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The ability to pump quantized amounts of charge is one of the hallmarks of topological materials. An
archetypical example is Laughlin’s gauge argument for transporting an integer number of electrons between the
edges of a quantum Hall cylinder upon insertion of a magnetic flux quantum. This is mathematically equivalent
to the equally famous suggestion of Thouless that an integer number of electrons is pumped between two ends
of a one-dimensional quantum wire upon sliding a charge-density wave over a single wavelength. We use the

correspondence between these descriptions to visualize the detailed dynamics of the electron flow during a single
pumping cycle, which is difficult to do directly in the quantum Hall setup because of the gauge freedom inherent
in its description. We find a close correspondence between topological edge states and the mobility edges in
charge-density wave, quantum Hall, and other topological systems. We illustrate this connection by describing

an alternative, nonadiabatic mode of topological transport that displaces precisely the opposite amount of charge
compared to the adiabatic pump. We discuss possible experimental realizations in the context of ultracold atoms

and photonic waveguide experiments.

DOI: 10.1103/PhysRevB.99.115114

I. INTRODUCTION

The experimental discovery of the integer quantum Hall
effect (IQHE) in GaAs [1] revealed the first example of a
two-dimensional (2D) material that has an insulating bulk but
metallic edge states. The IQHE state is now understood to be
part of a much larger class of topological insulators [2-9],
which can be labeled by topological invariants such as the
Chern number or spin-Chern number [10]. Although these
indices determine the number and types of states localized on
the edges of a finite sample, they may be computed entirely
from bulk quantities and depend on the symmetries of the bulk
Hamiltonians. Different topological classes emerge depending
on whether time-reversal, particle-hole, and chiral symmetries
are present or not [11,12] and may be further refined using
lattice symmetries [13—17].

A correspondence between the bulk topological invariants
and the dynamics of edge states in the IQHE was put forward
by Laughlin [10,18-20]. It shows that adiabatically threading
a single Aharonov-Bohm flux quantum ¢y = h/e through the
interior of an IQHE cylinder [18,19] results in a quantized
number of electrons moving from one edge of the cylinder to
the opposite. The amount of charge transported is given pre-
cisely by the bulk Chern number, defined as an integral over
the 2D Brillouin zone [21]. The resulting cyclic charge trans-
fer may be regarded as a dynamical manifestation of the IQHE
[22] and has been observed in a Corbino geometry [23,24].
More generally, it is an example of the type of quantized
adiabatic particle transport or topological charge pumping
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first proposed by Thouless [10,21,25,26]. Experimentally,
topological pumps have been realized in cold-atom [27,28]
and single-spin [29] systems and have attracted attention in
both the adiabatic [30,31] and nonadiabatic [32,33] regimes.

Despite its status as an archetype of topological transport,
the detailed dynamics of exactly how electrons are transferred
between edges as a quantum of flux is threaded through
Laughlin’s IQHE cylinder remains difficult to visualize. The
straightforward comparison of electronic wave functions for
values of the flux that differ by fractions of the flux quan-
tum is hampered by the flux dependence of the canonical
momentum. In this paper, we circumvent this problem by
using a well-known family of one-dimensional (1D) charge-
ordered systems that can be mathematically mapped onto the
2D IQHE setup [34]. This allows us to directly visualize the
topological transport in real space and time, as electrons flow
from one edge of the system to the other, and thus to clarify the
nature of the transport in both the charge-ordered and IQHE
systems.

