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Abstract: The presence of dark matter substructure will boost the signatures of dark matter
annihilation. We review recent progress on estimates of this subhalo boost factor—a ratio of the
luminosity from annihilation in the subhalos to that originating the smooth component—based on
both numerical N-body simulations and semi-analytic modelings. Since subhalos of all the scales,
ranging from the Earth mass (as expected, e.g., the supersymmetric neutralino, a prime candidate
for cold dark matter) to galaxies or larger, give substantial contribution to the annihilation rate, it is
essential to understand subhalo properties over a large dynamic range of more than twenty orders
of magnitude in masses. Even though numerical simulations give the most accurate assessment in
resolved regimes, extrapolating the subhalo properties down in sub-grid scales comes with great
uncertainties—a straightforward extrapolation yields a very large amount of the subhalo boost factor
of &100 for galaxy-size halos. Physically motivated theoretical models based on analytic prescriptions
such as the extended Press-Schechter formalism and tidal stripping modeling, which are well tested
against the simulation results, predict a more modest boost of order unity for the galaxy-size halos.
Giving an accurate assessment of the boost factor is essential for indirect dark matter searches and
thus, having models calibrated at large ranges of host masses and redshifts, is strongly urged upon.

Keywords: halo substructure; dark matter annihilation; indirect dark matter searches; subhalo boost

1. Introduction

One of the most popular candidates for dark matter is weakly interacting massive particles
(WIMPs) [1,2]. They are motivated by beyond-the-standard-model physics such as supersymmetry [3]
or universal extra-dimensions [4], although the non-discovery of new physics at the TeV scale with the
Large Hadron Collider puts these models to serious test [5]. In addition, WIMPs can naturally explain
the relic dark matter density with thermal freezeout mechanisms, where the WIMPs following the
weak-scale physics were in chemical equilibrium until freezeout—when the expansion of the Universe
became faster than the annihilation rate [6]. Since dark matter is often the lightest particle in an
extended sector, it can self-annihilate only into the standard-model particles, which end up producing
gamma rays, charged cosmic rays, and neutrinos. Indirect detection of dark matter annihilation is
therefore a direct test of the thermal freezeout of WIMPs.

WIMPs are also a subcategory of cold dark matter (CDM), where they were nonrelativistic
when structure formation started. In the CDM framework, it is known that the structures form

Galaxies 2019, 7, 68; doi:10.3390/galaxies7030068 www.mdpi.com/journal/galaxies

http://www.mdpi.com/journal/galaxies
http://www.mdpi.com
https://orcid.org/0000-0001-6231-7693
https://orcid.org/0000-0003-3434-0794
http://www.mdpi.com/2075-4434/7/3/68?type=check_update&version=1
http://dx.doi.org/10.3390/galaxies7030068
http://www.mdpi.com/journal/galaxies


Galaxies 2019, 7, 68 2 of 30

hierarchically, from smaller to larger ones. These virialized structures are referred to as halos and they
are nearly spherically symmetric. Typical size of the smallest structure is highly model dependent.
In the case of the supersymmetric neutralino that is one of the most popular WIMP candidates,
the smallest halos tend to be of the Earth mass, 10−6M� but with very large range of possible values
of ∼10−12–10−3M� [7–14]. Smaller halos collapse at higher redshifts when the Universe was denser,
and hence they are of higher density. A larger dark matter halo today contains lots of substructures (or
subhalos) of all mass scales, which can go down to the Earth masses or even smaller and hence denser.

Since the annihilation rate depends on the dark matter density squared (and 〈ρ2〉 ≥ 〈ρ〉2),
the presence of the subhalos will boost the gamma-ray signatures from dark matter annihilation. This
subhalo boost of dark matter annihilation, in relation with the smallest-scale subhalos, has been a topic
of interest for very many years [15–50]. The main difficulty is the fact that subhalos of all the scales
ranging from the Earth mass (or even smaller) to larger masses (a significant fraction of their host’s
mass) give a substantial contribution to the annihilation rate. Covering this very large dynamic range
is challenging even with the state-of-the-art numerical simulations. In simulations of Milky-Way-size
halos (1012M�) [37,51,52], one can resolve only down to 104–105M�, and there still remains more than
ten orders of magnitude to reach.

We will review recent progress on the subhalo contribution to dark matter annihilation. (See also
Reference [53] for a review on generic processes that subhalos undergo.) We first discuss approaches
using the numerical N-body simulations and estimate of the annihilation boost factor by adoping
the results and extrapolation down to very-small-mass ranges. To complement the approach based
on simulations, we then review an analytical approach. In the CDM framework, fraction of halos
that collapse is described with the Press-Schechter formalism [54] based on spherical or ellipsoidal
collapse models. This has been further extended to accommodate collapsed regions within larger halos
(excursion set or extended Press-Schechter formalism [55]), which can be applied to address statistics
of halo substructure. More recent literature suggests that the annihilation boost factor, defined as the
luminosity due to subhalos divided by the host luminosity, is modest, ranging from order of unity to a
few tens for galaxy-size halos [35,46–50]. This relatively mild amount of the annihilation boost makes
the prospect of indirect dark matter searches less promising compared with earlier more optimistic
predictions [36,40,41,56]. We note that our focus is mainly on subhalo boost factors in extragalactic
halos. For the subhalo boosts in the Galactic halo, on the other hand, we need to assess the spatial
distribution of the subhalos too. The N-body simulations described in Section 3 can address this issue
but again are subject to resolution issues as well as the baryonic effect. See, for example, Reference [47]
for an alternative approach adopting analytical prescription.

This review is organized as follows. In Section 2, we introduce basic concepts of density profiles,
mass functions, and the annihilation boost factors of the subhalos, starting with simple formulations.
Here we make some simplifying assumptions, which are to be addressed in later sections. In Section 3,
we summarize the progress from the numerical simulations for the subhalos and the annihilation
boost factors. Section 4 presents more recent approaches based on realistic formulation than Section 2.
In Section 4.1, we first show new analytic models that predict the subhalo mass functions well in
agreement with the results from the numerical simulations for various ranges of the host masses and
redshifts, and that the annihilation boost factors are on the order of unity even for cluster-size halos.
Then, we summarize other semi-analytic approaches for computing the annihilation boost factors,
based on self-similarity (Section 4.2) and universal phase-space clustering (Section 4.3) of the subhalos.
We conclude the review in Section 5. Finally, for convenience, we summarize fitting functions for
the subhalo mass functions, and annihilation boost factors that can be applicable to nearly arbitrary
masses and redshifts in Appendix A.

2. Formulation

In this section, we introduce several important quantities such as density profiles, subhalo mass
function, and the annihilation boost factors. This section is based on a simplified analytic model, which
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in several aspects are unrealistic but sets the basis for the latter discussions according to numerical
simulations (Section 3) and more sophisticated semi-analytical models (Section 4).

