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1 Introduction

Physicists and non-physicists have speculated about the possibility of connecting distant

pieces of spacetime by creating a “shortcut” joining them [1]. A connection observers could

travel through, called a traversable wormhole, remained in the realm of science fiction until

a few years ago, when Gao, Jafferis and Wall (GJW) constructed traversable wormholes in

the context of the AdS/CFT correspondence [2].

They began with an eternal AdS black hole, which contains an Einstein-Rosen bridge

(wormhole) which is marginally non-traversable. This geometry is dual to two CFT’s

entangled in the thermofield double state [3]. As we will review in the next section, they

added a coupling between the two CFTs. From the gravity perspective, this is a non-local

coupling between the left and right asymptotic regions. This non-local coupling allows for

negative null energy and makes the wormhole traversable.

The result of GJW provides a proof of existence for traversable wormholes in holog-

raphy. Yet, the more fundamental question still remains to be answered: what are the

general rules for traversable wormholes? In this paper we take a step towards answering

this question by analyzing the amount of information that can be sent through GJW-type

wormholes.

First, we clarify some aspects of the GJW wormhole geometry. We calculate the time

that the wormhole is open, defined as the maximum proper time separation between the

past and future event horizons, finding that this time is shorter than the Planck time. While
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this result might suggest that the GJW wormhole cannot be trusted, we explain why it

can still be analyzed within the semiclassical regime despite apparent Planckian features.1

Next, we perform a bulk estimate of the amount of information that can be sent

through the wormhole. We show that for the original GJW construction, in which the two

CFT’s are coupled by a single operator, the amount of information we can transfer through

the wormhole is proportional to the number of thermal cells

N ∼
(rh
`

)d−1
, (1.1)

in agreement with [4]. Here, rh is the black hole radius, ` is the AdS radius and d are the

boundary spacetime dimensions.

The procedure to send this number of messages is to use modes with low angular

momentum, such that the signal varies on scales somewhat longer than the AdS length

scale in the transverse directions. The message should be sent from the boundary long

before the coupling between the two boundaries is turned on, so that it is very close to the

horizon when it encounters the negative energy.

In order to derive the bound (1.1), we impose a number of consistency conditions to

remain in a controlled regime. In particular, following [4], we impose the ‘probe approx-

imation’: the message should backreact on the geometry by a small amount, so that the

negative stress-energy tensor calculated in the absence of the signal is a good approxima-

tion. The probe approximation, in combination with our other conditions, allows us to do

a well-controlled bulk analysis. However, as we discuss in more detail in the discussion

section, it is not completely clear whether this condition must be imposed.

The capacity of the channel can be increased by including non-local couplings for a

large number, K, of fields, as in [5]. In fact, many fields must contribute to the negative

energy in order for the semiclassical description to be good. In particular, in order to talk

about a single metric sourced by the expectation value of the stress tensor, the fluctuations

in the stress tensor should be small compared to the mean. We will see that meeting this

condition requires a large number K of coupled light fields.

The opening of the wormhole increases linearly in K, and so does the amount of

information we can transfer. However, a black hole has finite entropy, so there should be

an upper bound on K. We show that K . `d−1/GN is needed for a self-consistent bulk

solution, where GN is the Newton constant. This bound can also be found by requiring

that the UV cutoff of the theory is not lowered to the AdS scale.

The final result is that the amount of transferable information is bounded by of order

the entropy of the black hole N . SBH , as expected. In order to send this amount of

information, we have to go beyond the s-channel and consider messages that are somewhat

localized along the horizon. In particular we show that it is inefficient to localize messages

on sub-AdS scales in the transverse directions, but it is possible if we couple many fields K.

This would be needed for the comfortable journey of a cat through the wormhole envisioned

by Maldacena, Stanford, and Yang [5].

1We thank Daniel Jafferis for discussions on this point.
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We show that this result for the amount of information transfer is in accordance with

CFT expectations coming from quantum teleportation. From the quantum theory per-

spective, the GJW protocol should be seen as analogous to quantum teleportation [5, 6].

Indeed, the thermofield double state is a specific pure, entangled state of two copies of

the CFT. Roughly, each thermal cell of the left CFT, with size β, is entangled with the

corresponding thermal cell in the right CFT.

As in the standard qubit teleportation scenario, entanglement is not enough to send

information from one copy to the other one: classical communication is also needed. Here,

this is provided by the K couplings; these K couplings play the role of approximately K

classical bits of information per thermal cell. Because the left-right coupling is local in

space, it acts locally on the pairs of thermal cells. So at this rough level, the information

transfer is simply standard quantum teleportation done on many qubits at once.

Note one miracle that has to occur: although the thermal cells have a pairwise en-

tanglement of Scell, separating this into Scell EPR pairs would require solving a difficult

problem at strong coupling. However, the K couplings between left and right simply couple

primary operators on each side. The miracle is that this crude coupling is sufficient for the

delicate task of quantum teleporting a large amount of information, as discussed in more

detail in [7]. This miracle is the same miracle that allows for the preparation of the TFD

state from a simple Hamiltonian [8–10].

The large value of K that maximizes the information transfer is of order the entropy

of an AdS size black hole, K ∼ `d−1/GN . For this value of K, the teleportation process

uses up all of the quantum entanglement, destroying the black hole in the process.

Before continuing with our discussion, let us briefly comment on previous work related

to traversable wormholes. It is by now well known that classical matter obeying the null

energy condition, cannot support traversable wormholes — see, for instance, [11]. But this

statement is no longer true if we include quantum corrections, leaving open the possibility

that traversable wormholes are possible in the real world [12]. Earlier results on how to build

traversables wormholes using exotic matter or higher curvature theories of gravity include,

among others, [13–20]. In the context of AdS/CFT, the fact that entanglement is not

enough to build a traversable wormhole in AdS, but one needs an explicit coupling between

the left and right asymptotic regions was already noted in [20, 21]. After GJW, traversable

wormholes were further explored for the case of AdS2 in [5], while recent attempts to

construct eternal wormholes include [8, 12, 22–24]. The case of rotating wormholes in AdS

was studied in [4]. Recently, the authors in [25] found bounds on the information that

can be transferred in the GJW wormhole. We will comment on the differences of both

approaches in the discussion section.

The rest of the paper is organized as follows. In section 2 we give a quick review of the

GJW construction and we explore several interesting facts that have not yet been pointed

out in previous literature. In section 3 we bound the amount of information that can be

transmitted through the wormhole in the bulk and check that it agrees with the boundary

calculation. We conclude in section 4 indicating some possible future directions.
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2 Gao-Jafferis-Wall wormhole

In this section we review the traversable wormhole geometry constructed by Gao, Jafferis

and Wall [2]. The main ingredient is a non-local coupling between the two asymptotic

boundaries of a background BTZ black hole. This geometry contains an Einstein-Rosen

bridge which is marginally non-traversable: photons falling along the horizon almost put

in causal contact the two boundaries. The non-local coupling can generate a distribution

of negative energy, which backreacts on the geometry such that these photons, if send early

enough, can now fall from one boundary to the other. The wormhole becomes traversable.

The resulting geometry can be interpreted as the dual of the teleportation protocol [5].

The BTZ black hole is dual to two copies of a CFT entangled in a particular state, the

thermofield double state (TFD) [3], which is defined by

|TFD〉 ≡ 1√
Z

∑
n

e−βEn/2|n〉L ⊗ |n〉R , (2.1)

where |n〉L,R are energy eigenstates of the left and right CFT’s with energy En. This state

is a pure entangled state from the perspective of the full system with the property that the

reduced density matrix for each side is thermal with inverse temperature β. Details on how

to create this state are given in [8–10]. The entanglement is the key resource for quantum

teleportation, geometrically it builds the connected wormhole geometry [26]. However, it

is not enough, the exchange of classical information is also needed. The non-local coupling

takes care of this second passage [5], geometrically it makes the wormhole traversable.

We begin this section by recalling some basic properties of the unperturbed BTZ

geometry.

2.1 Unperturbed BTZ geometry

The metric of the uncharged, non-rotating BTZ black hole is given by [27, 28],

ds2 = −
r2 − r2

h

`2
dt2 +

`2

r2 − r2
h

dr2 + r2dφ2, (2.2)

where rh is the horizon radius, ` is the radius of AdS and φ should be periodically identified

φ ∼ φ + 2π. The black hole mass and horizon radius are related by r2
h = 8MGN`

2. The

inverse temperature is given by β = 2π`2

rh
. GN is Newton’s constant, which, in three

dimensions, is related to the Planck length by `P = 8πGN . We use the convention that

time is flowing upwards at the right boundary and downwards at the left one.

