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Abstract. In order to accommodate the QCD axion as the dark matter (DM) in a model
in which the Peccei-Quinn (PQ) symmetry is broken before the end of inflation, a relatively
low scale of inflation has to be invoked in order to avoid bounds from DM isocurvature
fluctuations, H∗ . O(109) GeV. We construct a simple model in which the Standard Model
Higgs field is non-minimally coupled to Palatini gravity and acts as the inflaton, leading to a
scale of inflation H∗ ∼ 108 GeV. When the energy scale at which the PQ symmetry breaks is
much larger than the scale of inflation, we find that in this scenario the required axion mass
for which the axion constitutes all DM is m0 . 0.05µeV for a quartic Higgs self-coupling
λφ = 0.1, which correspond to the PQ breaking scale vσ & 1014 GeV and tensor-to-scalar
ratio r ∼ 10−12. Future experiments sensitive to the relevant QCD axion mass scale can
therefore shed light on the physics of the Universe before the end of inflation.
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1 Introduction

The “invisible” QCD axion [1, 2] is a light Goldstone boson arising upon the spontaneous
breaking of a new global U(1) symmetry, within the solution to the “strong CP problem”
proposed by Peccei and Quinn (PQ) [3, 4]. In addition, the QCD axion also serves as a
well-motivated cold dark matter (CDM) candidate within a specific mass range [5–7]; for
a review, see Ref. [8]. The level of precision reached in the assessment of the mass of the
QCD axion and its dependence on the temperature of the QCD plasma from basic principles
is quickly progressing, advancing in both extracting the QCD susceptibility from lattice
computations [9–12] as well as in simulations of the string-wall network [13–19].

The properties of the axion field and its evolution throughout the cosmological history
of the Universe strongly depend on the relative energy scales associated with the breaking
of the PQ symmetry, vσ, and the Hubble rate at the end of inflation, H∗. In scenarios in
which the scale of the PQ symmetry breaking is so high that the axion is a spectator field,
i.e. a field which remains energetically subdominant during inflation without taking part in
causing the exponential expansion, and its energy density originates from its fluctuations
during inflation, H∗ � vσ, the non-observation of primordial CDM density isocurvature
by the Planck collaboration [20–22] places strong constraints on model building, since the
axion can be the dark matter particle only in models in which the energy scale of inflation
is relatively low, H∗ . O(109) GeV [23–30]. Recently suggested solutions include scenarios
with a very low scale of inflation, even with H∗ . 1 GeV [31–33].

Light QCD axions that spectate inflation have recently received attention both from the
theory perspective [23–27, 29, 30, 34] and from the perspective of detection in proposed and
ongoing experiments [35]. In such a scenario, topological defects are washed out by inflation,
and considerable additional effort to assess inhomogeneities like axion strings [16, 36, 37] or
axion miniclusters [38–42] is not required. However, the challenge in this scenario relies on
building a consistent theory of inflation that leads to a low enough scale of inflation, so that
the axion can constitute all dark matter and simultaneously avoid the current bounds from
the non-detection of dark matter isocurvature fluctuations. Other non-QCD axions that have
been extensively considered in the literature as fields spectating inflation are the “ultra-light”
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axion particles which arise from string compactification, forming the so-called “axiverse” [43–
53], and which can possibly be detectable when invoking axion electrodynamics. The opposite
regime in which inflation occurs at a scale much higher than the energy at which the spon-
taneous breaking of the PQ symmetry occurs, H∗ � vσ, has also received attention recently,
with refined cosmological simulations set in the standard cosmological scenario yielding a
narrow range in which the QCD axion would be the CDM particle [18, 19, 36].

In this work, we construct a simple mechanism to realise inflation with the Standard
Model (SM) Higgs. In this scenario, the scale of inflation can be as low as H∗ ∼ 108 GeV
which is intermediate between what is usually obtained in single-field inflation models, H∗ &
1013 GeV, and what has been considered recently for axion models within a very low energy
scale of inflation H∗ ∼ 1 GeV [31, 32]. We thus consider the first of the two scenarios depicted
above for which H∗ � vσ and the QCD axion is a spectator field during inflation.

In this scenario, the Higgs field φ couples non-minimally to gravity via a term ξφ φ
†φR

in the Lagrangian, where R is the Ricci scalar and ξφ is a dimensionless coupling constant.
Such a setup is well-motivated, as non-minimal couplings between scalar fields and gravity
are generated by quantum corrections in a curved background even if they are initially set to
vanish at some scale [54]. As a result, the Higgs potential in the Einstein frame develops a
plateau suitable for slow-roll inflation. The predictions of the model are in perfect agreement
with the current observational data from the Planck mission [20–22], and the model has also
been invoked in unified frameworks like the SMASH model [55]. However, the original Higgs
inflation model [56] predicts a scale of inflation H∗ & 1013 GeV which, due to the bound on
CDM isocurvature perturbations, does not allow the axion to constitute all of the observed
CDM [23–26].