2.1. Subhalo Boost Factor

The rate of dark matter annihilation is proportional to dark matter density squared, ρ2
χ, where χ

represents the dark matter particle. In the presence of substructure, ρχ is divided into two terms:

ρχ(x) = ρχ,sm(x) + ρχ,sh(x), (1)

where ρsm and ρsh represent smooth and subhalo components, respectively. (In the following, we omit
the subscript χ.) The volume average of the density squared in a host halo characterized by its
virial mass M and redshift z, which is the relevant quantity for the indirect dark matter researches,
is therefore written as

〈ρ2(x)〉M,z = 〈ρ2
sm(x)〉M,z + 〈ρ2

sh(x)〉M,z + 2〈ρsm(x)ρsh(x)〉M,z. (2)

We assume that the smooth component ρsm is characterized by the following Navarro-Frenk-White
(NFW) profile [57,58]:

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2 , (3)

where ρs is a characteristic density and rs is a scale radius. These parameters, ρs and rs, are evaluated
such that the volume integral of ρNFW yields the total halo mass M, and thus we have ρsm(r) =

(1− fsh)ρNFW(r), where fsh is defined as the mass fraction in the subhalos. The first term is then simply

〈ρ2
sm(x)〉M,z =

1
V

∫
d3xρ2

sm(r) =
4π(1− fsh)

2

3V
ρ2

s r3
s

[
1− 1

(1 + cvir)3

]
, (4)

where V = 4πr3
vir/3 is the volume of the host out to its virial radius rvir, cvir ≡ rvir/rs is the

concentration parameter. The parameters characterizing the host profile—ρs, rs, and cvir—are all
functions of M and z.1

Next, we evaluate the second term of Equation (2), 〈ρ2
sh(x)〉. We characterize each subhalo i with

the location of its center xi and mass mi. Density due to all the subhalos at a coordinate x is written as
a sum of the density profile around the seed of each subhalo, that is,

ρsh(x) =
∫

dm′
∫

d3x′∑
i

δD(m′ −mi)δ
3
D(x′ − xi)m′ush(x− x′|m′), (5)

where δN
D is the N-dimensional Dirac delta function, and ush(r|m) defines the density profile of the

subhalo with mass m and is normalized to one after the volume integral.2 We define the ensemble
average of the product of these delta functions as

dnsh(x, m)

dm
=

〈
∑

i
δD(m−mi)δ

3
D(x− xi)

〉
, (6)

1 We note, however, that the concentration cvir has a scatter, which is often characterized by a log-normal distribution, whose
mean c̄vir is the function of M and z. We will include this in the latter sections.

2 For the sake of simplicity for analytic expressions, we assume that the suhbalo mass is the only parameter characterizing its
density profile. One can introduce many more parameters to make the model more realistic.
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its volume integral over the host halo as

dNsh
dm

=
∫

d3x
dnsh(x, m)

dm
, (7)

and call both dnsh/dm and dNsh/dm the subhalo mass function. We also obtain the mass fraction in
the subhalos as

fsh(M, z) =
1
M

∫
dmm

dNsh
dm

. (8)

By multiplying Equation (5) by itself and taking both the ensemble and the volume averages,
we have

〈ρ2
sh(x)〉M,z ≡ 1

V

∫
d3x〈ρ2

sh(x)〉

=
1
V

∫
d3x

∫
dm′

∫
d3x′

∫
dm′′

∫
d3x′′m′ush(x− x′|m′)m′′ush(x− x′′|m′′)

×
〈

∑
i

δD(m′ −mi)δ
3
D(x′ − xi)∑

j
δD(m′′ −mj)δ

3
D(x′′ − xj)

〉

=
1
V

∫
d3x

∫
dm′

∫
d3x′

dnsh(x′, m′)
dm′

m′2u2
sh(x− x′|m′)

=
4π

3V

∫
dm

dNsh
dm

ρ2
s,shr3

s,sh

[
1− 1

(1 + ct,sh)3

]
, (9)

where at the last equality we adopted the NFW function for the subhalo density profile mush(r|m) with
the scale radius rs,sh, characteristic density ρs,sh, and tidal truncation radius rt,sh ≡ ct,shrs,sh beyond
which the subhalo density abruptly decreases to zero. At the third equality of Equation (9), we ignored
the term arising from j 6= i as we evaluate the quantity at one point x and assume that subhalos do not
overlap. We note, however, that such a term becomes relevant for obtaining the two-point correlation
function, or the power spectrum; see References [27,38] for more details.

We define the subhalo boost factor as the ratio of the total luminosity from dark matter
annihilation in the subhalos and that from the smooth component in the case that there is no substructure.
By comparing Equations (4) and (9), and remembering that the luminosity is proportional to the
volume integral of the density squared, the boost factor is simply written as

Bsh(M, z) =
1

Lhost,0(M, z)

∫
dm

dNsh(m|M, z)
dm

Lsh(m), (10)

where the subscript 0 shows that this is a quantity in the case of no subhalo contributions. Equation (10)
is also valid for any other spherically symmetric density profiles than the NFW.

Finally, we evaluate the last cross-correlation term in Equation (2). See also References [47,59–62].
Following a similar procedure as in Equation (9), we have

2〈ρsm(x)ρsh(x)〉M,z =
2
V

∫
d3x〈ρsm(x)ρsh(x)〉

=
2
V

∫
d3xρsm(x)

∫
dm′

∫
d3x′m′ush(x− x′|m′)dnsh(x′, m′)

dm′

≈ 2
V

∫
d3xρsm(x)

∫
dmm

dnsh(x, m)

dm
, (11)

where in the last equality, we first used the fact that the subhalo density profile is much more sharply
peaked than their spatial distribution, and take dnsh/dm out of x′ integration adopting x′ ≈ x as its
spatial variable. Second, we performed volume integral for u(x− x′|m) over x′ variable, which simply
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returns one, to reach the last expression of Equation (11). Then we assume that the spatial distribution
of the subhalos is independent of their masses:

dnsh(x, m)

dm
= Psh(x)

dNsh(m)

dm
, (12)

where Pmsh(x)d3x represents the probability of finding a subhalo in a volume element d3x around x.
With this and Equation (8), we have

2〈ρsm(x)ρsh(x)〉M,z =
2 fshM

V

∫
d3xρsm(x)Psh(x). (13)

For simplicity, we assume that the subhalos are distributed following the smooth NFW component.
In this case, we have ρsm(x) = (1− fsh)MPsh(x), and

2〈ρsm(x)ρsh(x)〉M,z =
2 fsh

1− fsh
〈ρ2

sm(x)〉 = 8π fsh(1− fsh)

3V
ρ2

s r3
s

[
1− 1

(1 + cvir)3

]
. (14)

The luminosity from the smooth component in the presence of the subhalos (Lsm) is related to the
host luminosity in the subhalos’ absence via Lsm = (1− fsh)

2Lhost,0, because the density in the smooth
component gets depleted by a factor of 1− fsh, if there are subhalos. Thus, the total luminosity from
both the smooth component and the subhalos are given by

Ltotal = Lsm + Lsh + Lcross

=
[
(1− fsh)

2 + Bsh + 2 fsh(1− fsh)
]

Lhost,0

=
(

1− f 2
sh + Bsh

)
Lhost,0 (15)

Often, Ltotal/Lhost,0 is also referred to as the subhalo boost factor in the literature. Note, however,
that we have not included the effect of sub-subhalos (and beyond) yet in this formalism. In order
to accommodate it, in the right-hand side of Equation (10), we need to include the sub-subhalo
boost to the subhalo luminosity Lsh. Thus, we replace Lsh with (1 − f 2

ssh + Bssh)Lsh, where the
subscript “ssh” represents the contribution from the sub-subhalos. If the subhalo mass fraction fsh
and the boost factor Bsh depend only on the host mass, then one can assume fssh(m) = fsh(m) and
Bssh(m) = Bsh(m), and repeat the calculations in an iterative manner. See, however, Section 4.1 for a
more realistic treatment.