For our purposes, it will be convenient to work in Kruskal coordinates,

exp

(
2
rht

`2

)
= −U

V
,

r

rh
=

1− UV
1 + UV

, (2.3)

that cover the maximally extended two-sided geometry — see figure 1 — with the metric

ds2 =
−4`2dUdV + r2

h (1− UV )2 dφ2

(1 + UV )2 , (2.4)

where U > 0 and V < 0 in the right wedge, UV = −1 at the boundaries and UV = 1 at

the two singularities. The two horizons correspond to U = 0 and V = 0 and, as can be

seen from the figure, are on the verge of causally connecting the two boundaries.
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Figure 1. Penrose diagram for the BTZ black hole.

2.2 Adding a non-local interaction

The main novelty of the GJW construction is a non-local interaction between the two

boundaries, introduced through a small deformation of the original CFT Hamiltonian

δH = −`
∫
dφh(t, φ)OL(−t, φ)OR(t, φ) . (2.5)

Here OL,R are scalar primary operators with conformal weight ∆ and h(t, φ) is the coupling

constant. For the interaction to be relevant we need ∆ < 1. In principle, the coupling

constant could have some explicit dependence on t or φ, but we will restrict to a constant

coupling h turned on for some period of time

h(t, φ) =

h
(

2π
β

)2−2∆
if t0 ≤ t ≤ tf ,

0 otherwise .
(2.6)

Note that, as in GJW, the factors of β are chosen so that h is dimensionless. We will

consider the perturbative problem with h � 1. As we explained above, a light ray falling

along the horizon almost puts in causal contact the two boundaries. We want to show that

the non-local coupling can be arranged in such a way that the backreacted null geodesic

makes it from one boundary to the other. For simplicity we consider a radial geodesic,

defined by V = 0.

First, we need to compute the expectation value of the stress-energy tensor along this

geodesic. Since we will be interested in computing the shift in the V direction, we only

need to find TUU . The perturbation is spherically symmetric, hence TUU , along V = 0, can

only depend on U . Once TUU is obtained, we compute the averaged null energy (ANE) by

integrating it over the null ray,

ANE(h, U0, Uf ) ≡ h

`
A(U0, Uf ) ≡

∫ ∞
U0

〈TUU 〉(U) dU , (2.7)
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where U0 and Uf are the starting and ending times of the perturbation and, for later

convenience, we have defined a dimensionless ANE, A. Notice that in the last expression

the dependance on the ending time of the perturbation Uf is implicit in the definition of

the expectatiation value of TUU .

This will be our main diagnosis of the wormhole traversability. As we will see later,

a negative ANE “opens” the wormhole by a magnitude proportional to the amount of

averaged negative energy. So in order to quantify how traversable the GJW wormhole is,

it is important to understand what are the optimal configurations and how much negative

energy can we obtain from those.

We compute the stress-energy tensor by point-splitting, hence we need to find the mod-

ified bulk-to-bulk two-point function in the presence of δH (2.5). As usual in holography,

the operators OL,R are dual to a bulk scalar field ϕ with mass m2`2 = ∆(∆− 2). Working

on the right wedge it is possible to compute the modified propagator with

Gh ≡ 〈ϕHR (t, r, φ)ϕHR (t′, r′, φ′)〉h =

= 〈u−1(t, t0)ϕIR(t, r, φ)u(t, t0)u−1(t′, t0)ϕIR(t′, r, φ)u(t′, t0)〉h .
(2.8)

Here the subscript R indicates that we are in the right wedge; the subscript h, that we are

looking for the leading order correction in h; H and I indicate the Heisenberg and interac-

tion fields respectively and u(t, t0) = T exp
{
−i
∫ t
t0
dt̃ δH(t̃)

}
is the evolution operator in

the interaction picture. The result to leading order in h is [2]

Gh = 2 sinπ∆

∫
dt1h(t1)K∆(t′ + t1 − iβ/2)Kr

∆(t− t1) + (t↔ t′) , (2.9)

where K∆ and Kr
∆ are the bulk-to-boundary and the retarded bulk-to-boundary propaga-

tors. Notice that we are omitting the r, φ dependence for simplicity. The propagators are

known analytically for the BTZ black hole2 [29, 30]

K∆ (t, r, φ) =
(rh
`2

)∆ 1

2∆+1π

(
−
(
r2 − r2

h

)1/2
rh

cosh
rh
`2
t+

r

rh
cosh

rh
`
φ

)−∆

, (2.10)

Kr
∆(t, r, φ) = |K∆(t, r, φ)|θ(t)θ

((
r2 − r2

h

)1/2
rh

cosh
rh
`2
t− r

rh
cosh

rh
`
φ

)
, (2.11)

where θ is the Heaviside step function. We then need to transform equation (2.9) into

Kruskal coordinates and apply the point splitting formula to find the change in the expec-

tation value of the stress tensor induced by the interaction at the horizon

〈TUU 〉(U) = lim
U ′→U

∂U∂U ′Gh(U,U ′) . (2.12)

For details on how to obtain explicit expressions for the stress tensor, range of validity and

integrability properties, we refer the courageous reader to [2]. For sources which are turned

2We suppress the sum over images in both propagators. When computing Gh we can include one of these

sums by extending the domain of integration over φ from [0, 2π] to the real line. We checked that the other

sum gives contributions exponentially suppressed by e−n∆rh/`, where n is the index that runs over images.
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Figure 2. Dimensionless Averaged Null Energy as a function of ∆. The curves correspond to

different starting time U0, while the end point is always Uf = +∞. The earlier we turn on the

interaction the more negative energy we can obtain (note that U0 = 0 corresponds to boundary

time t = −∞ and U0 = 1 to t = 0).

on at time t0 and left on forever, the stress-energy tensor is given by

〈TUU 〉(U) = −h
`

2
1
2
−2∆∆ sin(π∆)Γ(1−∆)

π3/2Γ
(

3
2 −∆

) ×

× lim
U ′→U

∂U

∫ U

U0

dU1

F1

(
1
2 ; 1

2 ,∆ + 1; 3
2 −∆; U1−U

2U1
, U1−U
U1(1+U ′U1

)
U
−∆+1/2
1 (U − U1)∆−1/2(1 + U ′U1)∆+1

,

(2.13)

where F1 is the Appell hypergeometric function. Now, to compute the ANE, we need to

further integrate the above expression along U . Surprisingly, this can be done analyti-

cally [2]

A∞(U0,∆) ≡ `

h
ANE(h, U0,∞) =

= − Γ(2∆ + 1)2

24∆(2∆ + 1)Γ(∆)2Γ(∆ + 1)2

2F1

(
∆ + 1

2 ,
1
2 −∆; ∆ + 3

2 ; 1
1+U2

0

)
(
1 + U2

0

)∆+ 1
2

,

(2.14)

where now the 2F1 is the ordinary hypergeometric function. It is instructive to plot the

ANE to see how it depends on the different parameters involved. This is done in figure 2,

where we plot the ANE as a function of ∆ for different starting times U0. As expected,

the sooner we turn on the coupling the larger amount of negative energy we can get. The

curve with U0 = 0, i.e. t0 = −∞, gives an upper bound on the amount of negative energy

we can get with this type of sources: |A∞(U0,∆)| . 10−1. One might worry that if the

source is turned on for such a long time we should take into consideration the backreaction

of the negative energy on the geometry. However, one can check that the gravitational

perturbation is small everywhere and so the linear order computation can be trusted.

The analytical expression (2.14) found by GJW is a remarkable result; however, it

is somewhat impractical to deal with hypergeometric function. In particular in the next

– 7 –
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section we will need to quantify the backreaction of a message on the quantity of negative

energy and it would be helpful to have at disposal a simpler expression for the ANE. In the

following we provide such a simple analytic expression, valid for the case of instantaneous

sources

hinst(t, φ) = h

(
2π

β

)2−2∆

δ

(
2π

β
(t− t0)

)
. (2.15)

This can be found by manipulating equation (2.14). First, we find an expression of the ANE

for smeared interactions. This is a more physical scenario in which we turn on the sources

only for a finite amount of time ∆U = Uf −U0. As before, we define a dimensionless ANE,

As(U0, Uf ,∆) ≡ `

h
ANE(h, U0, Uf ) , (2.16)

where the subscript s stands for smeared. The ANE involves integrating over a whole null

ray the stress-energy tensor, that by itself is an integral over the sources. Schematically,

we can write this as

As(U0, Uf ,∆) =

∫ ∞
U0

dU〈TUU 〉(U) ≡
∫ ∞
U0

dU

∫ Uf

U0

dU1 τ(U,U1) (2.17)

where we have defined a function τ(U,U1) whose integral is the stress energy tensor. Notice

that this quantity is allowed to have some discontinuities at the positions where the sources

are turned on/off. We can rewrite As in terms of A∞ as follows

As(U0, Uf ,∆) =

∫ ∞
U0

dU

[∫ ∞
U0

dU1 τ(U,U1)−
∫ ∞
Uf

dU1 τ(U,U1)

]
=

=

(∫ ∞
U0

dU

∫ ∞
U0

dU1 −
���������
∫ Uf

U0

dU

∫ ∞
Uf

dU1 −
∫ ∞
Uf

dU

∫ ∞
Uf

dU1

)
τ(U,U1) =

= A∞(U0,∆)−A∞(Uf ,∆) .