Instead, in this paper our approach is based on the so-called Palatini version of Higgs
inflation [57] where, on top of the space-time metric, the connection is also assumed to
be an a priori free variable. In the usual “metric” formulation of gravity, the space-time
connection is determined by the metric only, i.e. it is the usual Levi-Civita connection.
Instead, in the Palatini formalism both the metric gµν and the connection Γ are treated as
independent variables, so that the Ricci scalar depends on both of them via R ≡ gµνRµν(Γ),
where the Ricci tensor is constructed from the Riemann tensor in the usual way. In the
Palatini counterpart of Higgs inflation the scale of inflation can be as low as H∗ ∼ 108 GeV
(see Ref. [58]), allowing for the axion to successfully constitute all CDM without violating
the CDM isocurvature bound. At the same time, the model predicts spectral features of
temperature fluctuations in the Cosmic Microwave Background radiation (CMB) which are
in perfect agreement with the data, as well as the preferred region for the axion to be the
dark matter particle within the reach of upcoming detectors.

The paper is organised as follows. In Sec. 2, we present the Lagrangian for the model and
we revise how the Higgs can drive inflation when coupled non-minimally to gravity, whereas
Sec. 3 is dedicated for revising the isocurvature bounds on the axion field fluctuations. In
Sec. 4 we present our main results for observables and provide further discussion. Finally,
we draw our conclusions in Sec. 5.
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2 Description of the model

2.1 Decomposing the action

In the so-called Jordan frame, the relevant part of the action describing the model is

SJ =

∫
d4x
√
−g
(
−1

2

(
M2
P + F (Φ)

)
gµνRµν(Γ) +

1

2
δIJg

µν∂µΦI∂νΦJ − V (Φ)

)
, (2.1)

where MP is the reduced Planck mass, g = det(gµν), and Γ is an a priori free connection
appearing in the Ricci tensor Rµν . For simplicity, we assume that the connection is torsion-
free, Γλαβ = Γλβα. Throughout this paper, the particle physics sign convention (+,−,−,−) is
used, and we have indicated the space-time indices with Greek letters (µ, ν) and the field-
space indices with capital letters (I, J), for both of which the Einstein summation convention
is understood. We assume two complex scalar fields as the Higgs φ and the Peccei-Quinn σ
fields, so that Φ1 = φ and Φ2 = σ. We denote the scalar potential with V (Φ), while F (Φ) is
a function that represents the non-minimal coupling between the φ and σ fields and gravity
and which will be specified below.

Within General Relativity (GR), the constraints imposed on the connection Γ demand
it to be the Levi-Civita connection, and hence renders the metric and the Palatini formalisms
equivalent. However, when one considers non-minimally coupled matter fields or otherwise
enlarged gravity sector, this is generally not the case [59], and one has to make a choice
of the underlying degrees of freedom in order to describe gravity. Currently, there are no
reasons to favour one of the two formulations over the other one, and as we will see, allowing
the connection to be independent of the metric does not amount to adding new degrees of
freedom to the theory. However, the choice affects the field dynamics during inflation and
hence also the predictions of the given model. This was originally noted in Ref. [57] and has
recently gained increasing attention [58, 60–81] (see also Refs. [82–86]). When the Higgs field
relaxes to its electroweak vacuum after inflation, the usual Einstein-Hilbert gravity of GR
is retained regardless of the choice of formalism, i.e. metric or Palatini. Therefore, in our
context gravity is modified only at early times by the presence of the non-minimal coupling
between the Higgs field and gravity, just like in the original Higgs inflation model [56].

To ease the comparison with the original Higgs inflation [56] and the SMASH model [55],
we present the derivation of inflationary dynamics and the related observables in both metric
and Palatini cases. In both cases, the non-minimal coupling in the Jordan frame action (2.1)
can be removed by a Weyl transformation

gµν → Ω2(Φ)gµν , Ω2(Φ) ≡ 1 +
F (Φ)

M2
P

, (2.2)

which allows us to express the action for the Higgs field in the Einstein frame, in which the
non-minimal coupling to gravity vanishes, as

SE =

∫
d4x
√
−g
(
−1

2
M2
P R+

1

2
GIJ(Φ)gµν∂µΦI∂νΦJ − V (Φ)

Ω4(Φ)

)
, (2.3)

where we have introduced the Ricci scalar R = gµνRµν(Γ). In the Einstein frame, the scalars
have acquired a non-trivial field-space metric given by

GIJ(Φ) =
δIJ

Ω2(Φ)
+

3κ

2
M2
P

∂ ln Ω2(Φ)

∂ΦI

∂ ln Ω2(Φ)

∂ΦJ
, (2.4)
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where κ = 1 in the metric case and κ = 0 in the Palatini case. Since the connection now
appears only in the Einstein-Hilbert term, in the Einstein frame we have Γ = Γ̄, i.e. we retain
the Levi-Civita connection

Γ̄λαβ =
1

2
gλρ(∂αgβρ + ∂βgρα − ∂ρgαβ) , (2.5)

which associates the metric uniquely with the connection. Therefore, with the conformal
transformation we have transferred the dependence on the choice of gravitational degrees of
freedom from the connection in the Jordan frame to the field-space metric in the Einstein
frame.

