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Design, Parameterization, and Implementation of Atomic
Force Fields for Adsorption in Nanoporous Materials

David Dubbeldam,* Krista S. Walton, Thijs J. H. Vlugt, and Sofia Calero

Molecular simulations are an excellent tool to study adsorption and diffusion
in nanoporous materials. Examples of nanoporous materials are zeolites,
carbon nanotubes, clays, metal-organic frameworks (MOFs), covalent organic
frameworks (COFs) and zeolitic imidazolate frameworks (ZIFs). The molecular
confinement these materials offer has been exploited in adsorption and
catalysis for almost 50 years. Molecular simulations have provided
understanding of the underlying shape selectivity, and adsorption and
diffusion effects. Much of the reliability of the modeling predictions depends
on the accuracy and transferability of the force field. However, flexibility and
the chemical and structural diversity of MOFs add significant challenges for
engineering force fields that are able to reproduce experimentally observed
structural and dynamic properties. Recent developments in design,
parameterization, and implementation of force fields for MOFs and zeolites
are reviewed.

1. Introduction

Nanoporous materials are materials with pore shapes and sizes
comparable to the typical size of small molecules. Selective ad-
sorption is the process of exploiting this confinement using dif-
ferences in molecular configurations. Zeolites are 3D, microp-
orous, crystalline solids with well-defined structures that mainly
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contain silicon and oxygen. They are readily
available, very stable, and relatively cheap.
The material should have the right combi-
nation of high adsorption selectivity, com-
bined with adequate capacity for use in
fixed-bed devices. Recently, new classes
of nanoporous materials have been de-
signed that have stability, high void vol-
umes, and well defined tailorable cavities
of uniform size. Example are metal-organic
frameworks (MOFs),[1–7] covalent organic
frameworks (COFs),[8,9] and zeolitic imida-
zolate frameworks (ZIFs).[10] These novel
materials posses almost unlimited struc-
tural variety because of the many combina-
tions of building blocks that can be imag-
ined. The building blocks self-assembly
during synthesis into crystalline materi-
als that, after evacuation of the structure,

can find applications in adsorption separations, air purification,
gas storage, chemical sensing, and catalysis.[4,11] The judicious se-
lection of building blocks allows the pore volume and function-
ality to be tailored in a rational manner. Because of the design-
principle underlying the synthesis, it is important to understand
structure–properties relations, such as the mechanisms of gas
separation as a function of shape and size of the pore system,
in order to create “blueprints to MOF-design.” Computer simu-
lation is cost-effective, fast, and allows for rapid identification of
important structural parameters affecting adsorption.
Most of the published works on molecular simulation study-

ing zeolites have used the Kiselev model.[12] In this model, ze-
olite atoms are fixed and interactions of guest atoms with sili-
con atoms is accounted for by an effective interaction only with
the surrounding oxygen atoms. Interactions between sorbate
molecules and the host are modeled by placing Lennard–Jones
sites and partial charges on all framework atoms and sorbate
molecules. The Kiselev model is attractive because of its simplic-
ity and computational efficiency. This model has shown signifi-
cant success, both in using the molecular dynamics method to
compute, for example, the diffusivities via the Einstein relation,
and using the Monte Carlo method to, for example, calculate the
sorption of hydrocarbons. A step forward for zeolite modeling
was the TraPPE-zeo model.[13] In this model, the Lennard–Jones
interaction sites and partial charges are placed at both the oxygen
and the silicon atoms of the zeolite lattice. This allows for a bet-
ter balance of dispersive and first-order electrostatic interactions
than is achievable with the Lennard–Jones potential used only for
the oxygen atoms.
Early MOF work initially also adapted the Kiselev approach

where the framework has been kept rigid. However, the
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force field was replaced by a more generic solution such as
DREIDING,[14] or UFF,[15] for example, to tackle the larger chem-
ical diversity of MOFs. These approaches were very successful
without the need for re-parameterization.[16–19] Over the years
several challenges were found. The first major force field chal-
lenge is to take flexibility of the framework into account.[20]

All MOFs exhibit some form of flexibility[21–23] ranging from
lattice vibrations around equilibrium positions to large-scale
structural transformations upon external stimuli. An anomalous
structural transformation due to temperature is negative ther-
mal expansion.[24,25] Guest adsorption can induce phase transi-
tions such as breathing.[26,27] Another newly discovered stimuli
for breathing is the electric field.[28] A related interesting phe-
nomenon is the gate-opening behavior observed in ZIF-8. These
flexible behaviors can have important implications for MOF ap-
plication prospects[29,30] by enabling, for instance, exceptional gas
storage or separation performances that is not possible in tradi-
tional rigid materials. Soft vibrational modes (terahertz regime)
determine large scale framework flexibility.[31,32] The most diffi-
cult and important part of the force field to get right is the lower
frequency modes that are responsible for large-scale flexibility
and structural rearrangement as a function of external stimuli.[20]

The second major force field challenge are open metal-sites as
found for example in Cu-BTC and MOF-74. Sorbent materials
containing open-metal sites are promising materials for the sep-
aration olefin-paraffin mixtures.[33] Unfortunately, conventional
force fields do not capture the olefin-metal interactions. Ideal ad-
sorbed solution theory (IAST)[34] breaks down for olefin adsorp-
tion in open-metal sitematerials due to non-ideal donor–acceptor
interactions.[35]

Here, we review design, parameterization, and implemen-
tation of force fields that lie at the foundation of computing
adsorption and diffusion in nanoporous materials. First, we
briefly describe ab initio and classical simulations approaches.
At the heart of classical simulation methodology lies the “force
field,” an equation describing the dependence of the energy of
a system on the coordinates of its particles using chemical con-
cepts like bonds, bends, torsions, and non-bonded terms.[36] The
various intra-molecular and inter-molecular potentials that are
used in the field of adsorption/diffusion in nanoporousmaterials
are discussed and the implementation of the energy, gradients,
and second-derivatives with respect to position and strain are
detailed. Then we focus on the details of the long-range interac-
tions, in particular charge–charge interaction using the Ewald
summation and the inclusion of bond-dipoles, polarization us-
ing induced dipoles, MD/MC-implementation details, and how
to deal with a net-charge in the system. The latter is also needed
when decomposing the energy into framework, cations, and
adsorbate contribution when the framework itself is net-charged
but compensated by cations. Next, the theory of molecular me-
chanics is reviewed which takes the implemented force fields to
accurately compute zero Kelvin properties like unit cell size and
shape, crystal structure, elastic constants, and vibrational spectra.
To be able to compute these properties fast and accurately, allows
for a common force field parameterization workflow to optimize
the force field parameters to be as close to ab initio results as
possible. We also discuss other parameterization approaches like
constructing empirical force fields based on reproducing exper-
imental data, for example, fitting on adsorption isotherms and
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vapor–liquid experimental data, and fitting on thermal expansion
and elasticity properties.We then review specific force force fields
that have been developed for flexible zeolites and MOFs, and end
with an outlook and discuss the aspects involved in implement-
ing force field on graphic cards, and designing and constructing
a force field in terms of energy versus entropy, bottom-up
versus a top-down approach, and the advantage and pitfalls
when using machine learning approaches to implement force
fields.

