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Many quantum information theoretic quantities are similar to and/or inspired by thermodynamic
quantities, with entanglement entropy being a well-known example. In this paper, we study a less well-
known example, capacity of entanglement, which is the quantum information theoretic counterpart of heat
capacity. It can be defined as the second cumulant of the entanglement spectrum and can be loosely thought
of as the variance in the entanglement entropy. We review the definition of capacity of entanglement and its
relation to various other quantities such as fidelity susceptibility and Fisher information. We then calculate
the capacity of entanglement for various quantum systems, conformal and nonconformal quantum field
theories in various dimensions, and examine their holographic gravity duals. Resembling the relation
between response coefficients and order parameter fluctuations in Landau-Ginzburg theories, the capacity
of entanglement in field theory is related to integrated gravity fluctuations in the bulk. We address the
question of measurability, in the context of proposals to measure entanglement and Rényi entropies by
relating them to Uð1Þ charges fluctuating in and out of a subregion, for systems equivalent to non-
interacting fermions. From our analysis, we find universal features in conformal field theories, in particular
the area dependence of the capacity of entanglement appears to track that of the entanglement entropy. This
relation is seen to be modified under perturbations from conformal invariance. In quenched 1þ 1

dimensional CFTs, we compute the rate of growth of the capacity of entanglement. The result may be used
to refine the interpretation of entanglement spreading being carried by ballistic propagation of entangled
quasiparticle pairs created at the quench.

DOI: 10.1103/PhysRevD.99.066012

I. INTRODUCTION

Entanglement entropy has been proven quite useful as a
diagnostic of topological properties of ground states of
quantum many-body systems, for a recent review see e.g.,
[1]. At the same time, starting with [2] it has also been
playing an instrumental role in understanding the connec-
tion between the geometry of space-time and strongly
coupled field theories in the AdS=CFT correspondence, a
recent extensive review is [3].
In this paper, we study another quantity associated to a

reduced density matrix, namely the capacity of entangle-
ment. It is defined in the same way as one defines heat
capacity for thermal systems, which was the original

motivation to introduce this quantity in [4] (see also
[5]). Explicitly, if λi are the eigenvalues of a reduced
density matrix, entanglement entropy is defined as SEE ¼
−
P

λi log λi, and capacity of entanglement can be written
as CE ¼ P

iλi log
2 λi − S2EE. The latter can also be thought

of as the variance of the distribution of − log λi with
probability λi, and it is clear that it contains information
about the width of the eigenvalue distribution of the
reduced density matrix.
Our main motivation was to understand the connection

between capacity of entanglement and quantum fluctua-
tions, and to e.g., see whether capacity of entanglement
sheds any interesting light on the accuracy of the semi-
classical approximation in gravity. This connection turns
out to be the following. As is well known, the Ryu-
Takanagi formula [2] relates the entanglement entropy in
a quantum field theory to the volume of a minimal surface
(“RT surface”) in a dual anti-de Sitter spacetime. If we
include quantum gravity fluctuations of the RT surface,
and integrate over them, the integral does indeed compute
the capacity of entanglement in the quantum field theory
[6]. Thus, capacity of entanglement associates a “width” to
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the entanglement entropy: a measure of quantum gravita-
tional effects. This relationship is a leading contribution to
a more complete sum of gravitational fluctuations. In [7],
the RT surface was replaced by a domain wall with tension
(a “cosmic brane”), including its complete gravitational
backreaction. The volume of the brane in the backreacted
geometry was shown to be equal to a variant of the Rényi
entropies in the quantum field theory, coined “modular
entropy” in [8]. This result was used in [6], independently
the modular entropy was introduced and used to define the
capacity of entanglement in the earlier work [4,5].
Entanglement entropy and capacity of entanglement are

two features of the full entanglement spectrum [9] (the set
of eigenvalues of the reduced density matrix). There has
been growing interest to study the entanglement spectrum
as a diagnostic of the phase structure of various systems.
For our purposes, of special relevance are the studies of
the entanglement spectrum for 1þ 1 dimensional gapless
[10–12] and gapped [13] systems. Originally it was also
hoped that there would be a precise relation between the
entanglement spectrum and the energy eigenvalue spec-
trum, but there are caveats [14]. Connections between the
capacity of entanglement and the entanglement spectrum
have been explored in [15].
Complete knowledge of all the Rényi entropies is in

principle sufficient to recover the complete set of eigen-
values of the reduced density matrix, the entanglement
spectrum distribution, by a suitable integral transform. In
this way, [10] derived the spectrum for 1þ 1 conformal
field theories in the ground state, with a finite length l
interval as the subsystem, and found that the spectrum is
(under some assumptions) characterized by a universal
function, depending only on two parameters: the central
charge c of the theory and the largest eigenvalue λmax.
Universality was also found in gapped systems [13], while
the assumptions of [10] were further studied in [16] and the
spectrum was interpreted as a reparametrization of the
Cardy formula counting energy levels in a CFT.
While we will make a few remarks about the full

entanglement spectrum, we will mostly restrict to the
two lowest moments or cumulants of the spectrum, which
are precisely the entanglement entropy and capacity of
entanglement. In terms of the modular Hamiltonian KA ¼
− log ρA they are the expectation value and variance of KA
respectively. As stated above, for systems of with a gravity
dual, higher cumulants capture the whole series of the
quantum gravitational fluctuations about the RT surface,
giving the complete entanglement spectrum or the Rényi/
modular entropies.
Besides looking at gravitational fluctuations, we will in

this work study the capacity of entanglement from many
different points of view. We develop a more comprehensive
list of its properties and relations to other concepts of
quantum information, not just in the context of holographic
gauge/gravity duality. We study a range of quantum systems

from simple qubit systems and random pure states to spin
chains, conformal and nonconformal quantum field theories,
with and without a gravity dual, and also nonequilibrium
quenched systems.Weare especially interested in identifying
universal features. For example, we find evidence for an
“area law” for the capacity of entanglement in conformal
theories. Curiously, in four-dimensional conformal field
theories, in a fairly natural regularization scheme, the ratio
between the coefficients in front of the area term in
entanglement entropy and capacity of entanglement turns
out to be precisely a=c, the ratio of the a and c anomaly
coefficients, for spherical entangling surfaces. This area law
suggests that most of the quantum fluctuations of the RT
surface are located near the boundary of AdS and this
therefore does not seem to shed much light on the size of
local bulk quantum fluctuations.
Another important observation is that systems where are

all entanglement is carried by EPR pairs (pairs of qubits
that contribute log 2 to the entanglement entropy) have zero
capacity of entanglement. Therefore, whenever we find that
entanglement entropy and capacity of entanglement are
approximately equal to each other, EPR pairs are not a very
good approximation of the quantum state. As we will show,
randomly entangled pairs of qubits give a much better
description, and this can be used to e.g., sharpen the picture
of ballistic propagation of entanglement carried by quasi-
particles created at a quench.
The outline of this paper is as follows. Section II begins

with some basic definitions and relations. We begin with
definitions of entropy, capacity of entanglement, and
modular entropy based on quantum information theory.
We discuss the moments and cumulants of the entangle-
ment spectrum/modular Hamiltonian, and show how to
obtain them from the Rényi entropies. We then move to
analogues of thermodynamic definitions of entropy and
heat capacity applied to quantum entanglement, and show
agreement with the previous quantum information theoretic
definitions. We move to review the definitions of fidelity
susceptibility and quantum Fisher information, and show
how they are related to the capacity of entanglement
(related discussion is also in [17,18]). Finally, we map
capacity of entanglement to the heat capacity of a thermal
CFTon a hyperbolic sphere, recovering the thermodynamic
equality of heat capacity and variance of entropy.
Section III discusses some properties of the capacity of

entanglement. We first derive an upper bound for it in
quantum systems with a finite dimensional Hilbert space.
We also recast this result as an estimate of the variance in
classical information theory. Addressing the measurability
of the capacity of entanglement, we follow the proposal to
relate bipartite entanglement for noninteracting fermions
with fluctuations of conserved Uð1Þ charges [19–23]. We
show how the moments and cumulants of entanglement
spectrum andUð1Þ charges are related. We point out that an
equality between the entanglement entropy and capacity of
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entanglement arises naturally in this context in a large N
limit, at the leading level. We speculate how such a limit
might arise in theories with a holographic bulk gravity dual,
and consider an example of an eigenvalue distribution
giving rise to the equality CE ¼ SEE. We then interpret the
capacity of entanglement holographically. We give a
shorter derivation of the bulk integral formula of [6],
and discuss its interpretation.
In Sec. IV, we study how the capacity of entanglement

depends on the initial quantum state of the complete
system. In simple n-qubit examples, the entanglement
entropy and the capacity of entanglement are in general
not proportional. For subsystems of random pure states, the
approximate equality of the two can arise as ensemble
averages, and we compute the precise ensemble averages
for several choices of the dimension of the parent Hilbert
space where the pure states are defined and choices of
dimension of the subsystem.
In Sec. V, we study the capacity of entanglement in field

theories. First we calculate it in 1þ 1 CFTs at equilibrium
and in local and global quenches. In all cases, the capacity
of entanglement is equal to the entanglement entropy. For
the nonequilibrium cases this implies that the rate of growth
of the capacity of entanglement follows that of SEE. We
comment on the interpretation of ballistic spreading of
entanglement. We then extend the computation to higher
dimensions, following an alternative method based on
stress-tensor correlators [24,25]. After that, we study
universality. We discuss some aspects of the entanglement
spectrum and its (non)universality. Then we consider the
possible dependence on regularization schemes. In generic
quantum field theories and CFTs, the ratioCE=SEE depends
on the regularization scheme, but for CFTs with a holo-
graphic gravity dual, the gravity interpretation provides a
natural preferred regularization scheme. With this scheme,
for spherical entangling surfaces in D ¼ 4, the ratio is
bounded as a consequence of the conformal collider bounds
of [26,27]. Restricting to theories with holographic duals
without higher derivative terms, the ratio turns out to be
exactly equal to one.
Finally, in Sec. VI, we study how the capacity of

entanglement behaves when conformal invariance is bro-
ken slightly. As a warm-up example, in the anisotropic
Heisenberg XY spin chain, the equality of capacity and
entropy emerges at critical domains. Moving away from
criticality, the capacity of entanglement and the entangle-
ment entropy are no longer equal and develop different
subleading divergence structures. We then perform a more
general analysis perturbing CFTs by relevant operators,
following the strategy in [28–30].
We end with some concluding remarks.

II. DEFINITIONS AND RELATIONS

In this section, we introduce the concepts that will be the
focus of later sections. As in thermodynamics, there will be

two different routes to defining these concepts. A “micro-
scopic” route is to follow the standard definitions of
quantum information theory. The second, “thermody-
namic” route, follows from associating a Boltzmann dis-
tribution to the (reduced) density matrix and then formally
applying thermodynamic definitions to quantum entangle-
ment. We will begin with the first route, then follow the
second route, and finally establish that the two different
routes lead to the same concepts. Apart from some refine-
ments, this section is mostly a review.

A. Concepts of quantum information theory

We start with a quantum system prepared into a pure or
mixed state described by the density matrix ρ. Since we will
mostly be interested in bipartite entanglement between
a subsystem A and its complement, we assume that the
density matrix is a reduced density matrix in the subsystem
A. However, this is just for terminological convenience,
most of the concepts obviously apply more generally.
The most familiar concept quantifying the purity of the

state ρ, or the entanglement between the subsystem and its
complement, is the entanglement entropy

SEE ¼ −Trðρ log ρÞ: ð2:1Þ

Introducing the modular Hamiltonian K ¼ − log ρ, the
entanglement entropy becomes the expectation value of K,

SEE ¼ TrðKρÞ ¼ hKi: ð2:2Þ

Another much studied measure of entanglement is given by
the Rényi entropies Sα,

Sα ¼
1

1 − α
log TrðραÞ: ð2:3Þ

Recent work [7] suggested that in addition to the Rényi
entropies Sα, it is interesting to study a modification, called
“modular entropy” in [8],

S̃α ≡ α2∂α

�
α − 1

α
Sα

�
¼ −α2∂α

�
1

α
ln Trρα

�
: ð2:4Þ

The motivation in [7] comes from entanglement entropy in
CFTs with a holographic gravitational dual, where the Ryu-
Takayanagi formula relates the entanglement entropy to a
volume of a dual minimal surface. In [7] it was found that
the modular entropy also satisfies a holographic area law,
with the interpretation1

S̃α ¼
AreaðCosmicBraneÞα

4GN
; ð2:5Þ

1With α being a natural number.
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where the “cosmic brane” is a domain wall with tension
(α − 1) backreacting to the bulk geometry. In the limit
α → 1, (2.5) reduces to the Ryu-Takayanagi formula.
In an earlier work [4] (see also [5]), (2.4) was used as

a starting point to define a new quantity, capacity of
entanglement CE, to extend the thermodynamic relations
found in quantum entanglement. In this paper we prefer to
define it first in a microscopic, quantum information
theoretic way, as a property of the state ρ,

CEðρÞ≡ Trðρð− log ρÞ2Þ − ð−Trðρ log ρÞÞ2: ð2:6Þ

From this definition, written in terms of the modular
Hamiltonian K, the capacity of entanglement is equal to
the variance (the second cumulant) of K:

CEðρÞ ¼ hK2i − hKi2: ð2:7Þ

The thermodynamic definition and its equality with (2.6)
will be discussed in Secs. II B and II C.
A complete set of data associated with ρ is the entangle-

ment spectrum [9], the complete set of eigenvalues fλm ¼
e−εng of the (reduced) density matrix ρ or the eigenvalues
εm of the modular Hamiltonian K, along with their
multiplicities gm. There are other ways to encode the data
of the spectrum fgm; εmg. One alternative is to consider its
moments or cumulants. For that, one can define a gen-
erating function kðαÞ as the analytic continuation2 of the
moments of the density matrix ρ,

kðαÞ ¼ TrðραÞ ¼
X
m

gme−αεm: ð2:8Þ

By the usual rules, kðαÞ is a generating function for all
the moments of the modular Hamiltonian:

hKni ¼ ð−1Þnd
nkðαÞ
dαn

����
α¼1

¼ hð− ln ρÞni ¼
X
m

gme−εmεnm:

ð2:9Þ

Formally, one may also refer to these as the moments of
entanglement entropy,3 SnEE ¼ hKni. The partition function
is related to the (analytically continued) Rényi entropies.

Conversely, the analytic form of the Rényi entropies Sα
determines kðαÞ ¼ exp½ð1 − αÞSα�, from which the eigen-
value spectrum can be extracted by a suitable expansion or
integral transformation (see e.g., [33]).
The logarithm of the generating function,

k̃ðαÞ ¼ log kðαÞ ¼ ð1 − αÞSα; ð2:10Þ

is the generating function for the cumulants (connected
correlators),

hKnic ¼ ð−1Þnd
nk̃ðαÞ
dαn

����
α¼1

: ð2:11Þ

If the explicit form of the Rényi entropies Sα is known,
through (2.11) by applying derivatives, we can then easily
calculate the capacity of entanglement CE, which we
defined in (2.6),

CE ¼ hK2ic ¼
d2½ð1 − αÞSα�

dα2

����
α¼1

: ð2:12Þ

The first derivative gives the first cumulant, which is SEE.
To summarize, there are four alternative ways to represent
the entanglement data: the entanglement spectrum, the
Rényi entropies, the moments hKni or the cumulants hKnic.
It is possible to move from one description to the other.
For example, knowing all the moments allows to construct
the generating function kðαÞ, which determines the entan-
glement spectrum. The different alternatives may be prac-
tical for highlighting different features of the entanglement
data. The rest of the paper will focus on studying what
features are captured by the second cumulant, the capacity
of entanglement.
For pure states obviously all moments and cumulants

vanish. For maximally mixed states,

hKni ¼ ðln dÞn; hKn>1ic ¼ 0; ð2:13Þ

in a Hilbert space with dimension d < ∞. The spectrum has
only one d-fold degenerate eigenvalue ε ¼ ln d.

B. Thermodynamical definitions

In the previous section, we gave a quantum information
theoretic definition and interpretation of the capacity of
entanglement. In this section, we follow the original defi-
nition, by following the analogues of thermodynamical
relations applied to quantum entanglement. We begin with
the state ρ ¼ e−K and introduce an inverse temperature β
and compute a partition function

ZρðβÞ ¼ TrðρβÞ ¼ Trðe−βKÞ: ð2:14Þ

This is of course the same as the generating function kðαÞ,
with β ¼ α. The only reason for the two different notations

2In general, the analytic continuation may not be well
defined for all α, but we will need the continuation only into
a small neighborhood of α ¼ 1.