2.2 Higgs inflation and the QCD axion

We expand the PQ field about the minimum vσ,

σ(x) =
1√
2

(ρ(x) + vσ) e−iA(x)/vσ , (2.6)

where ρ and A are respectively the radial and angular modes, the latter being identified with
the axion which is the Nambu-Goldsone boson of the theory. In the following, we parametrise
the axion angle in terms of the axion field as θ(x) ≡ A(x)/vσ. However, as the axion field
moves along a flat direction during inflation, in this section we neglect it, and instead focus
on the radial mode ρ only. The Higgs field values during inflation are much larger than the
vacuum expectation value v ≈ 246 GeV, so that φ† ' (0, h(x)) /

√
2, in terms of the Higgs

field h� v. The Weyl factor is then

Ω2(Φ) = 1 +
F (Φ)

M2
P

= 1 +
ξφh

2 + ξσ(2σ∗σ − v2σ)

M2
P

, (2.7)

where ξφ and ξσ represent the dimensionless non-minimal coupling parameters of the φ and
σ fields with gravity. The change in the kinetic terms can be reabsorbed by redefining the
Higgs field and the radial mode of the PQ field in terms of two fields χ and ψ, defined
through [58, 76]

dχ

dh
=

√
1

Ω2(h, ρ)
+

6κ ξ2φ
Ω4(h, ρ)

h2

M2
P

, (2.8)

dψ

dρ
=

√
1

Ω2(h, ρ)
+

6κ ξ2σ
Ω4(h, ρ)

v2σ
M2
P

, (2.9)

which apply to first order in fluctuations. In this new parametrisation, the Einstein action
in Eq. (2.3) reads

SE =

∫
d4x
√
−g
[
−
M2
P

2
R+

1

2
gµν (∂µχ∂νχ+ ∂µψ∂νψ +Kmix∂µχ∂νψ)− V (χ, ψ)

Ω4(χ, ψ)

]
,

(2.10)
where the scalar potential is expressed explicitly in terms of the new fields χ(h) and ψ(ρ),
and we have introduced the kinetic mixing term

Kmix =
6κ ξφξσ

Ω4

hvσ
M2
P

dh

dχ

dρ

dψ
=

(
1 +

ξφ
6

(
h

ξσvσ

)2
)−1/2

, (2.11)
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where the latter equality has been derived using Eqs. (2.7)–(2.9). We are interested in
expressing the results in terms of Higgs inflation, for which we consider the flat direction
of the potential along which the inflaton is mostly the Higgs, ξφh

2 � 6ξ2σv
2
σ and ρ ∼ 0.

Therefore, we neglect the contribution from the kinetic mixing term. For a more exhaustive
discussion on the topic, see Appendix A in Ref. [58].

The solution for the redefined Higgs field given in Eq. (2.8) is then [57, 62, 87]

√
ξφ

χ

MP
=
√

1 + 6κξφ arcsinh
(√

1 + 6κξφ u
)
− κ
√

6ξφ arcsinh

( √
6ξφu√

1 + u2

)
, (2.12)

where u ≡
√
ξφh/MP . Along this direction, we can treat the dynamics of the Higgs and the

PQ field separately, once we have assumed that there is no coupling between the Higgs and
the PQ fields in the scalar potential, in contrast to what has been considered in the SMASH
model [55]. We integrate out the radial modes of the PQ field, so that the part of the action
in Eq. (2.3) that describes the Higgs field reads

SE,χ =

∫
d4x
√
−g
(
−
M2
P

2
R+

1

2
gµν ∂µχ∂νχ− U(χ)

)
, (2.13)

where we have defined the Higgs potential

U(χ) =
λφ

4Ω4
h4(χ). (2.14)

Thus, under the conditions presented above, we retain the inflation model studied previously
in Refs. [57, 62, 76]. We reiterate that when χ→ 0, the usual Einstein-Hilbert gravity of GR
is retained regardless of the choice of formalism (metric or Palatini), so gravity is modified
only at early times by the presence of the non-minimal coupling. The canonically normalised
field can be expressed as (see e.g. Ref. [76])

h(χ) '


MP√
ξφ

exp

(√
1

6

χ

MP

)
, metric ,

MP√
ξφ

sinh

(√
ξφχ

MP

)
, Palatini ,

(2.15)

and hence the large field Einstein frame potential reads

U(χ) =
λφ

4Ω4
h4(χ) '


λφM

4
P

4ξ2φ

[
1 + exp

(
−
√

2

3

χ

MP

)]−2
, metric ,

λφM
4
P

4ξ2φ
tanh4

(√
ξφ

χ

MP

)
, Palatini ,

(2.16)

where the expressions in the metric case apply for ξφ � 1 and χ �
√

3/2MP , whereas the
expressions in the Palatini case are exact. In Fig. 1 we show the potential for the Higgs field
as a function of the field excursion χ/MP , in the metric case (blue dashed curve) and in the
Palatini case (red solid curve). We have expressed the potential in units of λφM