2. Ab Initio vs Classical Simulations

2.1. Ab Initio

The term “ab initio” is Latin for “from the beginning.” The com-
putational framework is derived from purely theoretical consid-
erations with no inclusion of experimental data.[37–42] The most
common type of ab initio calculation is called aHartree Fock (HF)
calculation, an extension ofmolecular orbital theory, in which the
correlated electron–electron repulsion is not specifically taken
into account; only its average effect is included in the calculation.
Most ab initio calculationsmake the Born–Oppenheimer approx-
imation, which greatly simplifies the underlying Schrödinger
equation by assuming that the nuclei remain fixed during the
calculation. Present algorithms in computational chemistry
can routinely calculate the properties of molecules that contain
up to about 50 electrons with sufficient accuracy. Errors for
energies can be less than a few kJ mol−1. For geometries, bond
lengths can be predicted within a few picometers and bond
angles within 0.5 degrees. The treatment of larger molecules
that contain hundreds of electrons is computationally tractable
by approximate methods such as density functional theory
(DFT).
In DFT, the total energy is expressed in terms of the total

electron density, rather than the wave function.[43–46] In this type
of calculation, there is an approximate Hamiltonian and an ap-
proximate expression for the total electron density. DFTmethods
can be accurate for little computational cost. DFT methods that
do not include HF exchange can scale better than HF. Some
methods combine the density functional exchange functional
with the HF exchange term and are known as hybrid functional
methods. Despite recent improvements, there are still difficulties
in using DFT to accurately describe inter molecular interactions,
especially van der Waals forces (dispersion). They cannot be
reproduced at the HF level because they are a pure correlation
effect. Exact DFT would include all correlation effects, including
the dispersion force. However, exact DFT contains a functional
of the electron density which is unknown, and most probably
unknowable (except by solving the full Schrödinger equation).
DFT is currently unable to accurately describe adsorption in
nanoporous materials. Phase equilibria are extremely sensitive
to potential parameters of empirically determined classical force
field. Importantly, this also applies to first-principles parameters
of the system.[47] The development of new DFT methods to over-
come this problem is an active research topic. Current research
direction include alteration to the functional,[48] the inclusion
of additive terms,[49] van der Waals density functional (VDW-
DF),[50] and the use of maximally localized Wannier functions.[51]

VDW-DF has been used to study CO2 binding in ZIFs.[52] For
reaching chemical accuracy for the energies of adsorption,
hybrid high-level (MP2) low-level (DFT + D) quantum chemical
method is argued to be required.[53,54] Gradient-corrected den-
sity functional with empirical dispersion corrections (PBE-D)
as well as a nonlocal correlation functional (vdW-DF2) were
found to reproduce available experimental adsorption enthalpies
of alkanes in silicalite and HZSM-5 zeolite only in a limited
fashion.[55] Regular GGAs do not describe dispersion-governed
crystal types well.[56] Currently, dispersion-corrected DFT pro-
duces a stronger associated liquid phase when compared to
experiment.[57–59] Fang et al. systematically compared several
dispersion-corrected DFT methods for CO2 in zeolites.[60] The
semi-empirical method by Grimme[48] was found to give the best
agreement with high level quantum and experimental results.
The other methods substantially overestimated the binding
energies.
The non-local van der Waals density functional (vdW-DF)

of Dion et al.[50] is a very promising scheme for the efficient
treatment of dispersion bonded systems.[61,62] The Strongly Con-
strained and Appropriately Normed (SCAN) semilocal density
functional[63] is a major improvement over PBE (and much more
so over LSDA), at nearly the same computational cost. rVV10[64]

is a simple revision of the VV10 nonlocal density functional
by Vydrov and Van Voorhis[65] for dispersion interactions. Un-
like the original functional this modification allows nonlocal
correlation energy and its derivatives to be efficiently evaluated
in a plane wave framework. Peng et al. constructed a “best-of-
both-worlds” van der Waals (vdW) density functional: SCAN +
rVV10.[66] The resultant vdW density functional yielded excellent
interlayer binding energies and spacings, as well as intralayer lat-
tice constants in 28 layeredmaterials. Trans et al. tested a wide va-
riety of nonlocal van der Waals functionals for solids. Only three
functionals provided reasonably small errors for all properties
(intralayer and interlayer lattice constants and interlayer binding
energy) and for most solids: PBE + rVV10L, SCAN + rVV10, and
rev-vdW-DF2.[67]

In flexible MOFs, there is a delicate balance between disper-
sion and entropy that governs their transformation.[68] Quantum
simulations of adsorption (binding energies) of adsorbates in
nanoporous materials are relatively scarce. The reason is that
adsorption is due to dispersion interactions and therefore a very
high level of theory is needed. This significantly reduces the
amount of atoms that one can reliably include in the simulations.
Therefore most such studies compute binding energies of an
adsorbate with a small, representative cluster. However, this
is a severe approximation for nanoporous materials where the
molecule is usually (strongly) confined. It is more common to
see quantum mechanics applied to the properties of the host
material itself, for example, infra-red (IR) spectra, unit cell size,
and elastic constants.[69–71] Moreover, quantum mechanical tools
are essential to obtain reliable atomic information on the posi-
tions of framework atoms when experimental crystallographic
data are missing or only partially known. However, to study ad-
sorption in nanoporous materials at, for example, physiological
conditions we must resort to classical methodology. Three main
categories of classical simulation methodologies are Molecular
Mechanics (MM), Molecular Dynamics (MD), and Monte Carlo
(MC).
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2.2. Molecular Mechanics (MM)

The basic ideas behind MM date back to the 1930s and
1940s.[72–74] MM assumes that matter consists of atoms and for
every set of positions of the atoms the potential energy can be de-
fined. In 1950–1970 the advent of computers caused MM meth-
ods to grow in popularity at a rapid rate, and currently MM is one
of the standard methods of structural chemistry. The MMmodel
is defined in terms of an energy equation. The classical molecu-
lar energy  can be described as an Taylor expansion in bonds,
bends, torsions, etc.[75,76]

 =
∑
bonds

b(r) +
∑
bends

𝜃(𝜃) +
∑

torsions

𝜙(𝜙) +
∑

out-of-plane bends

𝜒 (𝜒)

+
∑

non-bonded

nb(r) +
∑

bond-bond

bb′
(
r, r′

)
+

∑
bond-bend

b𝜃(r, 𝜃)

+
∑

bend-bend

𝜃𝜃′
(
𝜃, 𝜃′

)
+

∑
bond-torsion

r𝜙

(
r,𝜙, r′

)
+

∑
bend-torsion

𝜃𝜙

(
𝜃,𝜙, 𝜃′

)
+⋯

(1)

This expansion captures all the chemical entities we are used
to, such as atoms, bonds, bond-angles and torsions, and physi-
cal properties like equilibrium structures, vibrational spectra, etc.
On top of the terms in Equation (1) one can add ad hoc terms,
such as hydrogen bonding, that are not adequately accounted
for otherwise. Equation (1) is historically referred to as an force
field. The name arose from the lowest order approximation using
only springswith force constants. The prototypicalMMapplication
is energy minimization, for example to obtain the best binding
modes of two 3D molecules (“docking”). Some examples of its
uses are:[77]

• To obtain reasonable input geometries formore computational
expensive types of calculations,

• To obtain good geometries (and perhaps energies) for small-
to medium-sized molecules,

• To calculate the geometries and energies of very large
molecules, usually polymeric biomolecules (proteins and nu-
cleic acids),

• To generate the potential energy function under which
molecules move, for MD or MC calculations,

• As a (usually quick) guide to the feasibility of, or likely outcome
of, reactions in organic synthesis.

2.3. Molecular Dynamics (MD)

MD mimics nature by computing the positions r(t) and veloci-
ties v(t) of particles as a function of time t according to the equa-
tions of motion of Newton: f = ma, which relates the force f to
the mass m times the acceleration a.[78] MD neglects zero point
motion and the quantisation of vibration. It is therefore not ap-
plicable to the very low temperature regime (at low temperature a
path-integral formalism is required).[79] The first step in a numer-
ical scheme to solve this equation is to rewrite it as two coupled

first-order differential equations:

dv(t)
dt

= a(t) a(t) ≡ a(r, v, t) (2)

dr(t)
dt

= v(t) (3)

We can discretize the time in small time steps Δt where the cur-
rent time t at step n is tn = t0 + nΔt with respect to an arbitrary
time origin t0. To integrate the equations of motion we need to
compute the values of rn+1 and vn+1 at time tn+1 = tn + Δt. A com-
monly used integration scheme is the velocity Verlet scheme[78]:

1. v(t + 1
2
Δt) = v(t) + 1

2
a(t)Δt

2. r(t + Δt) = r(t) + v(t + 1
2
Δt)Δt

3. Compute a(t + Δt) (= f (t + Δt)∕m) from the interactions us-
ing positions r(t + Δt)

4. v(t + Δt) = v(t + 1
2
Δt) + 1

2
a(t + Δt)Δt.