The rendering of edge state dynamics additionally reveals
the in-gap states are connected to the so-called mobility
edge, which is the critical state separating extended from
localized states in the bulk of a disordered system [35,36]. In
the case of quantum Hall systems, the bulk extended states
are known to be constricted to just a single energy in the
center of each (impurity-broadened) Landau level, as long as
inter-Landau-level scattering is negligible [35,37]. Both edge
states and the mobility edge are topological in nature [38],
which we confirm by considering their common insensitivity
to the presence of weak impurities. Together, the edge states
and the mobility edges make up a single set of connected
states winding around the electronic spectrum. We illustrate

©2019 American Physical Society
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FIG. 1. Schematic depictions of (a) the quantum Hall cylinder used in Laughlin’s gauge argument and (b) the mean-field charge-density
wave (CDW) used as a Thouless pump. Both systems are described by Harper’s equation, where the x coordinate is a spatial direction in both
cases. The perpendicular magnetic field B in the cylinder plays the same role as the band filling 7 or, equivalently, propagation vector Q in the
CDW. The phase of the charge-density modulation can be mapped to a gauge-independent combination of the y component of momentum and
the magnetic flux ® piercing the quantum hall cylinder. (c) The spectrum of the two systems is the same, including the presence of localized,
in-gap modes at the edges of the x direction. Notice that for the CDW, each value of ¢ represents a separate 1D system, while for the 2D
quantum Hall cylinder ¢ corresponds to the y component of momentum and states for all values of k, are simultaneously occupied.

this connection of all the topological states by suggesting
an alternative form of topological charge transport based
on a nonadiabatic variation of externally applied fields. The
nonadiabatic charge pump transfers precisely the opposite
amount of charge from its traditional adiabatic counterpart
and thus acts as an “anti-Thouless” pump. We suggest a
possible experimental realization in cold atomic gases in an
optical lattice.

II. MAPPING BETWEEN ONE AND TWO DIMENSIONS

Harper’s equation, and, more generally, a Mathieu equation
[39—41], can be interpreted both as a tight-binding model for
the IQHE in two dimensions and as a family of mean-field
descriptions for monatomic commensurate charge-density
waves (CDWs) in one dimension [34,42-45]. The filling of
the charge-ordered system, and hence its CDW periodicity,
for example, can be taken to correspond to the magnetic
field strength perpendicular to the surface of a quantum Hall
cylinder, which determines the filling of its Landau levels
[34,41,43]. Under the same mapping, the phase ¢ of the
CDW order parameter then corresponds to a flux threading the
quantum Hall cylinder [18], while the spatial coordinate of the
CDW chain is directly related to the spatial coordinate parallel
to the axis of the 2D cylinder. The mapping is indicated
schematically in Fig. 1.

Upon varying the parameter ¢ adiabatically from zero to
2, the CDW slides along the 1D chain over precisely one
wavelength. The flux threading the IQHE system is increased
by one quantum under the same variation. When introduc-
ing edges, we thus expect to find adiabatic transport of a
quantized number of electrons from one side of the system
to the other in both cases. In this way, the mapping relates
the quantized adiabatic particle transport (Thouless pumping
[21]) in charge-ordered systems to the topological transport
between edge states upon insertion of a flux quantum in a
quantum Hall cylinder (Laughlin’s gauge argument [18]).

The bulk of both the CDW and IQHE systems is insulating,
and only the edge states cross the Fermi level. By solving
Harper’s equation on a cylinder, the spectrum can be plotted as
a function of momentum in the periodic direction. It consists
of bulk bands and isolated topological edge states crossing
the gaps between them. The edge states are protected in the
sense that the number of edge channels cannot be modified as
long as the bulk of the system remains gapped [18]. In a CDW
system the periodic direction is given by the mean-field value
of the phase variable ¢, as shown in Fig. 1. Each value of the
phase then corresponds to a single realization of a CDW on the
chain, which may or may not host edge states. The combined
spectrum of the family of CDWs containing all values of ¢
coincides with that of the IQHE cylinder.

To be concrete, consider a CDW on a finite chain of N sites
described by the Hamiltonian:

N—1

H=—1) (cje;; +cjyc))
=1

N—1 N
Pt ;
HV Yo cleiclci )8 cpe M
= =1

Here, ¢ > 0 is the tunneling amplitude, V is the strength of
the nearest-neighbor Coulomb interaction between electrons,
and ¢; is a random on-site potential that describes the effect of
impurities. The operator c; (c j) creates (annihilates) a spinless
electron at position x = ja, where a is the lattice constant. The
filling factor n is a common fraction, so that Nn is the total
number of electrons in the system. As usual, we assume the
system is charge neutral in total and ignore any ionic charges.

