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1 Introduction

The AdS/CFT correspondence has provided important evidence in support of the idea

that the horizon of a black hole, at the microscopic level, comprises a large number of

strongly interacting degrees of freedom in a liquid-like dissipative state. The role of AdS

is to provide the horizon with a non-gravitating boundary from which the characteristic

features of the holographic liquid can be probed. The simplest way to do so is through the

evaluation of correlations of low energy local operators. The goal of this paper is to make

progress toward the hypothesis that the cosmological horizon of an asymptotically de Sitter

universe is itself, microscopically, a holographic liquid. Several thermodynamic features of

the de Sitter horizon have been known since the classic work of Gibbons and Hawking [1].

What is missing so far, is a framework to bridge the gap between the thermodynamic and

microscopic, in the same spirit that AdS/CFT bridges the gap between the old literature

on black hole thermodynamics and the modern perspective of a holographic liquid.

What makes the de Sitter problem challenging is the absence of a spatial AdS bound-

ary, or more generally some non-gravitating region of spacetime, from which to probe the

de Sitter horizon. To address this, we construct a phenomenological gravitational the-

ory which contains asymptotically AdS solutions with a region of de Sitter in the deep

interior. Our approach is inspired, to an extent, by analogous approaches applying the

framework of AdS/CFT to problems in condensed matter [2]. Though this approach is

incomplete, we believe that bringing the question of the de Sitter horizon to the standards

of AdS/CMT is a step in the forward direction. Ultimately, a successful approach will

require a microscopic completion.

Concretely, we construct a class of two-dimensional gravitational theories admitting

solutions which interpolate between an AdS2 boundary with a dS2 horizon in the deep

interior [3]. Having done so, we probe the de Sitter horizon using the available tools

of AdS/CFT. There are several reasons to work in two-dimensions. Though simpler,

the dS2 horizon shares many features with its higher dimensional cousin, including the

characteristics of its quasinormal modes [4] and the finiteness of the geometry. Also, dS2×
S2 appears as solution of Einstein gravity with Λ > 0 [5] and hence dS2 is directly relevant to

four-dimensional de Sitter. Furthermore, recent progress in our microscopic understanding

of AdS2 holography [6–13] may guide us in constructing a microscopic model dual to the

interpolating geometry.

Embedding an inflating universe in an AdSd+1 spacetime with d > 1 was previously

considered in the interesting works of [14, 15]. There, essentially due to the Raychadhuri

equation combined with the null energy condition, it was found the de Sitter region lived

within the Schwarzschild-AdS black hole horizon. It would seem, then, that discovering

the de Sitter horizon is at least as complicated as solving the notorious puzzle of the region

interior to the horizon. The two-dimensional geometries we consider have the advantage

that the de Sitter horizon and its neighbouring static region are causally connected to the

AdS2 boundary. The reason we can do this is crucially related to the dimensionality of the

AdS2 boundary, and is precisely the one case not considered in previous literature. It is

closer in spirit to a ‘holographic worldline’ perspective of the static de Sitter region [16, 17].

– 2 –



J
H
E
P
0
7
(
2
0
1
9
)
0
3
8

From this perspective, it is assumed that the dual description of the static de Sitter region

is captured by a large N quantum mechanical model, rather than some local quantum field

theory in d > 0 spatial dimensions.

The paper is organised as follows. In section 2 we discuss the dilaton-gravity theories

of interest and their solution space, as well as the boundary value problems of interest. The

class of solutions admit a U(1) isometry as well as an AdS2 boundary. Of these, one branch

is described by a metric which interpolates between an AdS2 boundary and the static patch

of dS2. In section 3 we consider matter perturbations at the linearised level. In section 4

we consider the dynamics of the soft mode residing at the boundary of the interpolating

solutions. In section 5 we calculate out-of-time-ordered four-point functions stemming from

the exchange of the soft mode. We note the absence of exponential Lyapunov behaviour. In

section 6 the backreaction of a shockwave pulse on the interpolating geometry is explored.

It is noted that in certain circumstances, the horizon can retreat rather than advance

toward the AdS2 boundary. In section 7, we conclude with a discussion of the results, their

potential holographic implications, and some speculative remarks. Finally, further details

for certain calculations can be found in the appendices.

2 General framework

The theory we consider is described by the following dilaton-gravity Euclidean action:

SE = − 1

2κ

∫
d2x
√
g (φR+ V (φ))− 1

κ

∫
∂M

du
√
hφK + Sm , (2.1)

where Sm is the action for some matter theory. One can also add to this action a topolog-

ical term:

Stop = −φ0

2

∫
d2x
√
gR− φ0

∫
∂M

du
√
hK , (2.2)

where φ0 is a positive constant which we consider to be large. The Newton constant is

given by κ = 8πG. The scalar φ in (2.1), or equivalently κ, may be positive or negative —

what is important is that φtot = (φ0 + φ/κ) remain everywhere positive. Hence, through-

out the discussion we will assume that φ0 � |φ/κ| � 1 and consider both positive and

negative values of κ. The Euclidean geometry lives on a disk topology M with a circular

boundary ∂M.

The equations of motion for the two-dimensional metric and dilaton read:

∇a∇bφ− gab∇2φ+
gab
2
V (φ) = −κTmab , (2.3)

R = −V ′(φ) , (2.4)

where Tmab is the stress tensor for the matter fields. There are also the matter equations of

motion. We assume further, that the matter theory interacts only with the two-dimensional

metric at the classical level. Taking the divergence of equation (2.3) leads to:

[∇2,∇a]φ+
1

2
∇aV (φ) = 0 . (2.5)

– 3 –
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Some algebra reveals that [∇2,∇a]φ = R∂aφ/2. Using this, the divergence equation re-

duces to:

R∂aφ = −∂aV (φ) . (2.6)

In other words, one finds that equation (2.4) is redundant whenever ∂aφ 6= 0. Another

useful equation is obtained by taking the trace of (2.3) that leads to:

−∇2φ+ V (φ) = −κTmab gab . (2.7)

Finally, in the absence of matter it is straightforward to check that the equations of motion

imply ξa = εab∂bφ is a Killing vector [18].

2.1 Gauge fixing

We will be considering tree level features of the theory (2.1). For this purpose, a useful

gauge is the conformal gauge:

ds2 = e2ω(ρ,τ)(dρ2 + dτ2) , (2.8)

where τ is periodic with period 2π and the origin of the disk lives at ρ→ −∞.

Using (2.7), the dilaton equations become:

∂ρ∂τφ− ∂τω ∂ρφ− ∂ρω ∂τφ = −κTmρτ , (2.9)

1

2
(∂ρ∂ρ − ∂τ∂τ )φ− ∂ρω ∂ρφ+ ∂τω ∂τφ = −κ

2

(
Tmρρ − Tmττ

)
. (2.10)

Another gauge which is often convenient is the Schwarzschild gauge:

ds2 = N(r, T )dT 2 +
dr2

N(r, T )
. (2.11)

In the Schwarzschild gauge, the Euclidean solution is [19]:

N(r) =
1

|φh|

∫ r

signφh

dz V (φ(z)) , φ(r) = |φh|r . (2.12)

The periodic condition T ∼ T +2π is fixed by requiring a regular Euclidean geometry. The

point r = signφh is the location of the Euclidean horizon.

Given the Killing vector ξa = εab∂bφ, we will (locally) choose ω to be solely a function

of the ρ-coordinate. This dramatically simplifies the matter-less equations, which can be

now be solved explicitly.

2.2 Choice of potential and background solution

We will be interested in the class of potentials introduced in [3]. We take V (φ) to be a non-

negative function. Outside some transition region |φ| & ε with ε a small positive number,

the potential behaves as V (φ) ≈ 2|φ|. This transition region is not very important, but

we assume that V (φ) is continuous and vanishing at φ = 0. Two simple examples are

V (φ) = 2|φ| and V (φ) = 2φ tanh(φ/ε). For positive/negative φ the metric has constant

– 4 –
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negative/positive curvature. Depending on the value of the dilaton at the origin of the

disk, which we denote by φh, the metric may have both negative and positive curvature,

or purely negative curvature.

For most of the paper we will be interested in the sharp gluing limit with ε → 0. In

the conformal gauge with φh < 0, the solution for the metric is given by:

ds2 =

{
cos−2 ρ

(
dρ2 + dτ2

)
, ρ ∈ (0, π/2) ,

cosh−2 ρ
(
dρ2 + dτ2

)
, ρ ∈ (−∞, 0) .

(2.13)

Smoothness requires τ ∼ τ + 2π. The dilaton equation is solved by:

φ =

{
−φh tan ρ , ρ ∈ (0, π/2) ,

−φh tanh ρ , ρ ∈ (−∞, 0) .
(2.14)

We will refer to expressions (2.13) and (2.14) as the interpolating solution. The Euclidean

AdS2 boundary lives at ρ = π/2, whereas for negative values of ρ the metric is the standard

metric on a half-sphere. The Euclidean AdS2 piece of the geometry (2.13), between ρ ∈
(0, π/2), is related by analytic continuation to the global Lorentzian AdS2 geometry. It

can be viewed as a piece of the hyperbolic cylinder.

For φh > 0, the solution has negative curvature everywhere and is given by:

ds2 = sinh−2 ρ
(
dρ2 + dτ2

)
, ρ ∈ (−∞, 0) , (2.15)

φ = −φh coth ρ . (2.16)

Again, smoothness requires τ ∼ τ + 2π. The geometry (2.15) is the hyperbolic disk. It is

the Euclidean continuation of the AdS2 black hole geometry.