The integration scheme is stable for sufficiently small time steps
Δt. The permitted time step depends on the system. Stiff bonds
require a smaller time step (like 0.5 fs), while for rigid molecules
a larger time step can be used (like 2 fs). The main criteria to val-
idate the chosen time step is the long-time conservation of the
conserved quantity of the equations of motion. The main use of
MD is to generate a thermodynamic ensemble. Newton’s equa-
tion of motion corresponds to the NVE-ensemble, constant num-
ber of particle N, constant volume V , and constant energy E.
Other ensembles can be generated by extending the equation of
motion with thermo- and barostats.[80,81] MD can be applied to
comparatively large systems for relatively long times compared
to QM. In contrast to MC, MD can be used to compute dynamic
properties (time correlation functions and transport properties).
Practical aspects of MD are reviewed in refs. [36,82,83] and fur-
ther details on the algorithms and computational aspects can be
found in refs. [78,84–87].

2.4. Monte Carlo (MC)

In the Markov Chain Monte Carlo method (MCMC)[88,89] the
system evolves from state to state by applying “MC moves” that
modifies the current state, denoted as “old” state, to generate a
“new” state. The “acceptance rule” for the MCmoves guarantees
that all states of theMarkov chain are visited with the appropriate
probability. Hence, no weighting is necessary, and averages can
be computed as averages over the chain. For an infinite Markov
chain the expression is exact. The MC scheme makes use of
the fact that only the relative probability of visiting points in
configuration space is needed, not the absolute probability.
Common moves are to translate and/or rotate a molecule. Such
an attempt can be “accepted” or “rejected” by the acceptance
rule, which means that the state has changed or that the new
state is simply equal to the old one, respectively. Note that in
MC, for particle-moves (like translation and rotation), the energy
difference used in theMCmoves has to be computed only for the
atoms that move. Typical MC system-moves are volume changes
and MC/MD hybrid moves, which are much more expensive
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since the energy has to be recomputed for the entire system. Ad-
vantages of MC are that (for most moves) only energy evaluations
are required and that different ensembles are easily handled.
Examples are the ensembles used to compute adsorption, the
Gibbs ensemble and the grand-canonical ensemble, where the
chemical potential is imposed and the number of particles of the
adsorbed-phase fluctuates. Downsides of MC are that MC is con-
siderably harder to apply to chemically complex molecules than
MD, and highly correlated movements are hard to simulate. Also
only static properties can be computed inMC, because there is no
time involved in an MC move. Time does not enter in the parti-
tion function (i.e., no velocities, only positions) and therefore the
involved units are energy and distance (not time). However, it is
possible to artifically enter time using schemes like “kineticMC.”
Practical aspects of MC are reviewed in ref. [90] and further de-
tails on the algorithms and computational aspects can be found in
refs. [78,84,91–94].

3. Functional Form and Design

3.1. Functional Form

The energy equation Equation (1) is the central workhorse in
MM, MD, and MC. The majority of the computational time will
be spent here, in computing energies and energy derivatives (e.g.,
the forces). The term “force field” refers to the functional form
and parameter sets of the energy, that is, a force field consists of
two parts:

1. An analytical expression for the inter-atomic potential energy
 (r) as a function of the atomic coordinates r.

2. Definitions and parameters for “atom types.” Chemical ele-
ments are classified based on bonding and environment (e.g.,
carbon: sp3, sp2, sp, aromatic, carbonyl). Parameters are as-
signed based on the atom types involved (the CC bond length
and force constant are different for sp3-sp3 vs sp2-sp2).

The forces are given by the gradients of the potential energy with
respect to the internal coordinates of the molecule.
Several types of force fields can be distinguished:

• Rule-based force fields
Force fields that have generally broad applicability across the
periodic table. This type of force field utilizes generic rules to
generate parameters for a range of interactions from a small
set of atomic-based parameters (in contrast to using a set of
explicit parameters determined for each type of interaction).
The rule-based strategy provides a systematic and extensible
way to develop a force field.

• First-generation, class I force fields
Harmonic functions for stretch and bend, no cross-terms,
Lennard–Jones for dispersion interactions. Class I force fields
are also called “harmonic” or “diagonal” and are common for
large systems like proteins or DNA because of their com-
putational efficiency. It is believed that class I force fields
are sufficiently accurate for large bio-molecules near room-
temperature.

• Second-generation, class II force fields

Class II force fields add cross-terms, cubic, or quartic ex-
pansions of stretch and bend, exponential-type potentials for
dispersion interactions, all in an effort to increase the accu-
racy of the potential energies, the structure, and especially
the vibrational frequencies of the system. Because of the ad-
ditional complexity and computational expense, class II force
fields are intended for materials science and small to medium
molecules.

• Third-generation, class III force fields
Type III force fields include hyperconjugation and
polarization.[95–97] Polarization is included using either
induced dipoles (AMOEBA, SIBFA, NEMO, and others), the
drude model (polarizable CHARMM) or fluctuating charges.

Table 1 lists a selection of common force fields.
There are many advantages of the classical approach. Force

field-based simulations can handle large systems, and are several
orders of magnitude faster (and cheaper) than quantum-based
calculations. But also the analysis of the energy contributions
can be done at the level of individual classes of interactions,
and the energy expression can be modified to bias the com-
putations. However, classical approaches have difficulties with
electronic transitions (photon absorption), electron transport
phenomena, proton transfer (acid/base reactions), and chemical
reactions. Therefore vibrational properties like intensities cannot
be described by classical MD, and it is not possible to compute
electronic (band structure, eDOS) or magnetic properties (NMR
spectra). A recent approach to handle chemical reactions in
classical simulations is the reactive force field (ReaxFF)[161]

which is bond order-based. The following characteristics of force
fields are a trade-off:

• Accuracy (how accurate are properties of interest computed),
• Transferability (prediction of properties or systems outside of
the fitting set),

• Computational efficiency.

3.2. Derivatives

Potential energy functions and their derivatives play an essen-
tial ingredient of molecule simulations. ForMCmethodology the
potential energy function  suffice, but MD requires forces f
and hence first derivatives of the potential energy function, that
is, f = −𝜕 ∕𝜕r. Computing normal modes requires the Hes-
sian matrix, a matrix of second derivatives with respect to posi-
tion. The Hessian matrix is particularly important, not only for
geometry optimization, but also for the characterization of sta-
tionary points as minima, transition states, or hilltops, and for
the calculation of IR spectra.[77] A generalized Hessian matrix
can be formed by including strain-derivatives such that also cell
shape and volume changes are incorporated. Elastic constants
at zero Kelvin can directly be computed at machine precision
from the generalized Hessian (see Section 5.1), and the Hessian
is also of great use in efficient minimization methodology[162,163]

(see Section 5.3). Expressions of first and second derivatives for
stretching, linear, nonlinear, and out-of-plane bending and tor-
sional motion have appeared in many articles.[164–176] First and
second derivatives for the Ewald summation have also appeared
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Table 1. Examples of common classical atomic force fields.