3In classical information theory, Shannon information H ¼
−
P

ipðxiÞ log2 pðxiÞ quantifies the average information in mes-
sages composed of letters xi with probabilities pðxiÞ, generated at
a source. In this context, the higher moments of H have a natural
interpretation, characterizing the fluctuations in information.
(A related concept is that of information loss in the evolution
of chaotic dynamic systems, where the cumulants of H [31], and
their generating function, the Rényi information [32] can be used
to characterize dynamical chaos.)
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is to make a distinction between the thermodynamic and
quantum information theoretic interpretations. ZðβÞ is a
more natural notation in the thermodynamical context, while
kðαÞ refers to the quantum information theoretic context,
hopefully this will not create confusion.
One can then proceed to introduce a free energy

FρðβÞ ¼ −
1

β
logZρðβÞ; ð2:15Þ

and an “internal” energy

EρðρÞ ¼
∂
∂β ðβFρðβÞÞ ¼

TrðKe−βKÞ
Trðe−βKÞ ≡ hKiβ ð2:16Þ

which, as seen in the last line, is just the “thermal”
expectation value4 of the modular Hamiltonian.
The thermodynamic definition of entropy satisfies the

usual relation with the internal and free energy,

SρðβÞ ¼ β2
∂FρðβÞ
∂β ¼ βhKiβ þ logZρðβÞ

¼ β½EρðβÞ − FρðβÞ�: ð2:17Þ

Finally, one defines a heat capacity,

CρðβÞ ¼ −β2
∂EρðβÞ
∂β ¼ β2½hK2iβ − hKi2β�: ð2:18Þ

Except for the partition function, it is not manifestly clear
how these thermodynamic definitions are related to the
quantum information theoretic definitions of Sec. II A. That
is the topic of the next section.

C. Relations between the thermodynamic and quantum
information theoretic definitions

To begin with, from the density matrix ρ ¼ e−K we
construct a one-parameter family ρα of density matrices
with proper normalization,5

ρα ¼
e−αK

Trðe−αKÞ ¼
e−βK

ZρðβÞ
����
β¼α

: ð2:19Þ

The key idea here will be that when we apply the quantum
information theoretic definitions of Sec. II A (which were
given for arbitrary states ρ) to the one-parameter family of
states (2.19), we make contact with the thermodynamic
definitions with β ¼ α.
We consider first the entanglement entropy. We observe

that

SEEðραÞ ¼ −Tr½ρα log ρα� ¼ ½βhKiβ þ logZρðβÞ�jβ¼α

¼ SρðβÞjβ¼α; ð2:20Þ

verifying the relation between the two definitions of
entropy.
On the other hand, we may consider the modular

entropies S̃α of the original state ρ. This gives another
relation,

S̃αðρÞ ¼ −α2∂α

�
1

α
log Trρα

�
¼ ½βhKiβ þ logZρðβÞ�jβ¼α

¼ SρðβÞjβ¼α; ð2:21Þ

establishing S̃αðρÞ ¼ SEEðραÞ ¼ SρðβÞjβ¼α.
Finally, we show that the quantum information theoretic

definition of the capacity of entanglement CE (which was a
property of an arbitrary state ρ, characterizing the variance
of its spectrum), applied to the one-parameter family ρα,
matches with the thermodynamic definition:

CEðραÞ ¼ Tr½ραð− log ραÞ2� − ½−Trðρα log ραÞ�2
¼ fβ2½hK2iβ − hKi2β�gβ¼α

¼ CρðβÞβ¼α: ð2:22Þ

This also establishes (setting α ¼ 1) the quantum informa-
tion theoretic counterpart of the thermodynamic response-
fluctuation relation between heat capacity and variance of
entropy: for a state ρ the entanglement heat capacity and the
variance of entanglement entropy satisfy

CEðρÞ ¼ hK2ic ¼ ΔS2EEðρÞ; ð2:23Þ

whichwe used as the “microscopic” definition ofCE in (2.6).
Finally, later in the paper wewill consider grand canonical

ensembles of either identical bosonic or fermionic particles,
and there it will be convenient to use the expression of
the capacity or variance in terms of the expectation values of
the occupation numbers nl as a single sum,

CE ¼ ΔS2EE ¼
X
l

ðlogð1� nlÞ − logðnlÞÞ2ð1� nlÞnl;

ð2:24Þ

where we choose the þ signs for bosonic and − signs for
fermionic systems.

D. Variance, fidelity susceptibility and quantum
Fisher information

The capacity or variance (2.6), (2.12), can also be
related to other concepts of quantum information: fidelity
susceptibility (FS) and quantum Fisher information (QFI).
These concepts are important in quantum metrology, and
can be used to in various contexts, such as Bose-Einstein
condensation, temperature estimates, and quantum phase

4Notation: hð·Þiβ ≡ Trðð·Þe−βKÞ
Trðe−βKÞ .

5In [6], they were called escort density matrices, following the
classical terminology of escort probability distributions.
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transitions, see e.g., [34,35], and the recent extensive
review [36] (and references therein). Here we give only a
brief review for the purpose of making a comparison to
the capacity of entanglement CE.
Consider deformations of a density matrix, parametrized

by a continuous parameter θ. This essentially gives a one-
parameter flow ρðθÞ in the state space. One measure of
a “distance” between two density matrices ρ, σ is the
(Uhlmann) fidelity Fðρ; σÞ [37],

Fðρ; σÞ ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pq
: ð2:25Þ

Then FðρðθÞ; ρðθ þ ϵÞÞ can be used as a measure of how
much the density matrix changes along an infinitesimal
flow θ þ ϵ. Since the fidelity is at maximum value 1 at
ϵ ¼ 0, its Taylor series expansion is

FðρðθÞ; ρðθ þ ϵÞÞ ¼ 1 −
1

2
χFðθÞϵ2 þ � � � ð2:26Þ

where the coefficient

χFðθÞ≡ −
∂2FðρðθÞ; ρðθ þ ϵÞÞ

∂ϵ2
����
ϵ¼0

ð2:27Þ

is called the fidelity susceptibility. For example, consider θ as
a control parameter driving the ground state of a system
across a quantum phase transition. Then the fidelity suscep-
tibility is an interesting observable, manifesting singular
behavior that can be used to characterize the quantum phase
transition.
A slightly more general approach is to compare ρ and

ρþ ϵδρ, and work in a basis where ρ is diagonal with
eigenvalues λi. Note however that in this basis the pertur-
bation δρ need not be diagonal. A brute force computation
gives then

Fðρ; ρþ δρÞ ¼ 1 −
ϵ2

4

X
ik

ðδρÞikðδρÞki
1

λi þ λk
þOðϵ3Þ

ð2:28Þ

from which we read the fidelity susceptibility

χ ¼ 1

2

X
ik

ðδρÞikðδρÞki
1

λi þ λk
: ð2:29Þ

We will shortly connect this to capacity of entanglement
but before doing that we first discuss another related concept,
quantum Fisher information. Let us specify a point θ ¼ 0
and consider small deformations about it. In quantum
measurements, one is often interested in detecting the
parameter θ by finding an observable θ̂, a locally unbiased
estimator with the normalization

∂
∂θ TrðρðθÞθ̂Þjθ¼0 ¼ 1: ð2:30Þ

The accuracy of the estimates of θ is characterized by the
varianceΔθ2, which is bounded from below by the quantum
version of the Cramér-Rao bound [38],

Δθ2 ≥
1

NgðθÞ ð2:31Þ

where N is the number of samples and the lower bound is
characterized by the quantum Fisher information gðθÞ. To
define it, consider first the so-called symmetric logarithmic
derivative LðθÞ of ρðθÞ, defined by

∂ρðθÞ
∂θ ¼ 1

2
ðLρþ ρLÞ: ð2:32Þ

The quantum Fisher information gðθÞ is then defined as

gðθÞ ¼ TrðρðθÞL2ðθÞÞ ¼ Tr

�∂ρðθÞ
∂θ LðθÞ

�
: ð2:33Þ

For an explicit formula, consider again a small defor-
mation ρþ ϵδρ, in a basis where ρ is diagonal (but δρ need
not be). Then solve the equation

δρ ¼ 1

2
ðLρþ ρLÞ ð2:34Þ

for L, in terms of the eigenvalues λi of ρ we get

Lij ¼
2

λi þ λj
ðδρÞij: ð2:35Þ

It is now straightforward to establish an equality relating
the Fisher information to the fidelity susceptibility (2.29),

g ¼ TrðρL2Þ ¼ 4χ: ð2:36Þ

Coming back to the variance hK2ic, let us consider a
particular deformation of the density matrix ρ ¼ e−K by
deforming in the direction of (imaginary) modular flow,

ρðθÞ ¼ e−ð1þθÞK=ðTre−ð1þθÞKÞ; ð2:37Þ

in other words the family of escort matrices (2.19).
Computing the fidelity Fðρð0Þ; ρðθÞÞ to second order in θ
(the normalization factormust also be expanded), and setting
θ ¼ 0, yields

CE ¼ hK2ic ¼ 4χFð0Þ ¼ g; ð2:38Þ

i.e., the capacity CE is equal to the fidelity susceptibility for
this particular flow and the quantum Fisher information
for estimating the parameter θ. Alternatively, expanding
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ρðθÞ ≈ ρð0Þ þ θδρþOðθ2Þ, if ρð0Þ is diagonal with eigen-
values λi, then δρ is diagonal with eigenvalues
λi log λi − λi

P
jλj log λj, and then (2.29), (2.36) yield (2.38).

The equality (2.38) is well-known, see e.g., [17]. In a
finite temperature system, when the density matrix is that of
a canonical ensemble, the above quantities are called the
thermal fidelity susceptibility etc., and also equal to the heat
capacity [39]. However, we emphasize that the first equality
in (2.38) assumes the particular flow (2.37). For example,
suppose that we deform the modular Hamiltonian by a
perturbation V, to consider a flow

ρ̃ðθÞ ¼ e−K−θV=ðTre−K−θVÞ: ð2:39Þ

This leads to a more complicated expansion of the fidelity,
since in general V, K do not commute, and the second
equality in (2.38) does not hold.

E. Relation to thermal heat capacity

So far we have mostly been keeping the discussion at a
general level, without specifying the origin of the quantum
state ρ. In the remainder of the paper, we will narrow our
focus to bipartite entanglement in quantum systems, where
the system is first prepared to a generic quantum state ρ0,
then partitioned into a subsystem A entangled with its
complement B, and then study the reduced density matrix
ρA ¼ TrBρ0. The entanglement entropy is the von Neumann
entropy of ρA. In this section, we consider specifically the
entanglement entropy for CFT initial vacuum states and
spherical entangling surfaces, in the context of [40,41]. In
these papers, the authors discuss the interpretation of EE
and Rényi entropies, by mapping the causal development of
the enclosed ballA to a hyperbolic cylinderR ×Hd−1, where
the CFT in the vacuum in the original spacetime becomes a
CFT in Hd−1 in a thermal bath, with temperature

T0 ¼
1

2πR
; ð2:40Þ

whereR is the radius of the original entangling sphere and the
curvature scale of Hd−1. The entanglement entropy is then
mapped to standard thermal entropy SthermðT0Þ of the CFT
in the thermal bath, similarly the Rényi entropies aremapped
to those of the thermal ensemble.
We consider the capacity of entanglement CE of the ball-

like subsystem.We show that it maps to the standard thermal
heat capacity Ctherm of the thermal CFT. We start from6

(2.12), but do not yet take the limit α → 1 but consider

CðαÞ ¼ α2∂2
α ln TrραA ¼ α2∂2

α½ð1 − αÞSα�; ð2:41Þ

where Sα is the Rényi entropy. On the other hand, it is related
to the free energy F on the hyperbolic sphere by [41]

Sα ¼
α

1 − α

1

T0

½FðT0Þ − FðT0=αÞ�; ð2:42Þ

so

CðαÞ ¼ α2∂2
α

�
−

α

T0

F

�
T0

α

��
: ð2:43Þ

Writing Tα ≡ T0=α and βα ¼ 1=Tα, we get

CðαÞ ¼ −β2α
∂
∂βα EðTαÞ ¼

∂EðTαÞ
∂Tα

: ð2:44Þ

Thus,

CE ¼ lim
α→1

CðαÞ ¼ ∂EðT0Þ
∂T0

¼ Ctherm; ð2:45Þ

i.e., the capacity of entanglementCE of ρA becomes the usual
heat capacity Ctherm of the thermal CFT on the hyperbolic
sphere, as was expected.7 The temperature is parametrized
by the radius of the entangling sphere, (2.40). This also
guarantees that the holographic dual interpretation with a
topological black hole in the bulk will be the heat capacity
(associated with the horizon) of the black hole. Then, dialing
the temperature of the black hole translates back in the
original spacetime to the imaginary modular flow among the
escort matrices accompanying the reduced density matrix ρA
of the subsystem A.
It should be noted that in Appendix A, [41] considered

various inequalities satisfied by the Rényi entropy, and
interpreted one of them [their (A4)] as a result of propor-
tionality to a heat capacity which is positive. These
inequalities were studied and proven in [6].
Interim summary. We have established a string of

equalities between the variance of the entanglement spec-
trum hK2ic, the variance of entanglement entropy, the
capacity of entanglement, a reduced fidelity susceptibility
and quantum Fisher information,

hK2ic ¼ ΔS2EE ¼ CE ¼� 4χF ¼ g: ð2:46Þ

However, the third equality (marked with an asterisk) holds
for a particular (modular) flow among density matrices.
Hereafter, we will mostly adopt the notation CE, and we
will be interested in comparisons to the entanglement
entropy SEE, in a given state ρ.

6We use the notation α where [41] uses q.

7A precursor of such a connection was discussed in [42],
which introduced a heat capacity of entanglement across a planar
entangling surface, relating it by a coordinate transformation to
the thermal heat capacity of Rindler radiation, also finding a
linear area scaling.
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III. PROPERTIES OF CAPACITY OF
ENTANGLEMENT

We have introduced the cumulants of the modular
Hamiltonian, and interpreted the second cumulant as the
capacity of entanglement or the variance of entanglement
entropy. In this section we study some properties of these
concepts.

A. An upper bound on the capacity of entanglement

In a system with a finite Hilbert space of dimension N,
the von Neumann entropy takes values between 0 and
Smax ¼ lnN. It is interesting to derive similar bounds for
the higher cumulants of the spectrum of ρ. In this section
we derive an upper bound for the capacity of entangle-
ment CE ¼ hK2ic.
We may assume that we have diagonalized the density

matrix. We denote the eigenvalues λi, with the degenerate
eigenvalues also carrying separate labels. There are two
types of questions to consider: (i) for a given entropy S,
what is the maximum variance hK2ic, or (ii) find the
maximum of hK2ic with no restriction on the entropy.
We start with the problem (i). It leads to the variational

problem to extremize the functional

F ¼
X
i

λiðlog λiÞ2 þ A

�
S −

X
i

λi log λi

�
þ
X

Biθð−λiÞ

þ C

�X
i

λi − 1

�
; ð3:1Þ

where the Lagrange multipliers A, Bi and C enforce that the
entropy takes a given value, that the λi are non-negative,
and that the sum of the eigenvalues is equal to one,
respectively. Note that F is not equal to hK2ic, instead
F ¼ hK2ic þ S2, but since S is fixed extremizing F is the
same as extremizing hK2ic.
Differentiating F with respect to λi yields

log2 λi þ ð2 − AÞ log λi − A − BiδðλiÞ þ C ¼ 0: ð3:2Þ

We see that if λi ≠ 0, this is a quadratic equation for log λi
with at most two solutions for λi. In addition, some of the λi
could be zero, for which this equation is somewhat ill-
defined, but can formally be solved with Bi ¼ 0 and C
infinite.
We now first move on to the alternative problem (ii),

which turns out to lead to a simple result, before turning
back to (i). If we do not fix S, we need to maximize

F̃ ¼
X
i

λiðlog λiÞ2 −
�X

i

λi log λi

�
2

þ
X

Biθð−λiÞ

þ C

�X
i

λi − 1

�
: ð3:3Þ

Differentiating with respect to λi now leads to

log2 λi þ 2 log λi − 2ð1þ log λiÞ
�X

i

λi log λi

�

þ BiδðλiÞ þ C ¼ 0: ð3:4Þ

Also in this case, having three different nonzero values
among the λi would lead to a contradiction, as all three
would be solutions of a quadratic equation for log λi with
the same coefficients.
We therefore conclude that for either optimization

problem, the nonzero eigenvalues can take at most two
different values. Since a zero eigenvalue does not contrib-
ute to either entanglement entropy or the variance, we will
ignore the zero eigenvalues for now.
We will denote the two non-zero eigenvalues by λ1 and

λ2. If we call the corresponding occupation numbers n1
and n2, then n1λ1 þ n2λ2 ¼ 1. We can express n1 and n2 in
terms of λ1 and λ2 and when we do this we find

CE ¼ hK2ic ¼ −ðSþ log λ1ÞðSþ log λ2Þ; ð3:5Þ

which shows that in order to maximize CE, we should make
λ1 and λ2 as different as possible.
It will be convenient to introduce the variables

x ¼ n1λ1; y ¼ n1
n2

ð3:6Þ

so that we can express all quantities in terms of x, y and
N ¼ n1 þ n2. We find that

