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ABSTRACT
Shear thickening of particle suspensions is caused by a transition between lubricated and frictional contacts between the particles. Using three-
dimensional (3D) numerical simulations, we study how the interparticle friction coefficient (μm) influences the effective macroscopic friction
coefficient (μ) and hence the microstructure and rheology of dense shear thickening suspensions. We propose expressions for μ in terms of
distance to jamming for varying shear stresses and μm values. We find μ to be rather insensitive to interparticle friction, which is perhaps
surprising but agrees with recent theory and experiments. Unifying behaviors were observed between the average coordination numbers of
particles across a wide range of viscous numbers and μm values.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121536., s

I. INTRODUCTION
Understanding the rheological properties of shear thickening

suspensions is scientifically challenging and highly relevant from
the viewpoint of several applications.1–4 The phenomenon of shear
thickening5–11 in which the viscosity increases with increasing shear
rate and shear stress is attributed to the formation of frictional con-
tacts between the particles as suggested by computational results12–14

and confirmed by experiments.15–19 Shear thickening suspensions
can be characterized by their macroscopic friction coefficient μ,
given by μ = σshear/P, with σshear the shear stress and P the confin-
ing pressure. Using suspensions under constant confining pressure,
Boyer et al.11 demonstrated that μ is a unique function of a viscous
parameter Iv defined as Iv = ηf γ̇/P, where ηf and γ̇ are the fluid
viscosity and the shear rate, respectively. They observe similar μ(Iv)
behavior for different materials (polystyrene, PMMA) and particle
sizes. Gallier et al.20 studied μ(Iv) rheology in simulations for ϕ <
0.45 (ϕ being the particle volume fraction) and their simulations
agree quantitatively with the experimental results. Recent studies
by Chévremont et al.21 and Trulsson et al.22 have shed light upon
the influence of the microscopic interparticle friction coefficient μm
on μ, viscosity, and the jamming volume fraction. However, a more
detailed analysis of μ and associated changes in the microstructure of
the suspension is needed to further understand the behavior of the

macroscopic friction coefficient μ and notably its relation with the
microscopic friction coefficient μm. Here, we perform 3D numeri-
cal simulations of dense shear thickening suspensions with varying
interparticle friction coefficients to study the associated changes on
μ. Based on recent results on constitutive relationships for shear
thickening systems,23,24 we propose analytic expressions for μ in
terms of the distance to jamming (ϕm − ϕ, where ϕm is the jamming
volume fraction) for constant volume systems with varying pressure,
shear stress, and μm values. Using the average coordination num-
ber as a parameter, the microstructure of the particles in the system
is analyzed to assess its influence on μ. Finally, simulations of non-
spherical particles are performed to study the effect of nonsphericity
on the behavior of the macroscopic friction coefficient.

II. METHODS
The numerical simulations were performed using the simu-

lation framework SuSi.25 We use the Lattice Boltzmann Method
(LBM) based fluid to simulate the fluid field and Lagrangian par-
ticles as the solid phase. The fluid-particle interactions are modeled
with the Noble Torczynski Method.26 Lubrication forces are calcu-
lated explicitly at particle gaps smaller than the LBM lattice spacing.
Adaptive refinement of time steps is performed in order to ensure
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numerical stability and accuracy, as the interparticle forces diverge
at small particle gaps. The contact normal force Frep between par-
ticles is calculated from the overlap of a contact repulsion layer25

of specified thickness dc ≈ 0.001R,12 where R is the mean radius of
particles,

Frep =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−c0
(d − dc)2

dd2
c

eh, d ≤ dc,

0, otherwise,
(1)

where c0 is the repulsion coefficient, d is the gap between the parti-
cles, dc is the repulsion layer thickness, and eh is the connecting unit
vector between the particles. The static and kinetic friction between
particles is modeled as proposed by Luding.27 Upon initiation of fric-
tional contact between particle pairs, a linear spring of length ξ is
initialized between the closest surface points to model static fric-
tion and is updated using the relative tangential velocity between
the two contacting surface points. The maximum static friction is
Fs ≤ μs|Fnorm,fric|, as given by Coulomb’s Law. The spring force Fspr is
applied if the amplitude of Fspr = −kξ is smaller than the maximum
possible static friction force Fs. Kinetic friction Fk = μkFnorm,fric is
applied as a tangential force at the surface points if Fspr exceeds Fs.
For kinetic friction, the static friction spring length is rescaled so
that Fspr = Fk. In our simulations, we keep μs = μk = μm, where μm is
referred to as the microscopic friction coefficient.