2.2. Characterization of Dark Matter Halos

We shall discuss the density profile of dark matter halos that are characterized by the virial radius
rvir, the scale radius rs, and the characteristic density ρs. The halo is virialized when a mean density
within a region reaches some critical value times the critical density of the Universe at that time:
∆vir(z)ρc(z), where ρc(z) = ρc,0[Ωm(1 + z)3 + ΩΛ], ρc,0 = 3H2

0 /(8πG) is the present critical density,
H0 = 100h km s−1 Mpc−1 is the Hubble constant, Ωm and ΩΛ are the density parameters for matter
and the cosmological constant, respectively. In CDM cosmology with the cosmological constant, this
critical value is given as [63]

∆vir(z) = 18π2 + 82d(z)− 39d2(z), (16)

where d(z) = Ωm(1 + z)3/[Ωm(1 + z)3 + ΩΛ]− 1. Given the virial mass M and the redshift z of the
halo of interest, rvir is therefore obtained by solving

M =
4π

3
∆vir(z)ρc(z)r3

vir. (17)
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Alternatively, one can define M200 and r200 via

M200 =
4π

3
200ρc(z)r3

200. (18)

M200 is often adopted to define halo masses in N-body simulations.
The concentration parameter cvir ≡ rvir/rs (or c200 ≡ r200/rs) has been studied with numerical

simulations and found to be a function of M and z. It follows a log-normal distribution with the mean
of c̄vir(M, z) (e.g., Reference [64]) and the standard deviation of σlog c ≈ 0.13 [65]. The mean c̄vir has
been calibrated at both large (galaxies, clusters) and very small (of Earth-mass size) halos, and found
to decreases as a function of M and z. Once cvir is drawn from the distribution, it is used to obtain
rs = rvir/cvir. Finally, ρs is obtained through the condition of having mass M within rvir:

M =
∫ rvir

0
dr4πr2ρ(r) = 4πρsr3

s f (cvir), (19)

f (x) = ln(1 + x)− x
1 + x

, (20)

where the second equality of Equation (19) holds in the case of the NFW profile.
In the case of the subhalos, the procedures above cannot be adopted. This is because they are

subject to tidal effects from the host, which strip masses away from the subhalos. However, the regions
well inside the scale radius rs—because of strong self-gravity—is resilient against the tidal force and
hence the annihilation rate hardly changes. These tidal processes, therefore, make the subhalos more
concentrated and hence effectively brighter compared with the field halos of the same mass. In many
analytical studies in the literature [29,32,44,66], however, the effect of tidal stripping was ignored and
the concentration-mass relation of the field halos was adopted, which resulted in underestimate of the
annihilation boost factor. This has been pointed out by Reference Bartels and Ando [46] and will be
discussed in Section 4 (see also References [48,49]).

3. Estimates of Annihilation Boost with Numerical Simulations

In order to assess the annihilation boosts, one has to have reasonably good ideas on the density
profiles ρ(r), the concentration-mass relation,3 and the subhalo mass function. Cosmological N-body
simulations have been a powerful tool for probing all of them because once a halo collapses from
initial density fluctuations, it evolves under a strongly nonlinear environment. They have indeed
demonstrated that there are a large amount of surviving subhalos (see Figure 1) in halos and halos
have cuspy density profiles.

3 The concentration-mass relation is defined as the average concentration parameter as a function of halo mass.
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Figure 1. Dark matter distribution of a Milky-Way-size halo taken from a high-resolution cosmological
N-body simulation [67].

3.1. Subhalo Abundance

Cosmological N-body simulations predict that there are many surviving subhalos in host halos as
a consequence of hierarchical structure formation. Klypin et al. [68] and Moore et al. [69] performed
high-resolution cosmological N-body simulations for the formation and evolution of galaxy-scale
halos. They demonstrated that too many subhalos existed in simulated halos in comparison with the
number of observed dwarf galaxies in the Local Group. This discrepancy is known as the “missing
satellite problem” that has been investigated by a number of follow-up simulation studies (e.g.,
References [70–72]). Even though it triggered many studies attempting to reduce small-scale structures
by imposing other non-CDM candidates such as warm dark matter [73] and self-interacting dark
matter [74], it is also possible to solve it with standard baryonic physics including early reionization [75]
and self-regulation of star formation in low-mass halos [76–79]. Hence, it is no longer regarded as a
serious problem of the CDM model.

These studies suggest a large number of “dark satellites” exist in halos, which do not contain
optically visible components such as gases and stars. The population of dark satellites is more
abundant in host halos than visible satellite galaxies and could enhance annihilation boosts significantly.
To estimate subhalo boosts to annihilation signals accurately, understanding abundance of subhalos as
well as their density structure is crucial.

A number of studies have calculated the subhalo mass function in halos using cosmological
N-body simulations (e.g., References [29,37,51,80]), indicating that it obeys a power law

dNsh
dm

∝ m−α, (21)

where the slope −α ranges from −2 to −1.8, although no consensus has yet emerged. There is also a
large halo-to-halo scatter for the subhalo abundances [80,81]. The subhalo abundance at a fixed mass
halo depends on their accretion history. Namely, it increases with the mass of halo and decreases with
the halo concentration (e.g., References [65,80–87]).

Due to the limitation of currently available computational resources, simulations cannot resolve
the full hierarchy of subhalos from the smallest to the most massive scales, which ranges more than
twenty orders of magnitude in the mass. Even in the highest resolution simulations for galaxy-scale
halos, the smallest resolved subhalo mass is around ∼105M� [37,51], which is still more than ten
orders of magnitude more massive than that of the cutoff scale. To study subhalo boosts to annihilation
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signals, a single-power-law subhalo mass function, Equation (21), is traditionally extrapolated beyond
the resolution.

Another approach is to use some analytical models (e.g., References [46,50,85,88–90]), which can
shed light on the resolution issue. Hiroshima et al. [50] developed a model of the subhalo evolution
calibrated with cosmological N-body simulations and found that the power-law index of the subhalo
mass function is in a rather narrow range between−2 and−1.8 with a vast range of subhalo mass from
z = 0 to 5. This picture is more or less consistent with the assumption of the subhalo mass function of
the single power law. More details on the analytic approach are discussed in the following section.

Note that the annihilation boost factors strongly depend on the underlying subhalo mass
function [44,45,48]. Assuming that ∼10% of the halo mass is within subhalos, the difference of
the boost factors in the Milky-Way-size halo could be as large as a factor of ten between the slope of
−α = −2 and −1.9 [44]. More extensive simulations are needed to obtain the subhalo mass function in
wide mass ranges and also to compare with analytic models [50].

3.2. Density Profile of Dark Matter Halos

By the end of the 1980’s, it was already known in both analytic [91] and numerical [92] studies
that the density profiles were described by power-law functions. Reference Dubinski and Carlberg [93]
studied the density profiles of dark matter halos using cosmological N-body simulations and argued
that the profiles were well described by a Hernquist model [94].

Navarro et al. [57,58] simulated the structures of CDM halos systematically with masses in the
range of galaxy to rich cluster size. They claimed that the radial density profile ρ(r) could be described
by a simple universal profile, Equation (3), the so-called NFW profile. They also claimed that the shape
of the profile was universal, independent of cosmological parameters, the primordial power spectrum,
and the halo mass. Today, the NFW profile has been extensively used to model halos analytically for
various purposes.

After the work of NFW, A number of subsequent studies (e.g., References [95,96]) performed
simulations with better mass resolutions. Whereas previous studies [57,58] used only∼10,000 particles,
they used ∼1,000,000 particles for a halo, and found that the slope was steeper than −1. In the
original results of the NFW, the numerical two-body relaxation effects due to the small number
of particles affected the structures of central regions and led to form a shallower cusp. Higher
resolution simulations could resolve more inner structures of halos [97–104]. In most cases, the slope
of density became shallower as the radius went inward. A different approach was adopted by Jing
and Suto [105], who used the triaxial model for describing the central structures. Moore et al. [96] and
Diemand et al. [106] considered a more general profile,

ρ(r) =
ρs

(r/rs)γ
[
1 + (r/rs)

η](β−γ)/η
. (22)

If β = 3, γ = 1, and η = 1, the profile is the same as NFW.
More recent studies [37,51,52] archived one of the highest resolution dark matter only simulations

for galaxy-size halos with mass resolution better than 104M�. Their results are in agreement in that
the density slope cannot be described by a single power law and the slope is around −1 at the radius
∼0.001r200. Besides, Springel et al. [37] and Stadel et al. [52] fitted the density using the Einasto
profile [107]

ρ(r) = ρs exp
{
− 2

αE

[(
r
rs

)αE

− 1
]}

, (23)

where αE is a free parameter. Note that rs and ρs are not the same parameters as those in Equation (3).
Although we can obtain the density profile down to the radius ∼0.001r200, the result does not

converge to a single power law. In addition, the physical origin of this flattening towards the center is
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not understood at all. However, the importance of understanding the central structures is increasing.
In particular, if we would like to detect signals from dark matter annihilation, the central structure of
the dark matter halo is essential.