As we mentioned earlier, we will allow both signs of κ in (2.1). To give some context

to this, consider the spherically symmetric sector of Einstein gravity with a positive cos-

mological constant. In this case, the dimensionally reduced theory in two-dimensions is

itself a dilaton-gravity theory. In a particular limit, known as the Nariai limit, the dila-

ton potential is approximately linear. The Euclidean solution is given by the two-sphere

with a running dilaton. The dilaton increases from one pole to the other. Viewing the

two-sphere as two hemispheres joined at the equator, we see that one hemisphere has an

increasing dilaton profile towards the pole, whereas the other has a decreasing dilaton

profile. Switching from one sign to the other switches the sign of κ in the effective two-

dimensional theory. In appendix A we discuss a qualitatively similar phenomenon in the

context of pure Jackiw-Teitelboim theory [20, 21]. In appendix D we discuss a broader

family of dilaton potentials where the potential changes behaviour at some value φ0 and

we relax the assumption V (φ) > 0.

Lorentzian continuation. As a final note, we mention that the Euclidean solutions

can be continued to Lorentzian solutions. This continuation can be done in several ways.

The simplest continuation takes τ → it. The resulting solution is static and has a horizon

at the value where the Euclidean geometry smoothly capped off, namely ρ → −∞. The

boundary is that of an asymptotically Lorentzian AdS2 geometry. We can extend the

– 5 –
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κ = 0

x +x −= 0

x+
x−

=e
π x +x −=1

AdS dS dS AdS

�풞 �풞

Figure 1. Penrose diagram for the interpolating solution. The dashed lines interpolate between a

negative and a positive curvature region, that are coloured in light and darker blue, respectively.

C is the boundary curve close to the AdS boundaries. Inside the horizons, the geometry is locally

dS2, but depending on whether κ is positive or negative, the dilaton behaves as in the interior of a

dS black hole or as in the dS cosmological patch.

geometry beyond the horizon. The interior of the horizon is either locally dS2 or the

interior of the AdS2 black hole, depending on the sign of φh. The Penrose diagram for the

interpolating geometry is shown in figure 1.

One could also imagine analytically continuing ρ instead. In that case, one obtains a

cosmological type solution and the dilaton becomes time-dependent. If τ -remains periodi-

cally identified upon continuing ρ, the interpolating cosmological geometry will have a big

bang/crunch type singularity and asymptote to the future/past boundary of global dS2.

Though interesting in their own right, these solutions have compact Cauchy surfaces and

are thus not asymptotically AdS2. We leave their consideration for future work.

2.3 Boundary value problem

We now discuss several boundary conditions for the Euclidean dilaton-gravity theory (2.1).

The Dirichlet problem is given by specifying the value of the dilaton φb(u) and induced

metric h(u) at ∂M. Here, u is a compact coordinate that parameterises points on ∂M. In

the Weyl gauge:

h(u) = e2ω(ρ(u),τ(u))
(
(∂uτ(u))2 + (∂uρ(u))2

)
, φb(u) = φ(ρ(u), τ(u)) , (2.17)

where C = {τ(u), ρ(u)} is the curve circumscribing ∂M. The curve C is not independent

data. Rather, it is fixed by the particular solution to the Dirichlet problem. Requiring the

variation of the action to vanish under these conditions leads to the addition of the usual

Gibbons-Hawking boundary term. If the boundary value φb(u) is positive everywhere, then

C circumscribes part of the negatively curved geometry. If, moreover, h(u) and φb(u) scale

– 6 –
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with some large parameter Λ, such that {
√
h, φb} = Λ{

√
h̃, φ̃b} in the limit Λ → ∞, we

can approximate the Gibbons-Hawking boundary term by:

Sbdy[τ(u)] ≈ −1

κ

∫
du
√
h̃ φ̃b

(
Λ2 + signφh

(∂uτ)2

2h̃(u)
+ Schh̃ [τ(u), u]

)
. (2.18)

The above action and its properties will be developed further in section 4. The covariant

Schwarzian action Schh̃ [τ(u), u] is obtained by taking the standard Schwarzian Sch [τ(u), u]

and coupling it to a non-trivial metric h̃(u). We will write the more general expression

later on in (4.14). For now, we fix h̃(u) = 1 and state the familiar expression:

Sch [τ(u), u] =
∂3
uτ

∂uτ
− 3

2

(
∂2
uτ

∂uτ

)2

. (2.19)

The reason for the signφh in (2.18) is that the background solution has a different radial

slicing depending on whether or not there is a two-sphere in the interior. In particular,

for φh > 0 the asymptotic AdS2 clock is that of the Euclidean AdS2 black hole, i.e. the

isometric direction of the hyperbolic disk. When φh < 0, the asymptotic AdS2 clock is

that of Euclidean global AdS2 with periodically identified time, i.e. the hyperbolic cylinder.

Consequently the function τ(u) must be a map from S1 to S1.

Using the equations of motion, we can obtain an expression for the on-shell Euclidean

action for the Dirichlet problem:

− Scl =
1

κ

∫
du
√
h(u)φb(u)K(u) +

1

2κ

∫
d2x
√
g (V (φ)− φ∂φV (φ)) . (2.20)

It is straightforward to evaluate the above action in the Schwarzschild gauge (2.11). The

second term in (2.20) is non-vanishing only near the region where V (φ) is non-linear.

This region can be made parametrically small, such that the dominant contribution to the

on-shell action is from the boundary term.1 For instance, take V (φ) ≈ ζ−1φ2 near the

transition region around φ = 0, and let the width of the region be 2ε. Then, it can be

shown, using the general solution (2.12), that:

− Sint =
1

2κ

∫
d2x
√
g (V (φ)− φ∂φV (φ)) =

αε3

3κζ
, φh � −ε , (2.21)

where α = 4π/V (φh). For small enough ε, the dominant contribution to the on-shell

action comes from the boundary term (2.18). As a concrete example, one can consider

V (φ) = 2φ tanhφ/ε, for which an exact calculation can be performed. In this case, ζ = ε,

and one can indeed check that Sint ∼ ε2. Note that this contribution is not present if φh � ε.

The Neumann problem is given by specifying the value of the conjugate momenta

πφb(u) and πh(u) along a prescribed closed boundary curve C = {τ(u), ρ(u)} parameterized

by some coordinate u. Explicitly, the conjugate (Euclidean) momenta to the boundary

metric and dilaton are:

κπφb = −K , κπh = −n
a∂aφ

2h
. (2.22)

1More generally, one could also consider adding additional local boundary terms [22].

– 7 –
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Here na is a unit vector that is normal to C. Since now the dilaton and induced metric are

allowed to vary along C, we may find saddle point solutions for which the metric is nowhere

AdS2. As a simple example, if we fix {πh, πφb} = {− 1
2κ , 0} as our boundary condition, the

solution is given by the half-sphere.

In addition to the Dirichlet and Neumann boundary conditions, we may also consider

mixed Dirichlet-Neumann boundary conditions or even conditions on linear combinations

of the momenta and boundary values of the fields. The choice depends on the physics of

interest. Not all boundary data {φb(u), h(u)} admit a Euclidean solution which is both

smooth and real. For instance, if φb is u-independent and negative, and h is u-independent

and sufficiently large, one cannot realise a smooth and real Euclidean saddle. There may

be complex saddles that are allowed however. In recent literature relating two-dimensional

gravity to the SYK model (see for example [23]), the Dirichlet problem is considered for

the two-dimensional bulk theory, and we will mostly focus on this choice.

As a concrete example, we consider the Dirichlet problem with u-independent boundary

values φb � 1 and h � 1. There are two-solutions satisfying these boundary conditions.

For φh < 0 it is (2.13), (2.14) with −φh tan ρc = φb and cos−2 ρc = h. For φh > 0

it is (2.15), (2.16) with −φh coth ρc = φb and sinh−2 ρc = h. The boundary lies at a

constant ρ = ρc surface near the AdS2 boundary, with τ = u. The configuration with

least action depends on the sign of κ. For κ > 0 (κ < 0) the dominant configuration has

φh > 0 (φh < 0).

In the remainder, we explore the behaviour of the background solutions upon turning

on various matter sources in the Dirichlet problem and we will make short comments on

the Neumann problem when appropriate.

3 Perturbative analysis

In this section we consider the effect of a small matter perturbation. The goal is to

gain some understanding as to how the geometry responds to matter perturbations when

the background has an interpolating region. Unlike the case of the Jackiw-Teitelboim

model [20, 21] which has a linear dilaton potential which fixes the internal geometry entirely,

our perturbations will also involve the metric.

We consider turning on some matter content with non-trivial boundary profile. This

will interact with the graviton and dilaton fields with strength κ, such that the perturbative

expansion is one in small κ. The geometry communicates with the matter through the effect

of the matter on the dilaton. We choose our background solution to be the interpolating

geometry (2.13) with dilaton profile (2.14), which assumes the sharp-gluing limit where

ε = 0, i.e. V (φ) = 2|φ|. Given the background U(1) isometry in the τ -direction, it is

convenient to consider the Fourier modes of the linearised fields. As matter, we consider a

complex, massless, free scalar χ with action:

Sχ =

∫
d2x
√
g gab ∂aχ̄ ∂bχ . (3.1)

In the conformal gauge, the general solution that is well behaved in the interior is:

χ(ρ, τ) =
∑
m∈Z

hme
|m|(ρ−π/2)+imτ , hm ∈ C . (3.2)

– 8 –
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At the AdS2 boundary, where ρ = π/2, the Fourier modes of the boundary profile for the

matter field are hm. The ρτ -component of the matter stress-tensor will be most relevant

for our calculations. We first solve the general linearised equations, and then consider

particular boundary conditions.