4
P /(4ξ

2
φ) and

fixed ξφ = 109, consistently with the findings obtained in previous studies [57, 62, 76]. In
the metric scenario, we have plotted the exact result for the quartic potential in Eq. (2.14)
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Figure 1. The Higgs potential U(χ) given in Eq. (2.14) in units of λφM
4
P /(4ξ

2
φ), as a function of the

field excursion χ/MP . Blue dashed curve: metric case. Red solid curve: Palatini case. Here we have
fixed the non-minimal coupling ξφ = 109 for both cases.

with the field configuration from the solution (2.12), so that the plot for the blue curve is
valid also in the region χ �

√
3/2MP . In both scenarios, the potential tends to a constant

exponentially fast and is therefore suitable for slow-roll inflation. For the metric case, the
field excursion is of the order of the Planck scale, while in the Palatini case we obtain
χ ≈MP /

√
ξφ �MP .

The inflationary dynamics is characterised by the slow-roll parameters

ε ≡
M2
P

2

(
U ′

U

)2

, (2.17)

η ≡ M2
P

U ′′

U
, (2.18)

where a prime denotes differentiation with respect to χ. For future convenience, we also
introduce the total number of e-folds which parametrises the stretching of the scale factor
during the inflationary period as

Ne ≡
1

M2
P

∫ χi

χf

dχU

(
dU

dχ

)−1
. (2.19)

Since inflation lasts as long as the slow-roll conditions ε � 1 and |η| � 1 are satisfied, we
define the value of the field χf at the end of inflation through the condition ε(χf ) = 1. The
field value χi is determined by a given Ne.

Before discussing observational consequences of the scenario, we make two remarks on
the internal consistency of our results. First, all our considerations are based on a tree-level
analysis. The computation of radiative corrections in non-minimally coupled theories is a
subtle issue due to their intrinsic non-renormalizability and any sensible computation within
the chosen framework requires the inclusion of an infinite number of higher-dimensional
operators, which can be either associated to new physics or generated by the theory itself
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via radiative corrections [88] (see Ref. [89] for a review), and which are therefore beyond
the scope of this paper. Second, while concerns have been raised about the metric version of
Higgs inflation suffering from violation of perturbative unitarity at scales relevant for inflation
[90–95], in the Palatini case this is not a problem [60].

3 Axion dark matter

3.1 Present axion abundance

The distortion in the axion field due to the Weyl transformation has little influence on the
dynamics of the radial component of the PQ field, which sits at the bottom of the PQ
potential. On the other hand, the angular mode of the PQ field, the axion appearing in
Eq. (2.6), evolves along the flat direction associated with the massless Nambu-Goldstone
scalar field during inflation if the PQ symmetry is spontaneously broken during inflation.
The part of the action in Eq. (2.3) that describes the axion field only contains a kinetic
term and thus describes a massless Nambu-Goldstone boson. However, an effective axion
potential VQCD(θ, T ) that depends on both the axion field configuration θ and temperature
of the plasma T arises due to the interaction of the PQ field with the QCD instantons around
the QCD phase transition [96]. The action describing the QCD axion is

SE,θ =

∫
d4x
√
−g

[
v2σ
2
gµν∂µθ∂νθ − VQCD(θ, T )

]
, (3.1)

once we have neglected the interaction with the radial mode, which is a safe procedure
when vσ � H∗ and topological defects are not taken into account [97]. The QCD potential
grants a small mass to the axion which originates from non-perturbative effects during the
QCD phase transition from mixing with the neutral pion [1] as m0 = Λ2/fA, with the
theoretical expectation for the energy scale Λ = 75.5 MeV and where the axion decay constant
is fA = vσ. At higher temperature, the QCD instantons lead to an effective temperature-
dependent potential mA(T ), so that at zero temperature of the plasma we have m0 ≡ mA(T =
0). The values of the axion mass, self coupling and the effective potential VQCD(θ, T = 0)
have been computed at the next-to-leading order [98–101] starting from the QCD chiral
Lagrangian [102–104]. The temperature dependence of the axion potential has also been
assessed through lattice computations [9–12, 97, 105].