The most important parameter to describe the halo profile is the concentration parameter.
Assuming the universal NFW profile regardless of the halo mass, the concentration-mass relation gives
the annihilation rate as a function of the halo mass. Combined with assumed subhalo mass functions,
they enable to estimate the annihilation boost factor. The concentration-mass relation of halos has
been widely investigated and a number of fitting functions has been suggested [44,45,64,65,108–117].
The concentration shows a weak dependence on the halo mass. The average concentration at fixed halo
mass becomes smaller with increasing halo mass because the central density is tightly correlated with
the cosmic density at the halo formation epoch, reflecting the hierarchical structure formation [108,118].

Traditionally, the concentration-mass relation has been calibrated with cosmological N-body
simulations for relatively massive halos (1010M� . M200 . 1015M�). Because the mass dependence
of the concentration is weak for these mass halos, it is found that a single power-law function,
c ∝ M−αc

200 , with slope αc in the range of 0.08 to 0.13, gives reasonable fits [108,110–112,114].
However, the dependence gradually becomes weaker toward less massive halos, and a clear flattening
emerges [44,45,64,65,117,119,120], ruling out single power-law concentration-mass relation for the full
hierarchy of subhalos.

These fitting functions are valid for the NFW density profile. More generally, the concentration
can be defined independently of the density profile and the subhalo mass as (e.g., [37,48,121])

cV =
ρ̄(< rmax)

ρc
= 2

(
Vmax

H0rmax

)2
, (24)

where rmax is the radius at which the circular velocity reaches its maximum value Vmax. This definition
is also used to estimate the annihilation boost factor (e.g., [48]).

Even with the highest resolution simulations for galaxy-scale halos, the smallest resolved subhalo
mass is around ∼105M� [37,51]. To estimate the annihilation boost from the full hierarchy of subhalos,
we have to make some assumption of the concentration at unresolved scales, which has a significant
impact on the result. One approach is extrapolating single power-law fittings to the smallest scale
beyond the mass range calibrated with simulations, although the literature including the above
cautions the risk of such extrapolations. With such extrapolations, the concentration of the smallest
halo can reach more than 100, substantially enhancing the annihilation boost. A number of studies
have computed the concentration in such a manner and the resulting boost factor is a few hundreds
for Milky-Way halos [36], and ∼1000 for cluster-scale halos [40,41,56].

Another approach is adopting analytic models or fitting functions that can reproduce flattening
of the concentration-mass relation (e.g., [44,64,115,116]). In contrast to using the power-law
extrapolation, the resulting boost factor is rather modest, three to a few tens [44,45,47] for Milky-Way
halo, and less than ∼100 for cluster-scale halos [44,45,56].

The density profile at fixed halo mass shows a significant halo-to-halo scatter [122], possibly
making a big impact on the annihilation signal. Inferring from the cosmological Millennium
simulation [123], the effect of this non-universality on the annihilation flux is a factor of ∼3 [122],
which indicates that the uncertainty of the concentration-mass relation for low-mass halos has a more
significant effect.

These discussions are based on the universal density profile and the concentration-mass relation
for field halos. There is a concern that whether or not we can apply the universal NFW profile for the
full hierarchy of halos and subhalos beyond the range that cosmological simulations have been able to
tackle. We discuss this issue in Section 3.4. More importantly, we have to use the concentration-mass
relation for subhalos, not field halos. We also discuss this issue in the following section.
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3.3. Density Profile of Dark Matter Subhalos

Density structures of subhalos are more challenging to be investigated than field halos because it
requires much higher resolutions. Therefore, to evaluate the subhalo contribution to the annihilation
signals, the universal NFW profile and the concentration-mass relation for field halos have been
historically assumed to be the same for subhalos as a first approximation, although the underlying
assumption is not well studied. Complex physical mechanisms relevant to subhalos could change their
original density profiles, such as the tidal effect from host halos, the encounter with other subhalos,
and denser environment than the field.

Cosmological simulations have been suggesting that the density profile of subhalos is cuspy in
analogy with field halos. On the other hand, the average concentration of subhalos tend to be higher
than those of field halos (e.g., [37,48,97,108,121]). For example, Bullock et al. [108] showed that subhalos
and halos tend to be more concentrated in dense environments than in the field, and the scatter of
concentrations is larger. This result was taken into account to estimate the gamma-ray flux from dark
matter annihilation (e.g., [124]). Diemand et al. [121] showed that outer regions of subhalos tend to be
tidally stripped by host halos, which gives higher concentrations. These results suggest that both earlier
formation of halos/subhalos in dense environments and tidal effect are responsible for the increased
concentration. Pieri et al. [125] derived the concentration-mass relation of subhalos in Milky-Way-size
halos by analyzing high resolution cosmological simulations [37,51] and showed that it depends on
the location of subhalos relative to host halos. Subhalos have considerably large concentrations near
the center than at the edge of host halos. Moliné et al. [48] quantified the concentration of subhalos
in Milky-Way-size halos as a function of not only subhalo mass but distance from host halo center,
and found a factor 2–3 enhancement of the boost factor compared to the estimation that relied on the
concentration-mass relation of field halos (see also Figure 2).
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Figure 2. The mass-concentraion relation of halos and subhalos at z = 0, derived from high-resolution
cosmological N-body simulations, Phi-0 [67], Phi-1, ν2GC-H2, and ν2GC-S [50,126,127] (green, orange,
purple, and red, respectively). Dashed and dotted curves are fitting formulae proposed by [48,64],
respectively. The dependence of the distance to host halo center gives three different dashed curves.

As shown in the literature in the above, higher concentrations of subhalos than field halos could
have a big impact on the annihilation boost. However, van den Bosch and Ogiya [128] argued that
subhalos even in state-of-the-art cosmological simulations suffer from excessive mass loss and artificial
tidal disruption due to inadequately large force softening (see also [129,130]). If that is the case, it might
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be possible that subhalos have larger concentrations than those ever considered. These issues should
be addressed by extremely high resolution cosmological N-body simulations and analytic models
(e.g., [50]).

3.4. Density Profile of Dark Matter Halos Near Cutoff Scales

In the CDM framework, smaller halos collapse first, and then they merge into more massive halos.
Since the smallest halos contain no subhalos, their central structures might entirely differ from that
observed in more massive halos. If the dark matter particle is the lightest supersymmetric particle
such as the neutralino, the smallest halo mass is predicted to be around the Earth mass [11,12,14].
Such halos are sometimes referred to as “microhalos.”

The density profiles of the microhalos have been investigated using cosmological N-body
simulations [45,66,131–133]. Diemand et al. [131] simulated the formation of Earth-mass microhalos
by means of cosmological N-body simulation. They claimed that a single power law could describe
the density profiles of microhalos, ρ(r) ∝ r−γ, with a slope γ in the range of 1.5 to 2. As a consequence
of such steep slope, most microhalos could not be completely destructed by the Galactic tide and
encounters with stars, even in the Galactic center.

Ishiyama et al. [132] have performed N-body simulations with much higher resolution and
showed that the density profile of microhalos had steeper cusps than the NFW profile. The central
density scales as ρ(r) ∝ r−1.5, which is supported by follow-up cosmological simulations [45,66,133]
and cold-collapse simulations [134]. Ishiyama [45] has also shown that the cusp slope gradually
becomes shallower with increasing halo mass. Major merger of halos is responsible for the flattening,
indicating that the process of violent relaxation plays a key role (see also [133,135]). Similar density
structures are observed in recent simulations of ultracompact minihalos [136–138] and warm dark
matter [139]. The self-similar gravitational collapse models (e.g., [91,140–143]) can also give hints to
understand the main physical origin of such steeper cusps, because the smallest halos do not contain
smaller density fluctuations by definition and collapse from initially overdense patches.