S ¼ logN − x log
x

yð1 − xÞ − logð1 − xÞð1þ yÞ ð3:7Þ

and

CE ¼ hK2ic ¼ xð1 − xÞ
�
log

�
y
1 − x
x

��
2

: ð3:8Þ

Let us try to maximize hK2ic. We notice that first of all
we want to minimize y. The minimum value would be
y ¼ 0, but this is just the maximally entangled state, for
which the capacity of entanglement vanishes. Instead, we
set y ¼ 1=ðN − 1Þ. Then, the maximum of hK2ic is found
at xN , which is the solution of

log

�
1 − x
x

�
−

2

1 − 2x
− logðN − 1Þ ¼ 0: ð3:9Þ

We then find an upper bound for the variance,

hK2ic ≤
4xNð1 − xNÞ
ð1 − 2xNÞ2

: ð3:10Þ
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Solving the transcendental equation (3.9) iteratively, we
obtain for large N

xN ≈
1

2
þ 1

logðN − 1Þ þ � � � ð3:11Þ

and

CE;max ¼ hK2ic;max ≈
1

4
log2N þ 1þ � � � ≈ 1

4
S2max: ð3:12Þ

Notice that we did not keep S fixed when we varied x and y.
However, for the above values of x and y the entropy for
large N remains of the order S ∼ logN so we expect that
it remains true that CE;max is proportional to S2max (with a
different numerical constant) if we were to vary hK2ic
keeping S fixed and of the order logN. It would be
interesting to know if states with maximum capacity of
entanglement have special properties, but we have no
specific insights at this point.
Formally, the inequality

CE ¼ hK2ic ¼ ΔS2EE ≤
1

4
ðSmaxÞ2 ð3:13Þ

resembles Popoviciu’s inequality on variances [43], which
states that the variance of a random variable X with a range
from infðXÞ ¼ m to supðXÞ ¼ M satisfies

ΔX2 ≡ varðXÞ ≤ 1

4
ðM −mÞ2: ð3:14Þ

If we were to interpret the entropy SEE as a random variable
with the upper bound Smax and the lower bound 0, the
inequality (3.13) would indeed superficially look like a
special case of Popoviciu’s inequality. However, the spec-
trum of the modular Hamiltonian depends on the proba-
bility distribution, and has no finite upper bound. To clarify,
we recast our result in the language of classical information
theory. Let X be a random variable with N outcomes
fx1;…; xNg, with a discrete probability distribution pðxiÞ.
Then move to a new random variable, the information
content IðXÞ ¼ − log2 pðXÞ. The expectation value is the
Shannon information,H¼EðIðXÞÞ, with 0 ≤ H ≤ Hmax ¼
log2N. The same variational calculation as we performed
above, changing the notation, gives an estimate for the
variance of IðXÞ

ΔIðXÞ2 ≡ varðIðXÞÞ ≤ 1

4
ðHmaxÞ2: ð3:15Þ

This is not a special case of Popoviciu’s inequality: unlike for
X, for the random variable IðXÞ the supremum depends
on the probability distribution pðxÞ, with sup IðXÞ ¼ ∞.
Instead, what appears in (3.15) is the supremum of the
expectationvalue.We are unaware ofwhether (3.15) is a new
result in classical information theory, or previously known.

Note also that the upper bound applies for a finite
system. In the thermodynamic limit, with the system size
becoming infinite, it would be interesting to study if the
capacity of entanglement displays interesting nonanalytic-
ity e.g., when the system is undergoing a quantum phase
transition.

B. Bipartite particle fluctuations and
entanglement fluctuations

In this section, we discuss scenarios where it is natural
to consider fluctuations in entanglement entropy and its
cumulants. We consider entanglement in a bipartitioned
system. There has been growing interest in developing
strategies to measure entanglement. An interesting proposal
relates entanglement in a bipartitioned system (between the
subsystem A and its complement) to fluctuations of a
conserved Uð1Þ charge, such as the particle number, across
the partition boundary [19–23], for systems that can be
mapped to noninteracting fermions. The particle number
in the subsystem A, NA, thus becomes a random variable,
and so does the entropy as entangled charges wander in and
out. There are detailed results relating the fluctuations in
the particle number NA in the subregion A to the entangle-
ment entropy SEE and even to the Rényi entropies Sα. The
probability distribution of the random number NA is
characterized by its cumulants nm, defined by

nm ¼ ð−i∂λÞm log χðλÞjλ¼0; ð3:16Þ

with the generating function

χðλÞ ¼ heiλNAi; ð3:17Þ

where the expectation value is computed with respect to the
initial state of the full system. Thus, for example the second
cumulant n2 (also called the fluctuations) is

n2 ¼ hN2
Ai − hNAi2: ð3:18Þ

Given the relation between entanglement and particle
number fluctuations, we expect the probability distributions
of these two random variables to be related, and in
particular to be able to express all the cumulants of the
entanglement entropy (the modular Hamiltonian) in terms
of the cumulants of the particle number. Let us show this in
more detail. We emphasize that this only applies to systems
that can be mapped to noninteracting fermions. In this
context, the entanglement Rényi entropies have the follow-
ing series expansion in terms of the nm:

SαðAÞ ¼
X∞
k¼1

sðαÞk n2k ð3:19Þ

with the coefficients
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sðαÞk ¼ ð−1Þkð2πÞ2k2ζð−2k; ð1þ αÞ=2Þ
ðα − 1Þα2kð2kÞ! ; ð3:20Þ

where ζðs; aÞ is the Hurwitz zeta function. Note that only
the even cumulants n2k appear in the series. In principle, the
series is valid for real values of α > 1, but one has to be
careful about its convergence. In [44], it was shown that, for
systems equivalent to noninteracting fermion gases, the
series (3.19) is well behaved, because the first cumulant n2
contributes the leading Nðd−1Þ=d logN asymptotic behavior,
while the higher cumulants nk>2 contribute only subleading
behavior, N being the total particle number. Thus the series
essentially truncates.
In this case, we can view k̃ðαÞ ¼ ð1 − αÞSαðAÞ as a well

behaved generating function for the cumulants of the
entanglement entropy/modular Hamiltonian. In particular,
the entanglement entropy and the capacity of entanglement
have the expansions

SEEðAÞ ¼
X∞
k¼1

ð2πÞ2kjB2kj
ð2kÞ! n2k

¼ π2

3
n2 þ

π4

45
n4 þ

2π6

945
n6 þ � � � ;

CEðAÞ ¼
π2

3
n2 þ

X∞
k¼2

2ð2πÞ2kjB2kj
ð2k − 1Þ! n2k

¼ π2

3
n2 þ

8π4

45
n4 þ

24π6

945
n6 þ � � � ; ð3:21Þ

in the aboveB2k are Bernoulli numbers. From the results, we
immediately see that if the particle fluctuations are Gaussian
distributed (nm>3 ¼ 0), the entanglement entropy is equal to
its variance. Furthermore, in [44] it was noted that in the
N → ∞ limit the Rényi entropies remarkably satisfy

SαðAÞ
n2

¼ π2

6
ð1þ α−1Þ þ � � � ; ð3:22Þ

whereþ � � � indicates corrections that vanish.A consequence
of this is that

CEðAÞ ¼ SEEðAÞ ð3:23Þ

in the N → ∞ limit. Note that the dimension d of the system
was generic in the derivation. However, here the size of the
subregion A is independent of N and is kept fixed.
As a diversion, let us make some very speculative but

perhaps inspirational remarks regarding systems that have
holographic gravity duals. In this setting, we might make
the following argument for invoking a large N limit and
Gaussian statistics. Holographic gauge/gravity duality is
simplified in a limit where the bulk gravity system is
classical, corresponding to a large N limit in the dual
theory at the AdS boundary, where N is the number of

constituent degrees of freedom (d.o.f.). In the dual theory,
one could then focus on the average number of d.o.f.
fluctuating in the subregion A,

NA ¼ 1

N

XN
i¼1

NðiÞ
A ; ð3:24Þ

where NðiÞ
A is the particle number of the species i in the

subregion A. Viewing each NðiÞ
A as an independent random

variable, not necessarily having identical distributions,
under suitable conditions (e.g., Lyapunov conditions), the
central limit theorem applies and in the large N limit the
average particle number NA becomes Gaussian distrib-
uted. If the quantum entanglement is attributed to the
average particle number fluctuations about the subregion,
from above one could deduce that CE ¼ SEE. An addi-
tional complication is that in gauge/gravity duality, one
typically works in the large ’t Hooft coupling limit so that
the bulk spacetime is weakly curved. The dual theory on
the boundary is then strongly coupled, so the concept of
“particles” is lost and the definition of a “particle number”
becomes less clear. Another caveat is that the definition
of entanglement for gauge invariant observables is more
complicated [45,46].
In Sec. VI A, we study a system which can be mapped to

noninteracting fermions.We consider ground state entangle-
ment in a Heisenberg XY spin chain at different phases, with
the ground state adjusting to the changes in the parameters.
Its Rényi entropies were computed in [33,47], although they
worked in a double scaling limitN → ∞, L → ∞with L=N
fixed, where L is the size of the subsystem. Therefore, the
above largeN result from particle number fluctuations is not
directly applicable. In particular, we will find that the
entanglement entropy is not always equal to the capacity
of entanglement. This system will also work as an intro-
duction to later sections where we study CFTs and their
perturbations with relevant operators.

C. A simple example where capacity equals entropy

The largeN limit in the previous section led to the equality
CE ¼ SEE. Later, we will arrive several times at the same
result when we discuss entanglement in CFTs. It is interest-
ing to askwhat probability distributions could lead to such an
equality. Here is one concrete example. It will be convenient
to write λ ¼ e−E and to use a density of states ρðEÞ. For a
finite dimensional density matrix with eigenvalues λi, the
density of states would be ρðEÞ ¼ P

iδðEþ log λiÞ. Then,Z
dEρðEÞe−E ¼ 1;Z

dEEρðEÞe−E ¼ SEE;Z
dEE2ρðEÞe−E ¼ CE − S2EE: ð3:25Þ
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If we take, for example, ρðEÞ ¼ Ek=k!, we obtain CE ¼
SEE ¼ kþ 1, which is indeed an example where CE ¼ SEE.

D. Gravity dual of the capacity of entanglement

Results in [7] can be used to find the gravity dual of the
capacity of entanglement. This was done in [6], but here we
present a simplified derivation of the result, and point out
some additional properties.
Starting from the modular entropy (2.4), we can rewrite

the capacity of entanglement as a first derivative,

CE ¼ ΔS2EE ¼ −
dS̃α
dα

����
α¼1

: ð3:26Þ

The modular entropy S̃α is given by the area of a suitably
backreacted cosmic brane as in (2.5) and to determine that
we need to consider the action for a brane coupled to
gravity

I ¼ −
1

16πGN

Z ffiffiffi
g

p
Rþ Imatter þ

α − 1

4αGN

Z
brane

ffiffiffi
h

p

ð3:27Þ

with h the induced metric on the brane. To leading order,
the cosmic brane is just a minimal surface. To first
subleading order, we need to take backreaction from the
tension of the brane into account. The brane yields a source
for the metric, and to first order in the source this affects the
metric everywhere in spacetime through the bulk graviton
propagator. It could also affect the matter fields to first
order, in case the kinetic terms for the graviton and matter
fields mix in this background.
At higher order, we would need to include more

complicated Witten diagrams to understand the backreac-
tion. If we only consider linear metric fluctuations, the
location of the minimal surface does not change, only its
area changes. This is because the minimum area surface is
an extremum of the area functional and therefore its
location does not change under first order perturbations.
The first-order variation of the area is given by

δ
Area
4GN

¼ 1

4GN

Z ffiffiffi
h

p 1

2
hijδhij: ð3:28Þ

The field equation of (3.27) is

−
1

16πGN

�
Rμν −

1

2
Rgμν

�
þ 1

2
Tmatter
μν −

α − 1

8αGN
hijδðbraneÞ

¼ 0; ð3:29Þ

where a simplified notation has been used. A more precise
way to write the last term, using the explicit expression for
the induced metric hij in terms of the embedding xμðσiÞ of
the surface,

hij ¼ gμνðxμðσiÞÞ
∂xμ
∂σi

∂xν
∂σj ; ð3:30Þ

reads

−
α − 1

8αGN

Z
dd−1σi

ffiffiffi
h

p
ffiffiffi
g

p hijgμρ
∂xρ
∂σi

∂xη
∂σj gηνδðx

μ − xμðσiÞÞ:

ð3:31Þ
In order to not clutter the notation, we will keep using the
imprecise notation in (3.29) but write the final answer in a
more accurate way.
We need to solve (3.29) to first order in (α − 1). To leading

order, the metric obeys the field equations in the bulk, and
we need to linearize around the background in order to find
the first order variation, gμν ¼ gbackgroundμν þ δgμν

−
1

16πGN
Dbackgroundδgμν −

α − 1

8nGN
gbackgroundij δðbraneÞ

þOððα − 1Þ2Þ ¼ 0 ð3:32Þ
with D some second order operator representing the kinetic
term of the graviton. Therefore, if G is the graviton
propagator in the background, we get

δgμνðxÞ ¼ −
1

8GN

Z
dx0

ffiffiffiffiffiffiffiffiffiffi
gðx0Þ

p
Gαβ

μνðx; x0Þ

×
α − 1

α
gbackgroundαβ ðx0ÞδðbraneÞ: ð3:33Þ

Inserting this in the variation (3.28), we are left with a double
integral over the minimal surface

CE ¼ 1

64G2
N

Z
dx

ffiffiffiffiffiffiffiffiffi
gðxÞ

p Z
dx0

ffiffiffiffiffiffiffiffiffiffi
gðx0Þ

p
gijGkl

ijðx; x0Þgkl:

ð3:34Þ
Notice that the indices of the graviton propagator are
contracted with the metric on the brane, in other words
we are effectively taking a trace, but only in the directions
along the brane.
A more precise version of (3.34) in terms of the

embedding xμðσiÞ is

CE ¼ 1

64G2
N

Z
dd−1σ

ffiffiffiffiffiffiffiffiffi
hðσÞ

p Z
dd−1σ0

ffiffiffiffiffiffiffiffiffiffi
hðσ0Þ

p
hij

×Gij;klðxðσÞ; xðσ0ÞÞhkl ð3:35Þ
with

Gij;klðxðσÞ; xðσ0ÞÞ ¼ Gμν;ρηðxðσÞ; xðσ0ÞÞ
∂xμ
∂σi

∂xν
∂σj

∂xρ
∂σ0k

∂xη
∂σ0l :
ð3:36Þ

This result was derived in [6], via a different route.
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We note in passing that the result (3.35) looks very
familiar when phrased in terms of the (reduced) fidelity
susceptibility associated with the flow (2.37) as in Sec. II.
Then,8

χF ¼
Z
Σ
dx⃗

Z
Σ
dx⃗0gijgklGkl

ijðx⃗; x⃗0Þ; ð3:37Þ

a relationship between response coefficient and fluctuations
resembling that of the magnetic susceptibility and order
parameter fluctuations in Landau-Ginzburg theory,

χ ¼
Z

dx⃗
Z

dx⃗0δijCijðx⃗; x⃗0Þ; ð3:38Þ

with Cijðx⃗; x⃗0ÞÞ ¼ hmiðx⃗Þmjðx⃗0Þic. The analogue is satisfy-
ing, viewing bulk gravity as an effective theory for the
quantum theory on the boundary.
One might have thought that one can simply decouple

this piece of the graviton propagator by restricting to the
conformal mode, but that would involve a trace over all
indices, not just those along the brane. We have not
attempted to compute (3.34) in an actual example but
can relate this expression to CFT computations that have
appeared previously in the literature [24,25] for the
expansion of the Rényi entropy Sα around α ¼ 1 for a
spherical entangling surface. We first notice that the first-
order variation of entanglement entropy itself reads

δSEE ¼ 1

8GN

Z
dd−1σ

ffiffiffi
h

p
hijδhij; ð3:39Þ

and therefore (3.35) can be interpreted as a two-point
function

CE ¼ ΔS2EE ¼ hδSEEδSEEi; ð3:40Þ
where we view δhij as a fluctuating bulk field. This clarifies
more directly the relation between the bulk computation
and the boundary computation in terms of correlation
functions of the modular Hamiltonian K. Indeed, if we
interpret the first law of entanglement entropy as an
operator statement (see e.g., [48,49]), so that

δSEE ≡ K; ð3:41Þ
then the equivalence between hδSEEδSEEi and hKKi
becomes manifest. In this way, we can also much more
directly derive bulk expressions for the higher moments of
K, they simply become higher order bulk correlators of
δSEE, and in this way perturbatively prove the result of [7].
The above computations also nicely illustrate the

relation of quantum entanglement to gravity: we can
see that entanglement fluctuations are interpreted as
self-gravitation, with the two-point function (3.40) as

the leading order integrated self-gravitation of the bulk
surface9

E. Direct CFT computation

As we just described, a more direct CFT computation of
the capacity of entanglement and higher moments of the
entanglement spectrum involves the computation of n-point
functions of the modular Hamiltonian. For spherical
regions, the modular Hamiltonian has a local expression

KA ¼ 2π

Z
jxj<R

dd−1x
R2 − r2

2R
TttðxÞ ð3:42Þ

and the capacity of entanglement then involves a double
integral of the 2-point function hTttðxÞTttðx0Þi. In the case
d ¼ 2, using a slightly ad hoc way to treat the divergent
integral,10

CE ¼ hK2
Aic ¼

Z
R

−R
dx

Z
R

−R
dx0

ðR2 − x2ÞðR2 − x02Þ
4R2

c
ðx− x0Þ4

ð3:43Þ

¼
Z

Rð1−εÞ

−Rð1−εÞ
dx0c

RðR2 − x02Þ
3ðR − x0Þ2ðRþ x0Þ2 ð3:44Þ

¼ 2c
3
ArcTanhð1 − εÞ ð3:45Þ

¼ c
3

�
log

2

ε

�
þ oðεÞ ð3:46Þ

¼ c
3
log

L
a
: ð3:47Þ

In the above, we used the well-known hTðzÞTð0Þi ∼ c
2z4

formula and also set a UV regulator ε ¼ 2a
L by hand. In the

first step, we did the x integral assuming the contour had
been shifted off the real axis. The second integral is then
performed with an explicit cutoff.
One can systematically study higher cumulants and see

that they are given by the terms that appear in the higher
order correlation functions of the energy momentum tensor.
This is explored in quite some detail in [25], see also
Sec. V B, in particular the relation between the second
derivative of the Rényi and the coefficient that appear in the

8Absorbing the normalization factor into the graviton propagator.