The interacting particles are deemed frictional based on a
critical load model,12 where two particles are considered to be
in friction if the normal force (Frep) between the contacting par-
ticles exceeds a threshold value (FCL). The static and kinetic
friction is based on the normal force for friction (Fnorm,fric),
calculated as12

Fnorm, fric =
⎧⎪⎪⎨⎪⎪⎩

∣Frep∣ − FCL if ∣Frep∣ ≥ FCL,

0 otherwise.
(2)

For the simulations discussed in Sec. III, a 96 μm × 64 μm
× 96 μm system is used, which contains ≈650 particles for ϕ= 0.56.
The particles have a mean diameter of 8 μm with a standard devi-
ation of 0.4 μm to avoid crystallization. The particles are neutrally
buoyant in the suspending fluid, which mimics water (fluid viscos-
ity ηf = 1.002 × 10−3 Pa s, density ρf = 1000 kg/m3). The sim-
ulated systems have a characteristic stress for frictional contacts,
given by σ0 = FCL/(6πR2), where R is the average particle radius.
FCL = 0.2 nN in all simulations, and the tangential spring constant
k = 0.0361 N/m. For the performed analysis, we choose instances
of the system with the average shear stress greater than σ0 so that
frictional interactions are significant.

III. RESULTS AND DISCUSSION
A. Viscosity and normal stress differences

The viscosity of suspensions increases with the particle volume
fraction and diverges when ϕ → ϕm(μm) where ϕm is the jamming
volume fraction associated with μm. Scalings such as the Maron-
Pierce expression28 [ηr = (1−ϕ/ϕm)−2] and the Krieger—Dougherty
expression29 [ηr = (1 − ϕ/ϕm)−2.5ϕm ] have been used to describe the
viscosity divergence with increasing ϕ. We compare our simulation
results across various μm values against previous experiments,11,30–32

FIG. 1. Relative viscosity ηr vs particle volume fraction ϕ, normalized by the jam-
ming volume fraction ϕm for our simulations (colored symbols), compared against:
Maron-Pierce [ηr = (1 − ϕ/ϕm)−2]28 scaling, Krieger and Dougherty29 scaling
[ηr = (1 − ϕ/ϕm)−2.5ϕm ]; simulation results by Gallier et al.20 and Mari et al.;12

experimental results from Overlez et al.,31 Boyer et al.,11 Zarraga et al.,30 and Pan
et al.32 ϕm and μm (if available) are indicated for each source. Error bars shows
the variation in viscosity. The simulation results correspond to the highest shear
rate simulated for each individual ϕ and μm.

simulations,12,20 and the aforementioned scalings28,29 in Fig. 1. Our
results are observed to be in agreement with the previous works.
As expected, the viscosity of the system diverges close to ϕm and
the value of ϕm increases with decreasing μm. We will explore this
behavior further in Sec. III F.

Shear thickening is also associated with the presence of normal
stress differences.5,32 The second normal stress difference N2 (N2
= σ22 − σ33, where σ22 and σ33 are the normal stresses in the shear
gradient and vorticity directions) has consistently been found to be
negative in experiments30,33–36 and simulations20,37,38 alike, and its
magnitude increases linearly with shear stress σshear. A fit of N2/σshear
= −4.4ϕ3 was suggested by Dai et al.33 for the variation of N2 with ϕ.
We show the comparisons between our results, the previous exper-
iments, and simulations in Fig. 2(a). Our simulation results again
show good agreement with the results from the literature.

The first normal stress difference N1 (N1 = σ11 − σ22, σ11 is
the normal stress in the shear direction) has been a topic of debate
since there are considerable differences in the available experimen-
tal data.33,34,36 N1 is generally smaller in magnitude compared to
N2. The behavior of N1 is less well understood since even the alge-
braic sign of N1 appears to depend on experimental conditions.32

We compare N1 observed in our simulations against the existing lit-
erature in Fig. 2(b). N1 obtained in our simulations closely resembles
the works by Royer et al.18 who observed a negative to positive tran-
sition for N1 with increasing ϕ. Recent studies39 have made advances
to address some of the outstanding questions about N1.

B. Viscous number rheology
The macroscopic friction coefficient (μ) of suspensions is char-

acterized by the viscous number (Iv) of the suspension flow. Iv is
defined as

Iv = ηf γ̇/P, (3)
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FIG. 2. Ratio of the normal stress difference to the shear stress (a) −N2/σshear and
(b) N1/σshear as a function of ϕ for various μm values. Simulations (colored sym-
bols) are compared against: experimental results of Dai et al.,33 Dbouk et al.,36

Couturier et al.,35 Zarraga et al.,30 Singh and Nott,34 and Royer et al.;18 simulation
results of Gallier et al.20 and the fits suggested by Dai et al.33 Relevant information
about the particle diameter d and μm are shown in the legends. Results from sim-
ulations are taken over a range of σshear/σ0 ∈ [0.01, 100]. The values of N1 have
significant fluctuations, and the averaged values are presented.

where ηf is the fluid viscosity, γ̇ is the shear rate, and P is the pres-
sure in the system. The viscous number can be seen as the ratio of the
internal time scale of microscopic particle rearrangements in a vis-
cous system (ηf /P), to the macroscopic flow time scale (1/γ̇). Boyer

et al.11 used pressure imposed flows to study variation in μ with Iv ,
where systems of hard spheres were sheared at constant pressure (P)
and shear rate (γ̇) while the system was allowed to dilate (changing
ϕ) in order to keep P constant. They demonstrated that μ of sus-
pensions is the sum of contact (μc) and hydrodynamic (μh) stress
contributions, as shown in the following:

μ(Iv) = μ1 +
μ2 − μ1

1 + I0/Iv
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

μc

+ Iv +
5
2
ϕmI

1
2
v

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
μh

, (4)

where, μ1 is the limit of the particle contact contribution to the
macroscopic friction (μc) at vanishing viscous numbers, and μ2 is
the maximum μc at Iv → ∞ as observed in granular flows.40,41 I0
represents the scale over which μc(Iv) changes and is observed to be
constant for a given particle shape. ϕm is the jamming volume frac-
tion. μh(Iv) is designed to reproduce the Einstein viscosity at low ϕ
and be nonsaturating at high Iv . Here, simulations of constant ϕ
and γ̇ with varying P are performed to study μ(Iv). In this study, we
define P as the average of the diagonal elements of the stress tensor
in the system, i.e., P = ∑3

i=1 σii/3. We systematically vary the micro-
scopic friction coefficient μm and compare to the predictions of μ(Iv)
rheology [Eq. (4)] to see if the constant ϕ and γ̇ simulations conform
to the predictions of μ(Iv) rheology.

Figure 3(a) compares the results from our simulations to the
μ(Iv) rheology predicted by Eq. (4), and the experimental results
from Boyer et al.11 Suspensions of different ϕ values were sim-
ulated to obtain the range of Iv values. It can be observed that
μ ≈ 0.34 at vanishing Iv , which is similar to the values obtained
in experiments.11,40 Using μ2 = 0.7 and I0 ≈ 0.009 provides a good
fit to the simulation data. The value for μ2 is the same as that
observed previously in experiments and simulations of spherical
particles.11,20

At vanishing Iv , we find high corresponding ϕ values similar
to that in experiments.11 Under constant ϕ settings, the range of Iv
values accessible for each ϕ value is limited [as seen in Fig. 3(b)], and
multiple simulations of varying ϕ values are required to capture Iv
values varying in orders of magnitude. This issue can be overcome
by allowing the system to dilate in order to change ϕ, as done in

FIG. 3. (a) Macroscopic friction coefficient μ vs viscous number Iv comparison between simulation and the model. Dots represents μ prediction from simulations of ϕ
corresponding to its color. The dashed line shows the μ(Iv ) prediction from Eq. (4) with μ1 = 0.34 (minimum μ observed), μ2 = 0.7, and I0 = 0.009 providing a good fit to the
simulation results. The microscopic friction coefficient μm = 0.5. Triangles represent the experimental results from Boyer et al.11 Vertical and horizontal error bars correspond
to variation in μ and Iv in the data, in each Iv interval. (b) Variation in ϕ vs viscous number Iv . Dots represent simulation results, and the line represents results from Boyer
et al.11 Error bars represent the range of Iv values observed for a given ϕ.
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experiments. The variation in ϕ with Iv is shown in Fig. 3(b), along
with the experimental observation from Boyer et al.11 The simula-
tions show good agreement with the previous experimental results
and the theoretical scalings.

C. Viscosity variation and effect on macroscopic
friction

Viscosity and macroscopic friction coefficient are inherently
related. Simple algebraic manipulation of Eq. (3) shows that μ and
Iv are linked to the relative viscosity ηr as [see Eq. (5), from Boyer
et al.11]

ηr =
μ
Iv

. (5)

Figure 4(a) shows the relative viscosity ηr (ηr = η/ηf , η being the
suspension viscosity) as a function of the shear rate in our simula-
tions (same system as in Fig. 3) for various particle volume fractions.
With increasing ϕ and γ̇, an increased relative viscosity ηr is observed
in the system. At lower ϕ values (ϕ < 0.56), we see CST and subse-
quently DST at higher ϕ values. The macroscopic friction coefficient
μ also shows variation with ϕ and γ̇, as shown in Fig. 4(b). With
increasing ϕ, pronounced reduction in μ is observed, and when the
system undergoes shear thickening, we find μ to reduce again. Simi-
lar observations were made in two dimensional systems by Thomas
et al.42 This happens as a result of the difference in scaling of the
pressure compared to σshear during shear thickening. Viewed from
the perspective of viscous number rheology, this is a result of the
reduction in Iv during shear thickening as a result of the pressure
increasing at a faster rate compared to the increase in γ̇ [see Eq. (3)].
This can also be interpreted in terms of distance to jamming, as
shown in Sec. III F. As shown in Sec. III F, the closer a system is to
jamming (in terms of say, ϕm − ϕ), the lower the value of μ. With
increasing ϕ, the value of ϕm − ϕ reduces and the system moves
closer to jamming. Consequently, a reduction in μ is observed. When
the system undergoes shear thickening, ϕm decreases as more parti-
cles become frictional [see Eq. (9)] and as a result, ϕm − ϕ reduces
further; the system again moves closer to jamming and μ is reduced
again. Next, we compare the variation in ηr with μ in Fig. 4(c). As

viscosity increases, we see reduced μ values. As ϕ approaches ϕm
≈ 0.59, μ approaches μ1 and ηr diverges. The collapse of the data
onto the same curve might be surprising but can be rationalized. As
shown in Eq. (5), ηr is related to μ and Iv . Since μ is a function
of Iv described by Eq. (4), ηr is simply a function of Iv . By sub-
stituting Eq. (4) in Eq. (5), we can describe this relationship quite
well, as shown in Fig. 4(c). In Fig. 4(d), we analyze the frictional
(σshear > σ0) and nonfrictional (σshear < σ0) states of the same sys-
tem separately. We see that ηr(μ) follows slightly different curves
for frictional and frictionless states in comparison, as frictionless
states effectively have a microscopic friction coefficient μm = 0. Thus,
ηr(μ) would diverge at a lower μ1 (see the Sec. III E), but since
we do not simulate ϕ values close to the ϕm value associated with
μm = 0 (ϕμm=0

m ≈ 0.64), the divergence for the nonfrictional states
is not approached.