Such microhalos with steep cusps can cause a significant effect on indirect dark matter searches.
Ishiyama et al. [132] argued that the central parts of microhalos could survive against the encounters
with stars except in the very Galactic center. The nearest microhalos could be observable via
gamma rays from dark matter annihilation, with usually large proper motions of ∼0.2 deg yr−1,
which are, however, stringently constrained with the diffuse gamma-ray backgrond [33]. Gravitational
perturbations to the millisecond pulsars might be detectable with future observations by pulsar timing
arrays [132,144–146]. Anderhalden and Diemand [66] have assumed a transition from the NFW to
steeper cusps at scales corresponding to ∼100 times more massive than the cutoff and have found
that such profiles can enhance moderately the annihilation boost of a Milky-Way-size halo by 5–12%.
They also have found that concentrations of microhalos are consistent with a toy model proposed by
Bullock et al. [108].

Ishiyama [45] showed that the steeper inner cusps of halos in the smallest scale and near the cutoff
scale could increase the annihilation rate of a Milky-Way-size halo by 12–67%, compared with estimates
adopting the universal NFW profile and an empirical concentration-mass relation [44] (see Figure 3).
The value, however, depends strongly on the adopted subhalo mass function and concentration
model. They have found that concentrations near the free-streaming scale show little dependence
on the halo mass and corresponding conventional NFW concentrations are 60–70, consistent with
the picture that the mass dependence is gradually becoming weaker toward less massive halos
(e.g., [44,45,64,65,117,119]), ruling out a single power-law concentration-mass relation.

As shown in the literature above, steep density cusps of halos near the free-streaming scale have
an impact on the annihilation boost. However, these studies rely on the density structure seen in field
halos, not subhalos. It is also important to quantify the structures of subhalos near the free-streaming
scale by larger simulations. Another concern is that the cutoff in the matter power spectrum should
suppress the number of subhalos near the free-streaming scale, which should weaken the annihilation
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signal. However, the shape of the mass function near the free-streaming scale is not understood well
for the neutralino dark matter. The structure of subhalos and the subhalo mass function near the
free-streaming scale should be explored by larger volume cosmological N-body simulations.
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Figure 3. Boost factor as a function of halo virial mass. The data used in six thick curves are taken
from Ishiyama [45]. Two subhalo mass functions, dn/dm = A/Mvir(m/Mvir)

−ξ , are used (A = 0.012,
ξ = 2.0, and A = 0.030, ξ = 1.9 [44,48]). Thick dotted curves are for the NFW profile, where the
empirical concentration-mass relation of field halos [44] are assumed for the full hierarchy of subhalos.
Including the effect of steeper cusp of halos near the free streaming scale gives thick dashed curves.
Besides, thick solid curves are results of incorporating the concentration of these halos derived from
cosmological simulations [45]. For comparison, boost factors obtained in other studies are shown with
thin dashed curves [48] (two subhalo mass functions are used), thin solid curves [41], and crosses [36,51].

4. Semi-Analytic Approaches

4.1. Models Based on Structure Formation and Tidal Evolution

In an analytical approach in Section 2, the subhalo luminosity Lsh is characterized with the mass
of the subhalo and the redshift of interest; see, for example, Equation (10). The mass and redshift,
however, are not the only quantities that fully characterize the subhalo properties. Indeed, they depend
on the accretion history and mass loss after they fall onto their host halo, that is, two subhalos that have
the identical mass could have formed with different masses and accreted at different redshifts, evolved
down to z = 0 reaching the same mass. Bartels and Ando [46] and Hiroshima et al. [50] developed an
analytical prescription to take these effects into account, which we follow in this section.

A subhalo is characterized with its mass and redshift when it accreted onto its host, (ma, za). The
concentration parameter ca is drawn from the log-normal distribution with mean c̄a(ma, za) [64] and
σlog c = 0.13 [65]. Since the subhalo was a field halo when it just accreted, one can use the relations in
Section 2.2 to obtain rs,a and ρs,a for the NFW profile.

After the accretion, the subhalos evolve by losing their mass through tidal forces. The mass-loss
rate is typically characterized by a dynamical timascale at the redshift z,

τdyn(z) = 1.628h−1 Gyr
[

∆vir(z)
178

]1/2 [H(z)
H0

]−1

, (25)
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as follows [90]:

ṁ(z) = −A
m(z)

τdyn(z)

[
m(z)
M(z)

]ζ

, (26)

where H(z) = H0[Ωm(1 + z)3 + ΩΛ]
1/2, m(z) and M(z) are the subhalo and host-halo masses at z,

respectively. Following Jiang and van den Bosch [90], Hiroshima et al. [50] adopted simple Monte Carlo
simulations to estimate ṁ based on the assumption that the subhalo loses all the masses beyond its
tidal radius in one complete orbit at its peri-center passage. While Jiang and van den Bosch [90] found
A = 0.81 and ζ = 0.04, Hiroshima et al. [50] extended the mass and redshift ranges of applicability
and found that these parameters are weakly dependent on both M and z:

log A =

{
−0.0003 log

[
M(z)
M�

]
+ 0.02

}
z + 0.011 log

[
M(z)
M�

]
− 0.354, (27)

ζ =

{
0.00012 log

[
M(z)
M�

]
+ 0.0033

}
z + 0.0011 log

[
M(z)
M�

]
+ 0.026. (28)

One can solve Equation (26) to obtain the subhalo mass at a redshift of interest z, m(z), with a
boundary condition of m(za) = ma. For the evolution of the host, M(z), Hiroshima et al. [50] adopted
a fitting formula given by Correa et al. [147].

The subhalo density profile after accretion is also well described with the NFW profile with a
sharp truncation at rt:

ρ(r) =

{
ρsr3

s /[r(r + rs)]2, for r < rt,
0, for r ≥ rt.

(29)

This is indeed a good approximation found in the simulations [37]. In addition to rt,
Peñarrubia et al. [129] found that the internal structure changes. If the inner profile is ∝ r−1 just
like NFW, the maximum circular velocty Vmax and its corresponding radius rmax evolve as

Vmax(z)
Vmax,a

=
20.4[m(z)/ma]0.3

[1 + m(z)/ma]0.4 , (30)

rmax(z)
rmax,0

=
2−0.3[m(z)/ma]0.4

[1 + m(z)/ma]−0.3 , (31)

respectively. After computing Vmax and rmax at z, one can convert them to ρs and rs through

rs =
rmax

2.163
, (32)

ρs =
4.625
4πG

(
Vmax

rs

)2
, (33)

which are valid for the NFW profile. Finally by solving the condition

m(z) =
∫ rt

0
dr4πr2ρ(r) = 4πρsr3

s f (rt/rs), (34)

the truncation radius rt is obtained. Hiroshima et al. [50] omitted subhalos with rt < 0.77rs from the
subsequent calculations assuming that they were tidally disrupted [148]. This criterion, however, might
be a numerical artifact [130]. Either case, Hiroshima et al. [50] checked that whether one implements
this condition or not did not have impact on the results of, for example, subhalo mass functions.

Thus, given (ma, za, ca), one can obtain all the subhalo parameters after the evolution, (m, rs, ρs, rt),
in a deterministic manner. The differential number of subhalos accreted onto a host with a mass ma

and at redshift za, d2Nsh/(dmadza), is given by the excursion set or the extended Press-Schechter
formalism [55]. Especially Yang et al. [89] obtained analytical formulation for the distribution
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that provides good fit to the numerical simulation data over a large range of m/M and z.
Hiroshima et al. [50] adopted their model III.