Acronym Full name Class Application

AMBER Assisted Model Building with Energy Refinement I biochemistry, nucleic acids and proteins[98–105]

AMB/OPLS AMBER/OPLS I proteins,[106] all-atom hydrocarbons,[107] organic liquids,[108]

carbohydrates[109]

AMOEBA Atomic Multipole Optimized Energetics for Biomolecular
Applications

III Nucleic acids[110]

CFF91 Consistent Force Field II hydrocarbons, proteins, protein-ligand interactions[111]

CFF93 Consistent Force Field II alkyl group and alkanes[112]

CFF95 Consistent Force Field II general-purpose[113,114]

CHARMM Chemistry at HARvard Molecular Mechanics I biochemistry, proteins, nucleic acids, organic molecules,
metal-ions[115–118]

COMPASS Condensed-phase Optimized Molecular Potentials for
Atomistic Simulation Studies

II small molecules and polymers[119,120]

CVFF Consistent-Valence Force Field I biochemistry, peptides and proteins[121]

DREIDING Generic force field rule general-purpose[14]

DRF90 Direct Reaction Field III small (solvent) molecules[122]

ECEPP/5 Empirical Conformational Energy Program for Peptides I peptides, proteins, and organic molecules[123]

ESFF Extensible Systematic Force Field rule organic, inorganic, and organometallic systems[124]

GAFF Generalized Amber Force Field I general-purpose[125]

GROMOS GROnigen MOlecular Simulation I biochemistry, proteins, lipids, nucleic acids, polymers,
water-protein,[126] oligosaccharides,[127] biomolecules in
explicit water[128]

INTERFACE-PCFF Thermodynamically CFF II inorganic, organic, and biological nanostructures[129]

OPLS Optimized Potentials for Liquid Simulations I proteins, nucleic acids, liquid hydrocarbons,[130] amides and
peptides,[131] liquid sulfur compounds,[132] liquid
alcohols[133]

PCFF Polymer Consistent Force-Field II organic polymers, (inorganic) metals, and zeolites[134]

PIPF Polarizable Intermolecular Potential Function III liquid amides and alkanes[135]

MM2 Molecular Mechanics II hydrocarbons,[136] hydrogen-bonding,[137] peptides[138]

MM3 Molecular Mechanics II amides, polypeptides and proteins,[139] hydrogen-bonding[140]

MM4 Molecular Mechanics II saturated hydrocarbons,[141,142] conjugated hydrocarbons,[143]

alkenes,[144,145] sulfides and mercaptans[146]

MMFF94 the Merck Molecular Force Field II general-purpose, all organic molecules for drug design[147–150]

NEMO Non-Empirical Molecular Orbital III small molecules and systems[151]

SIBFA Sum of Interactions Between Fragments Ab initio computed III small molecules and flexible proteins[152]

TraPPE TRAnsferable Potentials for Phase Equilibria I small molecules[153–159]

UFF Universal Force Field rule general-purpose[15]

X-Pol Explicit POLarization III fluid systems[160]

in literature.[177,178] Both the gradient and theHessian can be eval-
uated in (N2) steps.[175] Third-order derivatives are used in free
energy minimization.[162] By combining free-energy minimiza-
tion with empirical fitting, it is possible to determine interatomic
potentials with correct treatment of thermal effects and the zero-
point energy.[179] In free energy minimization the derivatives of
the phonon frequencies are needed, which require the phased
third derivatives of the energy with respect to either three Carte-
sian coordinates, or two Cartesian coordinates and one strain,
for internal and external variables, respectively.[162] Higher-order
derivatives are also required for the analysis of thermal expansion
at zero Kelvin. A harmonic approach does not suffice in this case
because there will be no lattice expansion due to the symmetrical
displacement of atoms about their equilibrium positions. Note

that the energy and derivative computation can be parallelized
with nearly 100% efficiency for internal coordinates.[180] The no-
tational convention in this review is that 𝛼, 𝛽, 𝛾 , 𝜈 = {x, y, z} de-
note the vector components, latin subscripts i, j, k, l denote atom
indices, ri denotes the position of atom i, and 𝜀𝛼𝛽 denotes the La-
grangian strain-tensor.
Derivatives of a function f (y), where y is a function of x1, x2,… ,

are given by applications of the chain rule

𝜕f (y)

𝜕x1
=
𝜕f (y)

𝜕y
𝜕y
𝜕x1

(4)

𝜕2f (y)

𝜕x1𝜕x2
=
𝜕f (y)

𝜕y
𝜕2y

𝜕x1𝜕x2
+

𝜕2f (y)

𝜕y2
𝜕y
𝜕x1

𝜕y
𝜕x2

(5)
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𝜕3f (y)

𝜕x1𝜕x2𝜕x3

=
𝜕f (y)

𝜕y
𝜕3y

𝜕x1𝜕x2𝜕x3

+
𝜕2f (y)

𝜕y2

(
𝜕y
𝜕x1

𝜕2y
𝜕x2𝜕x3

+
𝜕y
𝜕x2

𝜕2y
𝜕x1𝜕x3

+
𝜕y
𝜕x3

𝜕2y
𝜕x1𝜕x2

)
+

𝜕3f (y)

𝜕y3
𝜕y
𝜕x1

𝜕y
𝜕x2

𝜕y
𝜕x3

(6)

Here, f could be a potential energy function f (rij) that depends
on the distance rij which in turn depends on the atomic positions
ri, rj of the atoms i and j involved, or a potential energy function
f (𝜃ijk) that depends on the bend-angle 𝜃ijk which in turn depends
on the atomic positions ri, rj and rk for the three involved atoms
i, j, k, etc. Hence, using the chain rule we can split the derivative
in a derivative of the potential energy function form with respect
to the r, 𝜃 and/or 𝜙 and the derivative of these with respect to the
atomic positions.[170]

Computing the gradient ∇ri
 (rij) of a pair potential  (rij) re-

quires the use of the chain rule

∇ri
 (

rij
)
=

(
d (

rij
)

drij

)
∇ri

rij (7)

Hence we need derivatives of the distance vector rij

rij =
√(

rxi − rxj
)2 + (ryi − ryj

)2 + (rzi − rzj
)2

(8)

We will encounter 𝜕rij∕𝜕rq and 𝜕2rij∕𝜕rp𝜕rq in single and double
derivatives, respectively. We find[176]

𝜕rij
𝜕rq

= 𝛿iq
rij
rij

− 𝛿jq
rij
rij

(9)

𝜕2rij
𝜕rp𝜕rq

= 𝛿iq

(
𝜕
𝜕rp

rij
rij

)
− 𝛿jq

(
𝜕
𝜕rp

rij
rij

)
(10)

=
(
𝛿iq − 𝛿jq

)(
𝛿ip − 𝛿jp

)[ r2ij − r2ij
r3ij

]
(11)

where 𝛿 is the Kronecker delta. As an example, consider the har-
monic bond potential  (r) = 1

2
k(r − r0)

2. The first derivative is
given by

𝜕 (r)
𝜕ri

= 𝜕 (r)
𝜕r

𝜕r
𝜕rij

= k
(
r − r0

) rij
r

(12)

For strain derivatives we first define the metric tensor by[181,182]

M𝛼𝛽 = h𝛼𝜇h̃
−1
𝜇𝛽 (13)

where the matrix h𝛼𝜇 = {a, b, c} is composed of the cell vectors

a, b, c of the simulation cell and h̃ refers to h in the reference

state (usually taken as the zero strain configuration). UsingM𝛼𝛽 , a
homogeneous deformation (i.e., strain) can be applied by relating
the position of an atom to its original position in the reference
state of the body

r𝛼 = M𝛼𝛽 r̃
𝛽 (14)

The strain tensor 𝜀𝛼𝛽 can be expressed in terms of the metric ten-
sor as[181,182]

𝜀𝛼𝛽 = 1
2

(
M‡

𝛼𝜇M𝜇𝛽 − 𝛿𝛼𝛽

)
(15)

where ‡ denotes the transpose of the tensor. Derivatives of any
general thermodynamic variable A that is an explicit function of
M𝛼𝛽 can be derived as

[181,182]

𝜕A
𝜕𝜀𝛼𝛽

= 1
2

(
𝜕A

𝜕M‡
𝛼𝛾

M‡−1
𝛾𝛽 +M−1

𝛼𝛾

𝜕A
𝜕M𝛾𝛽

)
(16)

𝜕2A
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

= 1
4

(
D𝛼𝛽𝜇𝜈 + D𝛽𝛼𝜇𝜈 + D𝛽𝛼𝜈𝜇 + D𝛼𝛽𝜈𝜇

)
A (17)

where

D𝛼𝛽𝜇𝜈A = M−1
𝛼𝛾

𝜕2A

𝜕M𝛾𝛽𝜕M
‡
𝜇𝜔

M‡−1
𝜔𝜈 −M−1

𝛼𝛾 M
‡−1
𝛾𝜈 M−1

𝛽𝜔

𝜕A
𝜕M𝜔𝜇

(18)

An overview of popular function forms for atomic potentials
can be found in ref. [162]. In the next sections, we highlight the
first and second derivatives of the most common potentials used
in zeolite and MOF work. These expressions are taken from lit-
erature but written down using a uniform notation (and hence
changed from the original notation). An implementation for the
analytical expressions as well as their numerical validation can
be found as Supporting Information.