D. Effect of varying the critical load for friction
Varying the value of the critical load FCL changes the onset

force for friction between contacting particles. Consequently, the
characteristic stress σ0 for friction and shear thickening depends
on FCL, as σ0 ∝ FCL/R2. We present the results of varying FCL
over three orders of magnitude in Fig. 5. Changing FCL does not
change the results of μ(Iv) in viscous number rheology in our con-
stant ϕ systems. The viscous number is given by Iv = ηf γ̇/P and the
macroscopic friction coefficient μ = σshear/P. These quantities change
depending on the scaling of σshear, P and γ̇ with respect to each other.
Prior to or postshear thickening, the scaling of P and σshear with
γ̇ does not change, as evidenced by the constant viscosity in these
states. Thus, μ(Iv), which depends on the ratio of these terms does
not change prior or post shear thickening. During shear thickening,
the scaling of P, σshear, and γ̇ changes with respect to each other due
to the additional force scaling (compared to the nonfrictional state)
due to the progressive increase in the fraction of frictional contacts.43

As a result, variation in μ and Iv are observed only during shear
thickening. This can be readily observed in Fig. 4(b) where the μ
varies during shear thickening and remains constant prior to and
postshear thickening.

FIG. 4. Relative viscosity ηr and macroscopic friction coefficient μ variation during shear thickening, for μm = 0.5. (a) Relative viscosity ηr vs shear rate γ̇. Shear rate γ̇ is
normalized by γ̇0 = σ0/ηf . (b) μ vs normalized γ̇. (c) ηr variation with μ. μ1 = 0.34 is indicated by the dashed vertical line. Black line represents predictions from Eqs. (4)
and (5), with parameters the same as that in Fig. 3. Colors represent the same ϕ values in (a, b, c). States of the system where σshear > σ0 are chosen in order to avoid
nonfrictional states. (d) ηr, μ for frictional (σshear > σ0) and frictionless (σshear > σ0) states analyzed separately (note the difference in the divergences).
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FIG. 5. Effect of the variation in FCL on μ(Iv ). F0 = 2 nN, μm = 0.5, and
measurements over σshear/σ0 ∈ [0.01, 100].

E. Effect of varying microscopic friction coefficient
The properties of the particle contacts have significant influence

on the rheology of suspensions. Purposeful roughening of particles
has shown to increase the viscosity of suspensions in the works of
Moon et al.44 and Lootens et al.45 Hsu et al.46 and Lootens et al.45

also found the jamming transition to happen at lower volume frac-
tions upon using rougher particles, as rougher particles have higher
microscopic friction coefficients.

The microscopic friction coefficient μm has a significant impact
on the shear thickening process. Experimental results from Lootens
et al.,45 simulations by Mari et al.,12 and theoretical models by Singh
et al.23 show that with decreasing μm, the strength of shear thick-
ening reduces in dense suspensions and at μm = 0, shear thickening
disappears altogether. In order to study the effect of changing μm
on μ, we perform simulations of 0.01 ≤ μm ≤ 10, while keeping all
other system parameters the same. This amounts to over 500 indi-
vidual simulations. In agreement with the literature, we find the
microscopic friction coefficient to affect the viscosity significantly, as
shown in Fig. 6(a). With lower μm values, shear thickening observed
becomes progressively less pronounced.

Earlier simulation studies of the role of the microscopic fric-
tion coefficient (μm) in viscous number rheology were performed at

large viscous numbers (Iv > 0.1) with limited overlap between Iv
ranges studied in experiments.20 Here, a larger range of Iv values is
accessed, allowing comparisons with experimental results at lower
Iv values, as shown in Fig. 3. In the previous works of Gallier et al.,20

it was postulated that the master curve for ϕ(Iv) observed by Boyer
et al. [Fig. 2(d) in Ref. 11] was possibly not unique across various
friction coefficients, as the microscopic friction coefficients in their
experiments may not have been varied significantly. Since we are
able to access the low Iv regime, we find evidence that this is indeed
true, as shown in Fig. 6(b). With varying μm, we find different curves
of ϕ(Iv), each saturating at low Iv at different ϕm values correspond-
ing to the μm used. Upon normalizing ϕ values with ϕm, we see in
Fig. 6(c) that the results obey Eq. (11) as suggested by Boyer et al.,11

and that this relationship is insensitive to μm. This was also reported
by Trulsson et al.22 in their 2D simulations and recently observed
by Chévremont et al.21 in their 3D simulations. It should be noted
that the works of Chévremont et al. and Trulsson et al. have con-
stant pressure with varying ϕ, while our system has constant ϕ with
varying pressure.