The integral in the second line vanishes because it adds up the energy generated along the

null geodesic for U < Uf by a source turned on only at Uf , i.e. the support of the first

integral lies outside the lightcone of the second. Finally, we take the limit in which the

coupling is turned on only for an instant of time and find a remarkably simple analytic

expression. The dimensionless ANE in this case is given by3

Ainst(U0,∆) = lim
Uf→U0

U0
As(U0, Uf ,∆)

Uf − U0
= −U0 ∂U0A∞(U0,∆) . (2.18)

It is straightforward to evaluate this expression: all the dependence on U0, that before was

encoded in the hypergeometric functions, now becomes simply

Ainst(U0,∆) = −
Γ
(
∆ + 1

2

)2
πΓ(∆)2

(
U0

1 + U2
0

)2∆+1

. (2.19)

3The extra U0 on the r.h.s. comes from the fact that the source is a δ-function in time while for this

limit we are taking a δ in the U -coordinate.
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Notice that this expression might receive large correction from higher order terms

in h, which should be cured by introducing a small smearing. Nonetheless, it provides

a simple and helpful approximation to the smeared case. Also note that in this way of

deriving equation (2.19), we did not need to directly integrate the stress-energy tensor for

the instantaneous source, which was computed in [31], and has an apparent non-integrable

divergence for ∆ > 1/2.

Plots of Ainst are shown in figure 3. Note that this expression has a few interesting

properties. First, Ainst is symmetric under U0 → U−1
0 , which makes the time U0 = 1

somewhat special. In fact, it is easy to show analytically that U0 = 1 is a minimum of this

function. It is also possible to note that the optimal weight, for U0 = 1, is ∆ ≈ 0.9. Finally,

we observe that for δ-function source |Ainst(U0,∆)| . 10−2. This means that turning on

the non-local coupling for only an instant of time, at U0 = 1, reduces the amount of negative

energy by only an order of magnitude, as compared to A∞.

Independently of the details of the interaction, we see that the averaged null energy of

the Gao-Jafferis-Wall protocol is bounded, in absolute value, by |h|/` times an order-one

number. More precisely, we have

|ANE(h, U0, Uf )| = |h|
`
|A| . |h|

`
10−1 . (2.20)

Given that we are working perturbatively in h, we conclude that the ANE is generically

very small in AdS units. This fact is worrisome because, as we show below, the amount of

available negative energy determines the size of the wormhole opening.

Before continuing with our analysis let us clarify a point concerning the reference frame

we have considered so far. We have worked in a frame in which tL = −tR, that we will

call the rest frame. The BTZ geometry is invariant under boosts, {U → λU, V → λ−1V },
which act on the asymptotic boundaries as time translations tL,R → tL,R + δt. Therefore,

we can consider more general reference frames in which tL 6= −tR. We will call these,

boosted frames. This is just a change of coordinates, so the bound on information transfer

we are looking for should be independent of λ. However, the integrated null energy, and

hence, the dimensionless coefficient A is not invariant under these boosts. In fact, an

expression for A in generally boosted frames can be easily found, and in Schwarzschild-like

coordinates, is given by

Ainstboosted(tR, tL,∆) = − exp

(
−π
β

(tL + tR)

)
Γ
(
∆ + 1

2

)2
πΓ(∆)2

[
1

2
cosh

(
π

β
(tR − tL)

)]−2∆−1

.

(2.21)

The exponential on the r.h.s. corresponds to the boost factor λ we discussed above. Indeed,

we see that in the boosted frames we can get much more negative energy than in the rest

frame. In the next section we will explain why this, as expected, cannot enhance the

amount of information we can transfer across the wormhole. In fact, for simplicity, we will

keep working in the rest frame, eventually deriving a coordinate-independent expression

for the opening of the wormhole — see equation (2.27).
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Figure 3. Averaged Null Energy for the case of instantaneous sources. In (a) we plot the ANE as a

function of ∆ for different U0. The largest amount of ANE (in absolute value) is given by the curve

with U0 = 1. This corresponds to tL = tR = 0. Note that for this choice of times, the wormhole

is shortest; therefore, it is not surprising that the effect of the non-local coupling is the largest. In

(b), we plot the ANE as a function of U0 for different ∆. The scale on the U0 axis is logarithmic

which makes evident that each curve has a minimum at U0 = 1 and is symmetric under U0 → U−1
0 .

2.3 Wormhole opening

We can relate the ANE to the opening size of the wormhole through the linearized Einstein

equations. Let gµν = gBTZµν + hµν , be the metric of the perturbed BTZ geometry, then in

Kruskal coordinates, to leading order in hµν and at the horizon V = 0, the linearized

Einstein equation reads [2]

1

2

(
Uh′UU (U) + 2hUU (U)

`2
−
h′′φφ(U)

r2
h

)
= 8πGN 〈TUU 〉 , (2.22)

where the primes denote derivative with respect to U . In fact, in order to use this equation,

where the classical metric is sourced by the expectation value of the stress tensor, the

– 10 –



J
H
E
P
0
1
(
2
0
2
0
)
0
5
0

fluctuations in the stress tensor should be small compared to its mean. As we discuss in

more detail in section 3.1, this semiclassical condition is only met if a large number K of

fields contributes to the negative energy. We do not include the factors of K for now, since

we are reviewing the original construction, but will include them in our later analysis since

they are essential for remaining in the semiclassical regime.

Integrating this equation, the total derivative terms do not contribute if the perturba-

tion decays sufficiently fast at U = ±∞, which is the case unless the perturbation is turned

on forever. We are left with

1

2`2

∫
dUhUU (U) = 8πGN

∫
dU〈TUU 〉 . (2.23)

A null ray traveling close to the horizon will suffer a shift in its V−coordinate, see figure 4a,

due to the perturbation given by

∆V =
1

4`2

∫
dUhUU . (2.24)

Combining both equations together we obtain

∆V = 4πGN

∫
dU〈TUU 〉 = 4π

GNh

`
A(U0, Uf ) (2.25)

where the dimensionless ANE, A, is defined in (2.7). If ∆V < 0, a null ray traveling close to

the horizon and starting on one side of the black hole will end up traversing the wormhole

and appear on the other side. Given the analysis in the previous subsection, it is clear

that the non-local interaction can make ∆V negative by a proper choice of the sign of h.

However, as explained above, A is frame dependent and so is ∆V . We can quantify the

opening of the wormhole in a coordinate independent way by computing the proper time

that the wormhole remains open. To do this, we zoom into the diamond region that appears

between the future and the past horizon due to the backreaction of the negative energy, see

figure 4b. Near the horizon, the metric is approximately ds2 ≈ −4`2dUdV. Consequently

the proper time that separates the lower and upper vertices of the diamond region is

∆τ ≈ 2`
√

∆V∆U. (2.26)

In the rest frame the coupling is symmetric under L↔ R, hence ∆V = ∆U and the above

relation reduces to ∆τ ≈ 2`∆V . Combining everything, we have an upper bound on the

proper time between the past and future event horizons,

∆τ ≈ 8πGNhA . GN , (2.27)

where A is the one computed in the rest frame. In the boosted frames, the extra con-

tributions coming from ∆U and ∆V will cancel perfectly, leaving the expression in the

rest frame. We conclude that the time window that the wormhole remains open is indeed

Planckian, independent of the chosen frame.

Since the time for which the wormhole is open is so small, one might worry that quan-

tum gravity corrections are important and cannot be neglected. This is not the case. The
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V
`

∆τ

(b)

Figure 4. (a) The blue wavy lines represent the negative energy. The green line shows how the

future horizon recedes due to the backreaction of the negative energy on the geometry. As the

future horizon moves up, a diamond region is revealed in the middle of the diagram. The past

horizon remains unaffected. The red line is the positive energy signal that we send through the

wormhole. (b) Here, we have zoomed into the diamond region. The side of the diamond is equal to

∆V `. ∆τ is the amount of proper time that the wormhole remains open. The red region represents

a signal that passes through the wormhole throat.

diamond is just a — small — piece of the BTZ geometry, the invariant curvature is given

by `−2 and is well separated from the Planck scale. While passing through the wormhole a

signal would just feel like traveling through empty flat spacetime. Nonetheless, we still need

to make sure that the signal is localized to a Planck sized box to be certain that it will make

it through the opening. This sounds like a difficult, even dangerous, task. In this case we

don’t need to worry about this issue because the mouth of the wormhole is located close to

the horizon of a black hole. The gravitational blueshift makes sure that an ordinary message

at infinity is boosted enough by the time it reaches the mouth of the wormhole to fit in such

a Planck sized box. We just need to send the message from the boundary early enough. The

same gravitational effect guarantees that we don’t need to fine-tune the moment we send the

message from the boundary up to a Planck-time precision, because an asymptotic observer

sees the window open for an exponentially longer time. We conclude that, despite the small-

ness of the opening, it is kinematically possible to send a message through the wormhole.4

3 Bound on information transfer

In the previous section we have revised the construction of GJW. The non-local coupling

between the two asymptotic boundaries is enough to open the wormhole for only a Planck-

4We thank Daniel Jafferis for discussions on this point.
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sized window of time. Nonetheless, we have argued that thanks to redshift this by itself is

not an obstacle for a message traversing the wormhole. However, so far we have neglected

the backreaction of the message on the geometry, staying in the so called probe approxima-

tion. Given that the message needs to be highly boosted to make it through the wormhole,

one might worry that this is not a valid approximation. In fact the signal might destroy

the original traversable wormhole setup altogether. In this section we check that this is not

the case. It is possible to send a large amount of information, while keeping under control

the backreaction on the geometry.

