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ABSTRACT
We perform a systematic study of the evolution of the waveform of black hole X-ray binary
low-frequency QPOs, by measuring the phase difference between their fundamental and
harmonic features. This phase difference has been studied previously for small number of
QPO frequencies in individual sources. Here, we present a sample study spanning 14 sources
and a wide range of QPO frequencies. With an automated pipeline, we systematically fit
power spectra and calculate phase differences from archival Rossi X-ray Timing Explorer
(RXTE) observations. We measure well-defined phase differences over a large range of QPO
frequencies for most sources, demonstrating that a QPO for a given source and frequency has
a persistent underlying waveform. This confirms the validity of recently developed spectral-
timing methods performing phase-resolved spectroscopy of the QPO. Furthermore, we evaluate
the phase difference as a function of QPO frequency. For Type-B QPOs, we find that the phase
difference stays constant with frequency for most sources. We propose a simple jet precession
model to explain these constant Type-B QPO phase differences. The phase difference of the
Type-C QPO is not constant but systematically evolves with QPO frequency, with the resulting
relation being similar for a number of high-inclination sources, but more variable for low-
inclination sources. We discuss how the evolving phase difference can naturally arise in the
framework of precession models for the Type-C QPO, by considering the contributions of a
direct and reflected component to the QPO waveform.

Key words: accretion, accretion discs – black hole physics – X-rays: binaries.

1 IN T RO D U C T I O N

Black hole X-ray binaries (BHXRBs) are stellar-mass black holes
accreting from an orbiting stellar companion, that emits over most
of the electromagnetic spectrum. The bulk of their luminosity is
radiated in the form of X-rays, emitted by the inner regions of the
accretion flow, as most gravitational energy is liberated close to the
accreting object (Shakura & Sunyaev 1973). X-ray observations of
BHXRBs therefore provide a good mechanism for the study of the
regions close to a black hole, which remains poorly understood even
after decades of research.

An interesting feature that is observed in the X-ray light curves
of accreting compact objects in certain spectral states is quasi-
periodic oscillation (QPO): regular but not completely periodic
variation in the emission, appearing as a broadened peak in the
X-ray variability power spectrum. A QPO in the light curve of a
low-mass X-ray binary neutron star was first observed in 1985 by

� E-mail: irisderuiter@telfort.nl

van der Klis et al. (1985). QPOs have subsequently been observed
in many BHXRBs, especially after the launch of the X-ray timing
observatory the Rossi X-ray Timing Explorer (RXTE). In BHXRBs,
QPOs are observed at both high (50 to hundreds of Hz) and low
(up to 10–20 Hz) frequencies. Here, we focus on low-frequency
QPOs, where three different classes of low-frequency QPOs have
been identified, based on their frequency, Q-value, amplitude, noise,
and phase lag properties (Wijnands, Homan & van der Klis 1999;
Remillard et al. 2002; Casella, Belloni & Stella 2005). The Q-
value is defined as the frequency of the QPO divided by its full-
width half-maximum (FWHM), which is a measure for the width
of the QPO peak in the power spectrum. In this paper, we will
focus on the analysis of Type-B and Type-C QPOs. The main
difference between these two types lies in the shape and amplitude
of the broadband noise component in the power spectrum: this
noise component has significantly lower amplitude (∼1 per cent
rms versus > 10 per cent rms) when associated with Type-B QPOs
than with Type-C QPOs. Most QPOs analysed in this work are
Type-C QPOs, since these are the most commonly observed, with

C© The Author(s) 2019.
Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/3/3834/5371173 by U
niversity Library, U

niversity of Am
sterdam

 user on 24 M
arch 2020

http://orcid.org/0000-0002-5686-0611
mailto:irisderuiter@telfort.nl
http://creativecommons.org/licenses/by/4.0/


Phase differences between QPO harmonics 3835

a fundamental frequency ranging between 0.1 and 12 Hz, while
the Type-B QPOs tend to cluster more between 4 and 6 Hz. We
will ignore QPOs in the mHz and kHz range, which have also
been observed (Wijnands et al. 1997; Linares et al. 2010; Belloni,
Sanna & Méndez 2012; Huppenkothen et al. 2017; Rapisarda,
Ingram & van der Klis 2017). QPO rms spectra indicate that the
emitting region of Type-C QPOs appears to be the corona: an
optically thin (optical depth τ ∼ 1) cloud near the black hole where
cool disc photons are Compton up-scattered by energetic electrons
(Sobolewska & Zycki 2006).

Different mechanisms have been suggested to explain the exis-
tence of QPOs. The fundamental distinction between these mech-
anisms lies in the origin of the observed variability, which can be
divided into two categories: geometric or intrinsic. A geometric
model assumes changes in (apparent) accretion geometry as the
QPO origin, while the emission is intrinsically constant. An intrinsic
model bases the QPO origin on modulations of intrinsic emission,
e.g. driven by changes in accretion rate. As we will discuss below,
recent evidence strongly favours geometric models, in particular,
the relativistic precession model (Ingram, Done & Fragile 2009;
Veledina, Poutanen & Ingram 2013). The key aspect of this model
is the precession of a radially extended region of the hot inner flow of
the accretion disc. If this inner flow – which is hot and geometrically
thick inside the inner radius of a truncated accretion disc – has a spin
that is misaligned with the black hole, it will start to precess due
to (relativistic) Lense—Thirring torques. Changes in the observed
solid angle of the flow and changes in Doppler boosting can then
explain the quasi-periodic variations in flux.

Recently, evidence for a general geometric QPO origin has been
found in the inclination dependence of QPO amplitudes (Motta et al.
2015; Heil, Uttley & Klein-Wolt 2015) and the sign of lags between
soft and hard photons (van den Eijnden et al. 2017). Recent research
also shows that the reflection of photons from the inner flow of the
disc depends on the phase of the QPO cycle (Ingram & van der
Klis 2015; Ingram et al. 2016, 2017), which is a direct prediction of
the relativistic precession model. While the relativistic precession
model works well for Type-C QPOs, there are hints that Type-B
QPOs also have a geometric origin (Motta et al. 2015; Stevens &
Uttley 2016). Finally, for the BHXRB GRS 1915+105, the energy-
dependent behaviour of its low-frequency QPO can be explained by
an extension of the solid-body precession model, where the inner
flow precesses differentially (van den Eijnden, Ingram & Uttley
2016).