3.1 Linearised equations

To leading order in a small matter field expansion, we must solve for the fluctuation δφ(ρ, τ)

of the background dilaton φ̄(ρ) and the fluctuation δω(ρ, τ) of the background conformal

factor ω̄(ρ). The perturbed geometry can be expressed as:

ds2 = e2(ω̄(ρ)+δω(ρ,τ))
(
dρ2 + dτ2

)
. (3.3)

We obtain the following linearised equations:

∂ρ∂τδφ− ∂ρω̄∂τδφ− ∂τδω∂ρφ̄ = −κTχτρ , (3.4)

−2e−2ω̄
(
∂2
ρ + ∂2

τ

)
δω − 2R̄ δω = −∂2

φV (φ̄) δφ , (3.5)

where now Tχτρ is the stress tensor corresponding to the scalar χ. The inhomogeneous

solution to (3.4) can be expressed as an integral:

δφinh(ρ, τ) = eω̄(ρ)

∫ ρ

−∞
dρ′e−ω̄(ρ′)

(
−κ
∫ τ

dτ ′Tχρτ (ρ′, τ ′) + ∂ρ′ φ̄(ρ′)δω(ρ′, τ)

)
. (3.6)

Substituting (3.6) into (3.5) we find:(
−2e−2ω̄(ρ)

(
∂2
ρ + ∂2

τ

)
− 2R̄

)
δω(τ, ρ) + ∂2

φV (φ̄) δφinh(ρ, τ) = 0 . (3.7)

For V (φ) = 2|φ| we have ∂2
φV (φ) = 4δ(φ). Away from the ρ = 0 interpolating region, we

must solve the free wave-equation:(
−e−2ω̄(ρ)

(
∂2
ρ + ∂2

τ

)
− R̄

)
δω(ρ, τ) = 0 . (3.8)

The above equation states that the linearised correction to the Ricci scalar must vanish.

Its solution corresponds to a linearised diffeomorphism that preserves the conformal gauge.

For either ρ > 0 or ρ < 0, (3.8) has two solutions. In the ρ < 0 region, we must solve:(
cosh2 ρ

(
∂2
ρ + ∂2

τ

)
+ 2
)
δω−(ρ, τ) = 0 . (3.9)

We keep the solution that is non-singular at ρ = −∞. The Fourier modes are then found

to be:

δω−(ρ, q) = αq e
|q|ρ (−|q|+ tanh ρ) , q ∈ Z , (3.10)

with αq = α∗−q. For ρ > 0, we must solve:(
cos2 ρ

(
∂2
ρ + ∂2

τ

)
− 2
)
δω+(ρ, τ) = 0 . (3.11)

Interestingly, the above equation is that of a free scalar in AdS2 with ∆ = 2. The two

solutions are given by:

δω+(ρ, q) = βq e
|q|ρ(|q|+ tan ρ) + γq e

−|q|ρ(|q| − tan ρ) , q ∈ Z , (3.12)
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with βq = β∗−q and γq = γ∗−q . We are now in a position to compute the integral (3.6). For

the jumping condition, we need the integral at ρ = 0. In order to fix some of the coefficients

of the solution, we must consider matching δω−(ρ, τ) and δω+(ρ, τ) across ρ = 0. The first

matching condition is continuity of the metric at ρ = 0, so that

δω−(0, τ) = δω+(0, τ) . (3.13)

From this, it is straightforward to get

αq = −(γq + βq) . (3.14)

The second matching condition relates the radial derivatives of δω(ρ, τ) across ρ = 0. From

∂2
φV (φ) = 4δ(φ), one obtains the following jump condition:

(∂ρδω+(ρ, τ)− ∂ρδω−(ρ, τ))
∣∣∣
ρ=0

= − 2

φh
δφinh(0, τ) . (3.15)

The continuity and jump condition allow us to fix two of the three integration constants

{αq, βq, γq}. Finally, requiring that δω+(ρ, τ) is fast-falling as one approaches ρ = π/2

gives us a third condition, γq = eπ|q|βq, which in turn allows us to completely determine

the linearised profile δω(ρ, τ). One finds:

βq = i
κ

φh
sgn q

e−π|q|

(1 + q2)(1− q2)
Tρτ (0, q) . (3.16)

Given δω(ρ, τ) we can obtain δφ(ρ, τ) by evaluating the integral in (3.6). Notice that

δφ(ρ, τ) has no jump in its first derivative. It is also interesting to obtain an equation for

the curve S separating the region of positive and negative φ. To linear order, this reads

φ̄(ρ) + δφinh(ρ, τ) = 0 . (3.17)

Solutions to the above equation ρS(τ) will produce a curve S separating positive and

negative values of φ, and hence regions of positive and negative curvature. In the absence

of matter, this curve is a circle. Given that there are no positivity constraints on δφinh(ρ, τ)

this original circle can become deformed in both directions, as we shall shortly explore in

a concrete example.

Once a linearised solution is found, one must impose the appropriate boundary con-

ditions. For instance, let us consider the Dirichlet problem with boundary values {h, φb}
which we take to be u-independent with φb large and positive. In the absence of matter, the

boundary value problem is solved by finding a ρc such that h = e2ω(ρc) and φb = −φh tan ρc.

Thus, in the absence of matter the boundary curve is fixed to by the circle C = {u, ρc}.
Upon turning on a linear perturbation, C will be slightly deformed to a new curve patareme-

terised by Cp = {u+ δτ(u), ρc + δρ(u)}, where δτ(u) and δρ(u) are fixed by solving:

h = e2ω̄(ρc) (1 + 2∂uδτ(u) + 2δω(ρc, u) + 2∂ρω̄(ρc)δρ(u)) , (3.18)

φb = φ̄(ρc) + ∂ρφ̄(ρc)δρ(u) + δφinh(ρc, u) . (3.19)
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(a) (b)

Figure 2. The perturbative solution for m = −φh = 1. (a) shows the full perturbative solution on

the unit disk, while (b) zooms in the interpolating region. The unperturbed interpolating geometry

is given by a separation between negative (blue) and positive (yellow) curvature at ρ = 0 (dashed,

red circle). The perturbation for κh21 = 2.3, generates the new curve with φ = 0 that is given by

the black line in the plot. The black dashed line close to the boundary in figure (a) shows boundary

conditions given by φb = 30, h = 900.

The above equations are solved by:

δρ(u) = −δφinh(ρc, u)

∂ρφ̄(ρc)
, ∂uδτ(u) =

∂ρω̄(ρc)

∂ρφ̄(ρc)
δφinh(ρc, u) . (3.20)

From the above we see that δτ(u) and δρ(u) are indeed O(κ) quantities, justifying our

assumption that the resulting curve lies near the unperturbed curve C = {u, ρc}.

3.2 Example

As a concrete example, suppose the matter field is characterised by a single harmonic m ≥ 1

and is real valued. The solution for χ(ρ, τ) is simply:

χ(ρ, τ) = 2hm e
m(ρ−π/2) cos(mτ) , (3.21)

from which it immediately follows that:

Tχρτ (ρ, τ) = −2h2
mm

2e2m(ρ−π/2) sin(2mτ) . (3.22)

It is then straightforward to obtain the perturbative solution. We first evaluate the integral

in equation (3.6) for the given stress tensor. The next step is to find the curves where the

dilaton vanishes. This can be done numerically and shown for an example with m = 1 in

figure 2. We still need to fix the boundary conditions. Given h and φb, then δρ(u) and

δτ(u) are determined by (3.20). In figure 2 we display the solution with h = 900, φb = 30.

More generally, if we take ∂M to lie at ρc ≈ π/2 and τ = u, the condition that φb
remains positive and large along ∂M enforces:

|φh| &
κh2

mm

(4m2 + 1)

(
1 +

8m2e−2πm

(4m2 − 1)

)
. (3.23)
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(a) κh2
1 = 8.3 (b) κh2

1 = 8.8

Figure 3. Perturbative solution with m = −φh = 1 on the unit disk. Yellow regions indicate

positive curvature while blue ones, negative. The interpolating region with φ = 0 is the solid curve

between them. The red dashed circle shows the interpolating region of the unperturbed geometry.

As the strength of the perturbation increases, the positive curvature regions grow until negative

curvature regions become disconnected.

Relaxing the above condition leads to solutions where regions of negative and positive

curvature might separate, as shown in figure 3. If we impose a Dirichlet boundary condition

for which φb is everywhere positive along ∂M, solutions such as the one in figure 3 (b) are

no longer allowed. Perhaps this suggests for the Dirichlet problem with AdS2 asymptotia,

one can entirely remove the dS2 region in the interior by turning on strong enough matter

sources at ∂M. It would be interesting to futher explore this at the non-linearised level.

3.3 Remarks on the non-linear problem

We would like to end this section with some remarks on the general non-linear problem.