The subhalo mass function is obtained as

dNsh(m|M, z)
dm

=
∫

dma

∫
dza

d2Nsh
dmadza

∫
dcaP(ca|ma, za)δ(m−m(z|ma, za, ca)), (35)

where P(ca|ma, za) is the probability distrbution for ca given ma and za, for which
Hiroshima et al. [50] adopted the log-normal distribution with the mean c̄a(ma, za) [64] and the
standard deviation σlog ca = 0.13 [65]. We show the subhalo mass functions obtained with Equation (35)
for various values of M and z in Figure 4, where comparison is made with simulation results of similar
host halos. Halos and subhalos formed in these simulations were identified with ROCKSTAR phase
space halo finder [149]. The bound mass is used as the subhalo mass, which nearly corresponds to the
tidal mass [48]. For all these halos, one can see remarkable agreement between the analytic model
and the corresponding simulation results in resolved regimes. Successfully reproducing behaviors at
resolved regimes, this analytic model is able to make reliable predictions of the subhalo mass functions
below resolutions of the numerical simulations, without relying on extrapolating a single power-law
functions, from which most of the previous studies in the literature had to suffer. The subhalo mass
fraction is then obtained as

fsh(M, z) =
1
M

∫
dmm

dNsh(m|M, z)
dm

=
1
M

∫
dma

∫
dza

d2Nsh
dmadza

∫
dcaP(ca|ma, za)m(z|ma, za, ca), (36)

and is shown in Figure 4 (bottom right) for various values of redshifts. The subhalo mass fraction
is found to increase as a function of M and z. At higher redshifts, since there is shorter time for the
subhalos to experience tidal mass loss, fsh is larger. Again, a good agreement in fsh is found between
the analytic model and the simulation results by Giocoli et al. [86].

The annihilation boost factor is then

B(0)
sh (M, z) =

1
Lhost,0(M, z)

∫
dma

∫
dza

d2Nsh
dmadza

∫
dcaP(ca|ma, za)L(0)

sh (ma, za, ca|M, z), (37)

which is to be compared with Equation (10) that was derived with a simpler (and unrealistic) discussion.
The superscript (0) represents the quantity in the absense of sub-subhalos and beyond. The subhalo
luminosity, L(0)

sh (ma, za, ca|M, z), is proportional to the volume integral of density squared ρ2
sh(r) out to

the truncation radius,

L(0)
sh (ma, za, ca|M, z) ∝

∫
d3xρ2

sh(x) =
4π

3
ρ2

s,shr3
s,sh

[
1− 1

(1 + rt,sh/rs,sh)3

]
, (38)

where ρs,sh, rs,sh and rt,sh are functions of (ma, za, ca) as well as M and z.
Then, the effect of subn-subhalos (for n ≥ 1) can be estimated iteratively. At nth iteraction, when

a subhalo accreted onto its host at za with ma, it is assigned a sub-subhalo boost factor B(n−1)
sh (ma, za).

After the accretion, the outer region of the subhalo is stripped away by the tidal force and thus
all the sub-subhalos within this stripped region will disappear, reducing the sub-subhalo boost
accordingly. Hiroshima et al. [50] assumed that the sub-subhalos were distributed within the subhalo
following nssh(r) ∝ [1+ (r/rs)2]−3/2. The luminosity due to sub-subhalos within a radius r is therefore
proportional to their enclosed number

Nssh(< r|rs) =
∫ r

0
dr′4πr′2nssh(r′) ∝ r3

s

[
sinh−1

(
r
rs

)
− r√

r2 + r2
s

]
, (39)
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and it gets suppressed by a factor of Nssh(< rt|rs)/Nssh(< rvir|rs,a) due to the tidal stripping.4

The luminosity due to the smooth component also decreases as L(0)
sh (< rt|ρs, rs)/L(0)

sh (<

rvir|ρs,a, rs,a), where

L(0)
sh (< r|ρs, rs) ∝ ρ2

s r3
s

[
1− 1

(1 + r/rs)3

]
. (40)
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Figure 4. Subhalo mass function for galaxy (M200 = 1.8 × 1012 M�) and cluster (M200 = 5.9 ×
1014 M�) halos at z = 0 (top left), halos with 2.3 × 1012 M� at z = 2 and 4.7 × 1011 M� at z = 4
both of which would evolve to M200 = 1013 M� at z = 0 (top right) and smaller halos of M200 =

106 M� and 107 M� at z = 5 (bottom left). Results of the analytic models by Hiroshima et al. [50]
are compared with those from the numerical simulations of similar halos and other fitting functions:
Springel et al. [37], Diemand et al. [150] (top left), ν2GC H2 [126,127], Giocoli et al. [86] (top right)
and Phi-2 (Ishiyama et al., in preparation; bottom left). The bottom right panel shows the subhalo mass
fraction fsh as a function of the host mass M200 for various values of redshift z. The thin solid curve is
for z = 0 but with lower mass threshold of 1.73× 1010h−1 M� to be compared with Giocoli et al. [86]
results shown as the squares.

Thus the sub-subhalo boost after the nth iteration, B(n)
ssh is obtained by

B(n)
ssh(ma, za, ca|M, z) = B(n−1)

sh (ma, za)
Nssh(< rt|rs)/Nssh(< rvir|rs,a)

L(0)
sh (< rt|ρs, rs)/L(0)

sh (< rvir|ρs,a, rs,a)
. (41)

4 We note that in estimating the effect of subn-subhalos in the boost factors, Reference Hiroshima et al. [50] ignored the
changes of ρs and rs and hence did not include the factor of r3

s in Equation (39) and ρsr3
s in Equation (40). In addition,

in Equation (43), they multiplied L(0)
sh by a factor of 1 + B(n)

ssh instead of 1− f 2
ssh + B(n)

ssh . We correct for all these effects in
this review.
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Similarly, the sub-subhalo mass fraction fssh is obtained by

fssh(ma, za, ca|M, z) = fsh(ma, za)
Nssh(< rt|rs)/Nssh(< rvir|rs,a)

msm(< rt|ρs, rs)/msm(< rvir|ρs,a, rs,a)
, (42)

where fsh(ma, za) is obtained with Equations (36) and msm(< r|ρs, rs) ∝ ρsr3
s f (r/rs) is the enclosed

mass within r of the smooth component of the subhalo. The subhalo boost factor after nth iteration
is obtained with Equation (37) by replacing L(0)

sh with [1 − f 2
ssh + B(n)

ssh ]L
(0)
sh [see discussions below

Equation (15)]:

B(n)
sh (M, z) =

1
Lhost,0(M, z)

∫
dma

∫
dza

d2Nsh
dmadza

∫
dcaP(ca|ma, za)

×
[
1− f 2

ssh(ma, za, ca|M, z) + B(n)
ssh(ma, za, ca|M, z)

]
L(0)

sh (ma, za, ca|M, z). (43)

The host luminosity in the absence of the subhalos Lhost,0(M, z) is defined by marginalizing over
the concentration parameter cvir:

Lhost,0(M, z) ∝
4π

3

∫
dcvirP(cvir|M, z)ρ2

s (M, z, cvir)r3
s (M, z, cvir)

[
1− 1

(1 + cvir)3

]
. (44)

with the log-normal distribution P(cvir|M, z).
Figure 5 shows the subhalo boost factors Bsh as a function of the host mass M at various redshifts

z (top left). The boost factors are on the order of unity, while it can be as larger as ∼5 for cluster-size
halos. It is also noted that they are larger at higher redshifts, because the subhalos have less time to
be disrupted. The top right panel of Figure 5 shows the effect of subn-subhalos, which is saturated
after the second iteration. The contribution to the boost factors due to sub-subhalos and beyond is
.10% for the hosts with Mhost ≥ 1013M�. The bottom left panel of Figure 5 shows the luminosity ratio
Ltotal/Lhost,0 = 1 − f 2

sh + Bsh (Equation (15)) as a function of the host masses for various values
of the redshifts. The bottom right panel of Figure 5 shows comparison with the results of the
other work [41,44,48]. We note that the analytic models do not rely on the subhalo mass function
prepared separately, as the models can provide them in a self-consistent manner. The resulting boost
factors are, however, found to be more modest than the previous results. This is mainly because the
subhalo mass function adopted in the literature is larger than the predictions of the analytic models.
However, they might be larger because of halo-to-halo variance. See discrepancy between predictions
of the subhalo mass function for the 1.8× 1012M� halo by Hiroshima et al. [50] and the result of
Springel et al. [37] shown in the top left panel of Figure 4.