We use these ingredients to compute the present abundance of non-relativistic axions
which originated during an inflationary period. Computing the value of the present ax-
ion energy density is a standard procedure [5–7], which usually assumes the conservation
of the number of axions in a comoving volume from the onset of coherent field oscillations
until present time. For this, we solve numerically for the axion field evolving in an expand-
ing Friedmann-Robertson-Walker metric under the influence of the QCD axion potential
VQCD(θ, T ) and taking into account the change of the relativistic and entropy degrees of
freedom with temperature. For the temperature dependence of the axion potential, we have
used the results in Ref. [11]. The exact numerical computation can be approximated within
a factor of order two by the analytic estimate, leading to the present axion energy density

ρA(θi) ≈
3Hosc

2
m0 v

2
σ

(
aosc
a0

)3

〈θ2i 〉 , (3.2)

where the angle brackets denote spatial average. Here, the subscript “osc” refers to the
moment when the QCD axion field starts to oscillate, so that the numerical result is well
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approximated by computing the temperature Tosc by setting mA(Tosc) ≈ 3H(Tosc). In order
to compute the value of H(Tosc), the temperature-dependence of the axion mass [96, 106],
the particle content of the underlying theory [107–109], and the underlying cosmology [27,
30, 37, 42] play a role. Assuming that around temperature Tosc the evolution of the Universe
is described by the standard cosmological model and that the mass of the QCD axion scales
as mA(T ) ∝ T−4, we obtain the present axion abundance as [27]

ΩAh
2 = 0.754 b

(
m0

µeV

)−7/6
〈θ2i 〉 , (3.3)

where b is a factor of order one [110] that captures the uncertainties coming from the ap-
proximation in computing Tosc instead of using the numerical solution. Our full numerical
computation takes into account the anharmonic terms that are present in the axion potential
and modify the prediction of the present abundance [26, 110–114]. We can parametrise this
effect in the approximation in Eq. (3.2) by writing the average over the initial axion angle θi
as

〈θ2i 〉 ≡ F (θi) θ
2
i , (3.4)

in terms of an anharmonic function F (θi). However, in presenting the numerical solution we
do not make use of the function F (θi), which is shown here just for illustrative purposes.

3.2 Axion isocurvature fluctuations

Non-relativistic light bosons with masses m� H∗ that spectate inflation inherit primordial
quantum fluctuations with an amplitude which is related to the energy scale of inflation H∗
and a nearly scale-invariant power spectrum described by

k3

2π2
〈|δA2(k)|〉 =

(
H∗
2π

)2

. (3.5)

For fields with m ∼ H∗ the spectrum can have a non-trivial scale dependence; see Refs.
[31, 32] in the context of axions and Refs. [115, 116] for a more general case. The primordial
quantum fluctuations of the axion field later develop into isocurvature perturbations between
axion dark matter and radiation [117–119], whose gauge-invariant definition is given by (see
e.g. Ref. [120])

SA =
3

4

δργ
ργ
− δρA

ρA
, (3.6)

when both fluids satisfy their continuity equations ρ̇i = 3H(1 + wi)ρi, where the overdot
denotes derivative with respect to cosmic time, wi ≡ pi/ρi is the effective equation of state
parameter, and pi is the pressure of fluid i = γ,A. Here the perturbations of each fluid
component are defined at point x as δρi(x) ≡ ρi(x)− 〈ρi〉. The axion density perturbations
constitute an isocurvature mode because they are independent of the adiabatic perturbations
seeded by the quantum fluctuations of the inflaton [121], and therefore totally uncorrelated
with them. As the axions remain thermally decoupled from the rest of matter, the primordial
isocurvature will not be washed away and can have observational consequences for the CMB
and large scale structure formation.

In this framework, the standard deviation of the axion field in units of the decay constant
is σθ = H∗/2πvσ. In the following, we assume that there are no couplings between the axion
and the inflaton field other than gravity. Other scenarios have been discussed in Ref. [55] in
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relation to axion isocurvature fluctuations. Isocurvature fluctuations can also be suppressed
by coupling the axion to a hidden sector [122], which we do not take into consideration here.

Assuming that axions constitute most of the observed CDM abundance ρCDM
1, the

power spectrum of axion isocurvature fluctuations is [24, 127, 128]

〈|SA|2〉 =

(
∂ ln ρA
∂θi

)2( ρA
ρCDM

)2

σ2θ =

(
ρA
ρCDM

)2 ( H∗
πvσ θi

)2

F(θi) , (3.7)

F(θi) =

(
1 +

θi
2

d

dθi
lnF (θi)

)2

, (3.8)

where the function F(θi) is associated to the anharmonicity function F (θi) introduced in
Eq. (3.4). In our work, axion isocurvature fluctuations are evaluated using the first equality
in Eq. (3.7), using a numerical scheme to compute the derivative with respect to θi of the
energy density. The latter equality is given for completeness to show the prediction of the
analytic estimate, as we have pictured for the energy density by expressing the result in
Eq. (3.2).