3.3. Bond-Stretching Potentials

Covalent forces are complicated in nature as the electronic struc-
ture changes dramatically upon bond formation. The strength-
range of the covalent bonds is about 200–800 kJ mol−1, and the
force operates over very short distances of the order of 1–2 Å.[183]

MOFs consist of a coordinating metal atom (or cluster of atoms)
with one or more electron rich ligands attached to it by so-called
“coordination bonds.” These bonds are weaker (between 50 and
200 kJ mol−1) and the force is directional acting on a relevant dis-
tance of 1.5–2.5 Å.[184] In a course-grained approach, bonding can
bemodeled by bond-potentials that describe the change in energy
as the bond stretches and compresses. At high temperatures the
asymmetry is apparent as it is harder to compress a bond than it
is to stretch it. The bond force constants are very high andmotion
is usually restricted to the harmonic well of the potential.
The bond vector rij can be defined based on the position of

the atoms rij = ri − rj (see Figure 1) and points from rj toward
ri. The distance rij between atom i and j is |rij| =√

rij ⋅ rij. The
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Figure 1. The bond distance r (left) defined by the distance formed by atoms i-j and (right) the bend angle 𝜃 defined by the angle between the vector i-j
and k-j.

Table 2. Common bond potential functional forms.

TraPPE[153] Fixed bond-lengths

OPLS[106], UFF[15]  (rij) =
1
2
k(rij − r0)

2

AMBER[98], GAFF[125],
CHARMM[116]

 (rij) = k(rij − r0)
2

MM3[139], AMOEBA[110]  (rij) =
1
2
k(rij − r0)

2[1 − 2.55(rij − r0) +
7
12
2.552(rij − r0)

2]

CVFF[121], UFF[15]  (rij) = k(1 − e−𝛼(rij−r0))2

CFF91[111]  (rij) = k2(rij − r0)
2 + k3(rij − r0)

3 + k4(rij − r0)
4

most common functional form for the bond potential b is the
expansion

b(r) =
k1
2

(
r − r0

)2 + k2
3

(
r − r0

)3 + k3
4

(
r − r0

)4 +⋯ (19)

where r is the current bond length, r0 the reference bond length,
and k1, k2, k3 are the bond force constants. Often the expansion
is truncated after the first term. The “Morse” potential is an-
harmonic and often provides a much better description of the
potential

b(r) = D
(
1 − e−𝛼(r−r0)

)2
(20)

Expanding around the equilibrium value leads to

b(r) = D𝛼2
(
r − r0

)2[
1 − 𝛼

(
r − r0

)
+ 7
12

𝛼2
(
r − r0

)2… ]
(21)

The first term is the harmonic potential (with k = 2D𝛼2) and for
organic structures where distortions from equilibrium are small,
the difference between the potentials is small. For larger devia-
tions the Morse potential provides a significantly better descrip-
tion. TheMorse potential provides a restoring force which goes to
zero at long distances. For minimization starting far from equi-
librium this could result in non-convergence. Some force fields
solved this problem by using modifications of Hook’s law. MM2
added a cubic termmaking the bond an-harmonic. However, this
leads to large negative energies for poor initial geometries with
large distortions. MM3 added the quartic term to solve this. Note
the 7∕12 terms in theMM2/3 functional forms originate from the
Taylor expansion of the Morse potential, and the cubic and quar-
tic terms are chosen to mimic the Morse potentials for moderate
distortions. Some common bond potentials are listed in Table 2.

It is convenient to separate the bond potential functional form
from the other derivatives so that a more general framework can
be used.We therefore define the bond potential functional deriva-
tives as

f1 =
d (r)
dr

(22)

f2 =
d2 (r)
dr2

(23)

We define u = rij = ri − rj and u = |u| =√
u ⋅ u. The derivatives

of  (r) with respect to Cartesian coordinates are given by[164]

𝜕 (r)
𝜕r𝛼i

= f1
u𝛼

u
(24)

𝜕 (r)
𝜕r𝛼j

= −f1
u𝛼

u
(25)

𝜕2 (r)

𝜕r𝛼i 𝜕r
𝛽
i

= 𝜕2 (r)

𝜕r𝛼j 𝜕r
𝛽
j

=
(
f2 −

f1
u

)
1
u2
u𝛼u𝛽 + 𝛿𝛼𝛽

1
u
f1 (26)

𝜕2 (r)

𝜕r𝛼i 𝜕r
𝛽
j

= 𝜕2 (r)

𝜕r𝛼j 𝜕r
𝛽
i

= −
(
f2 −

f1
u

)
1
u2
u𝛼u𝛽 − 𝛿𝛼𝛽

1
u
f1 (27)

The derivatives of  (r) with respect to strain are derived by
Ray[185] and Lutsko[181]

𝜕 (r)
𝜕𝜀𝛼𝛽

= f1
1
u
u𝛼u𝛽 (28)

𝜕 (r)

𝜕𝜀𝛼𝛽𝜕r
𝛾
i

=
(
f2 −

f1
u

)
1
u2
u𝛼u𝛽u𝛾 + 1

u

(
𝛿𝛼𝛾 f1u

𝛽 + 𝛿𝛽𝛾 f1u
𝛼
)

(29)

𝜕 (r)

𝜕𝜀𝛼𝛽𝜕r
𝛾
j

= −
(
f2 −

f1
u

)
1
u2
u𝛼u𝛽u𝛾 − 1

u

(
𝛿𝛼𝛾 f1u

𝛽 + 𝛿𝛽𝛾 f1u
𝛼
)

(30)

𝜕 (r)
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

=
(
f2 −

f1
u

)
1
u2
u𝛼u𝛽u𝜇u𝜈

+ 1
2

[
𝛿𝛽𝜈

𝜕 (r)
𝜕𝜀𝛼𝜇

+ 𝛿𝛼𝜈
𝜕 (r)
𝜕𝜀𝛽𝜇

+ 𝛿𝛽𝜇
𝜕 (r)
𝜕𝜀𝛼𝜈

+ 𝛿𝛼𝜇
𝜕 (r)
𝜕𝜀𝛽𝜈

]
(31)

The explicit strain derivative terms appearing in the last term in
Equation (31) arise from the action of the strain derivative on the
explicit cell dependence of the microscopic stress.[181]
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Table 3. Common Urey–Bradley potential functional forms.

CHARMM[116], AMOEBA[110]  (𝜃ijk) = k(rik − r0)
2

3.4. Urey–Bradley

The Urey–Bradley term is a special case of cross-terms and con-
sists of a harmonic potential as a function of the distance between
the (non-bonded) atoms i and k of an i-j-k angle (i.e., as if there
exists an extra bond stretching term between atoms i and k). This
Urey–Bradley term is coupled with the i-j and j-k bond stretching
terms and the i-j-k angle bending term through basic trigonomet-
ric relationships, and is a computationally elegant way of repro-
ducing bond-bond coupling effects in vibrational spectra. How-
ever, compared to the more conventional cross-terms, it is poorly
transferable to various combinations of three atoms with differ-
ent reference values for the bonds or angle. Some commonUrey–
Bradley potentials are listed in Table 3. Derivatives are the same
as for bond-potentials.