Using the mean-field ansatz (cijch + c;_lcj_l) A
2(cjcj) = Acos(Qja+ ¢) for the particle density, the in-
teraction term becomes Y j VAcos(Qja+ d))c;c ; [34]. This
ansatz defines the propagation vector Q = 2mn/a of the
charge-density modulations, as well as the phase ¢, which
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determines the position of the CDW with respect to the lattice.
Substituting the interaction back into Eq. (1) yields the full
mean-field Hamiltonian for the 1D CDW chain. For periodic
boundary conditions and ¢; = 0, this form of the Hamiltonian
will coincide with Hofstadter’s tight-binding description of
the IQHE [41] if we make the identifications k — k,, Q —
eB/(fic) and ¢ — kya. Here, k is the momentum in the CDW,
and k, , are the x, y components of momentum in the IQHE.
The radial magnetic field B in the IQHE cylinder determines
the filling of its Landau levels. Under this mapping, adding
flux along the central axis of the IQHE cylinder corresponds
to changing the value of the phase ¢ in the CDW [18] and thus
to sliding the charge-density wave along the chain.

The Hamiltonian itself may be realized as a mean-field
description of charge order in 1D chains of aligned orbitals
within a three-dimensional material [46] or as an effective
description of cold atoms in an optical lattice [34,47]. Here,
we focus first on the topological properties of the theoretical
mean-field model, before discussing possible experimental
probes of the various emerging modes of topological transport
in more realistic settings.

III. VISUALIZING CHARGE TRANSFER
BETWEEN EDGE STATES

In Laughlin’s argument for quantized transport across the
IQHE cylinder [18], the electromagnetic gauge structure plays
a central role. Although helpful in establishing why the charge
transferred between the ends of the cylinder must be an inte-
ger, the presence of gauge freedom makes it hard to directly
visualize the precise dynamics. We know and understand what
happens upon insertion of a single flux quantum, but questions
like at which value of the flux one edge state becomes un-
occupied and the opposite one becomes occupied and what
the wave function looks like after insertion of only half a
flux quantum are difficult to answer in a gauge-independent
fashion. For the CDW system, this problem does not exist.
The process corresponding to a flux insertion is the sliding
of the CDW by precisely one wavelength, and this results
in a precisely quantized amount of charge being transferred
from one end of the chain to the other (Thouless pumping
[21]). The quantized conductivity is determined by the sum
of Chern numbers for all occupied bands (in k, ¢ space), as
in the IQHE. However, in this case we can plot the charge
distribution for both bulk and edge states for any value of ¢
and hence visualize the topological transport as a continuous
process.

As shown in Fig. 1, the spectrum and eigenstates can be
computed for a specific choice of parameter values, including
any value for the phase ¢. As an example, we show the results
for a period-3 CDW withn = 1/3, N = 63,and AV/r = 5. We
use this specific example throughout the paper but note that
taking other parameter choices does not qualitatively affect
any of our results. Among the numerically obtained wave
functions, bulk and edge states can easily be distinguished.
The bulk wave functions for a CDW with open boundary
conditions can be understood as products of plane waves (so-
lutions of a CDW system with periodic boundary conditions)
and the eigenstates of a particle in a box. The edge states, on

FIG. 2. The squared amplitude of the highest occupied wave
function at 1/3 filling as a function of phase ¢ and position j along
the CDW chain. The bulk state between ¢ ~ 7 /3 and ¢ ~ 7 can
be recognized as a particle in a box eigenfunction with additional
CDW modulations. It undergoes an avoided crossing at ¢ ~ 7 and
becomes a left edge state for values of ¢ up to 57 /3, where it changes
abruptly into a right edge state until coming back to ¢ ~ 7 /3. If
opposing edges of the chain are connected, the abrupt tunneling from
left to right will turn into an avoided crossing of its own, whose
adiabatic traversal may correspond, for example, to the physical
process of charge being transferred from one edge to another through
an intermediary wire.

the other hand, are exponentially localized on one side of the
chain.