For a better understanding of the origin of QPOs, spectral-timing
methods provide a powerful approach. Such methods combine
both the observed variability and spectral information to reach
beyond the information available in each individually. For QPO
studies, such methods naturally focus on studying spectral changes
throughout the QPO oscillation cycle (Ingram & van der Klis 2015;
Stevens & Uttley 2016). However, this approach fundamentally
assumes that one can define a phase within the QPO cycle – in
other words, such methods assume the presence of a well-defined
and stationary waveform throughout an observation. Interestingly,
if such a waveform exists, it not only validates phase-resolved
spectroscopy of the QPO but might also directly encode information
about the origin of the QPO.

Therefore, in this work, we set out to characterize QPO wave-
forms across a sample of BHXRBs over a wide range of their QPO
frequencies. We use a statistical approach to determine whether
a consistent phase relation between the QPO fundamental and
harmonic exists and thereby (i) confirm whether a meaningful
underlying waveform is present and (ii) search for signatures of

Figure 1. PSD for observation 20402-01-16-00 from GRS1915+105 in
the 2–13 keV energy range. The Poisson noise, incorporated in all models,
is subtracted from the power which is then multiplied by frequency by
convention. The reduced χ2/ν-values for models one to three, which allow
for increasingly more harmonic components, respectively, are 5.929, 2.079,
and 1.569.

the origin of the QPO harmonic. Fourteen different sources are
analysed, so the effects of inclination, QPO type, and frequency on
the waveform can be determined. To do so, the process of extracting
the QPO properties from the original light curve is automated and
the phase difference is calculated as a function of QPO frequency
for a large sample of RXTE observations.

2 M E T H O D S

2.1 Rationale: a quasi-periodic waveform?

A periodic signal x(t) consisting of two harmonics can, in the most
general mathematical case, be written as:

x(t) = Af cos(2πνf t − φf ) + Ah cos(2πνht − φh), (1)

where subscripts f and h correspond to fundamental and harmonic,
respectively, A is the variability amplitude, ν the oscillation fre-
quency (νh = 2ν f), and φ is the phase offset. The absolute phase of
the fundamental can be defined arbitrarily; in this work, we set φf =
0. If all amplitudes, frequencies, and phase-offsets are constant, this
waveform will remain the same over time.

The waveform of a QPO can be thought of in the same way
as the deterministic waveform introduced above, consisting of
multiple harmonic waves combining to a single waveform. The
harmonic feature with the largest amplitude determines the main
QPO frequency and is referred to as the fundamental in this paper.
Following common practice, the second harmonic, at twice the
fundamental frequency, will simply be referred to as the harmonic
from here on. This harmonic can be much smaller in amplitude.
An example of a QPO power spectrum in Fourier space is given in
Fig. 1. From left to right, the spectrum shows three bumps: the sub-
harmonic, fundamental, and harmonic, respectively. By expressing
the QPO waveform in terms of equation 1, we will effectively ignore
any sub-harmonic and higher order harmonic terms, approximating
the QPO signal as just the sum of the fundamental and harmonic.
While visible in Fig. 1, such features are rarely present in BHXRB
observations.

Considering a QPO following equation (1), the quasi-periodic
nature arises from the fact that the frequency/phase-offset and/or
amplitude of each harmonic does not remain constant with time.
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3836 I. de Ruiter et al.

Figure 2. Schematic overview of the methods applied to measure the phase
difference � between the QPO fundamental and harmonic. This method is
based on Ingram & van der Klis (2015). The number of each step corresponds
to the section explaining the step.

However, for the waveform to be well-defined and stationary,
each of these parameters should have a preferred value during
the observation. The QPO frequency and amplitude have such a
value, measurable from the power spectrum (see, e.g. Fig. 1). The
phase difference, �, cannot however be determined from the power
spectrum. This phase difference is defined as:

� = [φh/2 − φf ] mod π. (2)

This phase difference is the parameter of interest in this study, as
we aim to test whether it has a preferred value in each observation;
if so, together with the fundamental and harmonic frequency and
amplitude, a well-defined waveform exists. If not, the waveform
would change continuously and erratically during observations.

In this section, we will introduce each step of the method to
calculate the phase difference in depth. Afterwards, Section 3 will
describe the data we used to obtain our results and their automatic
extraction from the RXTE data archive. A schematic summary of
the pipeline, applied to each observation, can be found in Fig. 2,
while each of the following subsections corresponds to one step
in this figure. Schematically, the methodology is set-up in such
a way that first, starting from individual light curves, the power
spectrum is created. This power spectrum is then fitted with different
models to determine the QPO and harmonic parameters. Using these
parameters, a Fourier analysis of individual small segments of the

light curve is performed. This new power spectrum is finally used
to find the phase difference, which is defined as � in equation (2).
We stress that it is not possible to calculate the phase difference
directly from the cross-spectrum; we refer the reader to the start of
Section 3 in Ingram et al. (2017) for a detailed explanation.

The analysis method introduced here is based on the one
developed by Ingram & van der Klis (2015), but generalized and
automated in such a way that a single pipeline can be used for a
large set of light curves. As stated, the next sections will provide a
more detailed description of the steps of the analysis method.

2.2 Creating the power spectrum

We calculate the power spectral density (PSD) in fractional rms nor-
malization (Belloni & Hasinger 1990) for all individual light curves
using a fast Fourier transform (FFT) algorithm. We average over 8 s
segments with a time step of dt = 1/128 s, resulting in ensemble-
averaged power spectra in the 0.125 to 64 Hz frequency range.

2.3 Fitting the power spectrum

We look for QPO fundamental and harmonic features in the PSDs
by fitting with a multi-Lorentzian model (following e.g. Belloni &
Hasinger 1990). We use two zero-centred Lorentzians for the broad-
band noise (BBN) (following van den Eijnden et al. 2016) and a nar-
row Lorentzian for each QPO harmonic. We consider a maximum
of three harmonics (fundamental, first overtone, and either second
overtone or sub-harmonic) and use F-tests to determine how many
harmonics to include in our best-fitting model. We use a threshold of
p = 0.01 to determine whether the addition of a harmonic Lorentzian
component is required by the data. Only observations with at least
one significant overtone are useful for our analysis. An example of
these three models fitted to a PSD is given in Fig. 1 for RXTE ObsID
20402-01-16-00 (source GRS1915+105), which clearly shows the
improvement of the fit as the model complexity increases.