3.5. Bond Bending Potentials

We define

u = rij = ri − rj, u = |u| =√
u ⋅ u (32)

v = rkj = rk − rj, v = |v| = √
v ⋅ v (33)

The bend angle 𝜃ijk is formed by the angle between bond vector
u and v (see Figure 1)

cos 𝜃ijk =
u ⋅ v
u v

(34)

To describe bond bending between three atoms one can use

 (𝜃) =
k1
2

(
𝜃 − 𝜃0

)2 + k2
3

(
𝜃 − 𝜃0

)3 + k3
4

(
𝜃 − 𝜃0

)4 +⋯ (35)

Angles are much softer than bonds, especially in zeolites where
a Si-O-Si angle ranges between 135 and 180 degrees.[186] Also in
three- or four-membered rings (cyclopropane, cyclobutane) large
deviations from the usual bond angles are observed. A problem
with all polynomial representations of angles is that angles of 180
degrees results in a singular point (unless the reference angle is
180 degrees). The case of 0 degree is not possible due to repulsion
of the i and k atoms in the i-j-k bend. The singularity is due to a
factor 1∕ sin(𝜃) in the force expression. A common solution is to
use a trigonometric function[187]

 (𝜃) = 1
2
k
[
cos (𝜃) − cos

(
𝜃0
)]2

(36)

Note that close to the maximum this potential has no restoring
force, but for small distortions this is not a problem. The MM
force fields use higher order terms. A six power term was needed
to describe the highly bent bicyclo[1.1.1]pentane. Cubic terms
and higher become desirable when the bending is more than

Table 4. Common bend angle potential functional forms.

TraPPE[153], OPLS[106],
CVFF[121]

 (𝜃ijk) =
1
2
k(𝜃ijk − 𝜃0)

2

AMBER[98], GAFF[125],
CHARMM[116]

 (𝜃ijk) = k(𝜃ijk − 𝜃0)
2

MM3[139], AMOEBA[110]  (𝜃ijk) =
1
2
k(𝜃ijk − 𝜃0)

2
(
1 − 0.014(𝜃ijk − 𝜃0)+

5.6 × 10−5(𝜃ijk − 𝜃0)
2 − 7 × 10−7(𝜃ijk − 𝜃0)

3

+2.2 × 10−8(𝜃ijk − 𝜃0)
4
)

UFF[15]  (𝜃ijk) =
1
2
k(cos 𝜃ijk − cos 𝜃0)

2∕ sin2 𝜃0
CFF91[111]  (𝜃ijk) = k2(𝜃ijk − 𝜃0)

2 + k3(𝜃ijk − 𝜃0)
3 + k4(𝜃ijk − 𝜃0)

4

Cosine harmonic
potential

 (𝜃ijk) =
1
2
k(cos 𝜃ijk − cos 𝜃0)

2

10–15◦. MM3 angle bending has been divided into in-plane and
out-of-plane bending for planar trigonal centers. Otherwise the
deviation from the ideal bond angle would force the atoms out of
plane (e.g., C-C=O bond angle in cyclobutanone). The force con-
stants for bending tend to be smaller than those for stretching
by a factor of 5 to 8. Some common bend potentials are listed in
Table 4.
It is convenient to separate the bend potential functional form

from the other derivatives so that a more general framework can
be used.We therefore define the bend potential functional deriva-
tives as

f1 =
d (𝜃)
d cos 𝜃

(37)

f2 =
d2 (𝜃)
d cos 𝜃2

(38)

The derivative of the potential energy depends on the functional
form of the potential energy function and can be obtained in gen-
eral using[164]

𝜕 (𝜃)
𝜕r𝛼i

= f1
𝜕 cos 𝜃
𝜕r𝛼i

(39)

𝜕 (𝜃)
𝜕r𝛼k

= f1
𝜕 cos 𝜃
𝜕r𝛼k

(40)

𝜕 (𝜃)
𝜕r𝛼j

= −
(

𝜕 (𝜃)
𝜕r𝛼i

+ 𝜕 (𝜃)
𝜕r𝛼k

)
(41)

where

𝜕 cos 𝜃
𝜕r𝛼i

= 1
u

( v𝛼
v
− u𝛼

u
cos 𝜃

)
(42)

𝜕 cos 𝜃
𝜕r𝛼k

= 1
v

(u𝛼

u
− v𝛼

v
cos 𝜃

)
(43)

The second derivatives are given by

𝜕 (𝜃)

𝜕r𝛼i 𝜕r
𝛽
i

= f2
𝜕 cos 𝜃
𝜕r𝛼i

𝜕 cos 𝜃

𝜕r𝛽i
+ f1

𝜕2 cos 𝜃

𝜕r𝛼i 𝜕r
𝛽
i

(44)
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𝜕 (𝜃)

𝜕r𝛼j 𝜕r
𝛽
j

= f2
𝜕 cos 𝜃
𝜕r𝛼j

𝜕 cos 𝜃

𝜕r𝛽j
+ f1

𝜕2 cos 𝜃

𝜕r𝛼i 𝜕r
𝛽
i

+ f1
𝜕2 cos 𝜃

𝜕r𝛼k 𝜕r
𝛽
k

+ f1
𝜕2 cos 𝜃

𝜕r𝛼i 𝜕r
𝛽
k

+ f1
𝜕2 cos 𝜃

𝜕r𝛽i 𝜕r
𝛼
k

(45)

𝜕 (𝜃)

𝜕r𝛼k 𝜕r
𝛽
k

= f2
𝜕 cos 𝜃
𝜕r𝛼k

𝜕 cos 𝜃

𝜕r𝛽k
+ f1

𝜕2 cos 𝜃

𝜕r𝛼k 𝜕r
𝛽
k

(46)

𝜕 (𝜃)

𝜕r𝛼i 𝜕r
𝛽
j

= f2
𝜕 cos 𝜃
𝜕r𝛼i

𝜕 cos 𝜃

𝜕r𝛽j
− f1

𝜕2 cos 𝜃

𝜕r𝛼i 𝜕r
𝛽
i

− f1
𝜕2 cos 𝜃

𝜕r𝛼i 𝜕r
𝛽
k

(47)

𝜕 (𝜃)

𝜕r𝛼j 𝜕r
𝛽
i

= f2
𝜕 cos 𝜃

𝜕r𝛽i

𝜕 cos 𝜃
𝜕r𝛼j

− f1
𝜕2 cos 𝜃

𝜕r𝛽i 𝜕r
𝛼
i

− f1
𝜕2 cos 𝜃

𝜕r𝛽i 𝜕r
𝛼
k

(48)

𝜕 (𝜃)

𝜕r𝛼i 𝜕r
𝛽
k

= f2
𝜕 cos 𝜃
𝜕r𝛼i

𝜕 cos 𝜃

𝜕r𝛽k
+ f1

𝜕2 cos 𝜃

𝜕r𝛼i 𝜕r
𝛽
k

(49)

𝜕 (𝜃)

𝜕r𝛼k 𝜕r
𝛽
i

= f2
𝜕 cos 𝜃

𝜕r𝛽i

𝜕 cos 𝜃
𝜕r𝛼k

+ f1
𝜕2 cos 𝜃

𝜕r𝛽i 𝜕r
𝛼
k

(50)

𝜕 (𝜃)

𝜕r𝛼j 𝜕r
𝛽
k

= f2
𝜕 cos 𝜃

𝜕r𝛽k

𝜕 cos 𝜃
𝜕r𝛼j

− f1
𝜕2 cos 𝜃

𝜕r𝛼k 𝜕r
𝛽
k

− f1
𝜕2 cos 𝜃

𝜕r𝛼i 𝜕r
𝛽
k

(51)

𝜕 (𝜃)

𝜕r𝛼k 𝜕r
𝛽
j

= f2
𝜕 cos 𝜃
𝜕r𝛼k

𝜕 cos 𝜃

𝜕r𝛽j
− f1

𝜕2 cos 𝜃

𝜕r𝛼k 𝜕r
𝛽
k

− f1
𝜕2 cos 𝜃

𝜕r𝛽i 𝜕r
𝛼
k

(52)

where

𝜕2 cos 𝜃

𝜕r𝛼i 𝜕r
𝛽
i

= cos 𝜃
u2

(
u𝛼u𝛽

u2
− 𝛿𝛼𝛽

)
− 1
u2

𝜕 cos 𝜃
𝜕r𝛼i

u𝛽 − 1
u2

𝜕 cos 𝜃

𝜕r𝛽i
u𝛼

(53)