Upon varying ¢, the highest occupied state changes from
an edge state localized on one side to that on the opposite
side. In the example of 1/3 filling shown in Fig. 2, the highest
state with E < 0 at ¢ = 0 is an edge state localized on the
right side of the chain (j = 63). In the region 7 /3 < ¢ < 7,
the edge state is adiabatically transformed into a bulk state,
until it emerges again as an edge state on the opposite side
of the system. At ¢ ~ 5 /3, the highest occupied state dis-
continuously changes from being localized on the left side of
the chain (j = 1) to being localized on the right. From the
spectrum, it is clear that this behavior stems from the two edge
states crossing in energy at this point.

Notice that the states displayed in Fig. 2 are the highest
occupied states at zero temperature for a given value of the
phase variable ¢. Starting from a phase value ¢ < 57 /3 and
adiabatically sliding the CDW forward, the system will, in
fact, not stay in the instantaneous ground state. The two edge
states crossing within the bulk gap are located at opposite
edges of the chain in real space, and any matrix element
of local operators that could assist in tunneling across is
exponentially small in the chain length. A state on one end
of the system can therefore not simply jump to the other
end in the way suggested by Fig. 2. For a sufficiently long
CDW, adiabatic variation of ¢ causes the system to end up
in an excited state at ¢ = 27, with a high-energy edge state
occupied and a lower-energy edge state empty. The system
can only return to its instantaneous ground state, and the
topological material can only function as an adiabatic charge
pump if the two edges of the CDW chain are connected to
one another through some external coupling. In fact, in any
experimental implementation of a topological quantum pump,
one would indeed include a wire connecting the two sides of
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FIG. 3. (a) Sketch of the spectrum as a function of the phase ¢ with all states related to the topological order indicated. Red lines crossing
bulk gaps are edge states localized at the left (j = 1) end of the chain, blue lines are right (j = 63) edge states, and purple lines in the middle
of bulk bands represent mobility edges. (b) Schematic close-up view of the crossing of two edge states and of an edge state entering the
bulk band. If the two edges are connected, they undergo an avoided crossing, which can be traversed either adiabatically by tuning ¢ very
slowly or nonadiabatically by increasing ¢ more rapidly in the region of the avoided crossing. As the edge state enters the bulk band, it
necessarily undergoes a series of avoided crossings, which ultimately connect the edge state to the mobility edge. (c) Intensity plot of selected
wave function amplitudes |v;(¢)|? for different values of the phase ¢. In all plots, dark blue and white indicate low and high amplitudes,
respectively. The leftmost plot shows the state which in (b) starts out as a right edge state (blue line) for low ¢, then becomes a left edge state
(red line), and after the avoided crossing at ¢ >~ w becomes a bulk state (gray line). The orange line in (c) indicates that separate color scales
were used for the edge and bulk states. The other two panels show the states that start out at low ¢ as the topmost state in the lower bulk band
and the one below it. The avoided crossings at ¢ ~ 7 can be identified by the changing number of nodes in the wave function.

the system and would typically measure the current through
the wire as the phase is being varied. Such a connection
can easily be included in the simulation as a weak hopping
element between the opposing sides of the chain. It allows
the two edge states to interact and turns their intersection
in the spectrum into an avoided crossing by opening up
a small energy gap. Adiabatic evolution, which retains the
instantaneous ground state throughout a pumping cycle, is
once again possible. Varying ¢ from zero to 27 then results in
the transfer of precisely one (the Chern number of the lowest
band in k, ¢ space [34]) electron from one side of the system
to the other, through the connecting wire, and thus realizes
the Thouless pump or, in the IQHE interpretation of the same
system, Laughlin’s gauge argument.

