the ADMR was presented
in Fig. 1. Figure 2(a) shows the data and the best fit to the
data of the device made from crystal 1, which exhibits the
lowest MR and no butterfly MR. Figures 2(b)–2(d) show the
data and fits on the 70-nm, 220-nm, and 830-nm-thick devices
made from crystal 2. In general, samples from crystal 2 show
more anisotropic ADMR and larger MR than the samples
taken from crystal 1. The Drude fits in Fig. 2 tell us that in all
samples, from both crystals, the electron and hole density are
nearly compensated, indicated by the σxy that goes to zero for
large magnetic fields. These results imply that electron-hole
compensation is the mechanism that generates the enormous
MR in ZrSiS. As has previously been shown in other Dirac
materials such as MoSi2 [26] and WTe2 [27,28], the Zeeman
effect can influence electron-hole compensation. It may be
that through the same mechanism, the Zeeman effect is also
responsible for maximum electron-hole compensation in the
anisotropic electronic structure of ZrSiS at a 45◦ magnetic
field angle.

In general, rotating the device normal away from the
direction of a magnetic field does not alter the carrier density.
However, besides the formation of cyclotron orbits typically
associated with MR, the magnetic field induces a Zeeman
shift in the electronic structure. In a crowded and complex
band structure such as that of ZrSiS, the Zeeman effect can
slightly alter the size and shape of the Fermi pocket and
thereby alter the net carrier density of the individual pockets.
As the carrier density—and the effects of small changes in
it—highly depends on the exact crystal parameters, this would
also explain why the butterfly-shaped MR is not observed in
all devices.

Besides the carrier density, magnetic fields can also tune
the carrier mobility and thereby contribute to the large MR in
semimetals [29], providing another possible way to cause the
observed butterfly MR. Unfortunately, for other magnetic field
directions than parallel to the sample normal, the Drude model
approximations become increasingly invalid, so we cannot
test these hypotheses through Drude two-band fits. The poor
fitting results of the Drude two-band model for magnetic field
angles other than parallel to the c axis are likely the result of
off-diagonal matrix elements in the conductivity tensor. In a
recent work, Novak et al. [30] numerically calculated the con-
ductivity for Fermi surfaces obtained through first-principle
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density functional theory and find that indeed only along high
symmetry crystal axes, the electron and hole contributions can
be considered as parallel conduction channels.

IV. QUANTUM OSCILLATIONS

To extract the SdH oscillations for the longitudinal MR,
the measured voltage was symmetrized. The background was
subtracted from the signal by smoothing the oscillations.
Figure 3 shows the fast Fourier transforms of all the oscilla-
tions. The data has been offset for clarity and, for some larger
angles, the data has been amplified for visibility, as shown by
a factor in front of the angle indication. Two distinct peaks
can be identified at the perpendicular orientation (0◦), located
at frequencies of 16 T and 243 T. These SdH frequencies are
well known in literature [9,10,13,18], and their position as a
function of the angle between the sample and the magnetic
field correlates with the presence of the butterfly MR. This
link is clearly visible by comparing Figs. 1 and 3, and has been
observed in literature [9]. The oscillation with a frequency
of roughly 16 T does not move as a function of the angle,
indicating that the Fermi pocket it corresponds to is spherical.
The Onsager relation tells us that the extremal cross section,
S, of the Fermi pocket that is responsible for an oscillation
[31], is given by

S = 2πeF

h̄
, (2)
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FIG. 3. (a)–(d) Fourier spectra of the SdH oscillations measured
at different sample orientations. The data is offset for clarity. The
angle between the sample and the magnetic field is indicated in the
graphs for each line. The thickness of the device on which data has
been taken is indicated on the top of each graph. (a) and (b) show the
243 T peak moving toward higher frequencies with increasing angle.
These devices do not exhibit the butterfly MR. (c) and (d) each show
two peaks moving toward lower frequencies for angles larger than
30◦. These devices do show butterfly MR.