We now look at the influence μm has on the μ(Iv) relationships.
In Fig. 7(a), the simulation results of μ(Iv) for various μm values are
shown. At large Iv values (Iv > 0.1), μ(Iv) is similar for all μm val-
ues. At vanishing Iv values (Iv < 10−4), the minimum μ(Iv) (i.e., μ1)
reduces with decreasing μm, as shown in Fig. 7(c). This observation
is in agreement to that made in past simulations of 2D granular and
suspension flows.22,47 Interestingly, the relationship between μ− μ1
and Iv collapses to the same curve for all μm values in this system
[see Fig. 7(b)]. Such a collapse was not observed when spherical
particle suspensions studied in this section are compared against
nonspherical particle suspensions (see Sec. III H), suggesting that
particle shape is a factor here. The change in μ1 with μm follows
a sigmoidal relationship, as observed in Fig. 7(c). The collapse of
μ − μ1 for Iv < 10−3 with the viscous number is obviously due to
μ being constant and equal to μ1 in this range. Within the interme-
diate viscous number range (10−3 ≤ Iv ≤ 10−1) where the particle
contact contribution [μc in Eq. (4)] to μ remains dominant, the vari-
ation in μ with the microscopic friction coefficient μm is dictated by
the variation in μ2 − μ1 with μm. Seeing that μ2 is rather insensitive
to microscopic interparticle friction coefficients (μ2 varies between
0.7 and 0.8 for completely frictionless and frictional particles,

FIG. 6. (a) Relative viscosity ηr vs shear rate γ̇ for ϕ = 0.5 under different microscopic friction coefficients μm. (b) Variation of Iv with various ϕ values. Dots represent the
simulation results, and error bars represent the range of Iv observed at the corresponding ϕ. Lines represent the prediction from Eq. (11) with ϕm taken from simulation
results at low Iv . (c) ϕ/ϕm as a function of Iv for various μm values. Solid line represent Eq. (11) suggested by Boyer et al.11 Results compiled over σshear > σ0.
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FIG. 7. (a) Macroscopic friction coefficient μ vs viscous
number Iv for different microscopic friction coefficients (μm).
Each dot represents the prediction from simulations of cor-
responding μm value. Results are compiled over various ϕ
and γ̇ values for each μm value in consideration. (b) μ − μ1
vs Iv where μ1 is the minimum μ observed. (c) Change in
the minimum μ observed (i.e., μ1) with μm.

respectively20), we estimate that the largest difference in μ − μ1
between systems of μm = 0.01 and μm = 10.0 should be ≈0.2, which
agrees with the observed variations in μ − μ1 with μm at Iv ≈ 10−1.
For large viscous number range (Iv > 10−1), the variations in μ are
dominated by the hydrodynamic component [μh in Eq. (4)], and
does not depend on the friction.

The observation that (μ − μ1) as a function of Iv collapses onto
the same curve for 0.01 ≤ μm ≤ 10, and (μ − μ1) → 0 the closer
the system is to jamming, suggests that μ − μ1 could be consid-
ered as a measure of the distance to jamming for these systems. In
other words, the value of μ − μ1 is dictated by the “closeness” of a
system to jamming. At the same microscopic to macroscopic par-
ticle rearrangement time scale ratios (i.e., Iv), all systems have the
same distance to jamming, regardless of their microscopic friction
coefficient. This also entails that if μ − μ1 indeed is a measure of
the distance of a system from jamming, it should have a mapping
to some other measure of distance to jamming, such as ϕm − ϕ.
We shall explore this in Sec. III F.

F. Macroscopic friction coefficient and distance
to jamming

In the simulations, a range of shear stresses (σshear), volume
fractions (ϕ) and microscopic friction coefficients (μm) are studied.
From previous experiments and simulations,23,24 we understand the
effect of changing each of these parameters on the rheology, espe-
cially on the jamming volume fraction (ϕm). Shear thickening is due
to the formation of system spanning frictional networks, and the best
way to describe this is to look at the fraction of frictional particles
in the system. Beyond a characteristic shear stress σ0, the fraction of
particles in the system that have frictional contacts (f ) increases until
all particles become frictional.12 This increase in f with shear stress
σshear can be described48 as

σ0 = FCL/6πR2, (6)

σ̃ = σshear/σ0, (7)

f = e(−1.45/σ̃), (8)

where R is the average radius of the particles, FCL is the onset nor-
mal force between particles to initiate friction, and σ0 = FCL/(6πR2) is
the characteristic stress for the onset of friction. Increasing the frac-
tion of frictional particles leads to a lower jamming volume fraction

ϕm, as ϕm for frictional particles is lower than nonfrictional parti-
cles.23,24 This is a result of the frictional particles requiring a smaller
number of interparticle contacts to be arrested in comparison with
frictionless particles.49 The average coordination number for jam-
ming (ZJ) in suspensions varies continuously between ZJ(μm =∞)
= 4 and ZJ(μm = 0) = 6 in suspensions. Increasing the fraction of
frictional particles in the system reduces the jamming volume frac-
tion ϕm from that of a lubricated, nonfrictional suspension (ϕ0