IV. THE CONNECTION OF EDGE STATES TO THE
MOBILITY EDGE

Inspecting the bulk wave functions in the spectrum of
Fig. 1, two features stand out. First of all, as the edge state
enters the bulk band, it does not simply disappear. Tracking,
for example, the highest occupied state in Fig. 1, it is clear
that the state, which was an edge state at ¢ < m /3, becomes
a bulk state at 7/3 < ¢ < 7. The bulk state is the particle
in a box state with the highest available number of nodes,
dressed with charge-density modulations. A state with the
same number of nodes in fact already existed for ¢ < 7 /3 as
part of the occupied bulk states. The edge state therefore does
not evolve into a new bulk state as ¢ is adiabatically changed,
but rather has an avoided crossing with an existing bulk state
and takes over its character. The existing bulk state takes over
the character of the edge state and is pushed down in energy
in the process. It then has an avoided crossing with the next
bulk state and so on. This pattern is shown schematically in
Fig. 3.

Close inspection of the wave functions in the spectrum
indeed shows a cascade of avoided crossings, witnessed by

the remainder of an exponential localization that is visible
in bulk states undergoing the avoided crossings. These con-
tinue until the edge state reaches precisely the middle of the
bulk band. There, it emerges again for an extended range of
¢ in the form of another well-known topologically special
state, the mobility edge [35]. This isolated critical state was
to be expected in the center of the bulk band because the
extended bulk states generic to the disordered system are
known to be constricted to just a single energy precisely in
the center of each (impurity-broadened) Landau level in the
case of the quantum Hall effect [37]. Just like the mobility
edge was formed from a left edge state at ¢ ~ 7 /3, it goes
through a second series of avoided crossing and reemerges
as a right edge state at ¢ ~ w. The edge states are of the
form v (x) oc €**, with A being negative and positive for edge
states localized at small and large x, respectively. The mobility
edge naturally connects these two states and has the same
shape of the wave function, with A = 0. This special, totally
delocalized wave function is thus a plane wave connecting
both sides of the sample. Within the CDW, the plane wave
is again dressed by charge modulations, as shown in Fig. 4.
Note that for even Nn, it is possible to have two orthogonal,
delocalized wave functions. We consider chains with odd Nn
here, so that a single mobility edge connects to edge states in
both bulk gaps.

The topological nature of the mobility edge becomes ap-
parent upon adding a random impurity potential ¢;. Notice
that in contrast to the IQHE, where the presence of weak
impurities is necessary to observe the quantization of the Hall
conductivity, in the CDW system topological transport may be
observed even with only the Coulomb interaction localizing
charges within the unit cell. Nevertheless, the presence of
weak impurities (modeled here with |¢;|/t < 0.2) may be
considered, and their effect is much the same as in the IQHE,
localizing electronic states at specific locations in the chain.
The difference between the mobility edge and other bulk
states is now immediately obvious. As shown in Fig. 4, typical
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FIG. 4. Wave functions in the presence of randomly distributed
weak impurities (|¢;|/t < 0.2). The delocalized mobility edge in
(a) is hardly affected by the impurities, testifying to its topological
character. The lowest-energy state in (b), on the other hand, becomes
completely localized at the location of the strongest impurity. For
both panels, the same distribution of impurities was used.

bulk states are severely affected by the impurity potential,
being amplified and suppressed at random locations. The
mobility edge, on the other hand, retains a more or less
constant amplitude along the entire length of the chain, as
long as the impurity strength is weak. This clearly indicates
the topological nature of the mobility edge and hence its
connection with the topological edge states.