Again, we will consider the limit where there is a sharp transition from positive to neg-

ative curvature. The geometric problem consists of gluing a constant negative curvature

geometry to a constant positive curvature geometry across some curve S. In the conformal

gauge, constant curvature metrics in two-dimensions are given by solutions to the Liou-

ville equation. To express the space of solutions, it is convenient to introduce a complex

coordinate z = eρ+iτ . A large class of positive constant curvature geometries are:

ds2 =
4f ′+(z)g′+(z̄)

(1 + f+(z)g+(z̄))2 dz dz̄ , (3.24)

where f+(z) and g+(z̄) are meromorphic and anti-meromorphic functions giving rise to

a real geometry. For example the round metric on the two-sphere has f+(z) = z and

g+(z̄) = z̄. Negative constant curvature geometries are:

ds2 =
4f ′−(z)g′−(z̄)

(1− f−(z)g−(z̄))2 dz dz̄ . (3.25)

The standard hyperbolic geometry has f−(z) = z and g−(z̄) = z̄. The hyperbolic cylinder

is given by f−(z) = ei log z and g−(z̄) = ei log z̄. Poles in f−(z) and g−(z̄) translate to conical

defects in the two-dimensional geometry.
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We wish to glue the two geometries together along an arbitrary closed curve S, such

that both the metric and extrinsic curvature matches along the curve. The equation for

S will be some non-holomorphic function s(z, z̄) = 0. Thus, f+(z) and g+(z̄) should be

analytic in US . Throughout the region US within S we require a smooth constant positive

curvature geometry. By the Riemann mapping theorem, we can map US to the open disk

with circular boundary. We can then fill the interior of the disk with the standard metric

on the two-sphere and glue it to the appropriate hyperbolic geometry. Finding the explicit

form of the map is generally complicated. Upon performing the map, the boundary values

of the fields will transform. It is important to understand how the boundary values of the

fields transform since they are to be interpreted as sources for the operators in a putative

dual quantum mechanics.

4 Boundary soft mode

In this section we consider the effective theory of the soft mode arising close to the AdS2

boundary. We emphasise that the AdS2 clock near the boundary of the unperturbed, or

slightly perturbed, interpolating geometry is the isometric direction of the hyperbolic cylin-

der. As mentioned earlier, this results in a sign difference for the boundary action (2.18)

as compared to that of the hyperbolic disk.

4.1 Soft action

Let us take h and φb to be u-independent, with φb positive and the two scaling as {
√
h, φb} =

Λ{1, φ̃b} in the large-Λ limit. We take the proper size of the boundary circle to be Λ β̃

such that u ∼ u + β̃. The boundary action for the interpolating geometry (2.13) is found

by calculating the extrinsic curvature for the curve C = {τ(u), ρ(u)}.
If we remain off-shell by leaving τ(u) unfixed, we can calculate the boundary action

for the interpolating geometry:

Sbdy =
φ̃b
κ

∫
du

(
1

2
(∂uτ(u))2 − Sch [τ(u), u]

)
. (4.1)

In deriving the above action, we have related ρ(u) to τ(u) via (2.17):

Λ2 =
(∂uρ(u))2 + (∂uτ(u))2

cos2 ρ(u)
. (4.2)

In the large Λ-limit, we have Λ cos ρ(u) ≈ ∂uτ(u) such that ρ(u) must be parameteri-

cally near ρ = π/2. This forces the boundary curve C to live parametrically close to the

AdS2 boundary. For τ(u) non-compact, the theory (4.1) is invariant under the SL(2,R)

transformation:

σ(u)→ a σ(u) + b

c σ(u) + d
, ad− bc = 1 , (4.3)

with a, b, c, d real, and σ(u) = tanh τ(u)/2. Due to the fact that τ(u) is compact, the

SL(2,R) invariance is broken to a U(1) subgroup corresponding to shifts in τ(u).
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The equations of motion stemming from (4.1) are:

∂2
uτ = ∂u

(
1

∂uτ
∂u

(
∂2
uτ

∂uτ

))
. (4.4)

One solution to the above equations is τ(u) = 2πu/β̃, such that u ∼ u + β̃. In [23, 24], β̃

is interpreted as the temperature of a putative ultraviolet system. An example where this

occurs is the SYK model, for which u becomes the clock of the dual quantum mechanical

fermions. We will keep β̃ as a parameter, and occasionally interpret it as a temperature.

In the case where our bulk theory has an additional scale, such as the field range of the

interpolating region in the dilaton potential, the theory already contains a bulk tunable

parameter that can be viewed as a temperature. This is in sharp contrast to linear dilaton

potentials for which the bulk geometry is entirely fixed at the classical level.

The on-shell boundary action for the τ(u) = 2πu/β̃ saddle becomes:

Sbdy,cl = −signφh
φ̃b

β̃κ
. (4.5)

If we interpret β̃ as an inverse temperature, we see that (4.5) is linear in the temperature.

For κ > 0 the specific heat with respect to variations of β̃ is negative for the interpolating

solution, which as we recall has φh < 0.2 Nevertheless, as we shall soon see, the κ > 0

thermal saddle is locally stable with respect to small variations of τ(u).

For the remainder of the solution space, we can map (4.4) to the equations of motion

of Liouville quantum mechanics [26]:

∂2
uξ(u) = e2ξ(u) , (4.6)

with ∂uτ(u) = eξ(u). The solutions to (4.6) are:

e2ξ(u) = a2 sec2au . (4.7)

Due to the condition ξ(u) = ξ(u + β̃), we require a = nπ/β̃ with n ∈ Z. All these

saddles have a divergence at certain values of u. Evaluating the on-shell action for the

solutions (4.7) reveals a divergent answer. The action in terms of ξ is given by:

Sξ =
φ̃b
κ

∫
du

[
(∂uξ)

2 +
1

2
e2ξ(u)

]
. (4.8)

As shown in [26], the path integral measure is flat in ξ(u) with the zero mode removed.

Case (i): κ > 0. For κ > 0 the dominant saddle has φh > 0 such that the two-

dimensional geometry is the hyperbolic disk. The interpolating solution is a sub-leading

contribution to the thermal partition function. Picking β̃ = 2π, and expanding the soft

2Note that for a class of generalised potentials that is analysed in appendix D, it is possible to obtain

interpolating geometries with κ > 0 and a positive specific heat.
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action around the saddle as τ(u) = u+ δτ(u) we obtain the following perturbative action

for the Schwarzian piece:

Sfluct =
φ̃b
2κ

∫
du
((
∂2
uδτ(u)

)2
+ (∂uδτ(u))2

)
. (4.9)

Interestingly, though the interpolating geometry is a sub-dominant saddle, the action for

fluctuations (4.9) of its soft boundary mode is Gaussian suppressed, allowing for a pertur-

bative analysis of δτ(u) in the sub-dominant saddle. We will analyse this shortly.

Case (ii): κ < 0. We now consider κ < 0. In this case, the boundary action for the

interpolating geometry (4.1) dominates over that of the hyperbolic disk. This is consistent

with the analysis of [3]. However, care must be taken with the perturbative analysis of

fluctuations. Indeed, for κ < 0, the fluctuation action (4.9) is Gaussian unsuppressed. One

possibility is that we must consider a different ensemble for κ < 0. For instance, we could

consider a mixed Neumann-Dirichlet ensemble where πφ = −K and h are fixed, rather

than the standard Dirichlet problem we have been considering so far. Fixing the extrinsic

curvature in Euclidean quantum gravity has been considered in other contexts also (see for

example [27, 28]). In going to this ensemble, we must allow φb(u) to fluctuate, and hence, it

is no longer guaranteed that our geometry will be asymptotically AdS2. Another possibility

is that we must view the κ < 0 theory as part of a larger theory with non-negative κ. One

possible lesson is that for κ < 0, we should no longer interpret β̃ as a temperature.

An example of a well defined theory where one encounters a term in the action corre-

sponding to a Schwarzian action with negative coefficient arises if one considers coupling

the soft mode action to a non-trivial geometry h̃(u). In order to covariantise this action it

is useful to write:

Sch[τ(u), u] = F [A, u] ≡ ∂uAu −
1

2
AuAu , A = ∂u log ∂uτ(u) du . (4.10)

Notice that A transforms as a connection under changes of coordinates u → f(u).3 Pro-

vided an affine connection Γ, it is now easy to covariantise this action in terms of A = A−Γ.

In a manifold with a metric h̃(u), Γ is given by

Γ = h̃−1/2∂uh̃
1/2 du . (4.11)

The associated covariant Schwarzian action becomes:

Schh̃[τ(u), u] = h̃−1F [A, u] ≡ h̃−1

[
DuAu −

1

2
AuAu

]
(4.12)

where Du ≡ ∂u − Γu is the usual covariant derivative and we have included an inverse

metric h̃−1 to make the Schwarzian a scalar density. Now something interesting happens

as we expand out this expression:

F [A, u] = ∂uAu −
1

2
AuAu − ∂uΓu +

1

2
ΓuΓu = F [A, u]− F [Γ, u] (4.13)

3Incidentally, A also transforms as a gauge connection for the conformal symmetry action on target space

τ → σ(τ) and F is a weight 2 tensor invariant under the global SL(2,R) sub-algebra of this local group.
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Putting all this together we can write a fully covariant action as:

S[τ,Γ, h̃] = −1

κ

∫
du
√
h̃φ̃b h̃

−1 (F [A, u]− F [Γ, u]) . (4.14)

It is clear from the above expression that regardless of the original sign of κ we obtain the

difference of two identical actions with different signs. These can of course differ on the

actual variables of integration in the path integral. As expected in first order formalisms

of gravity, if we take Γ to be an independent variable we obtain (4.11) as the equation of

motion. We will elaborate on these issues in future work.