𝜕2 cos 𝜃

𝜕r𝛼k 𝜕r
𝛽
k

= cos 𝜃
v2

(
v𝛼v𝛽

v2
− 𝛿𝛼𝛽

)
− 1
v2

𝜕 cos 𝜃
𝜕r𝛼k

v𝛽 − 1
v2

𝜕 cos 𝜃

𝜕r𝛽k
v𝛼

(54)

𝜕2 cos 𝜃

𝜕r𝛼i 𝜕r
𝛽
k

= 1
u v

( cos 𝜃
u v

u𝛼v𝛽 − 1
u2
u𝛼u𝛽 − 1

v2
v𝛼v𝛽 + 𝛿𝛼𝛽

)
(55)

The strain derivatives are given by[188]

𝜕 (𝜃)
𝜕𝜀𝛼𝛽

= u𝛼 𝜕 (𝜃)

𝜕r𝛽i
+ v𝛼

𝜕 (𝜃)

𝜕r𝛽k
(56)

𝜕 (𝜃)
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

= f2
𝜕 cos 𝜃
𝜕𝜀𝛼𝛽

𝜕 cos 𝜃
𝜕𝜀𝜇𝜈

+ f1
𝜕2 cos 𝜃
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

+ 1
2

[
𝛿𝛽𝜈

𝜕 (𝜃)
𝜕𝜀𝛼𝜇

+ 𝛿𝛼𝜈
𝜕 (𝜃)
𝜕𝜀𝛽𝜇

+ 𝛿𝛽𝜇
𝜕 (𝜃)
𝜕𝜀𝛼𝜈

+ 𝛿𝛼𝜇
𝜕 (𝜃)
𝜕𝜀𝛽𝜈

]
(57)

The explicit strain derivative terms appearing in the last term in
Equation (57) arise from the action of the strain derivative on the

explicit cell dependence of themicroscopic stress.[181] The formu-
lae for the strain derivatives are more conveniently written down
in terms of the natural log of the cosine of the angles[188]

𝜕 cos 𝜃
𝜕𝜀𝛼𝛽

= cos 𝜃 𝜕 ln cos 𝜃
𝜕𝜀𝛼𝛽

(58)

𝜕2 cos 𝜃
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

= cos 𝜃
(

𝜕2 ln cos 𝜃
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

+ 𝜕 ln cos 𝜃
𝜕𝜀𝛼𝛽

𝜕 ln cos 𝜃
𝜕𝜀𝜇𝜈

)
(59)

where

𝜕 ln cos 𝜃
𝜕𝜀𝛼𝛽

= u𝛼v𝛽 + v𝛼u𝛽

u ⋅ v
− u𝛼u𝛽

u2
− v𝛼v𝛽

v2
(60)

𝜕2 ln cos 𝜃
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

= −
(
v𝛼u𝛽 + u𝛼v𝛽

)
(v𝜇u𝜈 + u𝜇v𝜈)

(u ⋅ v)2

+ 2
(
u𝛼u𝛽u𝜇u𝜈

u4
+ v𝛼v𝛽v𝜇v𝜈

v4

)
(61)

The cross-derivative of the strain derivative with respect to po-
sition can be expressed in terms of Hessian elements

𝜕 (𝜃)

𝜕𝜀𝛼𝛽𝜕r
𝛾
i

= u𝛽 𝜕 (𝜃)

𝜕r𝛼i 𝜕r
𝛾
i

+ v𝛽
𝜕 (𝜃)

𝜕r𝛼i 𝜕r
𝛾
k

+ 𝛿𝛾𝛽
𝜕 (𝜃)
𝜕r𝛼i

(62)

𝜕 (𝜃)

𝜕𝜀𝛼𝛽𝜕r
𝛾
j

= u𝛽 𝜕 (𝜃)

𝜕r𝛼i 𝜕r
𝛾
j

+ v𝛽
𝜕 (𝜃)

𝜕r𝛼j 𝜕r
𝛾
k

+ 𝛿𝛾𝛽
𝜕 (𝜃)
𝜕r𝛼j

(63)

𝜕 (𝜃)

𝜕𝜀𝛼𝛽𝜕r
𝛾
k

= u𝛽 𝜕 (𝜃)

𝜕r𝛼i 𝜕r
𝛾
k

+ v𝛽
𝜕 (𝜃)

𝜕r𝛼k 𝜕r
𝛾
k

+ 𝛿𝛾𝛽
𝜕 (𝜃)
𝜕r𝛼k

(64)

3.6. Torsion Potentials

We define

u = rij = ri − rj, u = |u| =√
u ⋅ u (65)

v = rkj = rk − rj, v = |v| =√
v ⋅ v (66)

w = rlk = rl − rk, w = |w| =√
w ⋅ w (67)

with atom indices as defined in Figure 2. The structure of a
molecule is largely determined by energy barriers to rotation
about chemical bonds. The torsion energy varies with the dihe-
dral angle 𝜙. The dihedral angle is given by

cos𝜙ijkl =
m ⋅ n
mn

(68)

where the following substitutions were made

m = v × u (69)

n = v × w (70)

The sign of 𝜙 is taken as the sign of v ⋅ (m × n).[170]
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Figure 2. The dihedral angle 𝜙 defined by the angle between the planes formed by atoms i-j-k and j-k-l. A positive dihedral angle (left) and a negative
dihedral angle (right) are shown.

Table 5. Common torsion potential functional forms.

CVFF[121]  (𝜙ijkl) = k[1 + s cos(n𝜙ijkl)]

AMBER[98], GAFF[125]  (𝜙ijkl) =
1
2
k[1 + cos(n𝜙ijkl − 𝜙0)]

CHARMM[116]  (𝜙ijkl) = k[1 + cos(n𝜙ijkl + 𝜙0)]

UFF[15]  (𝜙ijkl) =
∑

n
1
2
k[1 − cos(n𝜙ijkl) cos(n𝜙0)]

CFF91[111]  (𝜙ijkl) = k1[1 − cos(𝜙ijkl − 𝜙1)] + k2[1 −
cos(2𝜙ijkl − 𝜙2)] + k3[1 − cos(3𝜙ijkl − 𝜙3)]

A possible description with a physical interpretation is the
three-term Fourier expansion[86]

 (𝜙) = k0 + k1[1 + cos (𝜙)] + k2[1 − cos (2𝜙)] + k3[1 + cos (3𝜙)]

(71)

1. the onefold-term has been attributed to residual dipole-dipole
interactions, to van der Waals interactions, or to any other di-
rect interaction between atoms not accounted for otherwise,

2. the twofold arises from conjugation or hyper conjugation, be-
ing geometrically related to p orbitals,

3. and the threefold term has a steric (or bonding/anti-bonding)
origin.

The values for fourfold or higher are small. It is unknown
whether these are essential to include and perhaps the van der
Waals and dipole interactions already take care of these effects.
Torsions are even softer than bond angles. All possible 𝜙-values
can be found in structures. Therefore, the energy function must
be valid over the entire range, the function must be periodic, and
have stationary points at 0 and 180◦ (for reasons of symmetry).
The periodicity is the number ofminima for the potential, usually
3 for an sp3-sp3 bond and 2 for a conjugate bond. The definition
of a torsion includes two central and two terminal atoms. The
term “torsional” means an internal rigid rotation and “dihedral”
means a rotation of two vicinal bonds about a middle bond. In
general, bonds and bend angles are high frequency modes, and
generally not too important for thermodynamic quantities. Tor-
sions, however, are very important. They determine the overall
structure of a molecule, and improperly calibrated torsions can,
for example, cause over stabilization of helices. Some common
torsion potentials are listed in Table 5.
A common functional form, for example, for alkanes, is the

Ryckaert–Bellemans potential[189]

 (
𝜙′) = 5∑

n=0
pn cos

n
(
𝜙′) (72)