V. NONADIABATIC QUANTIZED PARTICLE TRANSPORT

The connection between edge states and the mobility edge
may be illustrated by considering a nonadiabatic mode of
quantized transport, which exists in addition to the well-
known adiabatic Thouless pump. Starting, for example, with
the (red) left edge state just below ¢ >~ 57 /3 being occupied,
an induced nonadiabatic evolution that jumps all avoided
crossings with both bulk and edge states would result in the
highest occupied state going around the full spectrum, as
shown schematically in Fig. 3. As ¢ is increased by 67, the
highest occupied state traverses all topologically special states
in the entire spectrum and returns to its initial configuration.
When stopping the nonadiabatic evolution after ¢ is increased
by 4, however, the highest occupied state will have moved
from its initial left edge state to the right edge state in the
lowest bulk gap. In the presence of a wire connecting both
ends of the chain, we can then either adiabatically increase ¢
by another 277 /3 or let the system spontaneously relax to its
ground state. Both will lead to the excited state going from
right to left through the wire. That is, a current is carried
through the connecting wire in the direction opposite to that
of the usual adiabatic topological transport. This nonadiabatic
transfer of charge with the same magnitude but in the opposite
direction of the usual Thouless pumping is made possible by
the edge states and mobility edges forming a connected set of
states winding throughout the electronic spectrum.

Generalizing the procedure to systems of any filling, the
integer number of charges transferred by the nonadiabatic
mode of transport will equal —C, with C being the total Chern
number of all occupied bands, the exact opposite of the C
electrons conveyed in the usual Thouless pump. In this sense,
it acts as a sort of anti-Thouless pump. Notice that hybrid
protocols employing both adiabatic and nonadiabatic driving
can accomplish the same thing in a much simpler fashion.

In such protocols, however, the highest occupied state is in
nontopological, localized bulk states for part of the pumping
cycle. The purely nonadiabatic process suggested here, in
which the highest occupied state jumps all avoided crossings
that it encounters, is special because it depends entirely on the
special nature and connectivity of the topological edge states
and mobility edge states.

The nonadiabatic topological charge pump presented here
is intended purely as an illustration of the connection between
different types of topological states. Nevertheless, nonadia-
batic or hybrid protocols may in some aspects be preferable
to purely adiabatic ones in practical implementations of topo-
logical pumping. As was recently pointed out, the presence of
a spectrum of unoccupied states imposes much more stringent
conditions for achieving adiabaticity than just the timescale
of the driving being longer than the inverse gap size [48-50].
Nonadiabatic driving across an avoided crossing, on the other
hand, can be accomplished by sufficiently fast changes in
the driving parameters, as long as the overlap between initial
and target states is large. We confirmed that this is the case
in the model CDW system by achieving an almost complete
transfer of occupation across avoided crossings upon ramping
up the driving speed. For any experimental implementation,
a practical restriction on parameter values may arise from
a preference for maintaining the validity of the mean-field
solution even under nonadiabatic driving.

VI. A POSSIBLE IMPLEMENTATION

To realize the proposed illustration of a nonadiabatic
pumping cycle in experiments, several techniques for imaging
the real-space structure of CDW systems can be used. First of
all, the static real-space structure of a CDW can be imaged
by scanning tunneling microscopy (STM), which directly ob-
serves the amplitude and phase of charge-density modulations
induced by a CDW [51-54], as well as excess charge at the
end of a chain [55]. Straightforward experimental realizations
of the dynamic quantized transport protocols, on the other
hand, may use ultracold atoms in an optical lattice or photons
in a waveguide array. Waveguide arrays may directly simulate
the CDW Hamiltonian [55]. Variations of the mean-field
CDW phase ¢ are then implemented by appropriate variations
of the index of refraction. The quantized transport of charge
can be observed by injecting photons into the waveguide
at one edge and observing the intensity distribution in the
waveguides after various propagation distances. The required
values for experimental parameters are similar to those used
in the literature [55] and can be realistically obtained with
existing technology.