9Given the equality (2.46) of the capacity of entanglement,
fidelity susceptibility and quantum Fisher information under
modular flow, the corresponding bulk interpretations of the three
should also be related. However, on the face of it, proposals for
the latter two look quite different [17,18,50,51]. It would be
interesting (but beyond the scope of this work) to understand in
more detail the relation of the bulk interpretations when (2.46)
holds.

10It should be remembered that T ¼ 2πTzz and T̄ ¼ 2πTz̄ z̄.
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three-point function of the energy momentum tensor is
worked out in this paper. This paper also discusses a
particular regularization of the integrated correlation func-
tions of the type above, but only in a simple example, and
proposes to use dimensional regularization whose con-
nection to standard regulators is obscure.

IV. STATE DEPENDENCE OF THE CAPACITY
OF ENTANGLEMENT

The capacity of entanglement depends on the choice of
the original state of the system. In this section we study this
dependence by considering various simple examples.

A. Simple n-qubit examples

We begin by studying simple n-qubit systems. Two-qubit
systems were discussed in [52]. As a simplest example,
consider the states

jθ;ϕi ¼ cosðθ=2Þj10i þ eiϕ sinðθ=2Þj01i ð4:1Þ
and form a reduced density matrix by tracing over the other
spin,

ρred ¼ diagðsin2ðθ=2Þ; cos2ðθ=2ÞÞ: ð4:2Þ
The entanglement entropy grows monotonically towards
the maximum, but the capacity of entanglement goes to
zero both in the maximally entangled and separable state
limits while reaching a maximum at a partially entangled
state with cos2ðθ=2Þ ≈ 0.2885 (Fig. 1).11

Moving to a three-qubit system, we consider the sub-
space

jθ;ϕi ¼ cos θj001i þ sin θðcosϕj010i þ sinϕj100iÞ
ð4:6Þ

and form a reduced density matrix by tracing over one spin.
In this case, we again see that the capacity of entanglement
goes to zero in the limit of maximal entanglement and

separable states, while reaching a maximum for partially
entangled states (Fig. 2).
As these simple examples illustrate, the entanglement

entropy and its fluctuations, characterized by the cumulants
have no reason to be equal, except for some special states.
The capacity of entanglement characterizes the width of the
eigenvalue spectrumof the densitymatrix.We study that by a
simple example. Let us assume that the (reduced) system has
N levels, and we have moved to a diagonal basis. We then
assume that the N eigenvalues λi of the (reduced) density
matrix have a gaussian distribution with variance σ, i.e., they
form a Gaussian vector (an example is shown in Fig. 3).
We can now interpolate from σ ¼ 0, where the density

matrix describes a pure state, to σ → ∞ limit giving a
maximally mixed state. We then plot the (entanglement)
von Neumann entropy and the capacity of entanglement
CE ¼ ΔS2 as a function of σ in Fig. 4. The left panel
(A) shows only the capacity of entanglement to highlight its
non-trivial dependence of the spread of eigenvalues; the
right panel (B) shows it together with the entropy.

B. Random bipartite entanglement

One could imagine that the origin of entanglement and
capacity of entanglement has to do with the fact that we
are projecting a random pure state to a subsystem. It is
therefore interesting to compute the expectation value of
the entanglement entropy and capacity of entanglement in
such a setting. More precisely, we are going to consider
random pure states in a Hilbert space of dimension pq of
the formHq ⊗ Hp, projected to the subsystem with Hilbert
space Hp of dimension p (q ≥ p), a review is e.g., [53].
In this way we will get a probability distribution of reduced
density matrices, and we can compute the expectation value
of entanglement entropy and the capacity of entanglement
in this ensemble.
The probability distribution for the eigenvalues λi of the

reduced density matrix is [54]

Pp;qðλ1;…; λpÞ ¼ N p;q

Y
1≤i<j≤p

ðλi − λjÞ2
Y

1≤k≤p
λq−pk δ

×

�
1 −

Xp
i¼1

λi

�
: ð4:7Þ

0.2 0.4 0.6 0.8 1.0
x
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svar(x)

s(x)

FIG. 1. Entanglement entropy and the capacity of entanglement
for the state (4.2) as a function of x ¼ cos2ðθ=2Þ.

11Reference [52] considered a slightly more general example,
starting with the states

jψi ¼ a1j00i þ a2j01i þ a3j10i þ a4j11i ð4:3Þ

with the normalization
P

4
i¼1 jaij2 ¼ 1. The diagonalized reduced

density matrix for one spin takes the same form as above, but [52]
wrote it in terms of the concurrence c of the 2-bit system,

ρred ¼ diag

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p

2
;
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p

2

�
; ð4:4Þ

where
c ¼ 2ja1a4 − a2a3j: ð4:5Þ

They also observed that in general ΔS2EE ≠ SEE, equality holds
only at c ¼ 0 and at special value c ≈ 0.8272.
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where N p;q is a known normalization factor [55]. To
compute the expectation value of the Renyi entropies,
we need to compute the expectation value of

P
λαi under

this probability distribution. The relevant integrals can be

extracted from the results in [56]. For example, we find that
when p ¼ q ¼ 2

htrραi2;2 ¼ N
2ðα2 þ αþ 2ÞΓðαþ 1Þ

Γðαþ 4Þ ð4:8Þ

from which we obtain

hSEEi2;2 ¼
1

3
; hCEi2;2 ¼

13

36
: ð4:9Þ

We therefore see that for p ¼ q ¼ 2 the entanglement
entropy and capacity are very close to each other.
For arbitrary p, q an exact answer for hSEEip;q was

conjectured in [57] and proven in [58],

hSEEip;q ¼
Xpq

k¼qþ1

1

k
−
p − 1

2q
; ð4:10Þ

for p ≤ q.

FIG. 3. N ¼ 41 eigenvalues λi of ρ with a Gaussian profile.
The indexing is i ¼ −20;−19; ::; 20.

FIG. 4. (Entanglement) entropy and the capacity of entanglement plotted as a function of the variance σ of the eigenvalue distribution.
The left panel (a) shows the capacity of entanglement CE ¼ ΔS2, the right panel (b) superimposes it (lower curve) with the entropy
(upper curve). The dashed line indicates the maximum entropy.

FIG. 2. Entanglement entropy (a) and the capacity of entanglement (b) plotted as a function of the angle parameters θ;ϕ of the
state (4.6).
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Similarly we can compute

htrραi2;q ¼ N
2ðq − 2Þ!ðα2 þ αþ 2q − 2ÞΓðαþ q − 1Þ

Γðαþ 2qÞ
ð4:11Þ

from which one can obtain for example hSEEi2;3 ¼ 9
20

and
hCEi2;3 ¼ 1169

3600
. Numbers quickly become unwieldy, but as

we increase p and q in general the entanglement entropy
increases and the capacity divided by entanglement
decreases. This is consistent with the idea that as p and
q increase, the reduced density matrix becomes more and
more maximally mixed. To illustrate, for p ¼ 2 and q ¼
100 we get hSEEi2;100 ≃ 0.686, close to the maximal value
log 2 ≃ 0.693, while hCEi2;100 ≃ 0.015.
The case p ¼ q ¼ 2 is the case where entanglement

entropy and capacity are nearly equal to each other. The
ratio CE=SEE decreases even when we keep p ¼ q and
increase p and q. Already for p ¼ q ¼ 3 where SEE ¼
1669=2520 and CE ¼ 2898541=6350400 the ratio has
decreased to CE=SEE ≃ 0.689. As we briefly review below,
this can be proved rigorously be studying a the limit of
large p, q using random matrix theory [59,60].
The main observation of these studies is that a possible

explanation for the approximate equality of SEE andCE in a
system is that most of the entanglement is being carried by
randomly entangled pairs of qubits (the case p ¼ q ¼ 2).

1. Random pure states and Wishart-Laguerre
random matrices

Wemay also study the reduced densitymatrices of random
pure states by using their connection to theWishart-Laguerre
ensemble of random matrices. We are not going to perform
a mathematically rigorous analysis here (along the lines of
[59]), but just quickly study whether the ratio CE=SEE
decreases to zero in the limits p ¼ q → ∞, and p; q → ∞
with p=q → 0, following the approach in [60]. In [60], the
reduced density matrix was written in the form

ρ ¼ YY†

TrðYY†Þ ; ð4:12Þ

whereW ≡ YY† is a p × p random matrix belonging to the
β ¼ 2Wishart-Laguerre ensemble. In the limit of large p, q
with α ¼ p=q fixed, one may replace TrðYY†Þ → p, so that
the eigenvalues λi of ρ are related to the eigenvalues μi of
the Wishart matrix W by a simple rescaling

λi ¼
μi
p
: ð4:13Þ

This gives a quick way of computing the ensemble average
of the Rényi entropy, by using the average spectral density
of the Wishart ensemble. We start with

kðsÞ ¼ TrðρsÞ ¼
X
i

λsi ≈
1

ps

Z
dμ

X
i

δðμ − μiÞμs ð4:14Þ

where

X
i

δðμ − μiÞ≡ ν̂ðμÞ ð4:15Þ

is the spectral density of the Wishart matrix. Its ensemble
average hν̂ðμÞi is given by theMarchenko-Pastur distribution
[61] n̄ðμÞ,

hν̂ðμÞi ¼ pn̄ðμÞ ¼ p
2παμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ − α−Þðαþ − μÞ

p
; ð4:16Þ

where α− ≤ μ ≤ αþ, with α� ¼ ð1� ffiffiffi
α

p Þ2, α ¼ p=q.
The ensemble average hkðsÞi thus becomes

hkðsÞi¼ hTrρsi¼ 1

ps−1

Z
dμn̄ðμÞμs

¼p1−s 1

2πα

Z
αþ−α−

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðαþ−α− −yÞ

p
ðyþα−Þs−1

¼
�
p
α−

�
1−s

2F1

�
1− s;

3

2
;3;

−4
ffiffiffi
α

p
α−

�
: ð4:17Þ

The general result from (4.17) for the entanglement entropy
and the capacity of entanglement is then

hSEEi¼ log
p
α−

þGð1Þ
a

�
0;
3

2
;3;

−4
ffiffiffi
α

p
α−

�

hCEi¼Gð2Þ
a

�
0;
3

2
;3;

−4
ffiffiffi
α

p
α−

�
−
�
Gð1Þ

a

�
0;
3

2
;3;

−4
ffiffiffi
α

p
α−

��
2

ð4:18Þ

where12

GðnÞ
a ða; b; c; zÞ ¼ ∂n

∂an 2F1ða; b; c; zÞ: ð4:19Þ

In the limit α ¼ p=q → 0, one obtains

hCEi
hSEEi

≈
p
q

logp − p
2q

→ 0; ð4:20Þ

confirming the numerical guess. In the limit p ¼ q (4.17)
gives

12Properties of these derivatives of the hypergeometric func-
tion can be found in [62]. They are also built into the Mathe-
matica program.
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hkðsÞi ¼ p1−s 1

2π

Z
4

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð4 − yÞ

p
ys−1

¼ 4ffiffiffi
π

p
�
p
4

�
1−s Γðsþ 1

2
Þ

Γðsþ 2Þ ; ð4:21Þ

in agreement with Eq. (12) in [59], from which we obtain

hSEEi ≈ logp −
1

2
; hCEi ≈

π2

3
−
11

4
≈ 0.5399 ð4:22Þ

also confirming the numerical guess hCEi=hSEEi → 0 in the
limit p ¼ q → ∞.
We therefore see that a possible explanation for approxi-

mate equality of SEE and CE in a system is that most of the
entanglement is being carried by randomly entangled pairs
of qubits.

V. THE CAPACITY OF ENTANGLEMENT IN
QUANTUM FIELD THEORIES AND

UNIVERSALITY

A. 1 + 1 dimensional CFTs

We now move to consider conformal field theories in
various dimensions. In particular, in 1þ 1 dimensions we
can make use of very general analytical results for the Rényi
entropies. Rényi entropies for generic CFTs have been
computed in a variety of cases: for an initial vacuum state
for infinite and finite systems, for thermal backgrounds for
finite and infinite systems, and for non-equilibriumdynamics
involving different quench protocols, notably global and
local quenches.13 A recent review is e.g., [64]. The compu-
tations lead to

TrðραAÞ ¼ cαe−
c
12
ðα−1

αÞWA; ð5:1Þ

whereWA is a function of the size of the subsystem (and time,
for quenched systems) but independent of α, and cα with
c1 ¼ 1 are model specific constants that do not depend on
the size l. The Rényi entropies SαðAÞ are then

SαðAÞ ¼
c
12

�
1þ 1

α

�
WA þ ð1 − αÞ−1 log cα: ð5:2Þ

From the cumulant generating function k̃ðαÞ ¼ ð1 − αÞSα,
we immediately obtain the general result for the capacity of
entanglement,

CE ¼ SEE þ c01 − ðc01Þ2 þ c001 ¼
c
6
WA þ c01 þ ðc01Þ2 þ c001;

ð5:3Þ

and in particular, for large WA, the last three terms on the
right-hand side are negligible. Explicit results for WA for
various different situations are listed in [65]. For time
independent cases with A a finite interval of length l,

WA ¼

8>><
>>:

2 logðlϵÞ infinite system; T ¼ 0

2 log ðLπϵ sin lπ
LÞ finite system; sizeL; T ¼ 0

2 log ð βπϵ sinh lπ
β Þ infinite system; T > 0.

ð5:4Þ

For time-dependent cases with two semi-infinite intervals,
some known results are

WA ¼
(
log ð βπϵ coshð2πt=βÞÞ global quench at t ¼ 0

logðt2þλ2

ϵλ=2 Þ local quench at t ¼ 0;

ð5:5Þ

with quench parameters β (the resulting inverse temperature)
and λ.
It may be somewhat surprising that the leading order

result CE ¼ SEE holds in all of the above cases, even for
the quenched nonequilibrium systems throughout their time
evolution. The entangled states are rather special, prepared
by using conformal mappings. Also, the result tells us
that after the quench, the growth rate of the capacity of
entanglement is the same as that of the entanglement
entropy. The growth of the entanglement entropy is con-
sistent with the interpretation where the spreading of
entanglement is carried by quasiparticle pairs created at
the quench and propagating ballistically through the system
at the speed of light. It is not obvious at all that this picture
should imply the same growth rate for the capacity of
entanglement. Consider for example the following toy
model. Suppose we quench a system and afterwards
entanglement builds up because pairs of perfectly entangled
quasiparticles are created. The reduced density matrix of a
subsystem will then roughly consist of the original reduced
density matrix combined with say nðtÞ qubits which are
pairwise perfectly entangled with nðtÞ qubits outside the
subsystem. The number of such qubits will be time
dependent. We will model the reduced density matrix as

ρðtÞ ¼ ρUV ⊗
�

1

2nðtÞ
I2nðtÞ×2nðtÞ

�
⊗ jψðtÞihψðtÞj ð5:6Þ

where ρUV represents the very UV d.o.f. which were
entangled, and remain entangled across the boundary of
the region. The pure state ψðtÞ represents the reservoir of
states from which qubits are extracted as more and more
entangled quasiparticles become relevant. This pure state
lives in some Hilbert space of dimension D − 2nðtÞ with a
very largeD. Details of the reservoir pure state are irrelevant.