To be able to fit the power spectrum to the different models,
an initial estimate for the QPO fundamental frequency is required.
We obtain such an initial estimate by linearly rebinning the power
spectrum by a factor three, averaging out statistical outliers. The
frequency with the maximum jump in power (after subtracting the
Poisson noise) in this rebinned power spectrum is our initial estimate
for the QPO frequency. We use Pnoise = 2/〈x〉 where 〈x〉 is the
mean count rate and the background is ignored; e.g. Van der Klis
(1989); Uttley et al. (2014)). At this frequency, the power change is
the most extreme and therefore represents an estimate of the QPO
fundamental frequency at the resolution of the PSD. This method
only yields the frequency of the sharpest peak and therefore isn’t
affected by other bumps in the PSD. Averaging over three data
points ensures that there is a real peak building instead of one data
point that is higher at random. A complete list of initial guesses and
boundaries on fit parameters can be found in Appendix B.

2.4 Phase difference

In order to measure the phase of the QPO fundamental and harmonic
components, we first take the Fourier transform1 of many short
segments of the light curve. Following Ingram & van der Klis
(2015), we set the segment length for each observation to ensure

1Note that we use the same definition of the FFT as Ingram & van der Klis
(2015), which is the conjugate of that used in the NumPy package in Python.
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Figure 3. Phase difference histogram for observation 20402-01-16-00 from
GRS 1915+105 in the 2–13 keV energy range. To show a clear peak, we
repeat the data from ψ /π = 0 to 1 to show two cycles. The probability that
this distribution is randomly drawn from a uniform distribution is 1×10−24.

that the QPO fundamental lies in a single frequency bin. The
harmonic feature is therefore spread across two frequency bins. The
phase of the fundamental for a single segment is calculated as the
argument of the Fourier transform for that segment at the frequency
bin containing the QPO fundamental. For the harmonic, we use
the frequency bin at exactly twice the frequency of the bin used
for the fundamental. We then calculate the phase difference using
equation (2). Note that throughout the remainder of this work, we
will consider the phase difference as a fraction of π radians (which
we denote ψ /π ), to express it more clearly as a fraction of a cycle
of possible values.

It is essential to calculate the phase difference for each segment
individually, since the phase of the QPO fundamental and harmonic
is random, and only their phase difference is constant. Averaging
over the phases of the QPO fundamental and harmonic first and cal-
culating the difference afterwards would result in a phase difference
of zero (averaging over the difference of two random quantities).
Since we calculate this phase difference for each segment, we can
visualize the results in a histogram. An example of such a phase
difference histogram is given in Fig. 3 for observation 20402-01-
16-00 from GRS 1915+105 in the 2–13 keV energy range. We have
repeated the ψ /π = 0 to 1 interval twice in the figure, to show the
peak clearly. This histogram shows a clear peak around �/π = 0.1,
which is repeated at �/π = 1.1. The histogram is normalized, such
that the relative frequency of measurements at the largest peak is
set to 1. To check whether the histogram shows a significant peak,
we use a Kuipers test.2 This Kuipers test is similar to a KS-test,
but adapted for cyclic quantities, and returns the probability that
the phase difference histogram is randomly drawn from a uniform
distribution. Histograms are labeled significantly peaked using a
significance level of 3σ .

For phase difference histograms with a significant peak, the peak
�mean is calculated by summing all distances for all �m as follows:

δ = �mean − �m for �mean − �m < π/2

δ = π − (�mean − �m) for �mean − �m > π/2 (3)

and minimizing the result with respect to �mean. �mean has to be
calculated in this way to deal with the cyclic nature of the phase
difference. This can most easily be visualized by imagining a circle

2We use the Python implementation of the Kuipers test accessible via https:
//github.com/aarchiba/kuiper/blob/master/kuiper.py

Figure 4. Bootstrapped phase difference histogram for observation 20402-
01-16-00 from GRS1915+105 in the 2–13 keV energy range. From this
distribution, the standard deviation on the mean is calculated.

with circumference 2π that describes all possible phases. Given two
points on the circle, one for the fundamental and the other for the
harmonic, we want to know the shortest distance between the two.
The above calculation takes into account that this distance can be
either clockwise or counterclockwise. This visualization of phases
on a circle also explains why the phase differences range between
0 and π rad instead of 2π rad.

2.5 Confidence interval on the phase difference

The final step in our analysis is to determine an error margin on
the mean phase difference �mean. Via bootstrapping, a statistical
test that relies on repeated iterations of random sampling with
replacement, we can assign an uncertainty to the phase difference.
This is done by randomly drawing with replacement from the phase
difference histogram. Using the mean of this new sequence and
repeating this process multiple times, we build a new histogram
that shows the bootstrapped mean phase differences. An example
(using the same observation as shown in Figs. 1 and 3) is shown
in Fig. 4, which shows the distribution of inferred phase difference
obtained from bootstrapping. The 1σ uncertainty of the phase dif-
ference is determined as the standard deviation of this bootstrapped
distribution. For another example of how bootstrapping can be used
to estimate parameter accuracy in spectral-timing studies, we refer
the reader to Stevens & Uttley (2016).

The number of bootstrap realizations of the data is determined
using: Nboot = 50 − int(number of phase differences/1000). This
implies that the maximum number of bootstrapped mean phase
differences used to determine the 1σ uncertainty is 50 and will
become smaller for long observations. The minimum number
of bootstrap realizations is set to 15. This simple formula for
the number of bootstrap realizations also optimizes the trade-
off between a high number of bootstrap realizations and short
computing time. To account for the cyclic property of the phase
difference, the bootstrapped measurements �mean,bootstrapped/π ∼ 0
are shifted up by 1 if the actual value of �mean/π ∼ 1. This way
�mean,bootstrapped/π = 0.1 is, for example, shifted to 1.1 such that
we obtain a distribution around �mean/π = 1, without enormous
gaps. The same principle applies to values of �mean,bootstrapped/π ∼
1, which are shifted down by 1 if the phase difference measured
from the data itself ∼0.

3 RXTE OBSERVATI ON SAMPLE

For our analysis, we use the sample of Rossi X-ray Timing Explorer
(RXTE) observations compiled by Motta et al. (2015) and further
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Table 1. Number of RXTE sources per target in the sample, both before
and after the analysis. The sample was originally constructed by Motta et al.
(2015) and van den Eijnden et al. (2017). Note that observations can be
rejected in the analysis either if no harmonic is present or if no well-defined
phase difference can be calculated.