where F is the frequency of the oscillation in Tesla. For a 16-T

oscillation, this gives a reciprocal area of 1.53 × 10−3 Å
−2

.
The peak that starts at F = 243 T in all panels of Fig. 3

corresponds to a reciprocal area of 2.32 × 10−2 Å
−2

. Both
these frequencies are in good correspondence with literature
[9,17,18]. The 3D Brillouin zone (BZ) of ZrSiS is a fourfold
symmetric structure that has two distinct features. In the �-Z
direction, one finds elongated tubular shapes that extend in
the kz direction. These tubular shapes are hole pockets and
have an extremal cross section that corresponds well with a
SdH frequency of 243 T. The other main feature is an electron
pocket situated in the �-M direction. These have a larger
extremal cross section than the tubes, corresponding to a SdH
frequency between 550 T and 600 T. The SdH oscillations
from this pocket have been studied in literature [17,18], but
the oscillation period is too large to reliably measure in our
setup and the electron mobility is in general lower than the
hole mobility, making the SdH oscillations from the electrons
more difficult to distinguish. Albeit faintly, it can be seen in
some of the Fourier spectra, such as the 10◦ lines of Figs. 3(b)
and 3(d). The smallest reciprocal area, corresponding to the
F = 16 T peak, is more difficult to link to the Fermi surface,
but has been observed before [9,18].

The F (θ ) dependence of the 243 T peak displayed in
Figs. 3(c) and 3(d) is quite the opposite of that in Figs. 3(a) and
3(b). Although Fig. 3(c) still faintly exhibits a right-moving
peak, both Figs. 3(c) and 3(d) clearly show that from 30◦ on-
ward, the peak splits and moves to lower frequencies. This is
in perfect correlation with the appearance of the butterfly MR
as is evidenced by the thinnest device, presented in Figs. 1(c)
and 3(c), which shows a mixture of regular and butterfly angle
dependence in both its MR and SdH oscillations. From this
comparison, it is clear that the hole pocket plays an important
role in the appearance of the butterfly MR.

Quantum oscillations in materials, such as the SdH os-
cillations in ZrSiS observed here, can be described with the
model created by Lifshitz and Kosevich (LK) in 1956 [14,32].
The LK model can be used to determine whether or not
that particular path through the BZ is accompanied by a
Berry phase, φB, which is a clear indication of topological
transport. Futhermore, the phase of the quantum oscillations is
influenced by the carrier type, the dimensionality of the band,
and the dispersion of the band (linear or parabolic). In a recent
publication, Li et al. have collected all possible phase shifts
in the LK model for a topological nodal-line semimetal and
warn that claiming nontrivial transport is not so trivial [20].
The circular orbit around the hole-populated tube, from which
the 243 T oscillation originates, is described as a quasi-2D
tube and therefore associated with a geometrical phase shift
of δ = 0. Furthermore, because this orbit encloses a Dirac
point, it should yield a discernible Berry phase φB = π in
the quantum oscillations. Hyun et al. have studied the Berry
phase in materials with a square-net substructure, belonging to
the P4/nmm or Pnma space group, and in ZrSiS specifically
[33]. In their paper, they highlight the tubular hole-pocket as
a “Berry hot spot,” a Fermi surface that encloses a large Berry
curvature. Importantly, they note that the Berry phase strongly
depends on the Fermi energy and electron-hole asymmetry.
Other investigations into the topological nature of this Fermi
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FIG. 4. (a) and (b) show two examples of the LK model applied to the extracted SdH oscillations (black circles) from the measurements
on the 830-nm-thick device. The fits (red lines) have been made by adding two frequencies to create the beating pattern. All relevant fitting
parameters as well as the corresponding angle are indicated in each panel. FB is the difference between the two used frequencies. (c) Berry
phases obtained from the LK fits, using δ = 0. The black circles are derived from fits using only one frequency. Red/magenta triangles show
φB of the first frequency. The blue/violet triangles show φB of the second frequency.

pocket have yielded a variety of conclusions, including fully
trivial [10], fully topological [17], Berry phases that are
neither π nor 0 [19], and a Berry phase that changes from
trivial to topological for some angles of the magnetic field [9].
These papers have been written before the publication of the
theoretical work by Li et al. and have all assumed 3D carriers,
whereas Li et al. note that the 243 T frequency is mostly in
the (quasi-)2D regime [20].

Figures 4(a) and 4(b) show, as an example, two typical
SdH oscillations measured on the device that exhibits clear
butterfly MR. Nearly all the extracted oscillations are charac-
terized by a beating pattern, which is especially prevalent from
40◦ onward. Therefore, modeling these oscillations using the
LK model with one frequency results in poor fitting results.
By applying a bandpass filter around the desired frequency,
some of the beating can be suppressed. Even then, it is
not always possible to fit the full extent of the oscillation.
Beating is caused by the presence of two similar, but different,
frequencies and since there is an obvious beating pattern in
these SdH oscillations, a LK model using two frequencies is
more appropriate. If the Zeeman effect plays an important role
in the formation of the butterfly MR, as was suggested earlier,
two nearly identical SdH frequencies are to be expected. The
red lines in Figs. 4(a) and 4(b) are the best fits to the data using
this two-frequency model and confirm the presence of two
distinct frequencies. Zeeman splitting itself does not change
the shape of the two (now nondegenerate) pockets, but in the
complex BZ of ZrSiS, the Zeeman shift may even deform
pockets slightly, which would show up as a beating pattern
between the altered and unaltered pocket.