13In Sec. II we discussed the relation of the Rényi entropies
and the entanglement spectrum. A recent paper [63] studies the
time evolution of the entanglement spectrum and the entangle-
ment Hamiltonian after a quench.
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It is straightforward to compute the Rényi entropies for this
density matrix,

1

1 − α
logTrðρðtÞαÞ ¼ SαUV þ nðtÞ log 2: ð5:7Þ

We then deduce that EE grows as a function of t,

SEE ¼ SUVEE þ nðtÞ ln 2; ð5:8Þ

where the function nðtÞ can be adjusted to the quasiballistic
interpretation (with the characteristic long linear growth
regime), but the capacity of entanglement stays constant

CE ¼ ΔS2UV ð5:9Þ

receiving contributions only from the UV, not from the
created quasiparticles. Therefore if the capacity of entangle-
ment and EE grow identically after the quench, it is in
tension with the simple ballistic propagation of created
pairwise perfectly entangled quasiparticles which leads to
the above model.
Rather than expecting the quasiparticles to be pairwise

perfectly entangled, we could expect them to be created in
random pure states with some statistical distribution. In
Sec. IV B we studied random pure states with bipartite
entanglement between d.o.f. inside and outside the sub-
system. There we saw that it was indeed possible for the
capacity of entanglement to be approximately equal to the
entanglement entropy, for ensemble averages of randomly
entangled pairs of qubits. On the other hand, in Sec. III B
we saw that such an equality also arises (in the large N
limit) from a more detailed connection between particle
fluctuations into a subregion and its entropy. We conclude
that the intuitive interpretation of entanglement being carried
by ballistic propagation quasiparticles needs to be refined
with correct statistics for the distribution of entanglement.
Finally, we make some brief comments on the two

interval case. Let the two intervals be A ¼ ½u1; v1� and
B ¼ ½u2; v2�. The Rényi entropy for the two interval case
has the general form [66]

TrραA∪B¼cα

� ðu2−u1Þðv2−v1Þ
jðv2−u1Þðv2−u2Þðv1−u1Þðv1−u2Þj

�ðc=6Þðα−1
αÞ

×F αðηÞ ð5:10Þ

where cα is a nonuniversal constant and F α is a nonuni-
versal function of the cross ratio η. This nonuniversal
function makes the analysis more complicated, so here we
consider only the case F α ¼ 1, such as in the massless
fermion theory [67–69]. Then the Rényi entropy takes the
same form as (5.1), and we readily obtain a similar
relationship for the leading terms as in (5.3),

CEðA ∪ BÞ ¼ SEEðA ∪ BÞ: ð5:11Þ

B. An alternative calculation in higher dimensions

In subsection III E we discussed an alternative calcu-
lation to compute the capacity of entanglement for a 1þ 1
dimensional conformal field theory. In this section we
discuss its generalization to higher dimensional CFTs.
Suppose we consider the entanglement of a ball.

Inserting the explicit form of the modular Hamiltonian,
we obtain a suitably integrated two-point function of the
energy-momentum tensor, in agreement with (3.40) and
(3.41). Such types of integrated correlation functions were
studied in [24,25]. The idea of the computation is as
follows. A ball in a constant timeslice is mapped to itself
under a subgroup SOð1; d − 1Þ of the conformal group,
and the double integral is invariant under the action of
this conformal group. We can use this symmetry to fix one
of the points at the origin, leaving us with a single integral
over the ball. This integral is still divergent, but because the
modular Hamiltonian involves the integral of a conserved
current over a fixed timeslice, we can evaluate it on any
suitable time slice, and in particular we can move the slice a
little bit so as to avoid the origin. What is then left is a finite
integral, which we still need to multiply by the volume of
the gauge group that we fixed. This volume is the volume of
SOð1; d − 1Þ=SOðd − 1Þ, which is the Euclidean hyper-
bolic space, because the origin is left fixed by a SOðd − 1Þ
subgroup of SOð1; d − 1Þ. This hyperbolic space is the
same space that appears at the boundary of AdS if we map
the Rindler wedge associated to the ball to a hyperbolic
black hole as in [40].
It is clear from the above that the final result will only

depend on the coefficient CT which appears in the two-
point function of two energy-momentum tensors

hTðxÞTð0Þi ∼ CT

x2d
: ð5:12Þ

The relevant computation of the integrated two-point func-
tion was studied in detail in [24] for arbitrary CFT’s, and
Eq. (1.3) therein reads

S0q¼1 ¼ −VolHd−1 ·
πd=2þ1Γðd=2Þðd − 1Þ

ðdþ 1Þ! CT ð5:13Þ

where the volume of hyperbolic space appears as we just
explained, and we can interpret the result as the capacity
of entanglement by CE ¼ ΔS2EE ¼ −2S0q¼1. The result is
indeed proportional to the coefficient CT that appears in the
two-point function of two energy-momentum tensors. For
later use, we write the result in a different form. As also
explained in [24], theCT above should not be confused with
the coefficient c appearing in the d ¼ 4 trace anomaly of a
CFT or the C̃T used in [41] in their expression for the Rényi
entropies. They are proportional to each other,

C̃T ¼ πdðd − 1Þ
ðdþ 1Þ! CT ð5:14Þ
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such that C̃T jd¼4 ¼ c. Thus, from (5.13), we arrive the
expression

CE ¼ C̃T
2Γðd=2Þ
πd=2−1

VolHd−1: ð5:15Þ

This expression is similar to that of the entanglement
entropy. When computing the entanglement entropy via
the conformal mapping to hyperbolic space, the original
computation in [40] obtained the expression

SEE ¼ a�d
2Γðd=2Þ
πd=2−1

VolHd−1; ð5:16Þ

where a�d is a dimensionless constant, a central charge.
In even dimensional spacetimes, this equals the coefficient
of the A-type trace anomaly of the CFT. In odd dimensional
spacetimes, a�d ∝ logZSd , i.e., the logarithm of the partition
function of the CFT on a unit sphere.
The regulated hyperbolic volume is given explicitly in

(3.1) in [24] and is also easy to compute independently. The
expression is sensitive to the choice of the regularization
scheme, but even and odd d have a universal coefficient for
the logarithmic and constant term, respectively. They are

VolHd−1 ¼ πd=2

Γðd=2Þ
� ð−Þd=2−12π−1 logðR=εÞ d even

ð−Þðd−1Þ=2 d odd
:

ð5:17Þ
To conclude, the above computations suggest a simple
universal ratio for the entanglement entropy and the capacity
of entanglement,

CE

SEE
¼ C̃T

a�d
: ð5:18Þ

We discuss universality in more detail in Sec. V F.

C. The entanglement spectrum

The capacity of entanglement captures a particular feature
of the full entanglement spectrum. Here we briefly review
some aspects of the full entanglement spectrumand comment
on the implications for the capacity of entanglement.
We start with the two-dimensional case where the

entanglement spectrum can be explicitly obtained in several
cases. In particular, from (5.1) one can in principle extract
the entanglement spectrum for 1þ 1 dimensional CFT’s
using an inverse Laplace transform. Of course, the precise
answer will depend on the detailed structure of cα, but it
is instructive to show the spectrum in an explicit example.
For cα ¼ 1=α, the inverse Laplace transform leads to the
following result for the density of eigenvalues of the
reduced density matrix [10,16]

ρðλÞ ¼ θð− log λ − cWA=12Þλ−1

× I0
	
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cWAð− log λ −WAÞ=12

p 

ð5:19Þ

and one can verify explicitly that indeedZ
1

0

ρðλÞλα ¼ α−1e−
c
12
ðα−1

αÞWA: ð5:20Þ

It is perhaps more instructive to rewrite this in terms of an
energy spectrum with λ ¼ e−E. If we denote

Ec ¼
c
12

WA ð5:21Þ

then

ρðEÞ ¼ θðE − EcÞI0
	
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EcðE − EcÞ

p 

ð5:22Þ

and indeed Z
∞

0

dEρðEÞe−αE ¼ α−1e−
c
12
ðα−1

αÞWA: ð5:23Þ

It is interesting to see that the spectrum cuts off at a value
Ec which is determined by the UV cutoff that one needs to
introduce in order to regulate the divergences in the
computation of the Rényi entropies. One is almost tempted
to view Ec as some sort of analog of the Casimir energy. As
we remove the cutoff, all eigenvalues of the density matrix
are located in an ever smaller interval starting at λ ¼ 0. In
the above, we only considered the leading term of the Rényi
entropy in terms of a cutoff, one can in principle do more
precise computations taking the exact cutoff dependence
into account (which involves a choice of boundary state)
[13,16], but that is beyond the scope of this paper.
Ultimately, in 1þ 1 dimensions, (5.22) follows from

conformal invariance, but in a rather indirect way. It would
be desirable to have a more direct understanding of the
connection between conformal invariance and the various
features of (5.22), as that might shed further light on the
relation between CE and SEE in higher dimensions.
Expressions where cα is some other integer power of α

can in principle be obtained from (5.22) by differentiating
or integrating with respect to E. The feature of (5.22) which
does not depend much on these details is its large E
behavior. For large z, the asymptotic behavior of IνðzÞ is
IνðzÞ ∼ ez=

ffiffiffiffiffiffiffiffi
2πz

p
. Keeping only the exponential we there-

fore see that ρðEÞ behaves as

ρðEÞ ∼ exp
	
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EcðE − EcÞ

p 

; E → ∞: ð5:24Þ

Another interpretation of this expression is that it is the
density of states for a 1þ 1 dimensional CFT on the plane.
In higher dimensions, it maps to the density of states on the
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hyperbolic plane, but the one-dimensional hyperbolic plane
is just the ordinary line. Actually, according to [40] after a
change of coordinates the causal diamond attached to the
spatial interval r ∈ ½−l=2; l=2� maps under the change of
coordinates

t� r ¼ tanh

�
1

2

�
τ

R
� u

��
ð5:25Þ

to

ds2 ¼ −dτ2 þ R2du2

ðcosh uþ coshðτ=RÞÞ2 ð5:26Þ

where, for an interval of length l, R ¼ l=2. Putting a UV
cutoff at r ¼ �ðR − ϵÞ corresponds under this change of
coordinates to u ≃� logðl=ϵÞ for small ϵ. The length of the
u-interval is therefore precisely what we called WA.
We therefore need to compute the density of states on the

plane for a box of size WA and relate the energy on the
plane to the energy on the causal diamond. The change of
coordinates (5.25) has a Schwarzian derivative of −1=2.
To get the full shift in the energy we need to integrate this
over the spatial box. Therefore the full shift in the left- or
right-moving energy is cWA=24. This leads to a shift in the
total energy of the form

Eplane ∼ Ediamond −
c
12

WA: ð5:27Þ

Moreover, the energy spectrum for a box of size WA is
quantized in units of ∼2π=WA, and there is an extra factor
of 2π relating the energy to L0, so altogether what one
should use in the Cardy formula is

Lplane
0 ∼

WA

ð2πÞ2
�
Ediamond −

c
12

WA

�
ð5:28Þ

which explains the form of (5.24) from the usual Cardy
formula.
In higher dimensions, we can study features of the

entanglement spectrumwhenever the CFT has a holographic
dual, since the Rényi entropies can then be obtained from the
thermodynamics of hyperbolic black holes [41]. The density
of states will now obeyZ

∞

0

dEρðEÞe−αE ¼ e−fðαÞ ð5:29Þ

where

fðαÞ ¼ αSEE

�
1 −

xdα
2
−
xd−2α

2

�
ð5:30Þ

with

xα ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2dðd − 2Þ

p
αd

: ð5:31Þ

We notice that as α → ∞, fðαÞ ∼ Ecα, where

Ec ¼ SEE

�
1 −

�
d − 2

d

�d
2

−
�
d − 2

d

�d
2
−1
�

ð5:32Þ

which implies in particular that ρðEÞ ¼ 0 for E < Ec. It is
tempting to interpret Ec once more as some sort of Casimir
energy. The high-energy behavior of ρ is determined by the
behavior of fðαÞ as α → 0 which is fðαÞ ∼ cdSEEα1−d from
which it follows that for large E

log ρðEÞ ∼ c0dE
1=d
c ðE − EcÞðd−1Þ=d ð5:33Þ

where c0d is some constant which only depends on the
dimension d. The scaling with E is exactly what one expects
generically for a CFTat high energy/temperature, this simply
follows from extensivity of the free energy. Corrections
to (5.33) can be obtained from subleading terms in the
expansion near α ¼ 0. The first subleading term scales as
α3−d which gives rise to corrections to (5.33) of the form

log ρðEÞsubleading ∼ c00dE
3=d
c ðE − EcÞðd−3Þ=d ð5:34Þ

It is not clear whether these results also hold for more
general CFT’s without a holographic dual. We also observe
that the capacity of entanglement is related to the behavior
of fðαÞ near α ¼ 1, whereas the cutoff energy Ec and the
high-energy behavior are related to the large and small α
behavior of fðαÞ. A priori, these are unrelated to each other,
and therefore the capacity of entanglement does not in
general make any prediction for the behavior of the density
of states at either high or low energy. If the theory has a
holographic dual we know the explicit form of fðαÞ, which
only depends on the dimension d, and there are some
simple factors of order unity which relate the behavior for
small α, α of order 1, and large α. We also confirm once
more that CE ¼ SEE in because CE ¼ −f00ð1Þ ¼ SEE ¼
f0ð1Þ by explicit computation.
We notice that in the above cases not just the capacity of

entanglement, but all Rényi entropies obey an area law.
This implies that the function fðαÞ in (5.29) has an area law
and scales as a2−d where a is a short-distance UV cutoff.
This translates into the following leading cutoff depend-
ence of the density of states

log ρðEÞ ∼ 1

ad−2
log ρ̂ðEad−2Þ þ… ð5:35Þ

where ρ̂ does not depend on the cutoff. This is precisely the
scaling one would get from a local Rindler point of view.
Therefore, the area law for capacity of entanglement (and
more generally for the Rényi entropies) seems to arise from
the fact that these quantities are dominated by UV d.o.f.
localized near the entangling surface, which in turn can be
well approximated by local Rindler modes.
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D. The capacity of entanglement in holographic systems

Entanglement Rényi entropy was considered for systems
with a holographic dual with a black hole in [41]. Their
method was to relate Rényi entropies of spheres to thermal
entropies in hyperbolic spacetime at a range of temper-
atures. This method is applicable only for systems with
bulk duals that admit black hole solutions at various
temperatures. After obtaining the Rényi entropies, the
computation of entanglement entropy and the capacity of
entanglement are straightforward. All the holographic
Rényi entropies are proportional to the volume of hyper-
bolic space, which contains all the divergent terms. As
discussed in [41], the ratio Sα=S1 of the Rényi entropies
then yields universal information characterizing the dual
CFTs. In similar spirit, we choose to study the ratio of the
entanglement entropy and the capacity of entanglement,
another universal constant (at least for spherical entangling
surfaces).
In holographic duals of Einstein gravity, the entangle-

ment entropy and the capacity of entanglement are equal,

SEE ¼ 2π

�
L̃
lp

�d−1
VolHd−1 ¼ CE; ð5:36Þ

where VolHd−1 denotes the volume of the hyperbolic space.
Here L̃ is the curvature scale of the dual AdS spacetime.
In Einstein gravity, it equals the curvature scale in the
cosmological constant term but it is not the case for higher
curvature theories.
In Gauss-Bonnet gravity, the ratio becomes more inter-

esting. First, for d ¼ 4, the bulk and boundary theories have
two central charges, a and c, that appear in the boundary
Weyl anomaly. The entanglement entropy and the capacity
of entanglement are

SEE ¼ 2a
π
VolHd−1; CE ¼ 2c

π
VolHd−1; ð5:37Þ

so that in d ¼ 4 the gravity calculation indeed produces the
same ratio (5.18) as the field theory calculation. A priori,
one might not have expected any constraints for the ratio of
the two. However, the ratio of the CFT central charges is
restricted by the “conformal collider bounds” proposed in
[26] and proven in [27], implying a bound

18

31
≤

CE

SEE
¼ c

a
≤ 3; ð5:38Þ

for unitary 4d CFTs with gravity duals. The central charges
a and c are known explicitly for some field theories. It is
interesting to compute the ratio even when the theories are
not holographic—one may ask if the holographic “pre-
diction” (5.38) still holds. For example, for conformal free
scalar field theory and massless free Dirac fermion theory
the ratios of c and a are [70]

cscalar
ascalar

¼ 3;
cfermi

afermi
¼ 18

11
: ð5:39Þ

For general d ≥ 4 the theory is parametrized with λ
that is the coefficient for the 4-dimensional Euler density
term [41],

I¼ 1

2ld−1p

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
dðd−1Þ

L2
þRþ λL2

ðd−2Þðd−3Þχ4
�
:

ð5:40Þ
In this case one finds

SEE¼ 2π

�
1þðd−1Þð−1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1−4λ
p Þ

d−3

��
L̃
lp

�d−1
VolHd−1;

ð5:41Þ

CE ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λ

p �
L̃
lp

�d−1
VolHd−1 ð5:42Þ

so that the ratio CE=SEE is again a universal λ- and d-
dependent constant. Here, L̃ is proportional to the L in the

action, L̃ ¼ L
ffiffiffiffiffi
2λ

p
=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λ

pp
Þ.

E. Violation of the area law

It has been known for some time that the area law of
entanglement entropy is violated in some systems, we point
out that the same is true for the capacity of entanglement.
Apart from the logarithmic scaling in 1þ 1 dimensional
conformal field theories, the most common example is
provided by critical systems with a finite Fermi surface
such as free fermions or Fermi liquids [71–74]. The Rényi
entanglement entropy of these systems has been computed
to the leading order in [75]

Sα ¼
�
1þ 1

α

�
1

ð2πÞ
1

24

Z
k

Z
x
dAkdAxjnx · nkj log

�
L
ε

�
ð5:43Þ

where the integrals are taken over the entangling surface
and Fermi surface, the n’s are their normal unit vectors and
L corresponds to the effective system length. The capacity
of entanglement again tracks the entanglement entropy,
with CE ¼ SEE, both scaling as Ld−1 logðLÞ.