Source Before After
C B C B

Swift J1753.5–0127 31 – 21 –
4U 1543–47 5 3 2 2
XTE J1650–500 21 1 7 1
GX 339–4 46 17 15 2
XTE J1752–223 3 1 1 1
XTE J1817–330 – 9 – 5
XTE J1859+226 26 14 21 7
XTE J1550–564 62 15 44 8
4U 1630–47 5 – – –
GRO J1655–40 27 – 12 –
H1743–322 100 36 42 14
GRS 1915+105 70 – 68 –
MAXI J1659–152 37 6 21 –
XTE J1748–288 6 – – –

Total 439 102 254 40

expanded and analysed in van den Eijnden et al. (2017). This
sample contains 541 observations of 14 BHXRBs, of which 102
show Type-B and 439 show Type-C QPOs. We follow Motta et al.
(2015) in their identification of QPO type, which is based on Casella
et al. (2005), and considers: the total rms variability in the power
spectrum (�10 per cent for Type-C QPOs, ∼5 − 10 per cent for
Type-B QPOs), the QPO frequency and its evolution during the
outburst, the Q factor, and the shape of the noise component (flat-
top-dominated for Type-C QPOs, red-noise for Type-B QPOs).
The previous analyses of this data sample have shown that it
is representative of QPO behaviour in BHXRBs and covers a
range of source inclinations and possible QPO characteristics. A
complete overview of the basic QPO and BBN characteristics of
these observations, such as QPO frequencies, amplitudes, and phase
lags, can be found in the online materials of Motta et al. (2015) and
van den Eijnden et al. (2017). In Table 1, we list the number of
Type-C and Type-B observations in the initial sample per source.
We reiterate that, since QPOs are not present in the soft state or
in dim hard states, only a small fraction of RXTE observations of
compact objects shows statistically significant QPOs, depending on
the observing strategy as well as the relatively rapid nature of the
state transitions which show easily detectable QPOs. Therefore,
the percentage of observations that contains QPOs differs per
source and can range from less than one to ∼20 per cent. Table 1
also shows the number of observations where we were able to
successfully define a phase difference. The rest of the observations
either lack a significant harmonic component or do not show a well-
defined phase difference �. The lack of significant harmonic could
follow from short exposures or low fluxes, causing any harmonic
features to become undetectable in the noise – especially QPOs
with fundamental frequency �5 Hz are prone to such effects, as
their harmonics lie in lower signal-to-noise parts of the power
spectrum. The lack of a measurable phase difference could also
arise from short observations, resulting in few segments to calculate
individual phase differences and therefore no significant peak in
their distribution. Alternatively, a harmonic could simply be absent
– any model for its origin and properties should therefore be able to
account for a weak power or even its absence. To extract light curves

for every observation, we use the automated CHROMOS pipeline3

(Gardenier & Uttley 2018). This pipeline automatically extracts
light curves from raw RXTE data in a specified energy range and with
a pre-defined time resolution, independent of observation mode.
We extract all light curves with a 1/128 s time resolution and a 2–
13 keV energy range. As the gain of RXTE’s Proportional Counter
Array (PCA) changes with time and the energy resolution depends
on observing mode, CHROMOS selects the absolute PCA channels
most closely matching the energy range above for each individual
observation. We also extract soft and hard light curves in the 2–7
and 7–13 keV ranges, matching those used in the QPO phase lag
analysis of this sample by van den Eijnden et al. (2017), to search
for any energy dependence in the measured phase difference.

4 R ESULTS

Figs. 5 and 6 show the phase difference between the fundamental
and harmonic as a function of the fundamental QPO frequency for
Type-C and Type-B QPOs, respectively. To account for the cyclic
property of the phase difference, we subtract 1.0 from data points
with �/π > 0.8 such that these points are mapped to the [ − 0.2,
0] range. For clarity in Fig. 5, only half of the sources are shown in
colour per panel. The other half of the sources are plotted in grey in
the background, and shown in colour in the other panel.

From Fig. 5, it is clear that all sources have a well-defined phase
difference i.e., a well-defined QPO waveform, that evolves with
QPO frequency. The phase difference decreases with frequency for
all sources except for Swift J1753.5–0127 (magenta open squares
in the left-hand panel) and XTE J1650–500 (yellow crosses in the
left-hand panel). Furthermore, most sources have a phase difference
of �/π ∼ 0.25–0.4 at 0 Hz, and this phase difference decreases to
around 0 at higher frequencies. Exceptions to this behaviour are
found in GX 339-4 (light blue leftwards pointing triangles in the
left-hand panel) and GRS 1915+105 (yellow dots in the right-hand
panel), which start at �/π ∼ 0.7–0.8 at 0 Hz. Finally, there are two
data points that seem to be outliers at �/π ∼ 0.55 and ∼5.5 Hz in
the right-hand panel (XTE J1550–564 and GRS 1915+105).

Type-B QPOs show a completely different behaviour, as shown
in Fig. 6. In general, the phase difference is constant with frequency
at �/π ∼ 0.55–0.6. Obvious exceptions are found in H1743–322
(green upwards pointing triangles) and XTE J1817–330 (purple
dots) that show a wide variety of phase differences.

The fact that sources show a systematic and well-defined phase
difference for a given QPO frequency and QPO type, implies that
for a given source’s QPO type and frequency, there exists a simple
underlying waveform of the QPO, which remains well-defined
over each full observation. The presence of such an underlying
waveform is a fundamental assumption of many recently developed
QPO phase-resolving methods (Stevens & Uttley 2016; Ingram &
van der Klis 2015): such methods aim to measure changes in the
energy spectra as a function of phase within the QPO cycle, which
evidently requires such a phase to exist throughout the analysed
observation.

For both the Type-B and Type-C QPOs, we made a preliminary
analysis of the energy dependence of the phase difference by
analysing light curves in the 2–7 and 7–13 keV bands. This analysis
does not reveal any obvious dependence on energy. Therefore, we do
not plot these extra energy bands in Figs. 5 and 6. The lack of energy
dependence might be explained by the broad nature of the two bands,

3https://github.com/davidgardenier/chromos
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Phase differences between QPO harmonics 3839

Figure 5. Phase difference between the fundamental and harmonic, as a function of the fundamental QPO frequency for Type-C QPOs. For data points with
�/π > 0.8, we subtract 1.0 such that these points are mapped to the [ − 0.2, 0] range. For visual clarity, only half of the sources are shown in colour per
panel. The other half of the sources are plotted in grey in the background, see the other panel. The left-hand panel shows the low and undetermined inclination
sources. The right-hand panel shows the high inclination sources (see Appendix C). The plots on the left side show the shape of the waveform corresponding
to the indicated phase differences. Here, νharm = 2 νfund Hz and Aharm = 0.5Afund. The plots have arbitrary time and intensity coordinates.