Using ultracold atoms, the mean-field Hamiltonian can be
constructed by projecting a circular optical dipole lattice of
63 sites through a microscope objective [47,56]. This can
be done, for example, using an objective with a numerical
aperture of 0.8 [57] and a short wavelength of 532 nm [58],
obtaining a waist of the projected Gaussian beams of the order
of 0.4 um. To ensure that the projected potential is attractive
at this wavelength, one could use, for example, Sr atoms to
load the lattice. Gaussian beams with a spacing of 0.7 um
then result in a potential that closely resembles a sine wave.
The lattice depth will be approximately 0.3 times the depth
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of one Gaussian beam. The lattice sites can be created by
imaging a mask or a pattern from a digital mirror device
(DMD) through the objective [47]. In order to confine the
atoms in the direction orthogonal to the plane of the ring, an
optical lattice can be applied in that direction.

Appropriate values of the model parameters, establishing
a Mott-insulator regime with a weak residual tunneling, may
be achieved, for example, by choosing a lattice depth of
about eight recoil energies, or approximately 10 kHz. The
mean-field energies are then V = 270 Hz and r = 45 Hz. A
weak link may be introduced between two particular sites in
the lattice to allow them to act as edges. The strength of the
tunneling across the weak link can be adjusted arbitrarily far
down from 45 Hz by increasing the spacing between the two
selected sites.

To create and move the CDW, an additional lattice with
larger spacing may be added [28]. The required specifics for
this additional lattice are much more relaxed than the ones for
the primary lattice and can be freely adjusted within a sizable
range. The rotation of the secondary lattice could be achieved
by imaging a DMD or a rotating mask onto the atoms. The
lifetime of the system is limited by off-resonant scattering
of the strongest, primary lattice, which for the parameters
discussed above will be over 200 s. The experiment should
take a few times 63 tunnel times, which is a few times 2.8 s,
and therefore comfortably fits in the expected experimental
lifetime. The system can be prepared in its ground state by
using the Mott-insulator transition. After a full driving cycle,
the quantized buildup of charge at the edges can be detected
by quantum gas microscopy, which directly measures the
parity of the number of atoms in each lattice well. All of this
can be realistically done with existing technology.

VII. CONCLUSIONS

We propose a procedure to visualize adiabatic and nona-
diabatic topological charge transport in a 1D charge-ordered
system, which is well known to map precisely onto the tight-
binding model for the 2D IQHE in the Landau gauge used by
Laughlin to explain topological transport in an IQHE cylinder.
The absence of an electromagnetic field in the CDW, and
hence of the need to make a gauge choice, enables us to
directly compare plots of wave functions at different values
of the CDW phase. The topological transport and dynamics of

electrons in the CDW chain found here thus give direct insight
into the detailed motion of electronic states in the IQHE as
well.

The visualization of the topological transport brings to
the fore an explicit connection between edge states localized
at the ends of the chain or cylinder and the mobility edges
residing in the very center of their bulk states. To illustrate
the connection between these two types of topological states,
localized and extended, we formulate a purely nonadiabatic
protocol that nonetheless results in quantized, topological
transport of charge. The number of electrons pumped in a sin-
gle cycle is precisely equal to that of the well-known adiabatic
pump, but they flow in the opposite direction, creating a sort of
anti-Thouless pump. We expect our conclusions, in particular
the connection between edge states and the bulk mobility
edge, to apply more generally to disordered topological sys-
tems. Any system with a nontrivial Chern or Z, invariant is
guaranteed to have edge states, and similarly, mobility edges
arise generically in models with disorder-induced localization.
A simplified intuitive picture of the connection between the
two types of states, suggested by the CDW system studied
here, can then be drawn starting from an edge state localized
on one side of the system. By evolving this state as a function
of some system parameter, such as the CDW phase, it may be
adiabatically connected to an edge state on the opposite side of
the system. If the evolution is adiabatic throughout, however, a
fully delocalized state must generically exist between the two
edge-localized extremes.

Finally, we suggest experiments on ultracold atoms in
an optical lattice, as well as in photonic waveguides, which
can test the proposed connection between edge states and
mobility edges, as well as the nonadiabatic pumping cycle,
using realistic parameter values.
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