5 Matter perturbations

We now consider the effect of a massless free scalar, with boundary value χ(u), to the

physics of the soft mode. The contribution to on-shell action from the matter theory (3.1)

is given by:

Sχ = −1

2

∫
du1du2

(
τ ′(u1)τ ′(u2)

sin2 τ(u1)−τ(u2)
2

)
χ̄(τ(u1))χ(τ(u2)) . (5.1)

In the above expression, we have assumed that the boundary curve C = {τ(u), ρ(u)} always

remains near the asymptotic AdS2 boundary. In addition to (5.1), the total on-shell action

also contains a contribution from the Schwarzian action (2.18) and an interior contribution

Sint given in (2.21). Thus, the generating function for boundary correlations of the scalar χ

contains an additional contribution when compared to the pure Jackiw-Teitelboim theory

with a linear dilaton potential. There, the geometry is always pure AdS2 and the whole

problem can be mapped to a calculation at the boundary [23–25]. Here, the soft boundary

physics carries an imprint from the bulk interpolating region. This can be seen rather

directly from our perturbative equations (3.6) and (3.20). The contribution to (3.20)

coming from the integral over the stress-tensor is equivalent to the equation of motion

stemming from the boundary theory (4.1) plus (5.1). However, there is also a contribution

to (3.20) from the second integral in (3.6). This term is due to the interpolating region.

It is instructive to obtain an equation for the off-shell curve parameter τ(u) ≈ u+δτ(u).

This can be done by considering the ADM mass of the theory [22] along the curve C:

MADM =
√
h (−na∂aφ+ φb) . (5.2)

We can evaluate MADM either using the Tρρ or Tρτ equations of motion. Given a slightly

perturbed metric,

ds2 = e2ω̄(ρ) (1 + 2δω(ρ, τ)) (dρ2 + dτ2) , (5.3)

we evaluate (5.2) along the curve C = {u+ δτ(u), ρc + δρ(u)}, where δρ(u) is expressed in

terms of δτ(u) and δω(ρc, u) by fixing the induced metric h = e2ω̄(ρc) of (5.3). Working to

linear order in δτ(u) and δω(ρc, u), and using that φb = −φh tan ρc, we obtain the following

expression:

φ̃b
(
∂4
u − ∂2

u

)
δτ(u) = −κTτρ(π/2, u) + 3h φ̃b ∂uδω(ρc, u) . (5.4)
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We also work in the limit ρc → π/2, which is well defined so long as δω(ρc, u) goes as

O((ρc−π/2)2) as we approach ρc = π/2. The left hand side of (5.4) is given by linearising

the equation of motion of the Schwarzian theory (4.1). The first term on the right hand

side of (5.4) comes from varying (5.1) with respect to τ(u). The last term in (5.4) is due

to the slightly perturbed Weyl factor and encodes the information of the interior curve

S. Upon inserting the on-shell value for δω(ρ, τ), the solutions of (5.4) are the same as

our linear solutions (3.20). Since δω(ρ, τ) is fixed by Tρτ (ρ, τ) on-shell, we end up an

equation for δτ(u) that is completely determined by the boundary data χ(u). Recall that

in momentum space, the linearised solution for δω near the boundary can be obtained by

expanding (3.12) near ρ = π/2:

δω̃q ≡ lim
ρ→π/2

δωq(ρ)

(ρ− π/2)2
= −2

3
i
κ

φ̃b

q e−
π|q|
2

(1− q2)
Tρτ (0, q) . (5.5)

In position space, this becomes a convolution:

δω̃(u) = −2

3

κ

φ̃b
∂u

∫
dwG(u− w)Tρτ (0, w) , G(u) ≡

∑
q 6={±1,0}

e−
π|q|
2

(1− q2)
eiqu . (5.6)

Explicitly:

G(u) =
1

2
Re

[
sinh

(
π

2
−iu

)
−cosh

(
π

2
−iu

)
−4 log

(
1− e−

π
2

+iu
)

sinh

(
π

2
− iu

)
− 2

]
.

(5.7)

Notice that G(u) is an oscillatory function in u.

5.1 Boundary action

It is of interest to calculate the boundary four-point function for the matter fields which

we express as χ = (χ1 + iχ2)/
√

2, with χ1 and χ2 real. We will set β̃ = 2π unless otherwise

specified. At tree-level, we must compute the on-shell Euclidean action for the linearized

perturbations δτ and χ. It is given by:

Sbdy[δτ(u), χ(u)] = Sfluct[δτ(u)]−
∫
du

(
Tρτ (π/2, u)− 3φ̃b

κ
∂uδω̃(u)

)
δτ(u) , (5.8)

with Sfluct[δτ(u)] containing the fluctuations of the Schwarzian given in (4.9) and δω̃(u)

given in (5.6). Since Tρτ and δω̃ are quadratic in χi(u), we can read off a cubic interaction

between χi(u) and δτ(u) directly from (5.8). Moreover, given that:

Tρτ (π/2, u) = −1

4

(
∂uχ(u)

∫
dw

χ̄(w)

sin2 u−w
2

+ h.c.

)
, (5.9)

it follows that (5.8) is non-local in u, when viewed as a functional of χ(u) and δτ(u).

Similarly,

Tρτ (0, u) = −1

4

(
∂uχ̃(u)

∫
dw

¯̃χ(w)

sin2 u−w
2

+ h.c.

)
, (5.10)
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where we have further defined:

χ̃(u) ≡
∫
dw

sinhπ/2χ(w)

coshπ/2− cos(u− w)
. (5.11)

The reason for taking a convolution of the boundary matter source χ(u) is that there is a

relative factor of e−|q|π/2 for the Fourier modes of χ(ρ, τ) when comparing ρ = 0 to ρ = π/2.

The convolution suppresses the small scale structure of χ(u). As a result we can rewrite

the second term in (5.8) as:

− 1

8

∫
du1du2

sin2 u1−u2
2

[χ(u1)χ̄(u2)B(u1, u2) + χ̃(u1) ¯̃χ(u2)E(u1, u2) + h.c.] , (5.12)

where we have defined:

E(u1, u2) ≡

(
∂u1δT (u1) + ∂u2δT (u2)− δT (u1)− δT (u2)

tan u1−u2
2

)
, (5.13)

B(u1, u2) ≡

(
∂u1δτ(u1) + ∂u2δτ(u2)− δτ(u1)− δτ(u2)

tan u1−u2
2

)
, (5.14)

and δT (w) ≡ 2
∫
duG(w − u)∂2

uδτ(u), with G(u) given in (5.6).

From the action of small soft mode fluctuations (4.9) with κ > 0, we can extract the

propagator of the mode δτ(u) which in Fourier space reads:

〈δτmδτn〉 =
κ

φ̃b

δm+n

m4 +m2
. (5.15)

Notice that m = 0 is a zero mode that must be excised from the configuration space. Going

back to position space, the propagator becomes:

〈δτ(u)δτ(0)〉 =
κ

φ̃b

(
(|u| − π)2

2
− π

sinhπ
cosh(|u| − π) + 1− π2

6

)
. (5.16)

We display the δτ(u) propagator in figure 4. This result is valid for u ∈ [−π, π) and

periodically continued for other u. To obtain the contribution to the χi four-point function

from (5.8), we must integrate out δτ(u). To leading order, this is given by calculating the

tree-level exchange diagram of δτ(u).

5.2 Four-point functions

We have now collected all the ingredients necessary to calculate the tree-level, connected,

four-point function. It is given by:

〈χ1(u1)χ1(u2)χ2(u3)χ2(u4)〉c

=
1

16

〈(
B(u1, u2)

sin2 u1−u2
2

+ Ẽ(u1, u2)

)(
B(u3, u4)

sin2 u3−u4
2

+ Ẽ(u3, u4)

)〉
, (5.17)

where we have defined:

Ẽ(u1, u2) ≡
∫
dw1dw2

sinhπ/2

coshπ/2− cos(u1 − w1)

E(w1, w2)

sin2 w1−w2
2

sinhπ/2

coshπ/2− cos(w2 − u2)
.

(5.18)
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Figure 4. The propagator in equation (5.16) as a function of u is shown in green. In red, we

plot the propagator for the perturbative Schwarzian action resulting near the boundary of the

hyperbolic disk.

The calculations are somewhat lengthy, but straightforward. In appendix C we give

some details of the calculations. The time ordering u4 < u2 < u3 < u1 is the one relevant

for out-of-time-ordered correlations [29] upon suitable analytic continuation. This can be

done in many different ways. A particularly simple configuration is given by placing the

four operators at equally-spaced points along the thermal circle, and then evolving only

the two diametrically opposed ones along the real-time axis:

F (t) ≡ 〈χ1(π/2)χ2(it)χ1(−π/2)χ2(−π + it)〉c = Trρ̂ [ŷ χ̂1 ŷ χ̂2(t) ŷ χ̂1 ŷ χ̂2(t)] , (5.19)

where ρ̂ ≡ e−β̃Ĥ and ŷ ≡ ρ̂1/4. It has been argued that quantum systems in thermal

equilibrium with a large number of degrees of freedom, N , and a parametrically large

separation between dissipation and scrambling time obey [30]:

F (t) = f0 −
f1

N
exp(λLt) , with λL ≤

2π

β̃
. (5.20)

Here, λL is the Lyapunov exponent, f0 and f1 are positive order-one constants (independent

of N , β̃, t), and β̃ � t� β̃ logN . It turns out that black holes in Einstein gravity saturate

this bound. The AdS2 black hole with running dilaton also saturates the chaos bound.

We are interested in the four-point function F (t) for the interpolating geometry. The

important point is that the δτ(u) propagator (5.16) is built from hyperbolic functions,

which upon analytic continuation become oscillatory. This already implies that the piece

of F (t) stemming purely from the B(u,w) contribution will oscillate in t. Upon reinstating

β̃, the frequency of oscillation is 2π/β̃, which is the same as the Lyapunov coefficient.