Figure 6. Phase difference between the fundamental and harmonic, as
a function of the fundamental QPO frequency for Type-B QPOs. For
datapoints with �/π > 0.8 we subtract 1.0 such that these points are
mapped to the [−0.2,0] range. The plots on the left side show the shape of
the waveform corresponding to the indicated phase differences, see caption
Fig. 5 for details.

averaging out any more subtle changes with energy. Alternatively,
as discussed in Section 5.4, it might be more fundamentally related
to the origin of the QPO harmonic in relation to the energy range
probed by RXTE PCA.

5 D ISCUSSION

In this section, we will first discuss the search for any inclination
dependence of our results. Afterwards, we introduce a new approach
to identify QPO types based on the phase difference between the
fundamental and harmonic. We then continue by discussing geo-
metric models for the Type-B and Type-C QPO and whether these
can explain the observed evolution of the QPO phase difference,

and finish by recommending future steps for the observational and
modelling side.

5.1 Waveform inclination dependence

Different QPO properties – such as the amplitude of Type-B and C
QPOs (Heil et al. 2015; Motta et al. 2015) and the Type-C funda-
mental energy-dependent phase lag (van den Eijnden et al. 2017) –
have been shown to depend on the system binary orbit inclination,
favoring a geometric QPO origin. The question therefore arises as to
whether an inclination dependence can be found in the evolution of
the QPO waveform. Our sources show a variety of relations between
the QPO frequency and the phase difference between harmonic and
fundamental. To show these differences more quantitatively, we fit a
straight line to the data in Figs. 5 and 6 for each source individually.
The fitted slopes and inclinations for each source are summarized
in Tables C1 and C2 for Type-C and Type-B QPOs, respectively, in
Appendix C.

Although there is no single mapping of phase difference evolution
to system inclination, it is worth noting two apparent patterns for
the Type-C QPOs. First, there is a wide scatter in relations for
low-inclination BHXRBs, with phase-difference either increasing
or decreasing with frequency, or showing no obvious frequency-
dependence. Meanwhile, the phase difference decreases with fre-
quency for all high-inclination BHXRBs, with data from four
sources (i.e. except GRS 1915+105) clustered around a similar
relation. The inclination of XTE J1859+226 is ill-defined (see
Appendix C) but its energy-dependent phase-lag evolution is
consistent with a high-inclination source (van den Eijnden et al.
2017) and its phase difference evolution is also consistent with
that of the majority of high-inclination sources. Since the overall
sample size is small and there is a wide range of patterns for the low-
inclination sources, we cannot state that the differences are formally
significant. However, they are certainly suggestive that there may
be an inclination effect on the consistency of the phase difference
evolution with frequency, with high-inclination sources showing a
more consistent pattern.
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Although detailed modelling is beyond the scope of this paper,
we can speculate how this behaviour may be interpreted in the
context of the precessing inner flow model (Ingram et al. 2009). In
this model, the precession period of the inner flow modulates the
X-ray light curve via a number of mechanisms: variations during
each precession cycle in the solid angle subtended by the inner
flow, in Doppler boosting, and in the luminosity of seed photons
from the disc intercepting the inner flow. The solid angle peaks at
the point in the precession cycle when the flow is seen maximally
face-on and Doppler boosting peaks when it is seen maximally
edge-on (Veledina et al. 2013; Ingram et al. 2015). The observed
flux as a function of the angle between the flow rotation axis and the
observer’s line of sight is then a trade-off between these two effects.
Crucially, if there are no more modulation effects, the observed flux
is a monotonic function of this angle, such that the waveform we
see from a given precessing inner flow system depends only on the
angle between the black hole spin axis and the observer’s line of
sight.

This azimuthal symmetry is broken if the outer disc is misaligned
with the black hole spin axis by some angle β and the inner flow
precesses around the spin axis maintaining a constant misalignment
of β, as suggested in Ingram et al. (2009). The angle between the
disc and flow rotation axes therefore varies over the precession
cycle from a minimum of 0 to a maximum of 2β (e.g. Veledina
et al. 2013; Ingram et al. 2015). As the angle between disc and flow
changes, the number of seed photons from the disc intercepted by
the flow changes, therefore varying the overall luminosity budget
of the inner flow (Zycki, Done & Ingram 2016; You, Bursa &
errorZdotycki 2018). The QPO waveform now depends on the
(polar) angle between the spin axis and the observer’s line of
sight and on the azimuthal angle, defined, for instance between
the projections on the black hole equatorial plane of the observer’s
line of sight and the line of nodes between the black hole and disc
rotation axes (e.g. see the schematic in Ingram et al. 2015). Perhaps
for high inclinations, the solid angle and Doppler effects dominate
over the variable seed photon effect. In this case, we would expect
a roughly similar QPO waveform for a given geometry of the inner
flow, with the waveform changing as the flow outer radius moves
inwards. If the variable seed photon effect becomes more important
for low-inclination objects, then different low inclination sources
would be expected to display different QPO waveforms, since we
are presumably viewing them from a range of azimuthal angles.

For Type-B QPOs there is also no clear relation between incli-
nation and phase difference. From Fig. 6 it seems that the phase
difference is constant with frequency at around �/π ∼ 0.6 for 6
sources with Type-B QPOs, with the exceptions being H1743–322
and XTE J1817–330.

5.2 A quantitative method to classify QPOs

Examining the results of our analysis, shown in Figs 5 and 6,
two distinct types of QPO behaviour can be distinguished: on one
hand, a large subset shows a decreasing phase difference with QPO
frequency, as seen in Fig. 5. A smaller set of observations show
QPOs in a small region of the QPO frequency-phase difference
parameter space, where �/π > 0.5 and ν > 4 Hz. This result
represents a clear, qualitative method to classify QPOs into different
types, based on only the QPO’s properties and directly connected to
its physical origin (which sets both the QPO frequency and phase
difference).

An obvious question is then how this classification relates to
the existing Type-B and Type-C classes of QPOs. The observations

Figure 7. PSD of the outlier XTE J1550–564 observation in the right panel
of Fig. 5. The outlier is ObsID 30191-01-33-00 from XTE J1550–564 which
is shown in blue, a typical Type-B PSD with similar QPO frequency is shown
in red, and two Type-C PSDs are shown in grey, all in the 2–13 keV energy
range.

Figure 8. PSD of the GRS 1915+105 outlier in the right panel of Fig. 5.
The PSD of ObsID 30402-01-11-00 from GRS 1915+105 is shown in blue
and two typical Type-C PSDs of similar QPO frequency are shown in grey,
all in the 2–13 keV energy range.

shown in Figs. 5 and 6 are divided based on their prior separation into
Type-C and Type-B QPOs, respectively. Therefore, our quantitative
classification based on QPO properties alone almost perfectly
overlaps with the existing classification, which relies on a more
qualitative evaluation of a combination of QPO and BBN properties
(see e.g. Casella et al. 2005; Motta et al. 2015).