F. On the universality of the ratio of entanglement
entropy and the capacity of entanglement

We have already seen in many field theories that the
leading order of divergence of both the entanglement entropy
and the capacity of entanglement are the same. It is
interesting to ask if the ratio of the leading terms, computed
using the same regularization scheme, is universal or if it is
scheme dependent. At first thought, there is no immediate
reason why there would not be some universality. After all,
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they have the same power dependence on the regularization
parameter. However, the choice of the regularization scheme
could contain some hidden dependence on the quantity we
are computing, spoiling the universality. We demonstrate
this below by two cases, free massless scalar fields and
fermions.
First, we consider the freemassless scalar field theorywith

both d ¼ 3 and d ¼ 4. The Hamiltonian of the theory is

H ¼ 1

2

Z
Rd

ddx½ðπÞ2ðxÞ þ ð∇ϕÞ2ðxÞ�; ð5:44Þ

with the standard commutation relations. The entangling
surface is a sphere. As the first way of regularizing the theory,
we expand the scalar field ϕ and its conjugate momentum
field π in Fourier modes for d ¼ 3 (and in spherical
harmonics for d ¼ 4), and discretize the remaining radial
integral to a sum. The entanglement entropy and variance
can be expressed in terms of correlation matrices inside the
sphere. This method of computation was originally used in
[76] and a more detailed explanation can be found in [77].
Using these methods, we performed a quick numerical

computation of the entanglement entropy and the capacity
of entanglement at various radii and found that

CE

SEE
≈
�
3 d ¼ 3

5 d ¼ 4
: ð5:45Þ

These ratios are only approximate. The Rényi entropy of
this model in the four dimensional case was considered to
greater accuracy in [78] using the same regularization
scheme and can be used to confirm our approximate ratio.
As the second alternative regularization scheme we con-

sider the heat kernel method. In this way, the Rényi entropy
of the free massless scalar field theory for a spherical region
was also computed analytically in [79]. The effective action,
Wn ¼ − logZn, of the n-sheeted spacetime is

Wn ¼ −
1

2

Z
∞

ε2

ds
s
TrKðs; nÞ; ð5:46Þ

where the regularization is done by limiting the lower limit of
the integral. The heat kernel is defined as

Kðs; n; X; X0Þ ¼ nhXje−sDjX0in; ð5:47Þ

whereD is the field operator of the theory. The trace itself is

TrKðs; nÞ ¼ 1

ð4πsÞd=2
�
nV þ π

ð1 − n2Þ
3n

sAðΣÞ
�
: ð5:48Þ

With these, it can be seen that the ratio

CE

SEE
¼ 1 ð5:49Þ

for the leading terms, exactly, for all d. This is an obvious
disagreement with the previous result (5.45). We conclude
that at least for the free massless scalar field theory, the ratio
of the leading terms is scheme dependent.
While the universality fails for generic field theories, we

may restrict our consideration to conformal field theories.
An alternative regularization scheme valid for all Rényi
entropies of conformal field theories is provided by the
holographic computation technique used in [40,41] and
discussed above. We can test universality by the following
criterion. We separately expand the entanglement entropy
SEE and the heat capacity CE, and then compare one by one
the ratios of the leading terms and the ratios of subleading
terms at the same order in the expansion. If universality
holds, the ratios of respective terms in the expansions should
all be the same in all regularization schemes. Conversely, if
we compute in one regularization scheme the ratio of say,
the leading terms, and in a different regularization scheme the
ratio of subleading terms (at same order), and find a different
ratio in the two schemes, universality does not hold.We show
an example below.
Let us consider free massless fermions in d ¼ 3, a

conformal field theory. For the leading terms, we first
perform a numerical computation using similar methods
as above, specified in [77]. The numerical computation
leads to

CE

SEE
≈ 2.9; ð5:50Þ

which implies that the ratio of the leading terms is
approximately 2.9.
Next we consider subleading terms, and a different

regularization scheme. For d ¼ 3, the expansion of Rényi
entropies contains a universal constant term, related to
topological properties of the system. For entanglement
entropy, this is known as the F-term (or the negation of
it). The F-term has been shown to be equal to the constant
term in the free energy of the system restricted to a unit
sphere, S3. This has been computed for free massless
fermions in e.g., [80]. The corresponding term for the heat
capacity has been computed e.g., in [24]. The ratio of these
two terms is approximately 1.4, in disagreement with the ratio
of leading terms.
Therefore, we can conclude that at least for generic

conformal field theories, the ratio of coefficients in the
expansions of entanglement entropy and capacity of entan-
glement are not in general universal.14

Narrowing the set of theories further, we could consider
CFTswhich have agravity dual. In these cases, geometrymay
provide a natural regularization scheme. Indeed, in Secs. V B
and VD we saw that both the entanglement entropy and the

14There is an exception: the universal coefficients in the
expansions are scheme-independent, so there ratios should
also be.
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capacity of entanglement were proportional to the hyper-
bolic volume factor containing the divergences, leading
to a clean ratio of the two. Regarding the interesting
question which CFTs then have gravitational duals, we
are lead to speculate that perhaps such natural ratios in
CFTs are a hint of a dual gravitational interpretation.

G. On the shape dependence of the capacity
of entanglement

Much of the discussion has focused on spherical or
planar entangling surfaces. As a natural generalization, we
briefly comment on the shape dependence of the capacity
of entanglement.
For general shapes in d > 2 quantum field theories, the

coefficient of the leading divergent term of the Rényi
entropies is proportional to the area of the entangling
surface and non-universal. The subleading terms have more
variety and, in general, the expansion is different from the
spherical case. Much work has been carried out to under-
stand the shape dependence of entanglement Rényi entro-
pies, and some universal results are known.
A well-studied case is the 4-dimensional CFTs, for

which the universal log term can be expressed in terms
of integrals over the entangling surface Σ, [81]

Sunivα ¼ −
�
faðαÞ
2π

RΣ þ
fbðαÞ
2π

KΣ −
fcðαÞ
2π

CΣ

�
log

�
1

ϵ

�
;

ð5:51Þ

where

RΣ ¼
Z
Σ
d2y

ffiffiffi
h

p
RΣ; CΣ ¼

Z
Σ
d2y

ffiffiffi
h

p
Cab
ab;

KΣ ¼
Z
Σ
d2y

ffiffiffi
h

p �
trK2 −

1

2
ðtrKÞ2

�
: ð5:52Þ

Here y and h are the coordinates of the entangling surface
and the induced metric, respectively, and RΣ, K, and, Cab

ab,
the intrinsic Ricci scalar of Σ, the extrinsic curvature of Σ,
and the contraction of the Weyl tensor along coordinates
orthogonal to the entangling surface. The functions f
depend only on the physical data of the CFT and n. The
function fa can be computed by mapping the sphere to
hyperbolic spacetime. On the other hand, fc and fb can be
studied using deformations of spherical entangling surfaces
to first and second order, respectively [82]. In general, it is
known that fað1Þ ¼ a, fbð1Þ ¼ fcð1Þ ¼ c. The universal
log term of the entanglement entropy is thus

SunivEE ¼ −
c
2π

�
a
c
RΣ þKΣ − CΣ

�
log

�
1

ϵ

�
: ð5:53Þ

In comparison, the universal log term of the capacity of
entanglement for holographic theories is [82]

Cuniv
E ¼ 2

�
−

c
4π

RΣ þ
f0bð1Þ
2π

KΣ −
f0cð1Þ
2π

CΣ

�
log

�
1

ϵ

�
ð5:54Þ

¼ −
c
2π

�
RΣ þ

11

6
KΣ −

17

9
CΣ

�
log

�
1

ϵ

�
: ð5:55Þ

The ratio Cuniv
E =SunivEE thus depends on a, c and the geo-

metric quantities.
Similar expressions with integrals over local geometric

quantities for the universal terms should exist for other
even-dimensional CFTs [83]. For odd dimensions, this is
not possible for the universal constant term, making the
computation of the universal term more challenging.15

For spherical entangling surfaces of CFTs with gravity
duals, we saw that there was a natural choice of UV
regulation such that the entanglement entropy and the
capacity of entanglement were proportional to each other.
It would be interesting to see, whether deformed shapes
would also have similarly natural choices for UV regulation.

VI. THE CAPACITY OF ENTANGLEMENT
UNDER PERTURBATION WITH

RELEVANT OPERATORS

In previous sections we studied conformal field theories,
and in particular in 1þ 1 dimensions we found that the
leading terms of the first cumulants, the capacity of
entanglement hK2ic ¼ CE and the entanglement entropy
hKic ¼ SEE were equal. In this section we will study what
happens when the theory develops a mass gap or more
generally is deformed by relevant operators to break the
conformal invariance.
As a warm-up example, we study the anisotropic

Heisenberg XY model. We find that the relationship CE ¼
SEE is broken, when the parameters are moved away from
the critical domains, and the equivalent free fermion system
develops a mass gap. Wewill also study how the divergence
structure of the capacity of entanglement alters under
perturbing away from criticality. The first order perturba-
tion will contain a new universal log2 divergent term.

15For general dimensions, there has been interest in e.g., the
universal term of entanglement entropy by corners and conical
singularities [84–86] and small deformations [87]. Interestingly,
with the inclusion of conical singularities in the entanglement
surface, an additional log term emerges, modifying the form of
universal terms for all Rényi entropies [86]

Sunivα ¼
� ð−1Þd−12 aðdÞα ðΩÞ logðR=δÞ d odd
ð−1Þd−22 aðdÞα ðΩÞlog2ðR=δÞ d even

ð5:56Þ

where the positive aðdÞα depend on the opening angle, 0 ≤ Ω ≤ π.
These kinds of terms would then also appear in the capacity of
entanglement.
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After this concrete example, we will now perform a more
general analysis and study CFTs perturbed with relevant
operators. We will be considering two different entangling
surfaces, planar and spherical. The strategy that we use
follows the work [28,30].

A. The capacity of entanglement in the anisotropic
Heisenberg XY spin chain

The anisotropic Heisenberg XY spin chain is a nice
example of a system with a nontrivial phase structure. The
system can be mapped to noninteracting fermions, with
critical domains having a gapless spectrum, but elsewhere
the spectrum is gapped. Using analytical results by Korepin
et al. [33,47] on Rényi entropy in the anisotropic
Heisenberg spin chain, we compare SEE with the capacity
of entanglement. We find that at criticality CE ¼ SEE, but
moving away from the critical domains causes deviations
from this relation.
The Hamiltonian of the model is

H ¼ −
X∞
j¼−∞

½ð1þ γÞσxjσxjþ1 þ ð1 − γÞσyjσyjþ1 þ hσzj�; ð6:1Þ

where γ parametrizes anisotropy, and h is the external
magnetic field. The phase diagram of the model has three
regions:

1a∶ 4ð1 − γ2Þ < h2 < 4

1b∶ h2 < 4ð1 − γ2Þ
2∶ h > 2

with the critical lines γ ¼ 0, h ≤ 2 where it becomes
isotropic (the XX-model), and h ¼ hc ¼ 2 corresponding
to the critical value of the magnetic field. The line h ¼
hfðγÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
separating the regions 1a, b is not a

phase transition, but the entanglement entropy has a weak
singularity on it, and ground state is double degenerate with
a basis given by two product states.
Korepin et al. computed the entanglement and Rényi

entropies for a spin chain of N spins, considering the
system in its ground state, separating a subsystem A of L
spins, and considered the double scaling limit N, L → ∞
with L=N fixed. For the Rényi entropy (with the reduced
density matrix ρA and exponent α) they obtained

SRðρA; αÞ ¼
8<
:

1
6

α
1−α lnðkk0Þ − 1

3
1

1−α lnðθ2ð0;q
αÞθ4ð0;qαÞ

θ2
3
ð0;qαÞ Þ þ 1

3
ln 2; h > 2

1
6

α
1−α lnðk

0
k2Þ − 1

3
1

1−α lnð
θ2
3
ð0;qαÞ

θ2ð0;qαÞθ4ð0;qαÞÞ þ 1
3
ln 2; h < 2

ð6:2Þ

with the elliptic modulus parameter

k ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh=2Þ2 þ γ2 − 1

p
=γ ∶1affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − h2=4 − γ2Þ=ð1 − h2=4Þ
p

∶1b

γ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh=2Þ2 þ γ2 − 1

p
∶2

ð6:3Þ

and its complement k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
, and the nome

q ¼ e−πIðk0Þ=IðkÞ ≡ e−πτ0 ð6:4Þ

where IðkÞ is the complete elliptic integral of the first
kind. Either by taking the limit α ¼ 1, or computing
the first derivative of the generating function k̃ðαÞ≡
ð1 − αÞSRðρA; αÞ, the entanglement entropy becomes

SEEðρAÞ ¼

8>><
>>:

1
6

h
ln 4

kk0 þ ðk2 − k02Þ 2IðkÞIðk0Þπ


i
; h > 2

1
6

h
lnð4k2k0 Þ þ ð2 − k2Þ 2IðkÞIðk0Þπ


i
; h < 2.

ð6:5Þ

The result for h > 2 comes from an expression

SEEðρAÞ ¼
1

6
ln

4

kk0
þ 1

12
ln qþ 2 ln q

X∞
m¼0

ð2mþ 1Þq2mþ1

1þ q2mþ1
;

ð6:6Þ

where the latter series can be found from Abramowitz and
Stegun in closed form with the elliptic integrals [88] to
recover the result in the above. In region h > 2, the capacity
of entanglement, from the double derivative of the gen-
erating function, becomes

CEðρAÞ ¼ 2 ln q
X∞
m¼0

�ð2mþ 1Þq2mþ1

1þ q2mþ1

�
2

; ð6:7Þ

We have not identified the closed form for the infinite
series, but appears clear that in general the capacity of
entanglement differs from SEE. We can study this in more
detail near the critical phases, to find that at criticality CE ¼
SEE while they begin to deviate moving away from the
critical phase.
For γ ≠ 0, near the phase boundary at hc ¼ 2, for the

leading and next-to-leading order contributions we
obtain
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SEEðγ;hÞ¼
1

6
log

�
16γ2

jh−2j
�
þ
�
5− γ2−3 logð 16γ2jh−2jÞ

24γ2

�
ðh−2Þ

þOððh−2Þ2Þ ð6:8Þ

CEðγ; hÞ ¼
1

6
log

�
16γ2

jh− 2j
�

þ
�
2− γ2 − 6 logð 16γ2jh−2jÞ þ 3log2ð 16γ2jh−2jÞ

24γ2

�
ðh− 2Þ

þOððh− 2Þ2Þ; ð6:9Þ

where the expansion parameter is the inverse of the relevant
length scale ξ,

ξ−1 ¼ jh − 2j: ð6:10Þ

The leading term in the entanglement entropy matches with
the result for a conformal field theory with c ¼ 1=2,

SEE ¼ c
3
log ξ: ð6:11Þ

We can now investigate how the deviation from CE ¼ SEE
happens in the vicinity of the critical line. The difference of
the two, SEE − CE is depicted in the Fig. 5(a). In this region
SEE grows faster than the capacity of entanglement CE.
On the other hand, near the isotropic critical line γ ¼ 0,

for h < 2, we find

SEEðρAÞ ¼
1

6
log

�
4ð4 − h2Þ

γ2

�
þ
ð5þ 3 logð γ2

4ð4−h2ÞÞÞ
6ðh2 − 4Þ γ2

þOðγ4Þ ð6:12Þ

CEðρAÞ ¼
1

6
log

�
4ð4 − h2Þ

γ2

�

−
ð2þ 3log2ð γ2

16−4h2Þ þ 6 logð γ2

16−4h2ÞÞ
6ð4 − h2Þ γ2

þOðγ4Þ; ð6:13Þ
with the relevant inverse length scale

ξ−1 ¼ jγj; ð6:14Þ
so the leading term in SEE matcheswith the CFT result (6.11)
with c ¼ 1. Figure 5(b) depicts SEE − CE in this case. In
this region CE grows faster than SEE. The saddle seen in
Fig. 5 likely reflects the boundary hfðγÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
separating the phase regions 1a and 1b, but a full matching
would require a higher order calculation than (6.8). From the
approximate results it appears thatSEE is larger in thevicinity
of the hc ¼ 2 critical line, whileCE is larger in the vicinity of
the γ ¼ 0 critical line.

B. Field theories perturbed with relevant operators

Much of the initial discussion here has already appeared in
[29]. Let M be a d-dimensional Euclidean manifold.
Consider its ground state j0i and the corresponding density
matrix j0ih0j.Wepartition themanifold toV and V̄ and take a
trace of the density matrix over the d.o.f. in V̄, obtaining the
reduced density matrix inV, ρV . Inspired by the replica trick,
we consider a cut C and its both sides, Cþ and C−. The density
matrix ρ can be expressed as a path integral

½ρV �ϕ−ϕþ ¼ 1

N

Z
ϕðC−Þ¼ϕ−
ϕðCþÞ¼ϕþ

e−I½ϕ�: ð6:15Þ

Now, we let I be an action with a small perturbation by
operatorO, i.e., I½ϕ� ¼ I0½ϕ� − g

R
MO. Note that the action

FIG. 5. Samples of the difference SEE − CE near the critical line hc ¼ 2 (a) and near the critical line γ ¼ 0 (b).