Analytically:〈
B(π/2,−π/2)B(2πit/β̃,−π + 2πit/β̃)

〉
c

=
2κβ̃

φ̃b

(
πcsch

π

2
cos

2πt

β̃
− 2

)
. (5.21)

The piece of F (t) stemming from the E(u,w) contribution contains trigonometric func-

tions both in (5.7), as well as in the convolution (5.10). Recalling that we must calculate

correlators of Ẽ(u,w) in (5.18), the only piece that is subject to analytic continuation is
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the cos(u − w) in the denominator of (5.18). All the relevant integrals appearing in the

convolutions are finite and well defined. Consequently, upon setting u1 = π/2, u2 = −π/2,

u3 = it and u4 = −π + it, the contribution from Ẽ(u, v) will either oscillate or decay

exponentially at large t. In appendix C we provide numerical evidence of this behaviour.

In conclusion, the boundary out-of-time-ordered four-point function of χ(u) for the

interpolating geometry does not display the exponential Lyapunov behaviour (5.20) ob-

served for black holes in AdS. Instead, we observe oscillatory behaviour in Lorentzian

time. This is an interesting distinction between de Sitter-like and black-hole-like horizons

whose microscopic interpretation we will discuss in future work.

6 Lorentzian deformations

Having discussed several aspects of the Euclidean problem, we move on to some features

of perturbations in Lorentzian signature. Specifically, we will consider the effect of a null

energetic pulse travelling from the AdS2 boundary through the dS2 horizon.

6.1 Lorentzian background

It is convenient to work in light-cone coordinates, such that our gauge-fixed background is

given by:

ds2 = e2ω(x+, x−)dx+dx− . (6.1)

The relation to the Schwarzschild like coordinates (2.11) in the x+ > 0, x− > 0 quadrant is:

± log x± = t±
∫ ρ dr

N(r)
. (6.2)

The Ricci scalar is given by R = −8e−2ω∂+∂−ω. The non-vanishing Christoffel symbols are:

Γ+
++ = 2∂+ω , Γ−−− = 2∂−ω . (6.3)

The background solution is given as follows. The dS2 region is covered by the range

−1 < x+x− < 1. The metric and dilaton take the form:

e2ω̄(x+,x−) =
4

(1 + x+x−)2
, φ̄(x+, x−) = |φh|

(
x+x− − 1

x+x− + 1

)
. (6.4)

The dS2 horizon resides at x+x− = 0. The future boundary in the interior of the dS2

horizon resides at x+x− = −1. The transition region occurs near x+x− = 1. The AdS2

region is covered by 1 < x+x− < eπ and described by:

e2ω̄(x+,x−) =
1

x+x−
sec2 log x+x−

2
, φ̄(x+, x−) = |φh| tan

log x+x−

2
. (6.5)

The AdS2 boundary resides at x+x− = eπ.
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6.2 Massless matter

The matter content we consider will be a free massless scalar described by the action:

Sχ = −1

2

∫
d2x
√
−ggab∂aχ∂bχ . (6.6)

The solutions to the massless wave-equation are given by a sum of left and right moving

waves:

χ(x+, x−) = χ+(x+) + χ−(x−) . (6.7)

In Lorentzian space we can turn on a purely chiral excitation. This would correspond to a

complex, holomorphic solution in Euclidean space. Let us consider the case χ−(x−) = 0.

The equations of motion are (see for example [31]):

e2ω(x+,x−)∂+e
−2ω(x+,x−)∂+φ = −κTχ++(x+) , (6.8)

e2ω(x+,x−)∂−e
−2ω(x+,x−)∂−φ = 0 , (6.9)

4∂+∂−φ− e2ω(x+,x−) V (φ) = 0 . (6.10)

Let us further consider the case where the geometry is transitioning sharply from AdS2 to

dS2. The pulse emanates from the AdS2 boundary and we can solve for φ by integrating

the ++-equation of motion from the past boundary to the interpolating region. In this

region we find:

∂+φ(x+, x−) = ∂+φ̄(x+, x−)− κ e2ω̄(x+,x−)

∫ x+

−∞
dx̃+e

−2ω̄(x̃+,x−)Tχ++(x̃+) . (6.11)

We can consider the shockwave limit where Tχ++(x+) = αδ(x+). The deviation from the

background value of the dilaton is:

δφ(x+, x−) = −ακ e−2ω(0,x−) Θ(x+)

∫ x+

0
du e2ω(u,x−) = −ακ

(
x+

x+x− + 1

)
Θ(x+) .

(6.12)

It is also useful to consider the following coordinate transformation:

x̃+ = x+Θ(−x+) +
2x+

2 + ακx+
Θ(x+) , x̃− = x− − ακΘ(x+)/2 , (6.13)

applied to the region where φ(x+, x−) < 0 and where we have rescaled α → α/|φh|. This

maps the metric and dilaton in the region φ(x+, x−) < 0 to the form:

ds2 =
4dx̃+dx̃−

(1 + x̃+x̃−)2
+ 2ακδ(x̃+)(dx̃+)2 , φ(x̃+, x̃−) = |φh|

(
x̃+x̃− − 1

x̃+x̃− + 1

)
. (6.14)

In this coordinate system, the dilaton exhibits no jump in the dS2 region, whereas the metric

has a characteristic δ-function singularity along the shockwave. An analogous procedure

can be done for the remaining AdS2 region.

If the integral (6.12) is such that φ̄+δφ becomes zero for some x+, then we must make

sure to switch from the dS2 to the AdS2 background geometry. This defines a curve in the

region x+ > 0:

x+
(
x− − ακ

)
= 1 . (6.15)
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Figure 5. Penrose diagrams for interpolating geometries after a shockwave perturbation.

As expected, when α = 0 this becomes x+x− = 1. We schematically depict the geometries

in figure 5.

The induced metric h++ along the curve is given by:

ds2 = − 4

(2 + ακx+)2

(
dx+

x+

)2

. (6.16)

It is also useful to compute the extrinsic curvature along the curve (6.15). If we parame-

terize the curve as (x+(u), x−(u)), the tangent vector is given by:

Tµ(u) = (∂ux
+(u), ∂ux

−(u)) . (6.17)

The normal vector nµ obeys Tµnµ = 0 and nµn
µ = 1. Explicitly:

nµ(u) =
1

|1 + x+(u)x−(u)|

(√
−∂ux

−(u)

∂ux+(u)
,

√
−∂ux

+(u)

∂ux−(u)

)
. (6.18)

The extrinsic curvature is given by:

Kuu = TµT ν ∇µnν . (6.19)

Evaluating it on the curve (6.15), we find that Kuu = 0. The normal derivative of the

scalar along (6.15):

nµ∂µφ = 1 . (6.20)

To continue the solution to the AdS2 region, we must smoothly glue a constant negative

curvature metric across the curve (6.15).

It is convenient to consider a chiral coordinate transformation:

log x̂+ =

∫ x+

1

2

(2 + ακu)

du

u
= log

(2 + ακ)x+

2 + ακx+
, (6.21)

such that the induced metric on the curve takes the simpler form ds2 = − (dx̂+/x̂+)
2
. The

range of x̂+ is the positive real axis. Thus, we can smoothly glue (up to first derivatives)

half of global AdS2 with coordinates:

e2ω(x̂+,x−) =
1

x̂+x−
sec2 log x̂+x−

2
, (6.22)
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along the curve x̂+x− = 1. The normal direction then becomes the standard radial direction

in global AdS2. The dilaton is given by (6.5) with x+ replaced by x̂+.

6.3 Shapiro time delays and advances

Notice that for matter obeying the null energy condition, i.e. α > 0, the shift in the dilaton

value due to the stress-tensor in (6.11) depends on the sign of the κ. For κ > 0 (κ < 0),

we see that |φ| increases (decreases) in the region x+ > 0 due to the shockwave. When

|φ| increases across the shockwave, particles going across the shockwave will experience a

Shapiro time-delay. This situation is similar to the case of black holes [32] — a flux of

positive null energy into the horizon causes a Shapiro time delay.

What is novel is the case κ < 0 for which |φ| decreases across the shockwave, causing a

Shapiro time advance. For ordinary black holes, this can only happen if we send in matter

that violates the null energy condition [33]. But for a de Sitter type horizon this behaviour

is allowed without any violation of the null energy condition. In appendix B we connect

the κ < 0 behaviour results to a shockwave solution in dS3, for which the dilaton is related

to the size of the celestial circle. A more general statement is due to a theorem of Gao

and Wald [34] which states that perturbations obeying the null energy condition make

the de Sitter Penrose diagram more vertical, hence allowing access to otherwise causally

disconnected regions of space. What is often called the horizon re-entry of super-horizon

modes in inflationary cosmology is closely related to these phenomena.

Releasing energy from the AdS2 boundary. We would like to make a final remark

about the clock appearing in the Lorentzian interpolating geometry:

ds2 =

{
cos−2 ρ

(
−dt2 + dρ2

)
, ρ ∈ (ε, π/2) ,

cosh−2 ρ
(
−dt2 + dρ2

)
, ρ ∈ (−∞,−ε) .

(6.23)

Imagine that we release a small (in Planck units) energy ε at some early time ti � −1

near the AdS2 boundary of the Lorentzian interpolating geometry. Near the boundary, the

timelike isometry is approximately that of the global AdS2 clock. It is also the one that

generates time-translations of the inertial clock at ρ = 0. Thus, the energy in a local frame

at ρ = 0 is also of order ε. The energy ε will consequently enter the dS2 static patch region

at the origin, and eventually, near the dS2 horizon at ρ = −∞, the particle will experience

a Rindler geometry where the local frame energy will be enhanced. We are interested in

how the energy ε depends on ti, when measured in the local frame.