Considering Fig. 5 in detail however, there are two observations
identified as a Type-C QPO, which fit into our second category
based on their phase difference (i.e. with �/π > 0.5 and ν > 4 Hz).
In Fig. 7 and in Fig. 8, the power spectra of these two outliers are
shown, together with power spectra of observations of the same
source at similar QPO frequency. As shown in Fig. 7, the power
spectrum of the outlier XTE J1550–564 observation is very similar
to another Type-B QPO power spectrum (shown in red). It does not,
however, look like the Type-C QPO power spectra shown as well in
grey. Therefore, we conclude that this observation was most likely
mis-classified as a Type-C QPO in Motta et al. (2015) and van den
Eijnden et al. (2017), showing the power of our more quantitative
approach. Similarly, Fig. 8 also appears different from the Type-
C QPO power spectra shown: while the QPO itself has similar
width and frequency, the noise level at lower and higher frequencies
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is significantly lower. While an unambiguous re-classification is
difficult, it appears more similar to the Type-A QPO power spectra
seen in for instance XTE J1550–564 (Wijnands et al. 1999) or
MAXI J1535–571 (Stevens et al. 2018).

5.3 Interpretation of the Type-B phase difference

In this section we describe a simple geometric model that models
the phase difference for Type-B QPOs. In our work we have not
considered whether non-detections of a phase difference imply that
in some cases there is no meaningful waveform (implicitly assuming
that non-detections are due to signal to noise limitations alone), or
the implications of the non-detections of harmonic components
(which would also require consideration of the upper limits on
harmonic amplitudes). However if, in future studies, cases arise
where there is clearly no meaningful waveform, or very weak
harmonics, these would also need to be accounted for in any physical
framework. The phase difference for the Type-B QPOs seems to be
approximately constant at around ψ /π � 0.5–0.6 for most sources.
Recent studies suggest that Type-B QPOs could be related to a black
hole with precessing jets (Stevens & Uttley 2016; Sriram, Rao &
Choi 2016). Therefore, we present a phenomenological model of a
simple jet geometry in this section and analyse the resulting phase
difference.

In this model, we set up the jet simply as a narrow rotating
cylinder (a ‘stick’), where the relativistic boosting and solid angle
effects of an optically thick or thin emission region are taken
into account (note that optically thin and thick refer to the X-ray
properties and not the radio emission, and are therefore not related
to the presence of either a steady compact jet or transient ejecta).
This is a very simple representation of reality since the intrinsic
angular dependence of emission from the jet may also play an
important role. The observed luminosity for an optically thin jet
can be approximated as (e.g. Ellis 1971):

Sobserved = Semitted

(
1

γ [1 − β cos(θ )]

)4

(4)

where β is the jet speed in units of c and γ is the jet Lorentz factor.
For an optically thick jet, the whole jet is not observed all the time,
so the solid angle has to be taken into account:

Sobserved = Semitted

(
1

γ [1 − β cos(θ )]

)4

sin(θ ) (5)

Here, θ is the angle between the line of sight of the observer and
the jet. θ can simply be calculated by taking the dot product of the
jet and observer vector

cos(θ ) = sin(θincl) · sin(θjet) · cos(φ) + cos(θincl) · cos(θjet). (6)

Here, θ jet is the angle between the jet axis and the precession axis
(i.e. the half opening angle of the precession cone), θ incl is the angle
between the observer’s line of sight and the precession axis and φ is
the precession phase. In the following simulations, we set θ jet = 10◦,
β = 0.15 (Miller-Jones, Fender & Nakar 2006), either θ incl = 40◦ or
θ incl = 70◦, and φ varies from 0 to 2π during each precession cycle.
We assume the intrinsically emitted luminosity is constant. Fig. 9
shows the result of this model: the left panels show the observed
waveform for an optically thick (red line) and an optically thin
(black dashed line) jet. The right panels shows the power spectrum
of the waveform. For both inclinations the harmonic arises due
to the harmonic content required to describe the non-sinusoidal,
symmetric waveform, instead of a physical process occurring at
twice the precession frequency.

Figure 9. Simulation of the waveform of a jet at an inclination of 40◦ (top)
and 70◦ (bottom). The jet precesses with an angle of 10◦ and has velocity
β = 0.15. The left plots show the actual observed waveform for an optically
thick and thin jet. The right plots show the Fourier spectrum and the phase
difference.

Furthermore, from this simulation it follows that independent
of inclination the phase difference for an optically thick jet is
�/π = 0.5, close to the frequently-observed values. However, for
the optically thin (i = 40◦ and i = 70◦) scenarios in Fig. 9 one might
not find a significant harmonic component in an observation due to
the low harmonic contribution.

In this model, only the simplest geometric effects of a ‘stick-like’
optically-thick emitting jet are taken into account, so that a more
realistic geometry (perhaps a composite of jet-like and disc-like),
angle-dependent emissivity and general relativistic effects (likely
significant in the part of the corona closer to the disc-plane) are
not considered. Combining these effects with the simpler geometric
effects described here could produce deviations from �/π = 0.5 and
perhaps explain the observed Type-B phase differences of �/π =
0.5–0.6.

5.4 Future steps and measurements

5.4.1 Modeling

The phase difference for the Type-C QPO systematically decreases
with QPO frequency, for all except two sources. Such an evolving
phase difference can be explained if the observed QPO consists
of different contributions. For instance, in geometric precession
models, the observed QPO waveform can be a combination of the
direct emission from the precessing corona and reflected emission
off the disc. The harmonic feature in the direct emission could
be caused by general-relativistic effects distorting the waveform
into a non-sinusoidal shape. The reflected component, on the
other hand, could contain a feature at twice the QPO frequency
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because the precessing flow illuminates each disc azimuth twice
per QPO cycle, with its back and front side, as implied by phase-
resolved spectroscopy of H1732–322 (Ingram et al. 2017). The two
contributions to the net QPO waveform would likely not have the
same phase difference.