DE BOER, JÄRVELÄ, and KESKI-VAKKURI PHYS. REV. D 99, 066012 (2019)

066012-24



governs the whole system, so the integral is over the whole
manifold M, not just V. In the limit of small g, we expand

½ρV �ϕ−ϕþ ¼ 1

N

Z
ϕðC−Þ¼ϕ−
ϕðCþÞ¼ϕþ

e−I0½ϕ�
�
1þ g

Z
M
O

þ g2

2

Z
M

Z
M

OOþ…

�
; ð6:16Þ

with

N ¼ N 0

�
1þ g

Z
M
hOi0 þ

g2

2

Z
M

Z
M
hOOi0 þ…

�
;

ð6:17Þ

where h� � �i0 is the vacuum expectation value in the
unperturbed theory. To first order,

½ρV �ϕ−ϕþ ≈
1

N 0

Z
ϕðC−Þ¼ϕ−
ϕðCþÞ¼ϕþ

e−I0½ϕ�
�
1þ g

Z
M
ðO − hOi0Þ

�

ð6:18Þ

¼
�
ρV;0 þ g

Z
M

TrV̄ρ0ðO − hOi0Þ
�
ϕ−ϕþ

; ð6:19Þ

where ρ0 and ρV;0 are the unperturbed vacuum density
matrices of the whole system and the subsystem, respec-
tively. The vacuum expectation value of O vanishes
whenever O is a pseudoprimary operator. We assume this
to be the case from now on. In addition, we focus on
operators with scaling dimension Δ > d

2
as the perturbative

expansion of CFTs fail whenever Δ ≤ d
2
[89].

To compute the Rényi entropies, we need

TrρnV ¼ TrρnV;0 þ ng
Z
M

Tr½ρn−1V;0 TrV̄ρ0O� þOðg2Þ:

ð6:20Þ

The first order correction to the entanglement entropy is
then

−g∂g∂nTrρnV jn¼1;g¼0 ¼ g
Z
M

Tr½KTrV̄ρ0O�; ð6:21Þ

and to the capacity of entanglement,

g∂g∂2
n log TrρnV jn¼1;g¼0 ¼ g

Z
M

Tr½ðK2 − 2KÞTrV̄ρ0O�

− 2Tr½K�Tr½KTrV̄ρ0O�: ð6:22Þ

In the case of a QFT with a planar entangling surface or a
CFT with a spherical entangling surface, K is known and
expressible as an integral of the energy-momentum tensor.

As a final remark, the last term in the perturbation of
variance can be ignored as its contributions will cancel with
the normalization constants of the former terms.

C. Planar entangling surface

We consider first a planar entangling surface Σ ¼ Rd−2,
at x1 ¼ 0, x0 ¼ 0. For any Cauchy surface A that ends at the
entangling surface, the modular Hamiltonian is16

K ¼ −2π
Z
A
dd−2ydx1nμTμνξ

ν; ð6:23Þ

where x0 and x1 are the coordinates transverse to the
entangling surface and y are the coordinates parallel to Σ.
In addition, ξ ¼ x1∂x0 − x0∂x1 is a Killing vector that keeps
the entangling surface invariant and n is the normal vector
to the Cauchy surface.
The usual choice for the Cauchy surface is to set x0 ¼ 0

which yields

K ¼ −2π
Z
Σ
dd−2y

Z
∞

0

dx1x1T00; ð6:24Þ

Due to the freedom in choosing the Cauchy surface, we can
also write K as

K ¼ 2π

Z
Σ
dd−2y

Z
0

−∞
dx1x1T00: ð6:25Þ

In addition, we can also rewrite the integral of the O
contribution in the hKOi term as [30]Z

Rd
ddxO → 2π

Z
Σ
dd−2y

Z
∞

0

dx1x1O: ð6:26Þ

1. Massive free scalar field theory in four
Euclidean dimensions

As in [28], we start with the free scalar field theory, with
a mass term as a relevant deformation: g ¼ − m2

2
and

OðxÞ ¼ ϕ2ðxÞ. The stress tensor of the massless theory is

T0
μν ¼ ∂μϕ∂νϕ −

1

2
δμνð∂ϕÞ2: ð6:27Þ

Using Wick contractions, we can compute the terms
appearing in the variation of variance. The two-point
functions of the scalar fields is

hϕðxÞϕðyÞi ¼ 1

ðd − 2ÞΩd−1

1

ðx − yÞd−2 : ð6:28Þ

We point the reader to the Appendices for computational
details.

16For the sign, we follow the conventions of [29].
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When computing the integrals, we will run into UVor IR
divergences. These emerge when integrating perpendicular
to the entangling surface. We will regulate these with ε and
1=m respectively. Summing all the contributions, we get

δCE ¼ gAΣ
ðd − 3Þπ3−d

2 Γðd
2
− 1Þ2

2d−1ðd − 2Þðd − 4ÞΓðdþ1
2
Þ ðδ

4−d −md−4Þ

ð6:29Þ

¼d¼4 − g
AΣ

12π
logðδmÞ ð6:30Þ

so in d ¼ 4 the first order correction to the capacity of
entanglement ΔS2EE is

δCE ¼d¼4 m2

24π
AΣ logðmδÞ: ð6:31Þ

In the above, AΣ is the area of the entangling surface.
Interestingly, the first order perturbation to entanglement

entropy has the form

δSEE ¼ gAΣ
π

3−d
2 Γðd

2
Þ2

2d−1ðd − 2Þðd − 4ÞΓðdþ1
2
Þ ðδ

4−d −md−4Þ

ð6:32Þ

¼d¼4 −
gAΣ

12π
logðmδÞ: ð6:33Þ

Thus, when d ¼ 4, the correction terms are equal for
entanglement entropy and the capacity of entanglement.

2. A general CFT

The computation for a general CFT is more involved. We
need the general forms of hTμνOi and hTμνTαβOi for any
CFT. Due to the tracelessness and sourcelessness of the
energy-momentum tensor, the two-point function automati-
cally vanishes for any CFT. Thus, the entanglement entropy
receives no correction at first order in the coupling g. This is
not the case for the capacity of entanglement. The compu-
tation requires some effort but is, nevertheless, straightfor-
ward. We leave the computational details to Appendices
and move on to the results.
We consider two special cases. In the following, a3 is a

multiplicative numerical factor appearing in the three point
function. In most cases, we do not know any physical
interpretation for it.
First, for Δ ¼ 2 and all d we get a logarithmic con-

tribution. In this case, the general first order correction to
the capacity of entanglement is

δCE ¼ ga3
4ðd − 2Þπdþ1 cosðπd

2
ÞΓð3 − dÞ logðδΛÞ

dðd − 2Þðd − 3Þ − 4
AΣ;

ð6:34Þ

whereΛ is an IR regulator and a3 is a numerical coefficient.
Interestingly, the result has an IR divergence only for even
d ≥ 4, in agreement with the breakdown of CFT perturba-
tions for Δ ≤ d

2
. For d ¼ 2, the correction vanishes. In fact,

hTμνTαβOi ¼ 0 at d ¼ 2, so just like SEE, CE receives no
corrections at leading order, for all Δ for which the
perturbative approach is valid.
Second, we consider the weight Δ ¼ d − 2 which

corresponds e.g., to a mass term in a scalar field theory.
The first order correction is

δCE ¼ ga3
32ðd − 3Þπdþ1

dðd − 2Þðd − 4Þ2Γðd − 1Þ ðΛ
d−4 − δ4−dÞAΣ:

ð6:35Þ

Once again, we see the emergence of the divergences near
d ¼ 4. However, the divergence for d ¼ 2 is not a real
divergence as the three-point function is zero. The expres-
sion vanishes when d ¼ 3.
The overall numerical factor a3, for a conformally coupled

scalar field theory with a mass perturbation g ¼ − m2

2
, has the

value

a3 ¼
d

2ðd − 1Þ2Ω3
d−1

¼ d½Γðd
2
Þ�3

16π
3d
2 ðd − 1Þ2 : ð6:36Þ

To summarize, in these special cases we find divergent
corrections δCE at leading order in g. The exceptions are
d ¼ 3, Δ ¼ 1 and d ¼ 2, Δ > 1, where δCE ¼ 0. In
particular the equality CE ¼ SEE receives no corrections
at leading order in g.

D. Spherical entangling surfaces of a CFT

There is a conformal mapping from the Rindler wedge to
the causal diamond of a ball. Hence, for a spherical
entangling surface of radius R in Euclidean spacetime,
the modular Hamiltonian for a CFT is

K ¼ −2π
Z
B0
nμTμνξ

ν; ð6:37Þ

where B0 is any Cauchy surface that ends at the spherical
entangling surface. Once again, n is the normal vector to
the Cauchy surface and ξ ¼ 1

2R ðR2 þ x20 − r2Þ∂0 þ x0r
R ∂r is

a conformal Killing vector that keeps the entangling surface
at x0 ¼ 0, r ¼ R invariant. With the simple choice B0 ¼ B,
the modular Hamiltonian is
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K ¼ −2π
Z
Bð0;RÞ

dd−1x
R2 − r2

2R
T00ð0; xÞ: ð6:38Þ

When computing the effects of the perturbation, only
the hKKOi term is found to be nonzero at first order.
We can recycle some of the computations done for the
planar entangling surface. We leave many of the details
to the Appendices. The correction to the capacity of
entanglement is

δCE ¼ g
Z
Rd

ddx3hKKOðx3Þi

¼ gð2πÞ2
Z
jx1j≤R

dd−1x1

Z
jx2j≤R

dd−1x2

×
Z
Rd

ddx3
ðR2 − r21ÞðR2 − r22Þ

4R2

× hTttð0; x1ÞTttð0; x2ÞOðx3Þi: ð6:39Þ

The integral over the x3 coordinates is essentially the same
as for the planar entangling surface done in (A 2).

After the integral over x3, we are left with

δCE ¼ ga3ð2πÞ2πd=2fðd;ΔÞ
Γðd−Δ

2
Þ2ΓðΔ − d

2
Þ

ΓðΔ
2
þ 2ÞΓðd − ΔÞ Id ð6:40Þ

where a3 is the numerical factor that already appeared in
the planar computations and f is a rational function and
its specific value for arbitrary d and Δ is seen in (A44). The
gamma functions capture the possible IR divergences for
Δ ≤ d=2 (where the perturbative approach breaks down
[89]). In addition, the relevant perturbations are for Δ ≤ d.
What remains is the computation of the integral Id,

Id ¼
Z
jx1j≤R

dd−1x1

Z
jx2j≤R

dd−1x2
ðR2 − r21ÞðR2 − r22Þ

4R2

×
1

ðx1 − x2ÞdþΔ : ð6:41Þ

Further details on evaluating this integral can be found in
Appendix B.
The perturbation has a universal logarithmic term when-

ever Δ is an even number. It is

δCðlogÞ
E ¼ −ga3fðd;ΔÞ

π
3d
2
−1
222−ΔΓð−Δ−1

2
ÞΓð2Δ − 1

2
ÞΓðd−Δ

2
Þ2ΓðΔ − d

2
ÞRd−Δ

Γðd−1
2
ÞΓðΔ

2
þ 2Þ2Γð2ΔÞΓðd − ΔÞΓð1

2
ðd − Δþ 4ÞÞ logðϵÞ: ð6:42Þ

As a specific example, consider d ¼ 4, then

δCðlogÞ
E;d¼4 ¼ ga3

2π11=2ΔðΔþ 2ÞR4−ΔΓðΔ − 3ÞΓð2Δ − 1
2
Þ

ð3ðΔ
2
− 4Þ Δ

2
þ 10ÞΓð2ΔÞΓðΔ

2
þ 2Þ2 logðϵÞ: ð6:43Þ

For other values of Δ, there is a universal constant term, which is

δCðconstÞ
E ¼ ga3

fðd;ΔÞ28−dπ3d
2
þ1Γð1 − Δ

2
ÞΓðΔ − d

2
ÞRd−Δ

ðΔ2 − 1Þðd − ΔÞðd − Δþ 2ÞΓðd−1
2
ÞΓðΔ

2
þ 2Þ2Γð1

2
ðd − Δþ 1ÞÞ : ð6:44Þ

Once again, we consider an example, d ¼ 4, for which

δCðconstÞ
E;d¼4 ¼ ga3

8π13=2ΔðΔþ 2ÞΓð1 − Δ
2
ÞΓðΔ − 2ÞR4−Δ

ð3ðΔ − 8ÞΔþ 40ÞΓð5
2
− Δ

2
ÞΓðΔ

2
þ 2Þ2 :

ð6:45Þ

To summarize, we have isolated explicit expressions for
universal perturbative corrections to CE in d ¼ 4. Similar
results can be obtained in other dimensions from (6.40).

VII. DISCUSSION AND OUTLOOK

In this paper we discussed several aspects of capacity of
entanglement CE, which encodes a particular feature of the

set of eigenvalues of a reduced density matrix. It can roughly
be thought of as the variance of the eigenvalue distribution,
and can be obtained in a straightforward way from the
(analytically continued) Rényi entropies. It may have inter-
esting divergences across quantum phase transitions (in
which case particular critical exponents may appear) but
we have not studied this particular aspect in this paper.
If the reduced density matrix is viewed as a thermal

density matrix, and we are allowed to change its “temper-
ature” by considering a suitable one-parameter flow [the
“modular flow” ρðθÞ ¼ ρ1þθ=Trðρ1þθÞ], then we can relate
capacity of entanglement to the ordinary heat capacity
defined with respect to this fiducial temperature. At the
same time this allows us to connect to various information
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theoretic quantities like fidelity susceptibility and Fisher
information. Unfortunately, in an actual generic physical
subsystem there is no natural operation corresponding to
this change in “temperature” and therefore these relations
remain somewhat academic.
While in general CE can by much larger than SEE, we

found several situations where CE is comparable to SEE.
First and foremost this happens in CFT’s with a holo-
graphic dual where both SEE and CE have an area law
divergence. In principle the coefficients that appear in this
divergence are scheme dependent in d > 2, but if the
reduced density matrix is that associated to a ball in the
ground state there is a fairly natural scheme in which SEE
is precisely equal to CE.
We have studied various setups in order to gain some

intuition for this approximate equality. First, following
earlier work, we related the capacity of entanglement to
fluctuations of Uð1Þ charges fluctuating in and out of the
subregion, communicating entanglement. In this context, if
the fluctuations are Gaussian distributed, or if the total
particle number N → ∞, we found that the capacity of
entanglement becomes equal to the entanglement entropy,
CE ¼ SEE.
In a second setup, which we expect to be closely related

to the previous one with fluctuation Uð1Þ charges, we
considered random bipartite entanglement and observed
that for randomly entangled pairs of qubits CE and SEE are
also approximately equal.
All this then suggests that the approximate equality of CE

and SEE implies that entanglement is effectively carried by
randomly entangled UV pairs of qubits and not by large
numbers of maximally entangled EPR pairs, as in the latter
case CE would be much smaller than SEE. This in particular
applies to the quasiparticle picture sometimes used to
describe entanglement growth after quenches: if CE is
proportional to SEE, the quasiparticles should be approx-
imately randomly entangled and not in maximally entangled
EPR pairs.
The area law for capacity of entanglement seems to

extend quite generally to an area law for Rényi entropies.
This is perhaps not that surprising, because a volume law
would disagree with the basic observation that the Rényi
entropy for a subregion equals that of the complement of
the subregion. In addition, such an area law is also in
agreement with the above picture of randomly entangled
UV pairs of qubits, and as we explained in Sec. V C, in
agreement with a local Rindler picture of the entangled
d.o.f. This is all self-consistent, as in Rindler space the
entanglement is thermally distributed and therefore also not
mostly carried by maximally entangled EPR pairs.
In AdS=CFT, CE has a relatively simply bulk interpre-

tation, given by metric fluctuations integrated over the
Ryu-Takayanagi surface. This relationship is strongly rem-
iniscent of the relation between response functions and
fluctuations in Landau-Ginzburg theories. It is not entirely

obvious where the equality CE ∼ SEE comes from in this
computation. One would expect a divergence to arise if
one or both points in the graviton propagator approach the
boundary of the Ryu-Takayanagi surface. If one point
approaches the boundary there is an area divergence from
the integral over that boundary point, but that gets reduced
by the graviton propagator which decays at long distances.
Therefore the divergence must come from the region of
integration where both points are close to the boundary.17

Some naive power counting suggests that this gives indeed
the right behavior, but it would be nice to examine this in
more detail and try to connect it to the previous discussion.
One of the motivations for this work was to study

quantum fluctuations in the metric at the RT surface and
to study the validity of the semiclassical approximation.
Since most of the contributions seem to come from the
region near the boundary, capacity as we have defined it is
perhaps not a very good probe of the size of bulk metric
fluctuations. A better probe would be to consider fluctua-
tions in manifestly finite quantities such as mutual infor-
mation and relative entropy. It is straightforward to find a
generalization of CE for the case of relative entropy.18 It is
given by

CEðρjσÞ ¼ Trðρðlog ρ − log σÞ2Þ − ðTrðρðlog ρ − log σÞÞÞ2
ð7:1Þ

and a candidate quantity that generalize CE to mutual
information is CEðρABjρA ⊗ ρBÞ. It would be interesting to
study these quantities in more detail but we leave that to
future work.
The equality of CE and SEE for (suitably regularized)

CFT’s with a holographic dual suggests that it may be
possible to extract a necessary criterion for the existence
of a holographic dual from consideration of capacity of
entanglement. This led us to study what happens when one
breaks conformal invariance and we found that the capacity
of entanglement of the entanglement entropy starts to
deviate from the entanglement entropy. As a demonstration,
we considered the anisotropic Heisenberg XY spin chain,
where the equality of CE and SEE holds at criticality but is
broken as the parameters move from the critical lines. We
also studied deformations of CFTs by relevant operators,
and found similar results. In that case, the analysis is

17This argument concerns the leading divergence. The equality
of CE and SEE in quenches (in 2d CFT) indicates that contri-
butions from deeper in the bulk (where the RT surface crosses the
collapsing shell) are also important.