It is useful to recall the transformation between the static dS2 coordinates (t, ρ) and

the global4 dS2 coordinates (T, ϕ):

cosh2 T = 1 + sech2ρ sinh2 t , sin2 ϕ =
tanh2 ρ

1 + sech2ρ sinh2 t
, (6.24)

where we have set ` = 1. Translations in t comprise a dS2 isometry. Near the dS2 horizon,

sechρ ≈ δ with δ2 � 1 and t� 1, the global and static patch clocks are related in the usual

4As a reminder the global dS2 metric is ds2 = −dT 2 + cosh2 T dϕ2 with ϕ ∼ ϕ+ 2π.
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Rindler sense T ≈ δ sinh t . Unlike the relation between the Rindler and Minkowski clock,

however, the exponential relation between the global and static dS2 clocks is true only in

the regime δet � 1. In the limit δet � 1, the clocks are linearly related and hence there

is no exponential effect. This is in stark contrast to what happens when releasing some

energy in a standard AdS black hole with temperature β. There, the Rindler effect persists

for β � t � β logSBH and the local frame energy acquires a factor of ∼ e2πt/β near the

horizon such that the connection to the shockwave and the saturation of the Lyapunov

exponent follows immediately.

7 Discussion

We end with some general remarks on our results and how they may tie into a holographic

picture. Since our solutions have an AdS2 like boundary, the natural candidates for holo-

graphic duals will be (0 + 1)-dimensional, i.e. quantum mechanical theories.

dS horizon and chaos. The chaotic nature of AdS black holes has been heavily explored

in recent literature. On the other hand, dS horizons have been less explored from a more

modern, holographic perspective (see however [16, 35–43]). In constructing interpolating

solutions between AdS2 and dS2 we have a potential framework to discuss these questions

using the standard tools of AdS/CFT, such as correlators at the AdS2 boundary. Using the

Hartle-Hawking construction we can build a global state from the Euclidean saddle. To do

so, we cut the disk in half such that a state is prepared along the t = 0 spatial slice. In the

absence of any perturbations, the Lorentzian geometry becomes a two-sided interpolating

geometry which is smooth across the dS2 horizon. Assuming time-reversal invariance, this

solution can be continued all the way to the past. For standard black holes, this state is

the thermofield-double state which is built purely out of entangled, non-interacting CFTs.

Perturbing this state for black holes, while obeying the null-energy condition, leads to the

two sides becoming less connected, and can be viewed as a geometrization of decorrleation

due to chaos [44].

The negative κ shockwave solution (6.14), which behaves qualitatively similar to shock-

waves in pure dS, indicates that perturbing the two-sided interpolating geometry leads to

more correlation rather than less [3, 45]. Signals may now arrive from the previously

causally inaccessible region, something that can only be achieved in the standard black

hole case by turning on an interaction between the two CFTs [33]. From the perspective of

a single sided interpolating geometry, perhaps the mechanism is analogous to that of [47],

which might suggest an interesting role of state-dependent operators in the context of dS.

Perhaps an analogy can be drawn to glassy states which are statically indistinguishable

from liquid states but dynamically very different. We view these phenomena as features

rather than bugs. They are part of the definition of static patch geometry of dS.

In section 5, we computed the out-of-time ordered correlator for these interpolating

geometries, in complete analogy to computations in the AdS2 case [23–25]. The result is

surprising, showing an oscillatory correlator (rather than exponential with maximal Lya-

punov exponent). It is worth noting, however, that the propagator G(u) in equation (5.6)
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contains a piece that resembles the Schwarzian propagator that appears at the boundary

of the AdS2 black hole. This might suggest that the maximally chaotic behaviour of the

Rindler horizon may be encoded in more subtle correlators. It may also be of interest to

study this question for the more general background presented in appendix D. In that case,

it seems that γ ∈ [−1, 1] acts as a parameter tuning the behaviour of the out-of-time or-

dered correlator: for γ > 0, the result is oscillatory; for γ < 0, the correlator is exponential

with maximal chaos at γ = −1; and, at γ = 0, there is an intermediate behaviour where it

behaves as a power law, i.e. F (t) ∼ t2. These features may serve as a guiding principle for

the construction of dual microscopic SYK-type models.

Role of null-energy violation. More generally, given the current reassessment of the

role of null-energy in the bulk, it may be interesting to reconsider previous attempts to

construct dS in a higher dimensional AdS [14, 15]. There, the main stumbling block was

that the Raychaudhuri equation plus null-energy obeying matter forbade any dS region to

reside in a causally accessible part of the geometry. In view of recent developments [33, 46],

perhaps one can construct an accessible dS region by turning on weak interactions between

the two sides.

dS fragmentation. In our analysis of anisotropic perturbations we observed the ten-

dency of the region separating positive and negative curvature to separate. In other words,

there was only a restricted regime in the space of sources for which one observed a piece

of dS in the interior.

More generally, we might imagine that the interior Euclidean dS region could frag-

ment into several disconnected regions. Perhaps we should interpret these observations as

indications that the static patch cannot be arbitrarily sharply defined in and of itself.

Holography of a feature. Though our discussion was specific to the interpolating ge-

ometries of [3], there is no reason why it could not be applied to more general cases.

Understanding the interplay of features in the interior of an asymptotically AdS2 space-

time and the boundary soft modes seems like an interesting general question, and may

pertain to broader issues like bulk locality in AdS/CFT.

Relation to dS/CFT? Finally, it is natural to ask how our approach might be related

to the standard dS/CFT picture [48–51]. There, the dual theory resides at the future

boundary. From the perspective considered in this paper, the future boundary resides

within the horizon of the interpolating geometry and thus, one would have to reconstruct

it from the boundary AdS2 degrees of freedom. It would seem that there are far fewer

degrees of freedom at the AdS2 boundary to account for those at the future boundary.

Perhaps this is an indication that there are unexpected relations among degrees of freedom

at the future boundary, as was observed in higher spin models [52].
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A Jackiw-Teitelboim gravity with κ < 0

In this appendix we discuss some solutions to Jackiw-Teitelboim gravity with action:

S = Stop −
1

2κ

∫
d2x
√
gφ (R+ 2)− 1

κ

∫
∂M

√
hφK , (A.1)

where Stop is given by (2.2). The metric is fixed to be AdS2 due to the dilaton equations

of motion. The smooth solution with single boundary is:

ds2 =
dρ2 + dτ2

sinh2 ρ
, τ ∼ τ + 2π , ρ ≥ 0 . (A.2)

with τ -independent dilaton:

φ(ρ) = φh coth ρ , φh ∈ R . (A.3)

There is also a static solution on the Euclidean cylinder:

ds2 =
dρ2 + dτ2

cos2 ρ
, φ(ρ) = φh tan ρ , (A.4)

where now ρ ∈ (−π, π). One can periodically identify τ with any periodicity in (A.4)

without spoiling the smoothness of the solution.

Since the sign of φh is not fixed, the theory admits solutions with an increasingly

negative dilaton near the boundary. As discussed in the main text, at the semi-classical level

what we require is that (φ0 + φ/κ) > 0. The negative φ solution is equivalent to a positive

φ solution with κ → −κ. If we view the theory as a dimensional reduction of Einstein-

Maxwell theory, the solutions correspond to near-extremal Reissner-Nordstrom black holes.

The solutions with negative dilaton correspond to a static, non-asymptotically flat solution

with a timelike singularity at the origin which is surrounded by a horizon. Though singular,

the ‘wrong sign’ solutions are supported by standard null-energy preserving matter. The

boundary dynamics will also be the Schwarzian, at least in the regime φ2
0 � (φb/κ)2 � 1.

However, the Schwarzian will have the opposite sign corresponding to a ‘negative’ specific

heat. From the higher dimensional perspective, this sign indicates that the size of the

celestial sphere shrinks toward the UV part of the geometry where time flows the fastest.

At a qualitative level, this is also what happens for the static patch of de Sitter space.
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B Shockwaves in dS3

In this appendix we discuss a shockwave solution in dS3 and connect it to the analysis in

section 6. The following Lorentzian shockwave geometry:

ds2

`2
=

4dx+dx−

(1 + x+(x− + αΘ(x+)/2))2 + µ2

(
1− x+(x− + αΘ(x+)/2)

1 + x+(x− + αΘ(x+)/2)

)2

dϕ2 , (B.1)

with ϕ ∈ [0, 2π], (x+, x−) ∈ R2, solves the three-dimensional Einstein’s equations with

a positive cosmological constant Λ = +1/`2 in the presence of a stress energy tensor

T++ = αδ(x+) (where we have set 8πG3 = 1). The null-energy condition enforces α > 0.

The worldlines of the Northern and Southern static patch observers are at x+x− = 1. The

future and past boundaries are at x+x− = −1. The parameter µ2 ∈ (0, 1], with the universe

overclosing at µ2 = 0 and the pure dS3 universe at µ = 1. In the absence of a shockwave

the Penrose diagram is that of two conical defects sitting at the North and South poles of

dS3. These cause the horizon to be smaller than that of pure dS3, with the limiting case

being µ2 = 1. A useful coordinate transformation is:

x̃− = x− + αΘ(x+)/2 , (B.2)

for which we have the geometry:

ds2

`2
=

4dx+dx̃−

(1 + x+x̃−)2 + µ2

(
1− x+x̃−

1 + x+x̃−

)2

dϕ2 − 2αδ(x+)(dx+)2 , (B.3)

The deformed geometry, with α 6= 0, can be viewed as a de Sitter universe with a boosted

circular shell from the North pole static patch worldline. We can compare the metric (B.3)

to (6.14). The absolute value of the dilaton is equivalent to the size of the ϕ-circle. Notice

that it corresponds to the case κ < 0 since the sign of the δ-function piece is negative.