4 Connection to observables

Inflationary models generically predict the appearance of primordial scalar and tensor fluc-
tuations, which redshift to super-horizon scales to later evolve into primordial perturbations
in the density field as well as primordial gravitational waves, leaving an imprint in the CMB
anisotropy and on the large-scale structure [129–134]. The spectrum of the adiabatic scalar
perturbations generated during inflation is expressed by a power spectrum of primordial
curvature perturbations ∆2

R(k) defined by [135–137]

∆2
R(k) ≡ k3 PR(k)

2π2
= ∆2

R(k0)

(
k

k0

)nS−1
, (4.1)

where ∆2
R(k0) ∼ 2.2×10−9 is the amplitude of the primordial scalar power spectrum [20, 21]

and k0 is a typical scale at which the features of the spectrum are measured. We will take
k0 = 0.002 Mpc−1 in the following. The scalar spectral index nS parametrises the mild
dependence of the power spectrum on the co-moving wavenumber k. Single-field slow-roll
inflation predicts that the scalar spectral index slightly deviates from the scale-invariant
result nS = 1, by a quantity that to the leading order depends on the slow-roll parameters
as (see e.g. Ref. [138])

nS − 1 ≈ −6ε+ 2η . (4.2)

In complete analogy, a power spectrum of tensor modes ∆2
T (k) is expected to be generated,

which is observationally constrained by the tensor-to-scalar ratio at k0,

r ≡
∆2
T (k0)

∆2
R(k0)

= 16ε. (4.3)

The last expression in Eq. (4.3) is valid for single-field slow-roll inflation, so that along with
Eq. (4.2), the two observables nS and r at the pivot scale k0 are completely determined by

1The result in Eq. (3.7) gets modified in scenarios with mixed WIMP-axion dark matter [123–126].
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the expressions for the slow-roll parameters Eqs. (2.17) and (2.18). Measurements of the
CMB temperature and polarisation anisotropies from the Planck satellite augmented by the
BICEP2/Keck Array (BK14) results set nS = 0.9653± 0.0041 (Planck TT, TE, EE + lowE
+ lensing + BK14 dataset combination at 68% confidence level (CL) [20–22, 139–143]), with
small deviations of O(0.001) when independent data (such as Baryon Acoustic Oscillation
distance measurements) are also included, or when different assumptions are made concerning
the mass spectrum of massive neutrinos [144]. The same analysis of the dataset TT, TE,
EE + lowE + lensing + BK14 reports r < 0.064 at the 95% CL [20–22], measured at the
quadrupole with k0 = 0.002 Mpc−1. In single-field slow-roll inflation, the Hubble expansion
rate at the end of inflation H∗ is directly related to the measurements on the scalar power
spectrum and the tensor-to-scalar ratio at the pivot scale k0 as [145–147]

∆2
R(k0) =

1

2ε

(
〈δφ〉
MP

)2

=
2

π2 r

(
H∗
MP

)2

, (4.4)

where 〈δφ〉 = H∗/2π describes the spectrum of fluctuations in the inflaton field and in the last
expression we have used the relation r = 16ε which is valid for single-field slow-roll inflation.
Since for Palatini inflation the field excursion is smaller by a factor 105 with respect to the
metric inflation, see Fig. 1, in order to match the measured scalar power spectrum the first
equality in Eq. (4.4) requires a slow-roll parameter ε which is 1010 times smaller. For the
scenario of a single-field inflation, this results in a tensor-to-scalar ratio which is also 1010

times smaller for the Palatini case compared to the metric case and therefore to a much lower
Hubble scale of inflation.

The Planck mission constraints axion isocurvature fluctuations by placing bounds on
the primordial isocurvature fraction β, defined in terms of the power spectrum of isocurvature
fluctuations at the scale k0 as [21, 148]

∆2
A(k0) = 〈|SA|2〉 ≡ ∆2

R(k0)
β

1− β
. (4.5)

Using the combination of Planck datasets TT, TE, EE + lowE + lensing, the fractional
primordial contribution of uncorrelated dark matter isocurvature modes is constrained at
the comoving wavenumber k0 = 0.002 Mpc−1 as β < 0.035 at 95% CL [21, 22, 148].

Combining the expression for the scale of inflation in Eq. (4.4) with the result in
Eq. (3.7), and using the bounds on the axion isocurvature fluctuations in Eq. (4.5), we
obtain

(vσ θi)
2

F(θi)
= M2

P

1− β
β

r

2
. (4.6)

To express the importance of the result in Eq. (4.6) we stress that once we have taken
into account that we are imposing ρA = ρCDM, we obtain a relation between the initial
misalignment angle θi and the scale at which the PQ symmetry spontaneously breaks, as
vσ = vσ(θi). Using this result, the relation expressed in Eq. (4.6) reveals that the axion
angle, and thus the value of the axion mass, are completely determined once both the tensor-
to-scalar ratio r and the primordial isocurvature fraction β have been measured. A fit to the
numerical solution for values θi < 0.1 shows that the PQ symmetry breaking scale assumes a
functional form vσ(θi) = v0 θ

ζ
i , where v0 = 1.5× 1011 GeV and the exponent ζ = −12/7 has

been recovered previously in the literature [26]. This solution shows that in order to achieve
a value θi = O(0.1), the tensor-to-scalar ratio is expected to be r ∼ 10−12 for an isocurvature
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fraction β = O(10−2). In general, demanding that we wish to avoid a trans-Planckian value
of the PQ symmetry breaking scale vσ .MP , leads to the stringent bound

r . 10−8
β

1− β
. (4.7)