Mathematically, this idea corresponds to introducing two QPO
waveforms, both with a different value of � that is constant as a
function of QPO frequency. If the relative strength of these two
waveforms varies with QPO frequency, the net phase difference of
the observed waveform will evolve with QPO frequency as well.
We can define a waveform xc(t) and xr(t) for the direct coronal and
reflection QPO contributions, respectively, as:

xc(t) = Af,c cos(2πνf t) + Ah,c cos(2πνht − 2�c) (7)

and

xr (t) = Af,r cos(2πνf t − φr) + Ah,r cos(2πνht − 2φr − 2�r) (8)

where the subscripts f and h refer to fundamental and harmonic,
while the c and r correspond to coronal and reflected, respec-
tively. Here, φr is the phase difference between the fundamental
components of the direct and reflected emission. The waveforms
in equations (7) and (8) are equivalent to equation (1), using the
definition of the phase difference � in equation (2).

The superposition of the above two waveforms yields a full
waveform with the well-defined phase difference �, that depends
on seven parameters of the original waveforms (namely all four
amplitudes, the two phase differences, and the phase φr in equa-
tions (7) and (8)) in a non-trivial fashion. By fine-tuning any of
these parameters (or more specifically, their dependence on QPO
frequency), one can in principle reproduce any relation between �

and QPO frequency.
However, it is difficult to match physical scenarios for the QPO

origin on to a single phase difference. For instance, both the phase
difference between the fundamental and harmonic variation in the
reflected flux, and the exact non-sinusoidal shape of the waveform of
a precessing inner flow, are unknown and non-trivial to determine:
they depend on for instance on the balance between modulation
mechanisms discussed in Section 5.1. Detailed examination of the
different scenarios will require simulation of the relevant relativistic
effects and radiative transfer, which will be an extensive effort
and well beyond the scope of this work. In our work we have not
considered whether non-detections of a phase difference imply that
in some cases there is no meaningful waveform (implicitly assuming
that non-detections are due to signal to noise limitations alone), or
the implications of the non-detections of harmonic components
(which would also require consideration of the upper limits on
harmonic amplitudes). However if, in future, cases arise where there
is clearly no meaningful waveform, or very weak harmonics, these
would also need to be accounted for in any physical framework.

5.4.2 Observations

We speculate that multiple mechanisms underlie the harmonic
feature in the QPO, changing in relative strength as the QPO
frequency and the outburst evolve. Both a reflection and a GR-based
origin of the harmonic signal, discussed in the previous sections,
could show a strong dependence on energy: reflection spectra are
strongest below 2 keV, at the Fe Kα line, and above 15 keV (the
Compton hump). Alternatively, the GR effects might dominate in
the power law emission that originates from the innermost regions
of the accretion flow. Therefore, if the harmonic contributions of

one or both of these two possible mechanisms, this could be visible
by considering the phase difference (evolution) in different energy
ranges.

In this work, we have considered the QPO waveform in a broad
RXTE energy band between 2 and 13 keV. A preliminary test of
any energy dependence, repeating the analysis for the 2–7 and 7–
13 keV bands, did not reveal any clear effect of the choice of energy
band. However, that is not particularly surprising considering the
range of energies; given the RXTE response, both energy bands are
dominated by the power law emission. In addition, the main feature
of reflection, which might be related to the harmonic origin, in the
RXTE band – the iron line – is located right at the division of the
two bands.

Instead of analysing the light curves in different energy bands,
the phase difference as a function of energy can alternatively be
calculated using simply the energy dependence of both the funda-
mental and harmonic phase lag (see the introduction to the method in
Ingram et al. 2017). Given RXTE’s energy range and response, this
approach is again not expected to show clear differences for RXTE
observations. However, more novel observatories with different
energy responses might reveal such an energy dependence; for
instance, the recently employed Neutron star Interior Composition
ExploreR (NICER) aboard the International Space Station is an X-
ray spectral-timing instrument with a soft response (peaking below
2 keV) and excellent timing capabilities. Alternatively, the Nuclear
Spectroscopic Telescope ARray (NuSTAR) can detect photons up to
79 keV and has been used previously to measure phase differences
between the QPO fundamental and harmonic (Ingram et al. 2016).
Observing campaigns with these observatories tracking the QPO
evolution and probing different parts of the reflection spectrum
(beyond the reach of RXTE PCA), can further test whether multiple
mechanisms underly the Type-C QPO harmonic.

6 C O N C L U S I O N S

We have presented the first systematic analysis of the phase
difference between the fundamental and harmonic of the QPOs from
X-ray binaries. This phase difference gives important information
about the physical processes that underlie the QPO emission
mechanism, which is still unknown. We find that most of the
studied X-ray binaries show a well-defined phase difference for
a given QPO frequency and type, implying that they have well-
defined waveforms. For Type-C QPOs, we find that the phase
difference decreases with QPO (fundamental) frequency except for
Swift J1753.5–0127 and XTE J1650–500. For Type-B QPOs, we
find a completely different behaviour with the phase difference in
general being constant with frequency, at around �/π ∼ 0.55–0.6.
Exceptions are found in H1743–322 and XTE J1817–330, which
show a wide variety in phase differences.

A detailed analysis of the phase difference as a function of
inclination does not yield a unique relation, although the data are
suggestive that inclination plays a role in the consistency of the
relation that is observed. Type-C QPOs in high-inclination sources
show decreasing phase difference with frequency, with most sources
clustered around a similar relation. Low-inclination sources show
both increasing and decreasing phase difference versus frequency
relations. For Type-B QPOs, the behaviour is similar regardless
of the inclination of the source. The different behaviours for
Type-B and Type-C QPOs lead to a new, quantitative distinction
between Type-B and C QPOs, improving on the more qualitative
classification based on the overall power spectral shape and broad-
band noise strength. For the sources analysed in this study, we draw
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the conclusion that when �/π > 0.5 rad and ν > 4 Hz, the QPO
should not be classified as a Type-C. Using this new scheme, we
have found two incorrectly classified QPOs in our sample, that were
originally classified as Type-C QPOs by Motta et al. (2015) and van
den Eijnden et al. (2017).

To interpret the observed phase differences of the Type-B QPO,
we propose a jet toy-model: the constant Type-B QPO phase
difference observed in most sources can be explained by assuming
that the QPO originates from the precession of an optically thick,
X-ray emitting jet (Sriram et al. 2016; Stevens & Uttley 2016);
the harmonic feature simply arises from the symmetric but non-
sinusoidal nature of the resulting fundamental waveform.