J ) to
that of a frictional suspension (ϕJ). ϕJ(μm) is the jamming volume
fraction in a suspension with all particles in frictional contact and
is a decreasing function of the microscopic friction coefficient μm.
Hence, the volume fraction associated with jamming varies with μm
and the fraction of frictional particles f in the system, and can be
described23 by

ϕm(σ̃,μm) = ϕJ(μm)f (σ̃) + ϕ0
J (1 − f (σ̃)), (9)

where ϕJ(μm) represents the jamming volume fraction when f = 1
for a given microscopic friction coefficient μm. ϕ0

J is the jamming vol-
ume fraction when f = 0, which is equivalent to a μm = 0 (frictionless)
state. Changing the microscopic friction coefficient μm influences
ϕm, as lowering μm increases23 ϕJ , according to Eq. (10),

ϕJ(μm) = ϕ0
J − (ϕ0

J − ϕ∞J )e−μϕ/μm . (10)

Here, ϕ∞J is the jamming volume fraction at large μm values,
and μϕ is a constant. Boyer et al.11 proposed a model for Iv in terms
of ϕm and ϕ as

ϕ(Iv) =
ϕm

1 + I0.5
v

, (11)

and when substituted in Eq. (4), this gives μ as a function of ϕm
and ϕ,

μ(ϕ,ϕm) = μ1 +
μ2 − μ1

1 + I0ϕ2/(ϕm − ϕ)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
μc

+ (ϕm − ϕ
ϕ
)

2

+
5
2
ϕm
ϕ
(ϕm − ϕ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
μh

. (12)

Under constant volume settings, the fraction of the frictional
contacts varies with shear stress (or shear rate) in the system, which
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FIG. 8. (a) Macroscopic friction coefficient μ(ϕ, σshear, μm)
− μ1(μm) vs distance to jamming ϕm − ϕ for different
μm, σshear, and ϕ values. The shaded area represents the
range of values of μ − μ1 predicted by Eq. (12), cor-
recting for changes in ϕm according to Eqs. (6)–(10), and
the dashed line represents their mean. μ1 values are as
given by Fig. 7(b), μ2 = 0.7. (b) Frictional jamming volume
fraction ϕJ (μm) for different microscopic friction coefficient
(μm) values. Red dots represent the simulation data, while
the curve represents the model presented in Eq. (10) with
ϕ0
J = 0.643, ϕ∞J = 0.55, and μϕ = 0.25.

in turn varies ϕm. We can account for this variation in ϕm by employ-
ing Eqs. (6)–(10). This helps to predict ϕm in our constant volume
system in terms of σshear and μm which in turn enables an analysis
of μ as a function of ϕm − ϕ (i.e., a distance to jamming metric) and
compare against the predictions from Eq. (12).

Figure 8(a) shows the μ − μ1 as a function of ϕm − ϕ com-
piled over a range of σshear, ϕ, and μ values. The simulation results
show agreement with the predictions from theory outlined in
Eqs. (6)–(12). The changes in ϕJ with μm are taken into account by
using their relationship outlined in Eq. (10), as shown in Fig. 8(b).
The simulation results agree with the theoretical assumption that,
by accounting for changes in ϕm with σshear and μm, the values of μ
across different σshear and μm values collapse to the regime outlined
in Fig. 8(a). The change in the frictional jamming volume fraction
ϕJ with μm is shown in Fig. 8(b), along with the model presented in
Eq. (10). The results also show that μ − μ1 is indeed a measure for
the distance to jamming, as suggested in Sec. III E.

G. Microstructure changes
The microscopic friction coefficient plays an important role

in the nature of contact networks formed at jamming. The mean
coordination number at which the suspension jams (ZJ) is inversely
dependent on μm, as ZJ(μm = 0) = 6 and ZJ(μm =∞) = 4.49 The evo-
lution of μ with the average coordination number (Z) under varying
μm values, thus, is of interest. It is also compelling to view μ(Iv)
rheology in terms of the evolution of Z.

Figure 9(a) shows average coordination number Z(Iv) under
various μm values. Z is calculated per particle by counting the num-
ber contacts it makes, i.e., cases where rij − Ri − Rj ≤ dc, where ri ,j
are the distance between the particles and Ri ,j are their radii. Even
though the data is compiled from various ϕ and σshear values, Z(Iv ,
μm) collapses to unique curves depending on μm. The maximum
coordination number is Z ≈ 4 at μm = 10.0 and saturates at higher
maximum values (ZJ) with reducing μm as expected from ZJ(μm)
relationship described before. The low Z values at large Iv sheds
light on the insensitivity of μ(Iv) rheology to changes in μm in these
Iv ranges. μ(Iv) rheology hence is essentially the process of varying
coordination numbers between zero and ZJ(μm). Upon normalizing
Z by ZJ(μm), the different Z(μm) curves collapse to a single curve,
which can be modeled as