For convenience we now summarize the main results that will be proven throughout

the section. We begin by finding a simple condition on the total momentum that we can

send through the wormhole before the probe approximation becomes unreliable. Because

the signal is highly boosted by the time it reaches the horizon, it can be approximated by

a shock wave and its stress energy tensor (in light-cone coordinates) is given by [32, 33]

TV V =
pV
rh
δ(V ) , (3.1)

where pV is the total momentum of the message. In the next subsection we show that the

probe approximation is valid as long as5

probe approximation:
GN pV
rh

� 1 . (3.2)

This, combined with the requirement that each message we send is boosted enough

to fit through the wormhole opening, is enough to constraint the amount of information

we can transfer. We can estimate how much one signal needs to be boosted using the

uncertainty principle [5].

First, we consider messages that are completely spread across the horizon, i.e. s-waves.

We show that the amount of transferred information can be made large by increasing the

radius of the black hole; however, it is always much smaller than the entropy of the black

hole. To increase the number of bits that can be sent through the wormhole, for fixed rh,

we follow the approach of [5] and couple a large number K of fields. Combining the probe

approximation with the uncertainty principle we obtain that the number N of bits that

can go through the wormhole is given by

N .
rh
`
K . (3.3)

However, K cannot grow arbitrarily large. Treating the negative energy as a negative

shock we find that the maximum number of coupled fields beyond which our construction

becomes unreliable is

species bound: K .
`

GN
. (3.4)

We can reproduce this bound also by imposing that the renormalized UV cutoff, see [34,

35], is above the AdS scale. Combining both results, we obtain the final bound on the

5Note that this statement is coordinate dependent. We will also provide an equivalent statement in

terms of the center-of-mass energy collision in equation (3.12).
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information that can be sent through the wormhole,

N .
rh
GN
≈ SBH . (3.5)

We check that this bound is consistent with the one we obtain by considering the boundary

theory. Finally we consider signals that are localized in the transverse direction. We show

that it is possible to localize messages on sub-AdS scales if we couple K � 1 fields. In the

rest of the section we give details on how to derive these bounds.

Notice that the breakdown of the probe approximation does not necessarily imply that

the wormhole closes. It only means that the GJW computation is not reliable anymore.

One might wonder if by fully taking into account the backreaction, we might increase the

amount of transferable information. The analysis of [4] suggests that this is not the case;

however, we believe that this issue has not been settled yet. We will comment further on

this in the discussion section.

3.1 S-wave channel

We want to bound the amount of information we can send through the wormhole. As we

explained above, to do this we first need to understand how far we can trust the probe

approximation. To begin with, we consider spherically symmetric messages. To estimate

the effect of one such message on the amount of negative energy generated by the non-local

coupling, we approximate the message as a positive energy shock, propagating along the

horizon V = 0. At linear order we don’t need to worry about the backreaction of the

negative energy shock, the geometry is then simply given by [36]

ds2 =
−4`2dUdV + r2

h(1− (U + ∆Uθ(V ))V )2dφ2

(1 + (U + ∆Uθ(V ))V )2
,

=
−4`2dŨdV + 4`2∆Uδ(V )dV 2 + r2

h(1− ŨV )2dφ2

(1 + ŨV )2
,

(3.6)

where in the second line we have used the discontinuous coordinate Ũ = U + ∆Uθ(V ). To

compute the negative energy we need to know the propagator for the scalar field in this

shockwave geometry. Away from V = 0 this is simply given by the BTZ propagator as the

geometry is the one of the BTZ black hole. However, the shockwave induces a discontinuity

across V = 0, one can check that it is enough to use the usual BTZ propagator but using

the discontinuous coordinates,

Kshock(U, V ) = KBTZ(Ũ , V ) , (3.7)

where schematically K is a BTZ propagator. When computing the ANE we evaluate two

BTZ boundary-to-bulk propagators. But note that only the one coming from the right

boundary crosses the positive energy shock and undergoes a time delay. See figure 5. The

effect of this delay is equivalent to shifting the insertion time of OR in (2.5) by a quantity

∆t ≈ β∆U

U0
, (3.8)
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Figure 5. Schematically the ANE is given by the product of a boundary-to-bulk propagator coming

from the left CFT and a retarded boundary-to-bulk propagator coming from the right one. Only

the latter crosses the positive energy shock and undergoes a time delay.

where we have assumed that the shift is small. The rest of the ANE computation of GJW

follows unchanged. The probe approximation is valid as long as the effect of the message

on the geometry can be neglected, i.e. as long as ∆U � 1. The time delay is related to the

stress energy tensor generated by the message by [33, 36]

TV V =
∆U

GN
δ(V ) . (3.9)

Comparing with (3.1) we can relate the time delay to the total momentum carried by the

message

∆U = GN
pV
rh
� 1 . (3.10)

We will see below that this momentum needs to be large enough such that the message can

fit through the wormhole. Notice that the momenta in Kruskal coordinates are dimension-

less since they are the conjugate variables to the dimensionless U, V -coordinates. We can

check that this condition is enough to ensure that the negative energy is almost preserved

by using our simple analytical expression (2.21), valid for the case of instantaneous sources.

For simplicity we consider the optimal case in which tR − tL = 0. We can trust the probe

approximation if ∣∣∣∣A(0,∆t)−A(0, 0)

A(0, 0)

∣∣∣∣� 1 . (3.11)

It is easy to see that this condition reduces to (3.10).

It is also possible to express the constraint above in terms of coordinate-independent

quantities. We approximate the interaction between the negative energy density and the

signal as a collision between particles and assume that the scattering is dominated by
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gravitational interaction. Along the horizon of a BTZ black hole, gravitational interaction

decays exponentially outside a region of size `, see equation (3.43). This is expected since

this region is a thermal cell on the horizon, i.e. it corresponds to a region of size β on the

boundary. Therefore, we can split the collision in independent events, one per thermal

cell. The probe approximation translates to the statement that the amplitude associated

to each of these collision events should be small

GNscell`� 1 . (3.12)

Here scell = pcellV qcellU /`2 is the center-of-mass energy squared of one of these collisions. In

the rest frame, the momentum of the negative energy, per thermal cell, is given by qcellU ≈ 1,

pcellV is simply given by pV divided by the number of thermal cells, rh/`. It is easy to see

that with these identifications, equation (3.12) reproduces (3.2).

The probe approximation provides an upper bound on the momentum a particle

traversing the wormhole can have. As pointed out in the previous section, this parti-

cle needs to be highly boosted to fit through the wormhole, so the momentum cannot be

arbitrarily small. We can estimate the minimum required momentum using the uncertainty

principle6 [5]

psignalV &
1

∆V
≈ `

GNhA
, (3.13)

where psignalV is the momentum of one signal. Now imagine sending N non-interacting

signals. Then, pV = NpsignalV . Combining the uncertainty principle with the probe approx-

imation condition (3.10), we find the following bound on the number of bits one can send

through the wormhole,

N . hArh
`
. (3.14)

Note that we can send a large number of bits through the wormhole if we consider large

black holes with rh � `. However, this number is still much less than the theoretical

maximum, which should scale with the entropy of the black hole,

SBH ≈
rh
GN
� rh

`
. (3.15)

From now on, we set h = A = 1, so our results are correct up to order-one (small) numbers

that depend on the details of the non-local interactions. In [4], it was shown that one

way of increasing N is to add rotation to the black hole. However, this is not enough to

parametrically increase the amount of information transferred from order rh/` to the much

larger rh/GN . An alternative way is to non-locally couple a large number of fields. This

was done in the case of AdS2 in [5]. Here we would like to analyze the consequences of

this second approach in the case of AdS3. Notice that if we interpret the non-local coupled

fields as playing the role of the classical messages in the usual teleportation protocol, it is

natural to consider many such fields to send more information.

6Notice that this momentum is superplanckian. This is not a problem, psignal
V is a coordinate dependent

quantity and can be larger than the cutoff of our theory.
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Following [5], we consider a deformation of the theory in which we couple K fields

δH = −
K∑
i=1

`

∫
dφh(t, φ)OiR(t, φ)OiL(−t, φ) . (3.16)

Assuming that the non-locally coupled fields are not interacting, the negative energy scales

linearly with K.