Finally, for convenience of the reader who might be interested in using the results without going
into details of the formalism, we provide fitting functions for both the subhalo mass functions and the
annihilation boost factors. They are summarized in Appendix A.
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Figure 5. The subhalo boost factor Bsh as a function of the host mass M200 for various values of redshift
z (top left) based on the analytic models by Hiroshima et al. [50]. The effect of subn-subhalos, up to
n = 3, is shown in the right panel in the case of z = 0. Note that the three curves except for n = 0
overlap with each other. The bottom left panel shows the ratio between the total luminosity including
the subhalo boost and the luminosity in absence of subhalos, Ltotal/Lhost,0 = 1− f 2

sh + Bsh. The bottom
right panel shows comparison of Bsh between several models at z = 0: G12 [41], SC14 [44] and M17 [48]
are based on N-body calculations while H18 [50] is on analytic calculations. The subhalo mass function
for the N-body results is assumed to be dNsh/dm ∝ m−α.

4.2. Models for Self-Similar Subhalos

Assuming a self-similarity of the subhalos, Kamionkowski and Koushiappas [35] developed a fully
analytic formulation for the probability distribution function of the dark matter density, P(ρ). Then
Kamionkowski et al. [39] applied the formulation to the result of cosmological N-body simulations,
to obtain the fitting function for the Galactic local boost factor at Galactocentric radius r:

Bsh(r) = fsm(r)eδ2
f + [1− fsm(r)]

1 + αK
1− αK

[(
ρmax

ρχ(r)

)1−αK

− 1

]
, (45)

where fsm(r) is the volume fraction occupied by the smooth component and ρmax is the
highest dark matter subhalo density. Through the calibration with the numerical simulations,
Kamionkowski et al. [39] found δ f = 0.2, αK = 0 and that the subhalo fraction was given by

1− fsm(r) = κ

[
ρχ(r)

ρχ(100 kpc)

]−0.26

, (46)
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where κ = 0.007. Fornasa et al. [42] then suggested a larger value of κ = 0.15–0.2 to obtain a larger
boost consistent with earlier work [36,40,41]. The maximum subhalo density ρmax is estimated as
ρmax = [c3/ f (c)/12]200ρc(z f ), where c and z f are the concentration parameter and collapse redshift
of the smallest halos. Kamionkowski et al. [39] adopted c = 3.5 and z f = 40 and ρmax = 80 GeV cm−3.
On the other hand, Ng et al. [43] obtained a smaller ρmax ≈ 20 GeV cm−3 even with a very small cutoff
masses of Mmin = 10−12M� Within the virial radius of the Milky-Way halo, the subhalo boost factor
for dark matter annihilation is found to be no greater than ∼10 [39].

4.3. Universal Clustering of Dark Matter in Phase Space

Zavala and Afshordi [49] investigated the behavior of dark matter particles that belong to the halo
substructure in the phase space of distance and velocity. Reconstructing the phase-space distribution
using the Aquarius numerical simulations [37], they found universality of the coarse-grained
phase-space distribution ranging from dwarfs to clusters of galaxies. They developed physically
motivated models based on the stable clustering hypothesis, spherical collapses and the tidal stripping
of the subhalos and applied to the obtained phase-space distribution data from the simulations to
find a good agreement. Then, they computed the nonlinear matter power spectrum based on the
halo model [151] down to very small free-streaming cutoff scales. Based on the power spectrum,
they obtained the subhalo boost factor greater than ∼30–100 for the Milky-Way size halos, which is
significantly larger than the values obtained with other analytic work [39,46,50]. This discrepancy
might come from the treatment at very small scales, where it is very hard to calibrate the analytic
models against the results of the numerical simulations.

5. Conclusions

It is established that dark matter halos are made up with lots of substructures. Especially in the
cold dark matter scenario, small structures form first and merge and accrete to create larger halos. If the
dark matter is made of weakly interacting massive particles such as the supersymmetric neutralino,
the smallest halos can be as light as or even lighter than the Earth. The rate of dark matter annihilation
and hence its signatures such as gamma-ray fluxes are proportional to dark matter density squared
and therefore, having small-scale “clumpy” subhalos will boost the signals.

It is, however, of an extraordinary challenge to estimate this subhalo boost factor, that is, the ratio
of luminosity from dark matter annihilation in the subhalos to that in the smoothly distributed main
component. This is mainly because subhalos of all the mass scales ranging from Earth to galaxy masses
can contribute to the boost factor nearly equally per decade in mass. In this review, we cover recent
progress to overcome this issue to obtain realistic and unbiased estimates on the subhalo boost factor
that will impact on interpretation of the measurements on particle physics parameters such as the
annihilation cross section. While cosmological N-body simulations provide the most accurate avenue
to study structures in highly nonlinear regime, it is inevitably limited by the numerical resolution.
Even the state-of-the-art N-body simulations [37,150] can resolve subhalos ranging for only several
decades, which is still more than ten orders of magnitude in short to resolve all the subhalos. Therefore,
the boost estimates have to rely on extrapolation of the subhalo properties such as its mass function
and concentration parameter, which are often well described with power-law functions. Danger of
extrapolating trends found in resolved regime for other many orders of magnitude had been widely
acknowledged but nevertheless, it was found that the estimates based on such extrapolations tended
to give very large amount of boost factor of ∼100 (∼1000) for galaxy (cluster) size halos [36,41].

As a complementary approach, analytic models have been investigated. They are based on
self similar propertiese of the subhalos [35,39], universal phase-space distribution [49] and extended
Press-Schechter formalism combined with tidal stripping modeling [46,50]. (More recent numerical
approach also adopts the concentration-mass relation calibrated for the subhalos in order to take the
tidal effects into account [48].) Most importantly, these are all calibrated with the cosmological N-body
simulations at resolved regimes and proven to reproduce the simulation results such as the subhalo
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mass functions. For example, the most recent analytic models by Reference Hiroshima et al. [50]
predict the subhalo mass functions for various host masses and redshifts, which are found to be in
good agreement with the simulation results [37,86,126,150]. The annihilation boost factors based on
these analytic models tend to be more modest, O(1) for galaxy-size halos and . O(10) for cluster-size
halos. However, none of these models have been tested against simulations at very small host halos
that are less massive than 106M�. Simulations of microhalos with 10−6M� suggest cuspier profiles
towards halo centers such as r−1.5 [45] and if this is the case for the subhalos too, it would boost the
annihilation rate further.

It is known that including baryons in the simulations affects properties of subhalos such as spatial
distribution and density profiles (e.g., References [152–155]) and hence there might be some effect
on the annihilation boost factors. This, however, remains largely unexplored and has to wait for
future progress. However, since the subhalos of all masses ranging down to about the Earth mass
contribute to the boost factors and the baryons will likely affect only halos of dwarf galaxies or larger,
we anticipate that it is not a very important effect for the annihilation boost factors.