Z
ZJ
= 1 − (1 + Iα1

v )−β1 , (13)

where α1 = 0.77 and β1 = 0.3. The variation in ZJ between 6 and 4
depending on μm can also be modeled using the expression

ZJ = 6 − 2(1 + μα2
m )−β2 , (14)

where α2 = −1.72 and β2 = 0.27. Figure 9(b) shows Z/ZJ as a func-
tion of Iv , and it can be observed that the data collapses to a single
curve, modeled by Eq. (13). The variation in ZJ with μm, modeled by
Eq. (14) is shown in Fig. 9(c). It is relevant to note that the variation

FIG. 9. (a) Average coordination number Z as a function of
viscous number Iv for different μm compiled across differ-
ent ϕ and σshear values. Each dot corresponds to simulation
results at corresponding μm. Lines show the prediction of
Z(Iv ) from Eqs. (13) and (14). (b) Z normalized by jamming
coordination number ZJ vs Iv . The dashed line represents
the Z/ZJ (Iv ) model from Eq. (13) while dots represent the
simulation results of μm. (c) Variation in Zj with μm. The dots
show ZJ as observed in simulations at vanishing Iv . The line
represents the ZJ (μm) model from Eq. (14). Green triangles
represent the random loose packing limits in simulations of
the granular system.49
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in ZJ with μm is found to be quite similar to the change in the coor-
dination numbers associated with minimum random loose pack-
ing (RLP) limit observed in dry granular systems.49 The minimum
RLP coordination number corresponds to the minimum coordina-
tion number required to obtain a disordered, mechanically stable
jammed system. As the limits of jamming are prescribed entirely by
the properties of the particles, it is conceivable that the characteris-
tics related to jamming in granular systems devoid of fluid is to be
expected in suspensions as well.

The effect of changing Z on μ, under various μm values is shown
in Fig. 10(a). μ(Z) values reasonably collapses into a single curve
for all values of μm studied. This demonstrates that the minimum
μ achieved at low Iv values (i.e., μ1) is determined by ZJ . As ZJ is
inversely related to μm, the relationship between μ1 and μm depicted
in Fig. 7(b) can be rationalized. Assuming a range of Iv values, one
can calculate and compare μ against Z for a given μm value using the
relationships outlined in Eqs. (4), (10), (13), and (14). As shown in
Fig. 10(a), the theoretical predictions of μ(Z, μm = 0.5) is in agree-
ment with the simulation results. Consequently, the variation in
μ with ϕ also collapses reasonably onto a simple curve across the
various μm values studied, as seen in Fig. 10(b). This behavior is
observed in 2D simulations of sheared suspensions and dense granu-
lar systems42,47 and experimentally by Boyer et al.11 With increasing
volume fraction, under a given shear rate, the shear stress and nor-
mal stresses become larger, but their ratio (μ) reduces till μ = μ1 at
jamming [see Figs. 10(d)–10(f)].

This implies that the jamming volume fraction determines μ1,
the minimum macroscopic friction coefficient. The lower the jam-
ming volume fraction, the higher the observed μ1; see Fig. 10(c).
Our simulations of nonspherical particle suspensions (see Sec. III H)

that jam at a lower volume fraction compared to spherical particles
also agree with this observation, as shown in Fig. 10(c).

H. Nonspherical particles
Particle shapes have significant effects on the shear thicken-

ing behavior of the suspensions. Cornstarch particles are observed
to shear thicken at much lower ϕm values (ϕm ≈ 0.44)6 in compari-
son to suspensions of spherical particles which shear thicken around
ϕm = 0.56. Simulation results25 show that frictional jamming volume
fraction ϕ∞J is lowered when particles shapes become “cornstarch-
like.” In the interest of comparing the macroscopic friction coeffi-
cient variation in spherical particles to that of nonspherical particles,
simulations of “cornstarch-like” nonspherical particle suspensions
were performed. The “cornstarch-like” particles were created using
overlapping spheres of varying sizes, as outlined in Ref. 25. The
nonspherical particles are bimodal with diameters of 8 μm (50% by
volume) and 11.2 μm (50% by volume) and a standard deviation
about 0.01R, calculated based on the largest chord length. The parti-
cles have an aspect ratio distribution with a mean of 1.1 and standard
deviation of 0.1. A representation of the nonspherical particles used
is provided in Fig. 11(a)(inset).

Figure 11(a) compares μ(Iv) for spherical particle suspensions
and nonspherical particle suspensions. At high viscous numbers,
μ(Iv) for spherical and nonspherical particle suspensions tends to
be the same. This is understandable, as at high Iv values the coor-
dination numbers of the particles (spherical or nonspherical) in
the suspensions reduces and particle shapes become increasingly
less relevant. However, at small Iv values, μ(Iv) behavior of non-
spherical particle suspensions deviates from that of spherical particle