Large K also allows us to enter the semiclassical regime. In order to couple the metric

to the expectation value of the stress tensor, we would like the fluctuations in the stress

tensor to be small compared to its mean. The fluctuations in the stress tensor depend on

the scale, increasing at short distances. We would at least like the fluctuations to be small

compared to the mean at scales of order the AdS radius. In the presence of K light fields,

the fluctuations in the stress tensor are of order

〈(∆T V
U )2〉 ∼ K

`6
, (3.17)

where we have focussed on the crucial component of the stress tensor for our analysis, T V
U .

The mean value is7

〈T V
U 〉 ∼

hK

`3
. (3.18)

Imposing that the fluctuations are small compared to the mean gives

h2K � 1 . (3.19)

Since we require h � 1 in order to work to leading order in the source, we certainly need

many fields,

K � 1

h2
� 1 , (3.20)

in order for the semiclassical description to be valid.

The opening of the wormhole is increased due to the increased negative energy,

∆V ≈ KGN
`

. (3.21)

As we have seen in section 2.2, the non-local coupling is most effective at t = 0 when the

wormhole is shortest. For definiteness, we can then consider K instantaneous non-local

couplings all turned on at t = 0. Turning on the coupling for a longer time would just

modify the specific value of A. The resulting picture is that of K superimposed negative

energy shocks. Notice that the probe approximation condition (3.10) is not modified by

the factor K. In the particle collision picture this means that we need to treat the collision

between the N signals and the K shocks, in every thermal cell, as K independent processes.

7Notice the different scaling in h between eq. (3.18) and eq. (3.17). The expectation value of T V
U is zero

in the absence of non-local coupling and hence it is proportional to h. The fluctuation of T V
U instead is

non-zero also in the absence of the non-local coupling, due to the quantum fluctuation of the fields, and

hence, to leading order, it is independent of h.
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However, the presence of many fields does influence the uncertainty principle condition

because the opening of the wormhole increases with the available amount of negative energy

psignalV &
1

K

`

GN
. (3.22)

Combining this condition with (3.10), we again find a bound on the number of particles

that can traverse the wormhole,

N . K
rh
`
. (3.23)

This seem to suggest that we can send as much information as we want, if we allow K

to be large enough. However, the black hole has finite entropy and cannot be used to

extract infinite amount of entanglement, so we expect a restriction for large enough values

of K. For example, it is known that the presence of many species lowers the cutoff of the

theory [34, 35]

`UV & KGN . (3.24)

The BTZ geometry cannot be treated as a semiclassical geometry when the UV cutoff

becomes of the same order of the curvature scale, i.e. we should have `UV � `. This leads

to an upper bound on K,

K .
`

GN
. (3.25)

It turns out that this is already enough to make the bound on the number of particles

consistent with the finiteness of the black hole entropy. For the maximum value of K, we

thus obtain

N .
rh
GN
≈ SBH . (3.26)

Note that this requires the number of light operators in the CFT to be of order of

the central charge c, and this is not the case in the usual known examples of AdS3/CFT2.

Nevertheless, the GJW protocol seems to be robust enough that it will continue to make

sense even in more exotic settings with a large number of light fields, where the UV cutoff

of the field theory is not well-separated from the AdS scale, although the semiclassical bulk

description will receive larger corrections.

3.2 A multiple shocks bound

In this section, we will build the bulk geometry by gluing together black hole patches with

different masses. This will be due to the effect of the non-local interaction and the message

that will be modelled by shockwaves. By restricting the masses of the different patches to

be positive, we will obtain constraints on the amount of energy that can be carried by the

shockwaves. The main objective is to justify the species bound in equation (3.25) from a

bulk perspective.

Let’s assume that the negative energy interaction between the two boundaries can be

modeled in the bulk by the insertion of two negative-energy shockwaves at times tR =

−tL = t0. The message we would like to send through the wormhole can also be modeled

as a shockwave, but now a positive-energy one. As shown in figure 6, for the sake of

analyzing whether the geometry becomes traversable, it is possible to neglect the effect
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of the left negative shockwave and consider the collision between two spherical shells, one

with positive and the other with negative energy. The positive shell has energy E1 and the

negative one −E2. As shown in [37], this gravitational problem involving the collision of

two shocks can be solved by gluing different black-hole geometries together. Note that in

this section it will be more convenient to use Schwarzschild coordinates and energies, and

to only translate the final results into the null coordinates we used in previous sections.

First, let us consider the simpler example where there is only one negative shockwave

— see figure 6a. It is easy to see that if the mass of the original black hole is M and the

shock carries energy -E2, then one should glue the geometry of a black hole with mass M

in the past of the shock with another one with mass M − E2 at the future of the shock.

The first bound comes from requiring that the mass of the second black holes geometry

remains positive, i.e., M −E2 > 0. The total energy E2 of the negative shock is composed

by the energy of the K species. In each thermal cell, the energy should be of order of the

local temperature and given that there are rh/` thermal cells, the total energy is given by

E2 = Kβ−1 rh
`

=
K r2

h

`3
. Using that the mass of the BTZ blackhole is M ≈ r2

h/(GN`
2), it

is immediate to note that

K .
`

GN
, (3.27)

that is exactly the species bound that appears in equation (3.25).

We can now add the positive energy shock, the message, and see if this setup provides

additional constraints. In the case of two shocks colliding, the gluing gets more intricate

as there are four different regions to consider. In [37], it was showed that it is enough to

impose two gluing conditions in order to get a consistent answer: a continuity condition on

the radius of the circle across the collision and a DTR regularity condition [33, 38]. These

two conditions allow us to find the mass of the black-hole in the post collision regime, Mt.

See figure 6b.

If we want to glue different metrics of the form ds2 = −fi(r)dt2 + fi(r)
−1dr2 + r2dφ2,

from the DTR condition, we have that at the r-coordinate of collision rc,

ft(rc)fb(rc) = fl(rc)fr(rc) , (3.28)

where t, b, l, r stand for the top, bottom, left and right regions respectively. The difference

with [37] resides in that in our case one of the shocks carries negative energy (and is being

sent at boundary time t0 ≈ 0). In this case, equation (3.28) becomes(
r2
c − 8GNM`2

) (
r2
c − 8GNMt`

2
)

=
(
r2
c − 8GN (M + E1)`2

) (
r2
c − 8GN (M − E2)`2

)
.

This is sufficient to get Mt as a function of the initial data. Moreover, if we want to write

it as a function of the boundary times at which the shocks are emitted, we can translate

rc in terms of the Kruskal coordinates. In the limit of small energies, E1,2/M � 1, this

can be done in any quadrant so for simplicity we consider the bottom one. In there, the

horizon radius is the unperturbed one, given by r2
h = 8GNM`2. The U -coordinate of the

negative shock wave is U− = erht0/`
2

and the V -coordinate of the positive shock wave is
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(a) (b)

Figure 6. Penrose diagrams of the different shockwave geometries. In (a), we only consider the

effect of a negative energy shock of energy −E2 (blue curvy line) sent at t0. In (b), we add the

effect of a second shock with positive energy E1 sent at t1 from the left boundary (solid red line).

The resulting geometry is formed by gluing four AdS black hole patches with different masses.

V+ = e−rht1/`
2
. So, from equation (2.3), the collision radius becomes

rc = rh
1− exp

(rh
`2

(t0 − t1)
)

1 + exp
(rh
`2

(t0 − t1)
) . (3.29)

Plugging that back in equation (3.2) is enough to find the mass of the black hole in the

top region,

Mt = M + E1 − E2 −
E1E2

M
cosh2

(
rh(t0 − t1)

2`2

)
. (3.30)

Note that for (t0 − t1) large enough, the last term grows exponentially leading to a

negative mass in the upper region.8 So, in the limit E1,2/M � 1, imposing that Mt should

be positive results in

M2 & E1E2 cosh2

(
rh(t0 − t1)

2`2

)
. (3.31)

We are interested in the case where t0 ≈ 0. Using that e
2rht1
`2 = −U+

V+
, that U+V+ = −1

on the boundary and that the shock with positive energy propagates close to the horizon

V+ = 0, we find that

M2 &
E1E2

V+
+O(V+) . (3.32)

For comparison, it is convenient to express this bound in terms of the center-of-mass energy

of the collision,

s =
E1E2

V+

`2

r2
h

. (3.33)

8In fact, in three dimensions, this will happen even before the mass gets negative, as the BTZ black hole

has a lower bound for its mass.
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We obtain that

GN
√
s .

rh
`

(3.34)

where we used the definition of the black hole mass M ≈ r2
h/GN`

2. Note that s here

corresponds to the collision between all the N signals and the K negative shocks. To

compare with the previous bounds, we translate this expression into light-cone coordinates,

where the stress-energy tensor for the message is already given in eq. (3.1) and the one for

the negative shocks has the generic form,

TUU =
qU
rh
δ(U − U0) . (3.35)

We have seen in the previous section that the magnitude of TUU scales as `−1, see eq. (2.13).