The subhalo boosts directly impact the obtained upper limits on the dark matter annihilation cross
section from the extragalactic halo observations. Therefore, to obtain the most accurate estimates of
the boost factor by reducing uncertainties on structure formation at small scales as well as the physics
of tidal stripping is of extreme importance for the indirect searches for particle dark matter through
self-annihilation with the current and near future observations of high-energy gamma-rays, neutrinos
and charged cosmic rays.
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Appendix A. Fitting Formulae

In this appendix, we provide fitting functions obtained with the analytical calculation in
Hiroshima et al. [50] that covers more than twenty orders of magnitude in the mass range and
the redshift up to ∼10. The mass function of the subhalo m2dNsh/dm, the luminosity of the
subhalo separated from the particle physics factors Lsh, and the boost factor Bsh = Lsh/Lhost,0
[see Equation (10)] as functions of the host mass and the redshift are provided here. We also summarize
fitting functions for the boost factor Bsh at z = 0 in the literature. Note that the host mass is always
measured in units of the solar mass (M�) in this appendix.

Appendix A.1. Subhalo Mass Function

The fitting formula is written in the follwing form:

m2 dN
dm

= (a + bmα) exp

[
−
(

m
mc

)β
]

, (A1)
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introducing a cutoff mass mc; a, b, and mc in Equation (A1) are functions of the host mass and
the redshift:

a(Mhost, z) = 6.0× 10−4Mhost(z)
(
2− 0.08 log10 [Mhost(z)]

)2
(

log10

[
Mhost(z)

10−5

])−0.1

(A2)

×(1 + z),

b(Mhost, z) = 8.0× 10−5Mhost(z)
(
2− 0.08 log10 [Mhost(z)]

) (
log10

[
Mhost(z)

10−5

])−0.08z
(A3)

×
(

log10

[
Mhost(z)

10−8

])−1 (
log10

[
Mhost(z)

1018

])2

,

mc = 0.05 (1 + z) Mhost(z), (A4)

α = 0.2 + 0.02z, (A5)

β = 3. (A6)

In Figure A1, we show the comparison between the mass function obtained in analytical
calculations [50] and Equation (A1). By integrating Equation (A1), we obtain the mass fraction
shown in Figure A2.
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Figure A1. Subhalo mass function m2dN/dm at z = 0. Each line corresponds to a different host halo
mass. The fitting formula is applicable for the host mass from Mhost ' 10−4 to 1014 M� and redshifts
up to ∼6.

10 3 100 103 106 109 1012 1015

Mhost [M ]

0.0

0.1

0.2

0.3

0.4

0.5

f s
ub

z=0
z=1
z=2
z=3
z=4

Figure A2. The subhalo mass fraction obtained by integrating Equation (A1).
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Appendix A.2. Subhalo Luminosity

The luminosity of a subhalo is written as

Lhost(M) ∝ ρ2
s r3

s

[
1− 1

(1 + c3
vir)

]
, (A7)

assuming a subhalo of NFW profile. In this section, the characteristic density ρs and the scale
radius rs are measured in units of g/cm3 and cm, respectively. For simplicity, we do not show
the integration over the distribution of the virial concentration parameter P(cvir|M, z) in the above
expression. The constant of proportionality is detemined by fixing the particle physics model. However,
we do not include it in the following expression since it cancels in the calculation of the boost factor
Bsh by taking the ratio of the host and subhalo luminosity Lsh/Lhost.

The fitting formula for the luminosity takes the form of

log10 Lsh = b + a log10 m, (A8)

where

a = (−0.025z + 0.18)
(

log10

[
Mhost(z)

10−5

])0.3

+ (0.06z + 0.53), (A9)

b = −0.95 log10 [Mhost(z)] + (0.1− 0.015z) log10

[
Mhost(z)

104

]
+ 0.07. (A10)

Appendix A.3. Annihilation Boost Factor

The boost factor is sensitive to the models of the concentration-mass relation. We provide fitting
functions for two different concentration-mass relation models here. One coresponds to the canonical
model in Reference [50] which assumes the concentration-mass relation derived in Reference [64].
The other corresponds to the concentration-mass relation in Reference [156]. For both cases, the fitting
function of the boost factor is written in a combination of two sigmoid functions, f (x) = (1 + e−ax)−1,

log10 Bsh =
X(z)

1 + e−a(z)(log10[Mhost]−m1(z))
+ c(z)

(
1 +

Y(z)
1 + e−b(z)(log10[Mhost]−m2(z))

)
. (A11)

Funcitons X, Y, a, b, c, m1, and m2 depend on the redshift but they do not on the host mass.

• For Correa’s concentration [64]

X(z) = 2.7e−0.2z + 0.15, (A12)

Y(z) = 0.4 + (−0.224z + 0.56) e−0.8z, (A13)

a(z) = 0.10 + 0.095e−0.5z, (A14)

b(z) = 0.03z2 − 0.08z− 0.83, (A15)

c(z) = 0.004z2 − 0.04z− 0.6, (A16)

m1 = −3.17z + 17.4, (A17)

m2 = − (0.2z− 1)5 − 4. (A18)
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• For Okoli’s concentration [156]

X(z) = 2.2e−0.75z + 0.67, (A19)

Y(z) = 2.5e−0.005z + 0.8, (A20)

a(z) = 0.1e−0.5z + 0.22, (A21)

b(z) = 0.8e−0.5(z−12)4 − 0.24, (A22)

c(z) = −0.0005z3 − 0.032z2 + 0.28z− 1.12, (A23)

m1 = −2.6z + 8.2, (A24)

m2 = 0.1e−3z − 12. (A25)

All of these formulae are applicable for hosts at arbitrary redshifts up to z ∼ 7.
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Figure A3. Comparisons between the boost factor from our calculations in Reference [50] and the
fitting functions in this section. The left panel is the result assuming the concentration-mass relation in
Reference [64] while the right panel assuming the relation in Reference [156].

Appendix A.4. Fitting Functions for the Boost Factor in the Literature

Several works provide the fitting function for the boost factor at z = 0. We summarize functions
provided in Gao et al. [41], Sánchez-Conde and Prada [44], and Moliné et al. [48] here.

• Gao et al. [41] have analyzed cluster scale halo of Mhost = [5, 20]× 1014h−1M� in the Phoenix
project [157]. Subhalos down to m ∼ 106 can be resolved in their calculations.

Bsh = 1.6× 10−3
(

Mhost
M�

)0.39
. (A26)

• Sánchez-Conde and Prada [44] derive the boost factor based on the concentration-mass relation in
Reference [115]. The fitting function is provided for their fiducial model assuming the minimum
halo mass to be Mmin = 10−6M� and the subhalo mass function dN/dm ∝ m−2. Each subhalo is
assumed to be a field halo.

log10 Bsh(z = 0) =
5

∑
i=0

bi

(
ln

Mhost
M�

)i
(A27)
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with

b0 = −0.442 (A28)

b1 = 0.0796 (A29)

b2 = −0.0025 (A30)

b3 = 4.77× 10−6 (A31)

b4 = 4.77× 10−6 (A32)

b5 = −9.69× 10−8 (A33)

• Moliné et al. [48] derive the boost factor taking the dependence of the survived halo properties on
the distance from the host, that is, the host potential. The form of the function is similar to that of
Sánchez-Conde and Prada [44] but adopitng different log bases:

log10 Bsh(z = 0) =
5

∑
i=0

bi

(
log10

Mhost
M�

)i
(A34)

and parameters bi are

b0 = −0.186 (A35)

b1 = 0.144 (A36)

b2 = −8.8× 10−3 (A37)

b3 = 1.13× 10−3 (A38)

b4 = −3.7× 10−5 (A39)

b5 = −2× 10−7 (A40)

for α = 2 and

b0 = −6.8× 10−2 (A41)

b1 = 9.4× 10−2 (A42)

b2 = −9.8× 10−3 (A43)

b3 = 1.05× 10−3 (A44)

b4 = −3.4× 10−5 (A45)

b5 = −2× 10−7 (A46)

for α = 1.9.
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