This implies that a light particle traveling near the shock will experience a Shapiro time-

advance, allowing it to enter the region of dS3 that was out of causal contact in the absence

of the shockwave.

Analogous solutions can be considered in higher dimensions [53–55]. The simplest is a

geometry connecting two dSd+1 regions with a shock that lives exactly on the cosmological

horizon. One simply replaces the circle with a d-sphere for the µ = 1 geometry in (B.1).

C Some details for out-of-time-ordered correlators

Here we present some explicit results for the ordered and out-of-time ordered 4-points

functions in the centaur background. Recall that the full connected 4-points function is

given by 〈(
B(u1, u2)

sin2 u1−u2
2

+ Ẽ(u1, u2)

)(
B(u3, u4)

sin2 u3−u4
2

+ Ẽ(u3, u4)

)〉
. (C.1)

There are then, four different contributions to the correlator, that schematically we name

〈BB〉, 〈BẼ〉, 〈ẼB〉 and 〈Ẽ Ẽ〉.
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The first contribution can be computed exactly as an analytic function of the four

points u1, u2, u3, u4. We can consider first the ordered correlator with u4 < u3 < u2 < u1.

Taking κ/φ̃b = 1, this gives

〈B(u1, u2)B(u3, u4)〉ord

= π cschπ (cosh (u31 + π) + cosh (u32 + π) + cosh (u41 + π) + cosh (u42 + π))

+ cot (u12/2) (2u12 + π cschπ(sinh (u31 + π)− sinh (u32 + π)

+ sinh (u41 + π)− sinh (u42 + π)))

+ cot (u34/2) (2u34 + π cschπ(− sinh (u31 + π)− sinh (u32 + π)

+ sinh (u41 + π) + sinh (u42 + π)))

+ cot (u12/2) cot (u34/2) (π cschπ(− cosh (u31 + π) + cosh (u32 + π)

+ cosh (u41 + π)− cosh (u42 + π))− u12u34)− 4 ,

where we introduced the usual notation uij ≡ ui − uj . In the main text, we are interested

in the out-of-time-ordered correlator (otoc). In this case, u4 < u2 < u3 < u1, and taking

again κ/φ̃b = 1, we obtain:

〈B(u1, u2)B(u3, u4)〉otoc

= 〈B(u1, u2)B(u3, u4)〉ord + 2πu32 cot (u12/2) cot (u34/2)

+
2iπe−u2−u3 (eu2−eu3)

(
eu3
(
ieiu1 +eiu2

)(
ieiu3 +eiu4

)
+eu2

(
eiu1 +ieiu2

)(
eiu3 +ieiu4

))
(eiu1 − eiu2) (eiu3 − eiu4)

.

(C.2)

Given this formula, it is straightforward to compute the contribution of this term to the

real-time 4-points function that appears in equation (5.19) in the main text, that results

in (5.21). Moreover, a completely analogue calculation using the propagator that corre-

sponds to the AdS2 black-hole case gives the saturation of the Lyapunov exponent for

quantum chaotic systems [9, 23].

In the case of the interpolating geometries considered in the main text, we have three

additional contributions to the out-of-time-ordered four-point function. As argued in the

main text, these contributions either oscillate, or are exponentially suppressed as a function

of real time t. Here, we provide numerical evidence to support this claim. In figure 6 we

display the full contribution to 〈BẼ〉 and 〈Ẽ Ẽ〉— they behave as ∼ e−4πt/β̃ . The 〈ẼB〉-terms

oscillate with frequency 2π/β̃. None of these contributions grow exponentially with time.

D The γ-theory and γ-Schwarzian

In this appendix we generalise the dilaton potential to V (φ) = 2(|φ−φ0|−φ0). The solution

for φ < φ0 is now given by:

ds2 =
dρ2 + dτ2

cosh2 ρ
, φ(ρ) = −φh tanh ρ , (D.1)

– 28 –



J
H
E
P
0
7
(
2
0
1
9
)
0
3
8

10 12 14 16 18 20

-10

-5

0

5

10

t

<
ℰ˜
ℬ
>

(a) 〈ẼB〉
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Figure 6. Three contributions to the otoc in the case of the interpolating geometry. The blue

dots correspond to the numerical solution while the dashed red lines correspond to the best fit by

functions of the form Ae−2Bt for the decaying terms and A cos(Bt+C) for the oscillating one. We

set β̃ = 2π and κ/φ̃b = 1. A,B,C are constants to be fitted. In all cases, the best fit gives B ≈ 1.

(a) φ0 < 0 (b) φ0 = 0 (c) φ0 > 0

Figure 7. The different interpolating geometries as a function of φ0. In general, negative φ0
solutions contain a smaller part of the sphere than the φ0 = 0, while φ0 > 0 contain a larger part.

with φh < 0. Smoothness requires τ ∼ τ + 2π. At tanh ρc = −φ0/φh, the geometry

interpolates to one with negative curvature.

The general negative curvature solution is given by:

ds2 =
γ

sin2√γR
(dR2 + dτ2) , φ(R) = α cot (

√
γR) + 2φ0 . (D.2)

For γ > 0 we have R ∈ (0, π/
√
γ) whereas for γ < 0 we have R ∈ (0,∞). Locally we

can rescale R and τ , and thus (D.2) is diffeomorphic to the standard hyperbolic metric on

the disk. However, since we are fixing the periodicity of τ the above geometry is globally

distinct from the standard hyperbolic metric. Indeed, for γ < 0 the geometry (D.2) contains

a conical defect with deficit angle ∆φ = 2π(1−
√
−γ). Thus, for γ = −1 there is no deficit

and for γ < −1 there is a conical surplus. As γ → 0−, the geometry tends to

ds2 =
dτ2 + dR2

R2
, τ ∼ τ + 2π . (D.3)

Here the geometry develops an infinite throat as R→∞.

We need to glue the two geometries (D.1) and (D.2) so that both the metric and the

dilaton are smooth up to first derivatives. This is achieved by gluing the negative curvature

solution at a specific Rg given by

tan
√
γRg =

√
2γ

1− γ
, γ = 1− 2φ2

0/φ
2
h . (D.4)
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Figure 8. A sketch of the interpolating geometry close to γ → 0+ with φ0 > 0. As γ approaches

to zero, the interpolating geometry develops an infinitely large throat until it gets disconnected

for γ > 0.

This is valid only for positive ρc and positive γ. This completes the smooth gluing at

the interpolating region. Finally, boundary conditions must be imposed near the AdS2

boundary of (D.2) to complete the Dirichlet problem. We give a schematic depiction of the

different geometries in figure 7.

Case (i): φ0 > 0. For φh > 0 one finds a pure AdS2 solution, that for κ > 0 (κ < 0)

will be the dominant (sub-dominant) saddle. For φh < 0 one finds that ρc > 0 and

an interpolating geometry exists so long as ρc . 0.88. In these cases, the interpolating

geometry will have a greater portion of the sphere compared to the φ0 = 0 case. As

we move along the φh negative values, we change the interpolating radius. The limiting

case φh = −
√

2φ0 corresponds to a geometry with γ → 0, i.e. one that is about to be

disconnected. This is shown in figure 8. For greater values of φh, only the AdS2 geometry

exists. So, for φ0 > 0, only interpolating solutions with γ ∈ [0, 1] exist.

Case (ii): φ0 < 0. For φ0 < 0, the interpolating geometry contains a smaller piece of

two-sphere. The interpolating radius ρc is always negative and it is possible to have γ ∈
[−1, 1] in this case. A transition occurs at γ = 0, where φh =

√
2φ0, but the interpolating

geometry remains smooth and connected. In the limit of φh → φ0, the sphere is lost

completely. Note that these solutions do not have a zero temperature limit.

D.1 The γ-Schwarzian theory

It is interesting to consider the boundary mode actions that emerge for boundary fluctua-

tions in the geometries (D.2). In equation (2.18), we saw that for global AdS (γ = 1) the

boundary action is a Schwarzian plus a kinetic term that has the opposite sign to the usual

AdS2-black hole. This, in turn, generates an oscillating OTOC as opposed to the black

hole where the OTOC grows exponentially and saturates the chaos bound.

It is interesting to see how the Schwarzian action is modified by considering boundary

fluctuations of a general negative curvature geometry (D.2). We find:

Sbdy =
φb
κ

∫
du

(
γ

2
(∂uτ(u))2 − Sch [τ(u), u]

)
. (D.5)

Here τ(u) maps u to a circle of period 2π. Note that γ = 1 gives the global AdS action

already discussed in section 4, while γ = −1 gives the standard Schwarzian action for the

hyperbolic disk. The above action has a saddle at τ(u) = 2πu/β̃, such that u ∼ u + β̃.
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Considering an expansion as τ(u) = 2πu/β̃ + δτ(u), the action for this γ-Schwarzian

becomes (to quadratic order in δτ),

Sbdy =
φb
2κ

∫ β̃

0
du

(
γ δτ ′(u)2 +

β̃2

4π2
δτ ′′(u)2

)
. (D.6)
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