So, given, that the negative shock is composed by K signals, we expect qU =
Krh
`

. In

light-cone coordinates, the center-of-mass energy squared is just

s =
pV qU
`2

, (3.36)

and so, eq. (3.34) becomes a bound on pV ,

pV .
rh `

G2
NK

(3.37)

that, combined with the uncertainty principle, gives yet another bound on the number of

signals that can go through the wormhole,

N .
rh
GN

. (3.38)

Note that the final result is independent of K so it would seem to imply that we can

saturate the entropy bound without the need to couple many fields. However, note that

while it is true that by solving the junction condition we have solved the full nonlinear

Einstein equations, the same is not true for the field theory computation. As we explained

before, the amount of negative energy generally decrease when we take into account the

backreaction of the signal. Therefore, when we go beyond the probe approximation, we

cannot treat the negative energy shock as a particle with a well defined momentum, qU ,

which is independent of the signal momentum. In other words our previous computation

implicitly assumed the validity of the probe approximation and the final result is only valid

when the probe approximation is satisfied.

3.3 Beyond spherical symmetry

So far we have bounded the amount on information we can transfer through the wormhole in

the s-channel. We have seen that to send something through the wormhole we need rh � `.

However, it can be quite inconvenient to send signals spread over all the horizon. For exam-

ple, a cat would have a hard time in such a delivery system. In this section we generalize our

bound to signals that are localized to some region of size b along the horizon. We begin by

rederiving the probe approximation condition (3.11) from a particle scattering perspective.
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As before, we approximate the interaction between the signal and the negative energy

as a gravitational scattering between particles. Following [32] the condition for the validity

of the probe approximation is given by

Scl =
1

2

∫
d3x
√
−ghUUTUU � 1 , (3.39)

where Scl is the gravitational action evaluated on the shockwave geometry. Here TUU is the

stress-energy tensor generated by the signal, and hUU is the gravitational field generated

by the negative energy. We approximate the stress energy tensors of the signal and the

negative energy respectively with

TV V =
pV
rh
δ(V )tV (θ) ; TUU =

1

`
δ(U − U0) . (3.40)

The first expression is the usual stress tensor generated by an energy shock with momentum

pV , where the transverse profile function tV (θ) is a function with support on an interval

of size b/rh and that integrates to 1. For our purpose, it will be enough to consider a step

function. To define the second expression we have used that for the GJW construction the

negative energy stress tensor scales like `−1, as shown in (2.13). The gravitational field

obeys the following equation (
−∂2

θ +
r2
h

`2

)
hUU = GNr

2
hTUU , (3.41)

Since we are interested in the limit where b . ` � rh, we can approximate the horizon

with an infinite line. This allows to avoid dealing with periodic boundary conditions and

images. In other words let x = θrh/` we have(
−∂2

x + 1
)
hUU = GN`

2TUU , (3.42)

where x takes values on the real line. The Green function for this equation is given by9

g(x− x′) =
1

2
e−|x−x

′| . (3.43)

Notice that this tells us that the gravitational interaction effectively shuts down when

∆θ ≈ `/rh, which is the angle corresponding to one thermal cell in the BTZ geometry.

This means that, as we already pointed out earlier, the scattering between the messages

and the negative energy shock naturally splits in rh/` independent shocks. In our case TUU
does not depend on θ and so,

hUU (θ) = GN`
2

∫
dx′g(x− x′)TUU ≈ GN`δ(U) . (3.44)

Finally, we find that the probe approximation is now given by

Scl ≈
GNpV
`
� 1 . (3.45)

9The correct expression on the circle is given by g(θ− θ′) = `
2rh

∑
n∈Z exp

(
− rh

`
|θ − θ′ + 2πn|

)
, we see

that for rh � ` we can neglect the images, i.e. the terms with n 6= 0.
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Alternatively we can derive this expression by computing the time delay generated

by the localized shock and impose that it is small. For the dependence on the transverse

direction we take a simple step function

tV (θ) =


rh
b

0 < θ <
b

rh
,

0 otherwise .

(3.46)

The gravitational field generated by this shock is given by

hV V (x) =
GN`

2pV
b

δ(V )

∫ b/`

0
dx′e−|x−x

′| . (3.47)

The integral above can be easily evaluated

∫ b/`

0
dx′e−|x−x

′| =


ex − ex−b/` x < 0 ,

2− e−x − ex−b/` 0 ≤ x ≤ b/` ,

eb/`−x − e−x x > b/` .

(3.48)

Note that it is approximatively equal to b/` in the interval x ∈ [0, b/`], outside this interval

is given approximatively by b/` e−|x|. We see that this quantity is exponentially suppressed

outside the thermal cell, i.e. for |x| & 1. We conclude that

hV V (θ) ≈

{
GN`pV δ(V ) in the thermal cell ,

0 otherwise .
(3.49)

From this we can find the time delay given by the positive shock on the negative shock

∆U =
1

`2

∫
dV hV V ≈


GNpV
`

in the thermal cell ,

0 otherwise.
(3.50)

If we require ∆U � 1 we recover (3.45).

Notice that, for a given value of momentum pV , this is a more stringent requirement

than the one we found for s-waves, (3.2). Indeed, as we localize the message on shorter

scales the energy density corresponding to a given value of pV increases, so it is natural

that the probe approximation is harder to satisfy. However, the increased density ceases

to play a role once we localize the signal on sub-AdS scales, i.e. inside a thermal cell. This

can be explained by looking at the Green function (3.43). This is free of divergences in the

x→ x′ limit. In fact, it is approximately constant over the whole thermal cell. This means

that when we localize the message on sub-AdS scale, the gravitational field generated is

smeared over the whole thermal cell and it is always approximatively given by GN`pV .

This is true independently of the value of b. Notice that this is special to three dimensions.

Later, we will see that in higher dimensions the situation is not as simple.

We would like now to proceed similarly to the previous subsection and bound pV from

below. However, there is a complication. To localize the message along the horizon we
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need to excite higher angular momentum modes. Compared to s-waves, these modes have

a harder time crossing the wormhole. Even after having emerged from the horizon thanks

to the negative energy shock, they still need to overcome the potential barrier of the black

hole. This provides an extra lower bound on the momentum needed by the signal, which

for high enough angular momenta overcomes the one provided by the uncertainty principle.

To find this new bound we consider the equation for spinning geodesics in the

Schwarzschild metric. This can be obtained from the action

I =
1

2

∫
dλ gµν

dxµ

dλ

dxν

dλ
=

1

2

∫
dλ

(
−f(r)ṫ2 +

ṙ2

f(r)
+ r2φ̇2

)
, (3.51)

where the dot represents derivatives with respect to λ. The symmetries of the geometry

ensure that along geodesics the energy, pt = −f ṫ ≡ −E, and the angular momentum,

pφ = r2φ̇ ≡ L, are conserved. We are interested in highly boosted particles, whose geodesics

are approximately null. The equation can be obtained by simply imposing ds2 = 0, which

is equivalent to the equation of motion of a particle in a one dimensional potential

ṙ2 + V (r) = E2 ; V (r) ≡ L2

`2

(
1−

(rh
r

)2
)
. (3.52)

It is easy to see that the geodesic reaches the boundary only if

E >
L

`
. (3.53)

To estimate the angular momentum needed localize the message to a region of size b consider

a Gaussian wave-packet

fV (φ) ∝ exp

(
−(φ− φi)2

b/rh

)
. (3.54)

Fourier transforming this expression it is easy to see that the needed angular momenta are

those with L . rh/b.

To compare this requirement with the uncertainty principle we first need to convert it

to Kruskal coordinates. The momenta in Kruskal coordinates are given by

pU = − E`2

2rhU
+

2V rh
(1 + UV )2

√
E2

f2
− L2

r2f
,

pV = +
E`2

2rhV
+

2Urh
(1 + UV )2

√
E2

f2
− L2

r2f
.