FIG. 10. (a) Variation in the macroscopic
friction coefficient μ with average coor-
dination number Z compiled across dif-
ferent μm and ϕ values. The solid line
and shaded area represent the mean
and range of values μ(Z) under vari-
ous μm values predicted by Eqs. (4),
(13), and (14). (b) Variation of μ with
ϕ for various μm values. The solid line
and shaded area represent the predicted
range of μ(ϕ) for various μm values
by Eqs. (9)–(12). Green triangles repre-
sent the experimental results from Boyer
et al.11 (c) Minimum macroscopic friction
coefficient (μ1) achieved at jamming as
a function of the jamming volume frac-
tion ϕJ (μm). Black triangle represents
the μ1 observed at jamming for suspen-
sions of nonspherical particles discussed
in Sec. III H. [(d) and (e)] Pressure P
and shear stress σshear normalized by
σ0 scaling with volume fraction for vari-
ous shear rates for μm = 0.5. (f) Macro-
scopic friction coefficient μ measured for
the pressure and shear stresses shown
in [(d) and (e)]. Vertical black lines show
the jamming volume fraction.
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FIG. 11. (a) Macroscopic friction coefficient μ vs viscous
number Iv for spherical particle suspensions (SPS) and
nonspherical particle suspensions (NSPS) with μm = 1.0.
Black triangle represent the macroscopic friction coefficient
measured close to jamming in experiments with cornstarch
suspensions.6 (inset): Representation of the nonspherical
particles used in the simulations. (b)(μ − μ1)/μ for spheri-
cal (dots) and nonspherical (triangles) particle suspensions.
Green triangles represent the results of Boyer et al.11 Line
represents the fit given by Eq. (15).

suspensions, for any constant μm value. Naturally, these deviations
become apparent at Iv values where particle interactions become
relevant, i.e., Iv < 10−1. Results suggests that the macroscopic fric-
tion coefficient of nonspherical particle suspensions plateaus to μ1
at higher viscous numbers in comparison to the spherical particle
suspensions. Also, at vanishing viscous numbers, the macroscopic
friction coefficient of the nonspherical particle suspensions saturates
to a higher μ1 in comparison with spherical particle suspensions, for
a given μm value. This agrees with measurements of the macroscopic
friction coefficient for cornstarch suspensions close to jamming,6

where μ1 ≈ 0.62 in the experimental systems and μ1 ≈ 0.6 in the sim-
ulations. In Sec. III G, it was concluded that the jamming volume
fraction determines the minimum value of the macroscopic friction
coefficient. Considering that the nonspherical suspension simulated
here jams around ϕnon−sphericalJ = 0.53, which is lower than the jam-
ming volume fraction for spherical particles (ϕsphericalJ = 0.576) at
the same μm value (μm = 1), the larger μ1 observed here can be
rationalized.

It is intriguing to see whether one can generalize these varia-
tions in μ with particle shapes and microscopic friction coefficients
to arrive at a common curve for all available data. By (a) normal-
izing Iv with I2μ1

v [where I2μ1
v = Iv(μ = 2μ1)] to account for the

shift in Iv values at which μ plateaus to μ1 and (b) setting upper
and lower bounds to the variation in μ by using (μ − μ1)/μ as the
measure of the variation of μ with Iv , the results collapses nicely
to a single curve, for both spherical and nonspherical particle sus-
pensions, across varying μm values [see Fig. 11(b)]. The results of
Boyer et al.11 are shown for comparison and also agrees with the
curve. This common relationship can be fitted using the empirical
expression

μ − μ1

μ
=

√
Iv

√
Iv +
√
I2μ1
v

, (15)

which in turn gives:

μ = μ1(1 +
√

Iv
I2μ1
v

). (16)

The terms ϕm, μ1, I0 from Eq. (4) are incorporated in I2μ1
v in

Eq. (16). Since I0 and μ2 do not change significantly with μm, I2μ1
v

becomes a function of the free parameter ϕm. Even though the simu-
lation results reasonably conform to the expression given by Eq. (15),

it should be mentioned that the validity of the expression at high
viscous numbers (Iv > 0.5) is suspect, as we have no experimental
data in this regime. Experimental data for nonspherical particles at
viscous numbers high enough to obtain I2μ1

v are also absent, which
prevents us from further validation.

IV. CONCLUSION
We analyze the behavior of the macroscopic friction coefficient

(μ) under different microscopic friction coefficients (μm) using 3D
numerical simulations. The predictions of μ from simulations agree
with earlier predictions of viscous number granular suspension rhe-
ology. We find that when μm > 0.3, the viscous number rheology
is largely insensitive to the value of μm. By changing the jamming
volume fraction ϕm with the changes in shear stresses and μm, we
analyze μ in terms of distance to jamming (ϕm − ϕ) and provide phe-
nomenological but analytic formulas that match the observations.
Our results also suggest that the behavior of μ across various μm and
viscous numbers (Iv) can be reduced to effects of the distance to jam-
ming. The study of changes in the average coordination number (Z)
with the viscous number (Iv) shows that Z smoothly decreases from
ZJ (Z at jamming) to zero with increasing viscous number, where
ZJ is again determined by μm. Our results suggest that the mini-
mum μ achieved is inversely related to the jamming volume fraction
and ZJ . Finally, we show that with appropriate scaling, a common
curve for the variation of μ with Iv emerges for both spherical and
nonspherical particles under varying μm values.
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