All relevant fitting parameters of the two-frequency model
are indicated in the top right of the respective panel. The Berry
phases resulting from this analysis have been included in
Fig. 4(c). The Berry phases obtained by the single-frequency
procedure are shown as black circles. The red and magenta tri-
angles belong to one of the frequencies of the two-frequency
model, while the blue and violet triangles belong to the other.
The phases have been drawn as red and magenta to remind

the reader of the fact that, for angles of 40◦ and larger, there
are several peaks in the SdH spectrum [Fig. 3(d)]. Here, we
examine the leftmost one of the three. The dashed lines serve
as a reading guide and indicate φB = π , which is typically as-
sociated with topological states. The main feature of Fig. 4(c)
is that the obtained φB increases with angle. Although it starts
out at the trivial state, for the single-frequency model and first
frequency of the two-frequency model, the phases increase,
alternating between trivial and topological. For clarity, the
Berry phases have been drawn to go up to 5π , even though
in practice φB is 2π -periodic. At 40◦, the angle where the
peaks in the Fourier spectrum split and where the butterfly
MR has a maximum in resistance, the Berry phase suddenly
makes a jump of 1.5π ± 0.4π . Generally speaking, it is
possible that the Berry phase deviates from the standard cases
of zero (trivial) and π (topological). These values are only
found when the path through the BZ fully encompasses the
Dirac node, as, for example, a spherical pocket does. Any
extremal cross section must then necessarily fully encompass
the Dirac node if it is present, hence we find either φB = 0 or
φB = π . But one that does not fully enclose the Dirac node
thus encircles an arbitrary amount of Berry connection and in
such a situation there can be any φB between 0 and π . This
can also be understood in terms of the spin texture as only
the projection of the spin onto the orbital plane makes a full
rotation. If there is an additional out-of-plane component, the
obtained Berry phase will be somewhere between 0 and π .

From Hyun et al. and the comparison of our work to other
works in literature, we know that the topological properties
of ZrSiS are highly sensitive to properties such as the Fermi
level and electron/hole ratio [9,10,17,18,33]. The latter could
be the link between the Berry phase and the butterfly MR, as
the importance of the electron/hole ratio was also identified
earlier. Upon tilting the magnetic field, one could potentially
make two orbits touch and fuse together, instantly increasing
the size of the loop, S, which would show as a sudden jump
in Berry phase such as was observed by Ali et al. [9]. Despite
the speculative nature of this argument, it could explain the
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mechanism responsible for the jump in Berry phase at 40◦ in
Fig. 4(c).

V. CONCLUSIONS

The MR in ZrSiS can safely be labeled extremely large.
This large MR can be understood by considering a two-band
Drude model where the two bands are equally populated
by opposite charge carriers. This near-perfect electron-hole
compensation may also be the driving mechanism behind the
peculiar butterfly MR, where the MR has a maximum, not for
a perpendicular magnetic field, but when the angle between
the current and magnetic field is 45◦. We argue that the
hole and electron densities may become comparable around
this angle through the Zeeman effect, and that this creates a
maximum in the MR. This mechanism is supported by the
observation of beating patterns in the SdH oscillations, which
is caused by two pockets with near-identical extremal cross
sections.

From careful analysis of the SdH oscillations, we conclude
that the tubular holelike Fermi pocket in the � − Z direction
of the BZ is a contributing factor to the butterfly MR, in com-
bination with the larger, neighboring electron pocket. Rotating
the samples in a magnetic field allows one to study the size
of the extremal cross section of the pocket as viewed from

different angles. Any device that exhibits butterfly MR will
show a transition from the extremal cross section becoming
larger with increasing angle to splitting into several distinct
areas that become smaller with increasing angle. It remains
uncertain, however, whether the topological properties of this
holelike Fermi pocket play a role in the creation of the butter-
fly MR or that the near-perfectly electron-hole compensated
Drude model is solely responsible for this peculiar effect.
By fitting a two-frequency LK model to the extracted SdH
oscillations, and taking into account the appropriate phase
shift for the Fermi pocket under study, we conclude that the
pocket has topological properties as it clearly shows a nonzero
Berry phase that increases with angle.
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