We now discuss briefly how the bound obtained in Eq. (4.7) cannot be satisfied in the
metric scenario, while it is easily accommodated within the Palatini approach. For this,
we first derive the expressions for the tensor-to-scalar ratio and the scalar spectral index in
these inflation models. Inserting the definitions of the slow-roll parameters in Eqs. (2.17)
and (2.18) into Eqs. (4.2) and (4.3), and expanding the expressions for the spectral index
and the tensor-to-scalar ratio at Ne � 1, gives

nS(χi) ' 1− 2

Ne
, Metric and Palatini , (4.8)

r(χi) '


12

N2
e

, Metric ,

24π2 ∆2
R(k0)

λφN4
e

, Palatini .

(4.9)

Since the expression for the scalar spectral tilt in Eq. (4.8) is the same for both the metric and
Palatini approaches, the number of e-folds required to accommodate the measurements from
Planck is of the order of Ne ∼ 50− 60 in both scenarios. To derive the above expressions, we
have fixed ξφ according to the requirement of having the correct amplitude for the curvature
power spectrum, so that the result in the Palatini case depends on λφ only (for details, see
e.g. Ref. [76]). Therefore, once a quartic coupling λφ = O(0.1) is selected, Eq. (4.9) then
predicts a value r ∼ 10−12 for the Palatini case, which is safely within the bounds in Eq. (4.7),
leading to a value of the axion misalignment angle θi = O(1). On the contrary, the value of
the tensor-to-scalar ratio predicted in the metric approach is too large to evade the bounds
discussed above, since r ∼ 10−3 in this scenario regardless of λφ or ξφ. This constitutes the
main difference between the metric and Palatini scenarios and has been discussed exhaustively
in Ref. [66]. We also note in passing that due to the famous cosmological attractor behaviour
[149], also the Starobinsky model in which inflation is driven by a scalar degree of freedom
contained in an R2 term in the action predicts a similar value for r as the metric case [150],
and is therefore ruled out in the present context where the QCD axion constitutes the CDM.

Therefore, we now focus on the Palatini scenario only, which as we have shown above
is the natural stage to set the study of axion CDM produced during inflation, for which a
relatively low energy scale is required in order to evade the bounds from the non-observation of
primordial dark matter isocurvature [23–27, 29, 30]. Combining Eq. (4.4) with the expression
for the tensor-to-scalar ratio for the Palatini scenario in Eq. (4.9), we obtain a value of the
Hubble rate at the end of inflation

H∗ ' 2× 108 GeV , (4.10)

for the choices λφ ∼ 0.1 and Ne = 52, which is in accord with Refs. [76, 79] where Ne ' 50
for k0 = 0.05 Mpc−1 was found. Similarly, inserting the expression in Eq. (4.9) into Eq. (4.6)
gives a relation between the axion misalignment angle θi and the primordial isocurvature
fraction β which is valid in the Palatini scenario, as

β

1− β
=

12π2 ∆2
R(k0)

λφN4
e

(
MP

vσ(θi) θi

)2

F(θi) , (4.11)
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where vσ = vσ(θi) because of the assumption that the axion is the dark matter particle.
A second relation, valid in the Palatini scenario, is obtained by eliminating the number of
e-folds Ne appearing in Eqs. (4.8) and (4.9), which we reduce to a single expression as

nS = 1−
(

2λφ r

3π2∆2
R(k0)

)1/4

. (4.12)

The product λφ r is then constrained by demanding that the scalar spectral tilt lies within
the 95% CL region as measured by the Planck mission, using the result in Eq. (4.12), as

1.6× 10−14 . λφ r . 1.1× 10−13 . (4.13)

Results in Fig. 2 show the value of the axion mass (the colour scale to the right of the figure in
µeV) in the plane (r, β), according to the expression in Eq. (4.6). The value of the axion mass
on the colour scale is bounded from above by astrophysical considerations on the cooling time
of stellar objects [151–156], while the lower bound corresponds to demanding vσ < MP . Note
that the colour chart for the axion mass does not depend on the inflation model considered,
since the derivation in Eq. (4.6) is a general result within single-field, slow-roll inflation.
However, the result assumes that the axion is the cold dark matter particle, and that the PQ
symmetry is broken during the inflationary epoch, so that the nearly massless axion acquires
the isocurvature fluctuations described by the power spectrum in Eq. (4.5). The horizontal
bound limits the parameter space to the region β . 0.035, which is the 95% exclusion region
inferred by the Planck mission [21, 22, 148]. The vertical lines show the bounds obtained from
using Eq. (4.13) with λφ = 0.1, and give the model-dependent constraints to the parameter
space.