(3.55)

To obtain this expression one first needs to find pr by imposing p2 = 0. We are interested

in the limit where U ≈ 1 and V ≈ ∆V � 1, for which we can approximate

f(U, V ) =
r2
h

`2

(
− 4UV

(1 + UV )2

)
≈ −4

r2
h

`2
∆V . (3.56)

Using this we see that pU ≈ 0 while the V component of the momentum is approximately

given by

pV ≈ −
E`2

rh∆V
. (3.57)
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We conclude that the minimum required momentum needed to overcome the potential

barrier is given by

pV &
`

b

1

∆V
. (3.58)

We see that for messages localized on scales smaller than a thermal cell this overcomes the

uncertainty principle requirement (3.13). Combining this with the probe approximation

bound (3.45) we find

N(b) . K
b

`
, b . ` . (3.59)

This in particular means that to send one single message localized to a region of size b� `

we need to couple K ≈ `/b. We see that while it becomes increasingly difficult to send

messages localized on sub-AdS scales, it is still possible if we are willing to couple a large

number of fields. If we set N = 1 in the above expression we can find the minimum allowed

value of b for a given K

b(K) &
`

K
. (3.60)

However, as we increase K the cutoff of the theory gets lowered to `UV ≈ KGN and we

should also impose that b(K) > `UV . These two requirements coincide for Kmin ≈
√
`/GN ,

which leads to the following estimate for the minimum possible value of b

bmin ≈
√
`GN . (3.61)

Before concluding notice that in the opposite limit, b ≈ `, the uncertainty principle and

the potential barrier give the same bound and we find

N(b) . K , b & ` . (3.62)

This means that instead of sending Krh/` s-waves we can also send messages localized in

a thermal cell, sending K such messages per thermal cell.

3.4 Comparison to quantum information bounds

In the previous sections, we have estimated the maximum information that can be sent

through the wormhole with a bulk analysis. Here, we would like to briefly compare to

a boundary analysis. A detailed boundary calculation is difficult because the theory is

strongly coupled, but we can still place bounds on the amount of information transferred.

As explained in [5], we can think of the procedure as quantum teleportation.10 In standard

quantum teleportation, if Alice and Bob share and EPR pair, they can use it as a resource

to transfer a qubit. One qubit can be transferred at the cost of using up one entangled EPR

pair and sending two bits of classical information. Here we think of the left-right coupling

as playing the role of the classical communication, as explained in more detail in [5].

10We refer to quantum teleportation in a broad sense, without specializing to a particular quantum

communication protocol. For a more detailed description of specific quantum communication protocols

that might be dual to the traversable wormhole see [39].
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With these identifications, the amount of information sent is bounded by the decrease

in entanglement entropy between the two CFT’s,11

N . −∆SEE . (3.63)

We can compute the change in entropy from the change in energy induced by the non-local

coupling

∆SEE = β∆E . (3.64)

This equation is valid because in the thermofield double the entanglement entropy between

the two sides is equal to the thermal entropy. This statement is clear before acting with the

coupling. After acting with the coupling, a bulk calculation tells us that the entanglement

entropy is still equal to the thermal entropy, because the bulk geometry is still an eternal

AdS-Schwarzschild black hole. We do not have a direct CFT argument for this equality.

As mentioned above the boundary theory is strongly coupled, so computing ∆E di-

rectly on the boundary would be hard. The best we can do is to assume that the result

of such a computation would match with the one we obtained with the bulk analysis. In

other words we assume that the change in energy is given by one thermal quantum per

coupling and per thermal cell,

∆E ≈ −K`
β2

, (3.65)

where the number of thermal cells is given by `/β. This is the only input we need from the

bulk computation in this section. It would be interesting to check this, at least for some

examples of weakly coupled boundary theories, see for example [40].

Combining the above equations we find

N .
K`

β
, (3.66)

which is K bits per thermal cell. This agrees with our bulk estimate found in equa-

tion (3.23) by requiring the bulk geometry to remain in the probe approximation. Clearly

the entanglement entropy cannot decrease below zero, so an absolute bound is

N . SEE . (3.67)

This absolute bound is saturated (up to order one prefactors) when we maximize the

number of species providing the negative energy, as given in equation (3.26).

Notice that since we interpret the non-local coupled fields as playing the role of the

classical messages in the usual teleportation protocol, it is natural to consider many such

fields to send more information. However, from the CFT point of view it does not seem

necessary that these are couplings between different fields, it might be possible to couple

the same field but at different times. This seems to suggest that also in the bulk, if we

were able to go beyond the probe approximation, we might be able to send order SBH bits

without coupling a parametrically large number of fields.

11We thank David Berenstein for discussions on this point.
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3.5 Generalization to d + 1 dimensions

The picture we uncovered in the previous section is rather simple. Signals need to be highly

boosted to fall through the wormhole, (3.13). Their backreaction on the geometry modifies

the non-local coupling configuration, generally inducing a reduction of the negative energy.

In other words, they close the wormhole. We showed this at linear level, but the analysis

of [4, 5] suggests that this is true also at nonlinear level. Certainly the negative energy

is preserved if we can neglect the backreaction of the signal altogether, i.e. the probe

approximation is valid, (3.2). The combination of this bound with the requirement that

every signal is boosted enough constraints the amount of information that can be sent

through the wormhole, see (3.23).

In this section we would like to understand how the bound on information transfer

is modified in d + 1 dimensions. We expect the above picture to still be valid. Namely,

the amount of information that can be transferred is bounded by a combination of the

probe approximation and the uncertainty principle. Unfortunately, it is hard to carry out

explicitly the calculation of GJW in higher dimensions, in particular we cannot find an

expression for the negative energy. We will assume that the stress-energy tensor generated

by the non-local coupling still scales with the AdS radius,

TUU ∝
K

`d−1
, (3.68)

where we have already included K species.

To find the equivalent of the probe approximation bound (3.2) in d + 1 dimensions,

we again impose that the time delay generated by the positive energy shock is small,

∆U � 1. The relation between the time delay and the stress energy tensor of the shock

in general dimensions is still given by (3.9), where the Newton constant is now related to

the Planck length by 8πGN = `d−1
P . In terms of the total momentum carried by the signal

the condition (3.2) becomes

∆U =
GNpV

rd−1
h

� 1 . (3.69)

We can again rewrite this condition in terms of coordinate independent quantities if we

model the interaction between the signal and the negative energy as gravitational scatter-

ing. We showed that the gravitational interaction, close to the horizon of the BTZ black

hole, is localized to a thermal cell of size ` and therefore, the collision could be split in

independent events, K for each thermal cell. We demanded that each of these collision

events was well described in the probe approximation, (3.12). In higher dimensions it is

still true that the gravitational scattering is localized to a thermal cell. The limit on the

validity of the probe approximation for gravitational scattering in d+ 1 dimensions, see for

example [41], is given by

GNscell
1

`d−3
� 1 , (3.70)

Here we have set the impact parameter to be of order `. To find scell, first notice that, as

can be seen from (3.68), the negative energy particles still carry one unit of momentum

per thermal cell. To find the momentum carried by the positive energy shock per thermal
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cell, we simply divide the total momentum pV by the number of thermal cells, rd−1
h /`d−1.

Under this identifications it easy to see that (3.70) agrees with (3.69).

The uncertainty principle condition carries on to higher dimension without modifica-

tions. However, the size of the wormhole opening is now given by

∆V = GN

∫
TUU ≈ K

GN
`d−1

. (3.71)

We can combine the uncertainty principle with the probe approximation requirement to

bound the amount of information we can send through the wormhole. The computation is

identical to the one above, the final result is

N . K
(rh
`

)d−1
. (3.72)

Similarly to the lower dimensional case the amount of information we can transfer scales

with K and the number of thermal cells. We can find a bound on K recalling that in higher

dimension the UV cutoff is renormalized as follows [34, 35]

`UV & (KGN )
1

d−1 . (3.73)

Taking this into account we see that for the maximal value allowed, K ≈ `d−1/GN , we find

Nmax ≈
rd−1
h

GN
≈ SBH . (3.74)

This is the generalization to higher dimensions of our bound for information transfer in

the s-wave channel. We see that in any dimensions, for the maximum value of K allowed

by the species bound, we saturate the black-hole entropy.

We now turn to the case of localized messages presented above. For messages localized

in regions larger than the AdS scale, everything works the same as in the three dimensional

case. Instead of sending s-waves, we can send signals localized to thermal cells, K such

signals per thermal cell. This is because, as pointed out above, the gravitational propagator

in higher dimensions also decays exponentially outside the thermal cell. The behaviour at

shorter distances, instead, is qualitatively different in higher dimensions. The propagator

is not constant inside the thermal cell but acquires a singularity in the x′ → x limit

g(x− x′) ∝ 1

|x− x′|d−3
. (3.75)

Here xi are dimensionless coordinates defined similarly to (3.43). As a consequence the

gravitational field generated by signals localized on sub-AdS scales is not constant anymore

inside the thermal cell and the analysis is not as simple. In particular, it might be possible to

try and send many localized messages per thermal cell. We will not make this computation,

but we simply imagine sending many localized messages superimposed at the center of the

thermal cell. The time delay ∆U has now a non-trivial profile inside the thermal cell. For

simplicity we impose that the maximum value of this delay inside the thermal cell is small.