For the Type-C QPO phase difference, we observe a more scat-
tered dependence on QPO frequency for low-inclination sources.
This larger scatter can be explained in the framework of geometric
(Lense–Thirring) precession models. Such models, through the
presence of both a direct and reflected component to the QPO
waveform, might also be able to account for the evolution of
the phase difference. However, detailed modelling is required to
test our explanations of both the inclination-dependent scatter in,
and the evolution of, the Type-C QPO phase difference. From
the observational side, monitoring of the QPO with the X-ray
observatories NICER and NuSTAR could further our understanding
by searching for any energy dependence in the shape of the QPO
waveform.
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APPENDI X A : DATA TABLE

The output produced by our pipeline, containing all data required
to perform our analysis, is publicly available at the following url:
https://github.com/jvandeneijnden/QPO-phase-differences

APPENDI X B: LOW ER AND UPPER BOUNDS
A N D G U E S S FO R F I T PA R A M E T E R S

Initial guesses and lower and upper bounds for the fit parameters to
models 1–3 as described in the methodology are shown in Table B1.
Each model consists of a sum of Cauchy/Lorentz distributions,
defined as:

P (ν) = K · (σ/2)

(ν − νcenter)2 + (σ/2)2
(B1)

where K is the amplitude, σ is the scale parameter that defines
full width at half maximum, and νcenter is the location parameter,
specifying the location of the peak of the distribution. As stated
before the two Lorentzians fitted to the BBN (described by K1,
σ 1, K2, and σ 2) have a location parameter fixed at 0 Hz. νfund, 0 is
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Table B1. Initial guesses and lower and upper bounds for the fit parameters
to models 1, 2, and 3. νfund, 0 is the initial QPO fundamental frequency
guess.

Lower bound Guess Upper bound

K1 [rms2/Hz] 10−4 10−3 ∞
σ 1 [Hz] 0 102 ∞

K2 [rms2/Hz] 10−5 10−3 ∞
σ 2 [Hz] 0 10−1 ∞

K3 [rms2/Hz] 0 10−2 ∞
σ 3 [Hz] 0 1 10
νcenter, 3 [Hz] 0.9 · νfund, 0 νfund, 0 1.1 · νfund, 0

K4 [rms2/Hz] 0 10−3 ∞
σ 4 [Hz] 0 1 10
νcenter, 4 [Hz] 1.9 · νfund, 0 2 · νfund, 0 2.1 · νfund, 0

K5 [rms2/Hz] 0 10−2 ∞
σ 5 [Hz] 0 1 10
νcenter, 5 [Hz] 0.2 · νfund, 0 0.5 · νfund, 0 0.8 · νfund, 0

C [rms2/Hz] 0 10−3 max power

short for the initial QPO fundamental frequency guess. C represents
the constant power level that is added to the sum of Lorentzians.
For model 1 only the BBN parameters (K1, σ 1, K2, σ 2) and
the parameters for Lorentzian for the fundamental peak (K3, σ 3,
νcenter, 3) are taken into account. For models 2 and 3, another
Lorentzian is added each time, and the bounds on these Lorentzian
parameters can be found in K4, σ 4, νcenter, 4 and K5, σ 5, νcenter, 5.

APPENDI X C : INCLI NATI ON D EPENDENCE
OF THE PHASE DI FFERENCE

Tables C1 and C2 show the results of the straight line fits to Figs. 5
and 6 and inclination for the Type-B and C QPOs, respectively. The
table shows number of data points used for the fit (data points),
the slope of the fit, the fit intercept with the y-axis, the inclination
of source, the inclination sample the source belongs to, and the
reference for the inclination data. The errorbars on the slope and
intercept represent a 1σ interval. For some sources, only two data
points were available, so the straight line fit has zero error. Sources
with only one data point aren’t included in this table.

Table C1. Slope of straight line fitted to the phase difference versus frequency plots for Type-C QPOs. Two outliers for GRS 1915+105 and XTE J1550–564
are disregarded. 4U 1543–47 and XTE J1752–223 have only one or two data points such that fitting a straight line makes no sense. Inclination sample from
Motta et al. (2015). References for the specific inclinations: [1]: Neustroev et al. (2014), [2]: Orosz (2003), [3]: Orosz et al. (2004), [4]: Munoz-Darias,
Casares & Martı́nez-Pais (2008); Zdziarski et al. (1998), [5]: Miller-Jones et al. (2011), [6]: Corral-Santana et al. (2011), [7]: Orosz et al. (2011), [8]: Greene,
Bailyn & Orosz (2001), [9]: Steiner, McClintock & Reid (2011) and [10]: Mirabel & Rodriguez (1994).

Source Data points Fit slope Fit intercept Inclination Sample Ref.

Swift J1753.5–0127 21 0.075 ± 0.092 0.026 ± 0.073 ∼40–55 Low [1]
4U 1543–47 2 − 0.004 ± 0.0 0.033 ± 0.0 20.7 ± 1.5◦ Low [2]
XTE J1650–500 7 0.093 ± 0.025 − 0.250 ± 0.107 >47◦ Low [3]
GX 339–4 15 − 0.142 ± 0.013 0.975 ± 0.044 40 ≤ i ≤ 60◦ Low [4]
XTE J1752–223 1 – – ≤49◦ Low [5]

XTE J1859+226 21 − 0.036 ± 0.002 0.0244 ± 0.014 ≥60◦ – [6]

XTE J1550–564 43 − 0.043 ± 0.003 0.319 ± 0.012 74.7 ± 3.8◦ High [7]
GRO J1655–40 12 − 0.033 ± 0.007 0.264 ± 0.033 70.2 ± 1◦ High [8]
H1743–322 42 − 0.046 ± 0.005 0.348 ± 0.017 75 ± 3◦ High [9]
GRS 1915+105 67 − 0.107 ± 0.013 0.497 ± 0.040 70 ± 2◦ High [10]
MAXI J1659–152 21 − 0.064 ± 0.006 0.346 ± 0.024 – High –

Table C2. Slope of straight line fitted to the phase difference versus frequency plots for Type-B QPOs. Inclination sample from Motta et al. (2015). References
for the specific inclinations in caption of Table C1.

Source Data points Fit slope Fit intercept Inclination Sample Ref.

4U 1543–47 2 0.123 ± 0.0 − 0.259 ± 0.0 20.7 ± 1.5◦ Low [2]
GX 339–4 2 0.031 ± 0.0 0.435 ± 0.0 40 ≤ i ≤ 60◦ Low [4]
XTE J1817–330 5 0.160 ± 0.620 − 0.473 ± 3.271 – Low –

XTE J1859+226 7 0.035 ± 0.072 0.367 ± 0.362 ≥60◦ – [6]

XTE J1550–564 8 − 0.024 ± 0.014 0.697 ± 0.082 74.7 ± 3.8◦ High [7]
H1743–322 16 0.038 ± 0.094 − 0.165 ± 0.461 75 ± 3◦ High [9]

This paper has been typeset from a TEX/LATEX file prepared by the author.
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