We emphasise that the results (4.12) and (4.13) are obtained within the Palatini sce-
nario. As discussed above, deriving the same bounds in the metric inflation scenario would
lead to a different window in which r is allowed, centred around the value r ∼ 10−3 and thus
disfavoured by the trans-Planckian value of the PQ energy scale inferred. The vertical bounds
are thus dependent on the model considered, and are here derived for the Palatini scenario
with a quartic Higgs potential and λφ = 0.1. In this scenario, the predicted value of the axion
mass is m0 . 0.05µeV, corresponding to vσ & 1014 GeV, which can be partially probed by the
ABRACADABRA experiment [157, 158] when operating in the “broadband” configuration
within a cavity of magnetic field B0 = 5 T and a volume V = 1 m3 (“ABRACADABRA 1” in
the figure), covering the mass range down to the line marking when operating in either the
“resonant” or the “broadband” configuration, within a cavity of magnetic field B0 = 5 T and
a volume V = 100 m3 (“ABRACADABRA 2” in the figure). In Fig. 2, we also show the ex-
pected reach of the haloscope searches [35, 159–161] by ADMX [162–165] and KLASH [166],
which are also going to explore values of the axion mass that are lighter than what has been
recently inferred by numerical computations of the dynamics of the PQ field [16–19, 36] in
a different cosmological scenario. On a theoretical viewpoint, the results obtained do not
depend on the coupling of the QCD axion with the photons [167–170], which is nonetheless
present when considering the experimental setup [171–176]. The limits drawn in Fig. 2 are
for the KSVZ axion scenario [167, 168].

In the future, the EUCLID satellite will constrain β roughly at a percent level [177],
which places constraints to different dark matter models regardless of the underlying model
of inflation. In contrast to the metric approach, for which the predicted value r ∼ 10−3 is well
within reach of current and planned future experimental searches such as LiteBIRD [178],
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Figure 2. The value of the axion mass (in µeV, colour scale to the right of the figure) that yields
the observed dark matter abundance as a function of the tensor-to-scalar ratio r (horizontal axis)
and the primordial isocurvature fraction β (vertical axis), as obtained from Eq. (4.6). The horizontal
black dashed line marks the region excluded by the non-observation of β & 0.035 at 95% CL from
Planck, while the vertical dashed lines mark the regions excluded by the measurement of the scalar
spectral tilt nS when assuming Higgs inflation within the Palatini approach and a quartic Higgs self-
coupling λφ = 0.1. We also show the sensitivity that is expected to be reached by ABRACADABRA
in configurations 1 and 2 (orange thick lines, see text), KLASH (within the red dashed lines), and
ADMX (within the blue dot-dashed lines).

CORE [179], and the Simons Observatory [180], the Palatini approach leads to a sensibly
small value of the tensor-to-scalar ratio r ∼ 10−12 which is not possible to be probed directly
with any near future experiment. For this reason, the discovery of a light axion of mass
m . 0.1µeV could provide evidence for the Palatini-Higgs inflation scenario, in which the
scale of inflation and the associated value of the tensor-to-scalar ratio are sufficiently low
as to satisfy the inequality in Eq. (4.7). In fact, in the Palatini scenario we have predicted
H∗ ∼ 108 GeV for λφ ∼ 0.1 and Ne ∼ 50, which is exactly what is required for the axion
field to constitute all DM in the above mass range.

5 Conclusions

In this paper we have constructed a particularly simple model in which the Standard Model
Higgs field is non-minimally coupled to gravity and acts as the inflaton, leading to a scale
of inflation H∗ ∼ 108 GeV when Palatini gravity is assumed. When the PQ symmetry is
incorporated in the model and the energy scale at which the symmetry breaks is much larger
than the scale of inflation, we found that in this scenario the required axion mass for which the
axion constitutes all DM is m0 . 0.05µeV for a quartic Higgs self-coupling λφ = 0.1, which
correspond to the PQ breaking scale vσ & 1014 GeV and tensor-to-scalar ratio r ∼ 10−12.

– 13 –



The model avoids all isocurvature constraints and can be tested in large parts with future
experiments sensitive to the QCD axion mass above.

We reiterate that as within the General Relativity the metric and Palatini formalisms
are equivalent, currently there are no reasons to favour one theory of gravity over another
in the context where the inflaton field couples non-minimally to gravity but decays away
after inflation, thus retaining GR at late times. However, what makes the Palatini scenario
particularly interesting is the possibility for r taking a small value, even O(10−12), whereas
in the metric case it is always bound to values O(10−3). As we showed, this aspect is crucial
for the QCD axion to constitute all dark matter.

The model presented in this paper is not only very successful but also simple. Other
models in which the tensor-to-scalar ratio can be drastically suppressed consist of Natural
inflation [181–183] in the regime of warm inflation scenario [184], i.e. the so-called Natu-
ral Warm Inflation scenario [185–187], or models where the gravity sector includes also a
Starobinsky-type R2 term in the Palatini formulation [70, 71, 75, 78]. It may also be pos-
sible to suppress the tensor-to-scalar ratio by incorporating quantum corrections to a given
inflationary model. It would be interesting to see what effect the above aspects can have on
models similar to and beyond the one considered in this paper.
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