In principle we would need to solve(
−∂2

Ω +
r2
h

`2

)
hV V = GNr

2
hTV V , (3.76)

– 28 –



J
H
E
P
0
1
(
2
0
2
0
)
0
5
0

where ∂2
Ω is the Laplacian on the (d−1)-dimensional transverse sphere. Inside the thermal

cell we can neglect the second term in the parenthesis and approximate the sphere with a

plane. The equation reduces to the Poisson equation for a Newtonian potential in d − 1

dimensions. For radii larger than the b/`, the solution is simply given by12

hV V ≈
pV `

d−3

|x|d−3
δ(V ) . (3.77)

The maximum is given by |x| = b/`, which leads to

∆U .
GN
`2bd−3

pV � 1 . (3.78)

Similarly to the three dimensional case the signal needs to be boosted enough to overcome

the angular momentum potential barrier, see (3.58). Combining these requirements we can

find that the information transfer bound is given by13

N(b) . K

(
b

`

)d−2

. (3.79)

As compared to the three dimensional case it is indeed harder to send localized signals, for

a given value of K. We can find the minimum value of b for a given K by setting N = 1

in the above equation

b(K) & K
−1
d−2 ` . (3.80)

As we increase the number of coupling we renormalize the UV cutoff of the theory, so we

need also to check that b is larger than `UV . We have

b(K) & K
1

d−1 `P . (3.81)

Combining these two bounds we find that the minimum possible value of b is given by14

bmin =

(
`

`P

) 1
d−2

`P . (3.82)

We conclude that in high enough dimensions we can localize messages on scales smaller

than what is possible in the three dimensional case. The reason is that even though it is

harder to localize messages for a fixed value of K, in higher dimensions we can couple more

fields before the UV cutoff reaches the AdS scale.

4 Discussion and future directions

In this work, we computed bounds on the amount of information that can be transferred in

the traversable wormhole construction by Gao, Jafferis and Wall (and slight generalizations

12Notice that this equation is only valid for d > 2. Moreover, in the case d = 3 the polynomial reduces

to a logarithm, |x|3−d → log |x|.
13The correct result for d = 3 is N(b) . K b

`
1

log `/b
.

14In the d = 3 this formula is correct up to logarithmic corrections.
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of it). This computation was motivated by some seemingly problematic features of the GJW

wormhole. Namely, the perturbative nature of the non-local coupling opened the wormhole

in the bulk only at a sub-Planckian scale, making it dubious whether large amounts of

information could be actually transferred before closing the wormhole again. On the other

hand, the wormhole is built perturbatively around the eternal blackhole geometry. This

means that the entanglement entropy between the two boundaries is large and given by the

black hole entropy. From the boundary perspective, and assuming this protocol is somehow

dual to teleportation, this generates, in principle, a large amount of entropy available to

teleport information from one side to the other. The question then becomes clear: is there

a way we can use all that amount of entanglement entropy to maximize the information

transfer through the wormhole?

In section 2, we studied in detail the construction of GJW, allowing for different types

of non-local sources and computing the amount of negative energy generated by each of

them. In particular, we found a simple analytic formula for the case where the sources are

instantaneously turned on, avoiding much of the numerical computation that are usually

done in the literature.

In section 3, we found that the amount of information transferred in the standard

GJW wormhole is of order O(h rh/`). Note that this, in general, is much smaller than the

entanglement entropy, rh/GN .

Nevertheless, we found that large black holes can allow for more than one bit of

information transfer. This contrast with previous results in the literature, in particular

with [25], where it is claimed that the maximum amount of information that can be

transferred is O(1). The difference lies in that their construction only couples the s-wave

between two boundaries, while the coupling we consider is local in space and therefore

couples many angular modes. Coupling only the s-wave leads to a smaller amount of

negative energy, allowing for at most one bit of information to be transmitted, as the

authors find. Moreover the particular infinite boost limit that is taken in [25] does not

seem physically well motivated: in the infinite boost limit, the collision between the

negative energy and the signal will have an arbitrarily high center of mass energy and not

be well-described in the semiclassical regime.

We also showed that it is possible to increase the amount of bits that can go from one

boundary to the other by introducing a large number K of light fields coupled between the

two boundaries. Using a combination of bounds coming from the uncertainty principle, the

probe approximation and the existence of many species, we found that in principle it would

be possible to send N ≈ SBH bits of information. This is interesting, since it maximizes

the amount of information that can be sent, at least from the boundary teleportation

perspective.

The results on this paper rely on several assumptions and approximations of the

traversable wormhole geometry. It will be interesting to further relax these assumptions

and see whether it is possible to improve on our results. In the following, we comment on

interesting possible future directions.
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Beyond the probe approximation. Most of the results presented rely in the so-called

probe approximation, assuming that the scattering processes between the shocks are small.

This seems to be a strong restriction because it is only possible to send the maximum

possible amount of information by allowing an extraordinarily large number K of light

bulk fields, K ≈ `d−1/GN . This large number of light fields lowers the UV cutoff of the

bulk theory. Also, many holographic theories do not have a large number of light fields.

It would interesting to see if it is possible to saturate the amount of information

transferred without the need of so many fields by going beyond the probe approximation.

The calculation we presented in the multiple shocks section 3.2 is in this spirit, showing

that independently of K, we get a bound on N coming from the gluing of the multiple

shocks geometries.

One issue in going beyond the probe approximation is that the backreaction of the

signal on the geometry means that we would have to re-compute the stress tensor coming

from the coupled quantum fields, because we can no longer use the propagator in the BTZ

background in calculating the stress tensor. This was explored in [4], where it was claimed

that going beyond the probe approximation just reduces the amount of negative energy

generated, and therefore does not allow for more information transfer.

We are not fully convinced by these results for the following reason. The effect of the

backreaction is to create a time delay in the propagation across the signal. The new bulk-

to-boundary propagator can be computed in the presence of the signal. Effectively, the

signal induces a relative shift between the left and right boundary times. In the absence of

the signal, the most effective boundary-boundary coupling occurs when the left and right

boundary points are both halfway up the Penrose diagram, at tL = tR = 0, or at points

related to this by symmetry. Upon introducing the signal, the shift means that the most

effective coupling occurs when both points are in the lower half of the Penrose diagram.

However, [4] does not consider allowing the coupled boundary points to be in this region.

It would be very interesting (and probably not difficult for the authors of [4]) to extend

their analysis into this regime.

If it is in fact possible, this would be rather surprising, given that from the teleportation

picture it would seem that we would either need to couple a large number K of different

fields, or we would need to keep the coupling turned on for a long time.

To summarize: in this paper we have calculated how much information can be sent

while remaining in the probe regime, where the signal does not disturb the leading order

calculation of the negative energy due to coupled quantum fields. These probe regime

calculations and arguments are reliable. However, we do not have a persuasive bulk argu-

ment explaining why the information that can be sent is bounded by these probe regime

calculations. It seems feasible to carry the analysis beyond the probe regime in the future.

Quantum metric fluctuations. Since the wormhole is open for such a short time,

shorter than the Planck time, one might worry that quantum metric fluctuations will have

a large correction on the transmission of a semiclassical message. We postpone a more

complete discussion of these quantum fluctuations to future work. However, at least in 2+1

dimensions, we can argue that the quantum fluctuations will have a small effect. Quantum
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fluctuations include two effects: the thermofield double state includes a superposition of

different black hole masses, and the black holes can be decorated by boundary gravitons.

Due the special properties of 2+1 dimensions, all of these metrics can be thought of as

BTZ black holes, deformed arbitrarily close to the boundary by gravitons.15 In analyzing

the signal, these effects can all by combined into an uncertainty in the dimensionless time,

t/β, that the signal is emitted from the left boundary or received by the right boundary.

The effects of these perturbations are suppressed by powers of the gravitational coupling;

we believe that the quantum uncertainty is given by

∆(t/β) ≈
√
GN
`
. (4.1)

Since we are interested in sending signals whose time duration is just a bit less than the

thermal scale, these quantum corrections to the width of the signal are neglibible.

Beyond perturbative calculations. Many of the confusions that arise in the context

of GJW are due to the perturbative nature of the non-local interaction. It would be

interesting to find solutions at finite coupling and/or construct eternal wormholes in this

context. In two bulk dimensions, it is possible to create an eternal wormhole [8], but the

generalization to higher dimensions is not as straightforward — see, for instance [24].

Beyond three spacetime dimensions. The GJW construction relies heavily on the

simplicity of the BTZ correlators. In section 3.5, we provide plausible generalizations to

general dimensions of the bounds on information found on this work. It would be desirable

to find a framework in higher dimensions where these claims could be checked by explicit

calculations.

Beyond black hole horizons. A natural framework to study traversable wormholes

are horizons in de Sitter spacetimes. Due to the nature of the cosmological horizon, the

insertion of shockwaves naturally provides a mechanism for traversable wormholes. In the

context of two dimensional gravity, it is possible to glue cosmological horizons in the IR,

with an AdS boundary in the UV, and construct such shockwave solutions [42]. The nice

feature about those solutions is that they do not need the insertion of non-local, negative

energy couplings. It would be interesting to see whether they can be generalized to higher

dimensions and compare the maximum bounds on information transferred in each case.

We hope to come back to some of these ideas in a future communication.
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