18While this expression is fairly obvious as it stands, it can also
be obtained from various one-parameter generalizations of the
relative entropy called Rényi divergences [90–93] by differ-
entiating and setting the parameter equal to 1, similar to what we
did for capacity of entanglement. This connection may be helpful
in order to e.g., establish monotonicity properties of CEðρjσÞ. In
CFTs and their gravity duals, Rényi divergences were recently
studied in [94].
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complicated by various singularities whose precise under-
standing we leave to future work.
Finally, we notice that finding estimates of fluctuations

in the reduced density matrix as we dial external parameters
is also of great relevance in putting bounds on the accuracy
of local measurement. We intend to explore this connection
in more detail in the near future.
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APPENDIX A: COMPUTATIONAL DETAILS OF THE PERTURBATIVE COMPUTATIONS
WITH PLANAR ENTANGLING SURFACE

1. Mass deformation of a massless free scalar field theory

First, we need

hOðxÞT0
μνðzÞi ¼

2ðx − zÞμðx − zÞν − δμνðx − zÞ2
Ω2

d−1ðx − zÞ2d ; ðA1Þ

where Ωd−1 ¼ 2π
d
2

Γðd=2Þ is the surface area of the d − 1 sphere and

hOðxÞT0
μνðzÞT0

αβðz̄Þi ¼
2

Ω3
d−1

1

ðx − zÞdðx − z̄Þdðz − z̄Þd

×
�
ðx − zÞμðx − z̄Þα

�
δνβ − d

ðz − z̄Þβðz − z̄ÞνÞ
ðz − z̄Þ2

�
þ permutations of ðα; β; μ; νÞ

þ δαβδμν

�
ðx − zÞ · ðx − z̄Þ − d

ððx − z̄Þ · ðz − z̄ÞÞððx − zÞ · ðz − z̄ÞÞ
ðz − z̄Þ2

�

− δμν

�
ðx − z̄Þαðx − zÞβ − d

ðx − z̄Þαðz − z̄Þβ½ðx − zÞ · ðz − z̄Þ�
ðz − z̄Þ2 þ ðα ↔ βÞ

�

− δαβ

�
ðx − zÞμðx − z̄Þν − d

ðx − zÞμðz − z̄Þν½ðx − zÞ · ðz − z̄Þ�
ðz − z̄Þ2 þ ðμ ↔ νÞ

��
: ðA2Þ

When we put in α, β, μ, ν ¼ 0 and set the stress energy tensor at the same point in time, we get

hOðxÞT0
00ðzÞT0

00ðz̄Þi ¼
2

Ω3
d−1

1

ðx − zÞdðx − z̄Þdðz − z̄Þd
�
ðx − zÞ · ðx − z̄Þ − d

ðx − z̄Þ · ðz − z̄Þððx − zÞ · ðz − z̄ÞÞ
ðz − z̄Þ2

�
: ðA3Þ

We now compute the required integrals, following [28]. We begin with the two-point function as it is simpler. Using time
translation symmetry, we set the integral to the form

hOKi ¼ ð2πÞ2
Z
Σ
dd−2y

Z
Σ
dd−2ȳ

Z
∞

0

dx1

Z
0

−∞
dx̄1hOðxÞT00ðx̄Þi ðA4Þ

¼
Z
Σ
dd−2y

Z
Σ
dd−2ȳ

Z
∞

0

dx1

Z
0

−∞
dx̄1

−x1x̄1ð2πÞ2
Ω2

d−1ððx1 − x̄1Þ2 þ ðy − ȳÞ2Þd−1 : ðA5Þ

We first shift y → yþ ȳ and compute the integral over y and ȳ
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hOKi ¼ −ð2πÞ2Ωd−3
ffiffiffi
π

p
Γ½d

2
− 1�

2d−1Γ½d
2
− 1

2
�Ω2

d−1
AΣ

Z
∞

0

dx1

×
Z

∞

0

dx̄1
x1x̄1

ðx1 − x̄1Þd
ðA6Þ

¼ ð2πÞ2Ωd−3
ffiffiffi
π

p
Γ½d

2
− 1�

ðd2 − 3dþ 2Þ2d−1Γ½d
2
− 1

2
�Ω2

d−1

×AΣ

Z
∞

0

dx1
1

xd−31

: ðA7Þ

We compute the integral of x1 only from δ to m−1 to
regulate both the UVand IR divergences. We take the limit
d → 4, yielding

AΣ
π

3−d
2 Γðd

2
Þ2

2d−1ðd − 2Þðd − 4ÞΓðdþ1
2
Þ ðδ

4−d −md−4Þ

¼d→4 −AΣ

12π
logðmδÞ: ðA8Þ

This computation also gives the first order correction to
the entanglement entropy SEE. In d ¼ 4 the result is

δSEE ¼ m2

24π
AΣ logðmδÞ: ðA9Þ

For the capacity of entanglement we also need the three-
point function (A3),

hOKKi ¼ −ð2πÞ2
Z
Σ
dd−2y

Z
Σ
dd−2ȳ

Z
∞

0

dx1x1

×
Z

0

−∞
dx̄1x̄1

Z
ddzhOðzÞT00ðxÞT00ðx̄Þi

ðA10Þ

The Appendix in [28] provides us with a good guide through
the calculation. One identity that will prove useful is

Z
ddx3

1

xγ23x
β
13

¼ πd=2
Γðd−γ

2
ÞΓðd−β

2
ÞΓðβþγ−d

2
Þ

Γðγ=2ÞΓðβ=2ÞΓðd − βþγ
2
Þ x

d−β−γ
12 ;

ðA11Þ

where xij ¼ xi − xj.
We first compute

Z
Σ
dd−2y

Z
Σ
dd−2ȳ

Z
∞

0

dx1x1

Z
0

−∞
dx̄1x̄1

×
Z

ddz
ðx − zÞρðx̄ − zÞρ

ðx − zÞdðx̄ − zÞdðx − x̄Þd : ðA12Þ

We can write the integrand in the form

ðx − zÞρðx̄ − zÞρ
ðx − zÞdðx̄ − zÞdðx − x̄Þd

¼ 1

ðx − x̄Þd
∂ρ;x∂ρ

x̄

ðd − 2Þ2
�

1

ðz − xÞd−2ðz − x̄Þd−2
�
; ðA13Þ

which we can easily integrate over z to get

4πd=2

Γðd−2
2
Þðd − 2Þ2

1

ðx − x̄Þ2d−2 : ðA14Þ

The remaining integrals can be computed as before.
Thus, the contribution from the first term in (A3) sums
up to

2π1−
d
2Γðd

2
Þ3

ðd − 4Þðd − 2Þ2ΓðdÞAΣðδ4−d −md−4Þ ðA15Þ

¼d¼4 −
AΣ

12π
logðmδÞ: ðA16Þ

The contribution from the second term in (A3) is more
involved. We rewrite the integrand

ðz − x̄Þρðx − x̄Þρðz − xÞλðx − x̄Þλ
ðz − xÞdðz − x̄Þdðx − x̄Þdþ2

ðA17Þ

¼ ðx − x̄Þρðx − x̄Þλ
ðx − x̄Þdþ2

∂ρ;x∂λ;x̄

ðd − 2Þ2

×

�
1

ðz − x̄Þd−2ðz − xÞd−2
�
; ðA18Þ

which we integrate over z to get

−
2πd=2ðd − 3Þ
Γðd−2

2
Þðd − 2Þ2

1

ðx − x̄Þ2d−2 ; ðA19Þ

which we know how to integrate with respect to the two
other coordinates. The contribution from the second term
sums up to

ðd − 3Þdπ1−d
2Γðd

2
Þ3

ðd − 4Þðd − 2Þ2ΓðdÞAΣðδ4−d −md−4Þ ðA20Þ

¼d¼4 −
AΣ

6π
logðmδÞ: ðA21Þ

This gives the contribution of the three point function as

hKKOi ¼ ðd − 1Þπ1−d
2Γðd

2
Þ3

ðd2 − 6dþ 8ÞΓðdÞAΣðδ4−d −md−4Þ ðA22Þ

¼ −
AΣ

4
logðmδÞ: ðA23Þ
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Summing all the contributions we get

hKKOi − 2hKOi ¼ AΣ
ðd − 3Þðd − 2Þπ3

2
−d
2Γðd

2
− 1Þ2

2dþ1ðd − 4ÞΓðdþ1
2
Þ

× ðδ4−d −md−4Þ ðA24Þ

¼d¼4 −
AΣ

12π
logðδmÞ ðA25Þ

so in d ¼ 4 the first order correction to the capacity of
entanglement ΔS2EE is

δΔS2EE ¼d¼4 m2

24π
AΣ logðmδÞ: ðA26Þ

Thus, under the mass deformation the correction to the
capacity of entanglement grows as fast as the correction to
the entanglement entropy.

2. A general CFT

The three-point function does not vanish in general and
is quite complex [95]:

hTμνðx1ÞTαβðx2ÞOðx3Þi ¼
Iμν;λκðx13ÞIαβ;σρðx23ÞtλκσρðX12Þ

ðx12Þ2d−Δðx13ÞΔðx23ÞΔ
;

ðA27Þ

where

tλκσρ ¼ a1h1λκðX̂Þh1σρðX̂Þ þ a2h2λκσρðX̂Þ þ a3h3λκσρ;

ðA28Þ

h1αβðX̂Þ ¼ X̂αX̂β −
1

d
δαβ ðA29Þ

h2λκσρðX̂Þ ¼ X̂λX̂σδκρ þ ðλ ↔ κ; σ ↔ ρÞ ðA30Þ

−
4

d
X̂λX̂κδσρ −

4

d
X̂σX̂ρδλκ þ

4

d2
δαβδσρ; ðA31Þ

h3λκσρ ¼ δλσδκρ þ δλρδκσ −
2

d
δλκδσρ; ðA32Þ

Iμν;λκðxÞ ¼
1

2
ðIμλðxÞIνκðxÞ þ IμκðxÞIνλðxÞÞ −

1

d
δμνδλκ;

ðA33Þ

IαβðxÞ ¼ δαβ − 2
xαxβ
x2

; ðA34Þ

X̂μ ¼
Xμffiffiffiffiffiffi
X2

p ; ðA35Þ

X12 ¼ −X21 ¼
x13
x213

−
x23
x223

: ðA36Þ

The condition of conservation of momentum and energy
lead to two conditions for the coefficients a1, a2 and a3,

a1 þ 4a2 −
1

2
ðd − ΔÞðd − 1Þða1 þ 4a2Þ − dΔa2 ¼ 0

ðA37Þ
a1 þ 4a2 þ dðd − ΔÞa2 þ dð2d − ΔÞa3 ¼ 0: ðA38Þ

Thus, the three-point function is defined up to a multipli-
cative constant. Next, we use a few helpful relations [95]:

Iμαðx1 − x3ÞX12;α ¼ −
ðx1 − x2Þ2
ðx3 − x2Þ2

X23;μ;

Iμαðx2 − x3ÞX12;α ¼ −
ðx1 − x2Þ2
ðx1 − x3Þ2

X31;μ;

Iμαðx1 − x3ÞIανðx3 − x2Þ ¼ Iμνðx1 − x2Þ þ 2ðx1 − x2Þ2
× X23;μX31;ν: ðA39Þ

The a1 dependent term becomes (sans the factors of
jxi − xjj in the denominator)

h1μνðX̂23Þh1αβðX̂31Þ: ðA40Þ

The a2 dependent term becomes (the permutations produce
3 additional terms)

ðX̂23;μX̂31;αðIνβðx12Þ þ 2X̂23;βX̂31;νÞ þ ðμ ↔ ν; α ↔ βÞÞ

þ 4

d

�
δμνδαβ
d

− X̂23;μX̂23;νδαβ − X̂31;αX̂31;βδμν

�
: ðA41Þ

The a3 dependent term becomes

Iμαðx12ÞIνβðx12Þþ Iμβðx12ÞIναðx12Þþ8X̂13;αX̂13;βX̂23;αX̂23;β

þ2ðIμαðx12ÞX̂31;βX̂23;νþðμ↔ ν;α↔ βÞÞ−2

d
δμνδαβ:

ðA42Þ

The integrals can be computed in a similar manner as
before and are straightforward. In this paper, we are only
interested in the case where all spacetime indices are set to
0 and x1;0 ¼ x2;0.
After integrating over x3, we have the intermediate result

g
Z
Rd

ddx3hKKOðx3Þi

¼ −ga3ð2πÞ2
πd=2fðd;ΔÞΓðd−η

2
Þ2Γðη − d

2
Þ

Γðη
2
þ 2Þ2Γðd − ηÞ

×
Z

∞

0

dx1

Z
Σ
dd−2y

Z
0

−∞
dx̄1

Z
Σ
dd−2ȳ

x1x̄1
ðx − x̄ÞdþΔ

ðA43Þ
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where

fðd;ΔÞ¼ðd−2ÞðΔ−1ÞΔðΔþ1ÞðΔþ2Þðd−ΔÞðd−Δþ2Þ
8ððd−1ÞΔ2−2ðd−1ÞdΔþðd−2Þdðdþ1ÞÞ :

ðA44Þ

APPENDIX B: MORE DETAILED
COMPUTATIONS OF THE THREE-POINT
FUNCTION INTEGRAL WITH SPHERICAL

ENTANGLING SURFACE

In this Appendix, we try to give more details on the
computation of (6.41) for the values appearing in the text.
We make use of the Fourier transformation identity

1

xdþΔ ¼ Γð−Δ−1
2

Þ
2dþΔ ffiffiffi

π
p d−1ΓðdþΔ

2
Þ
Z

dd−1k
e−ik⃗·x⃗

k−Δ−1
ðB1Þ

to separate the two integrals over the balls. The integrals
over the angular coordinates of x1 and x2 contribute

Ωd−3

Z
π

0

dθ sind−3 θeikr cos θ

¼ Ωd−3
ffiffiffi
π

p �
2

kr

�d−3
2

Γ
�
d
2
− 1

�
Jd−3

2
ðkrÞ: ðB2Þ

After also integrating over the angular coordinates of k,
we have

Ω2
d−3Ωd−2

π
3−d
2 Γðd

2
− 1Þ2Γð−Δ−1

2
Þ

2Δþ5R2ΓðdþΔ
2
Þ

Z
∞

0

dk
Z

R

0

dr1

Z
R

0

dr2

×
ðR2 − r21ÞðR2 − r22ÞJd−3

2
ðkr1ÞJd−3

2
ðkr2Þ

k−Δ−2ðr1r2Þ1−d2

¼ Ω2
d−3Ωd−2

π
3−d
2 Γðd

2
− 1Þ2Γð−Δ−1

2
Þ

2Δþ3RΔ−dΓðdþΔ
2
Þ

Z
∞

0

dk
ðJdþ1

2
ðkÞÞ2

kΔþ2
;

where we have removed the R dependence from the
integral. We can compute the remaining integral explicitly,

Id;Δ ¼
Z

∞

0

dk
ðJdþ1

2
ðkÞÞ2

kΔþ2
¼ πd−

3
223−ΔΓð1−Δ

2
ÞRd−Δ

ðΔ2−1ÞΓðd−1
2
ÞΓð1

2
ðd−Δþ4ÞÞ

ðB3Þ

It is still divergent for even values of Δ but is now finite for
odd values of Δ. The divergences with evenΔ emerge from
the UV limit k → ∞, which we will regulate with k → 1

ϵ.
The logarithmically divergent term is

IðlogÞd;evenΔ ¼ −
πd−

5
22−ΔΓð− Δ

2
− 1

2
ÞΓð2Δ − 1

2
ÞRd−Δ

Γðd−1
2
ÞΓð2ΔÞΓð1

2
ðd − Δþ 4ÞÞ logðϵÞ:

ðB4Þ
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