Note that 𝜙′ = 𝜙 − 𝜋 is defined according to the polymer con-
vention 𝜙′(trans) = 0. Functional forms for torsion potential can
often be converted using trigonometric identities like cos 2x =
−1 + 2 cos2 x and cos 3x = −3 cos x + 4 cos3 x.
It is convenient to separate the torsion potential functional

form from the other derivatives so that amore general framework
can be used. We therefore define the torsion potential functional
derivatives as

f1 =
d (𝜙)
d cos𝜙

(73)

f2 =
d2 (𝜙)
d cos𝜙2

(74)

Using the chain rule we can split the derivative in a derivative of
 (𝜙ijkl) with respect to the dihedral angle 𝜙 and the derivative of
the dihedral angle 𝜙 with respect to the atomic positions[170]

𝜕 (
𝜙ijkl

)
𝜕r

=
𝜕 (

𝜙ijkl

)
𝜕 cos𝜙ijkl

𝜕 cos𝜙ijkl

𝜕r
(75)

For first derivatives it is convenient to define vectors R and S[171]

R = u − dv R = |R| =√
R ⋅ R (76)

S = w − ev S = |S| = √
S ⋅ S (77)

with

d = 1
v2
u ⋅ v (78)

e = 1
v2
w ⋅ v (79)

such that only dot-products of vectors are involved.[169,170]

𝜕 cos𝜙
𝜕r𝛼i

= 1
R

(S𝛼

S
− R𝛼

R
cos𝜙

)
(80)

𝜕 cos𝜙
𝜕r𝛼l

= 1
S

(R𝛼

R
− S𝛼

S
cos𝜙

)
(81)

𝜕 cos𝜙
𝜕r𝛼j

= (d − 1)
𝜕 cos𝜙
𝜕r𝛼i

+ e
𝜕 cos𝜙
𝜕r𝛼l

(82)

𝜕 cos𝜙
𝜕r𝛼k

= −(e + 1)
𝜕 cos𝜙
𝜕r𝛼l

− d
𝜕 cos𝜙
𝜕r𝛼i

(83)
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The second derivatives are given by[87]

𝜕 (𝜙)

𝜕r𝛼i 𝜕r
𝛽
i

= f2
𝜕 cos𝜙
𝜕r𝛼i

𝜕 cos𝜙

𝜕r𝛽i
+ f1

𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
i

(84)

𝜕 (𝜙)

𝜕r𝛼j 𝜕r
𝛽
j

= f2
𝜕 cos𝜙
𝜕r𝛼j

𝜕 cos𝜙

𝜕r𝛽j
+ f1

𝜕2 cos𝜙

𝜕r𝛼j 𝜕r
𝛽
j

(85)

𝜕 (𝜙)

𝜕r𝛼k 𝜕r
𝛽
k

= f2
𝜕 cos𝜙
𝜕r𝛼k

𝜕 cos𝜙

𝜕r𝛽k
+ f1

𝜕2 cos𝜙

𝜕r𝛼k 𝜕r
𝛽
k

(86)

𝜕 (𝜙)

𝜕r𝛼l 𝜕r
𝛽
l

= f2
𝜕 cos𝜙
𝜕r𝛼l

𝜕 cos𝜙

𝜕r𝛽l
+ f1

𝜕2 cos𝜙

𝜕r𝛼l 𝜕r
𝛽
l

(87)

𝜕 (𝜙)

𝜕r𝛼i 𝜕r
𝛽
j

= f2
𝜕 cos𝜙
𝜕r𝛼i

𝜕 cos𝜙

𝜕r𝛽j
+ f1

𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
j

(88)

𝜕 (𝜙)

𝜕r𝛼j 𝜕r
𝛽
i

= f2
𝜕 cos𝜙

𝜕r𝛽i

𝜕 cos𝜙
𝜕r𝛼j

+ f1
𝜕2 cos𝜙

𝜕r𝛽i 𝜕r
𝛼
j

(89)

𝜕 (𝜙)

𝜕r𝛼i 𝜕r
𝛽
k

= f2
𝜕 cos𝜙
𝜕r𝛼i

𝜕 cos𝜙

𝜕r𝛽k
+ f1

𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
k

(90)

𝜕 (𝜙)

𝜕r𝛼k 𝜕r
𝛽
i

= f2
𝜕 cos𝜙

𝜕r𝛽i

𝜕 cos𝜙
𝜕r𝛼k

+ f1
𝜕2 cos𝜙

𝜕r𝛽i 𝜕r
𝛼
k

(91)

𝜕 (𝜙)

𝜕r𝛼i 𝜕r
𝛽
l

= f2
𝜕 cos𝜙
𝜕r𝛼i

𝜕 cos𝜙

𝜕r𝛽l
+ f1

𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
l

(92)

𝜕 (𝜙)

𝜕r𝛼l 𝜕r
𝛽
i

= f2
𝜕 cos𝜙

𝜕r𝛽i

𝜕 cos𝜙
𝜕r𝛼l

+ f1
𝜕2 cos𝜙

𝜕r𝛽i 𝜕r
𝛼
l

(93)

𝜕 (𝜙)

𝜕r𝛼j 𝜕r
𝛽
k

= f2
𝜕 cos𝜙
𝜕r𝛼j

𝜕 cos𝜙

𝜕r𝛽k
+ f1

𝜕2 cos𝜙

𝜕r𝛼j 𝜕r
𝛽
k

(94)

𝜕 (𝜙)

𝜕r𝛼k 𝜕r
𝛽
j

= f2
𝜕 cos𝜙

𝜕r𝛽j

𝜕 cos𝜙
𝜕r𝛼k

+ f1
𝜕2 cos𝜙

𝜕r𝛽j 𝜕r
𝛼
k

(95)

𝜕 (𝜙)

𝜕r𝛼j 𝜕r
𝛽
l

= f2
𝜕 cos𝜙
𝜕r𝛼j

𝜕 cos𝜙

𝜕r𝛽l
+ f1

𝜕2 cos𝜙

𝜕r𝛼j 𝜕r
𝛽
l

(96)

𝜕 (𝜙)

𝜕r𝛼l 𝜕r
𝛽
j

= f2
𝜕 cos𝜙

𝜕r𝛽j

𝜕 cos𝜙
𝜕r𝛼l

+ f1
𝜕2 cos𝜙

𝜕r𝛽j 𝜕r
𝛼
l

(97)

𝜕 (𝜙)

𝜕r𝛼k 𝜕r
𝛽
l

= f2
𝜕 cos𝜙
𝜕r𝛼k

𝜕 cos𝜙

𝜕r𝛽l
+ f1

𝜕2 cos𝜙

𝜕r𝛼k 𝜕r
𝛽
l

(98)

𝜕 (𝜙)

𝜕r𝛼l 𝜕r
𝛽
k

= f2
𝜕 cos𝜙

𝜕r𝛽k

𝜕 cos𝜙
𝜕r𝛼l

+ f1
𝜕2 cos𝜙

𝜕r𝛽k 𝜕r
𝛼
l

(99)

where

𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
i

= 1
R2

cos𝜙
(
R𝛼R𝛽 + v𝛼v𝛽

v2
− 𝛿𝛼𝛽

)

− R𝛼

R
𝜕 cos𝜙

𝜕r𝛽i
− R𝛽

R
𝜕 cos𝜙
𝜕r𝛼i

(100)

𝜕2 cos𝜙

𝜕r𝛼l 𝜕r
𝛽
l

= 1
S2

cos𝜙
(
S𝛼S𝛽 + v𝛼v𝛽

v2
− 𝛿𝛼𝛽

)

− S𝛼

S
𝜕 cos𝜙

𝜕r𝛽l
− S𝛽

S
𝜕 cos𝜙
𝜕r𝛼l

(101)

𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
l

= 1
RS

(
cos𝜙R𝛼S𝛽 − R𝛼R𝛽 − S𝛼S𝛽 − 1

v2
v𝛼v𝛽 + 𝛿𝛼𝛽

)
(102)

𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
j

= (d − 1)
𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
i

+ e
𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
l

+ 𝜕d
𝜕r𝛼i

𝜕 cos𝜙

𝜕r𝛽i
(103)

𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
k

= −d 𝜕
2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
i

− (e + 1)
𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
l

− 𝜕d
𝜕r𝛼i

𝜕 cos𝜙

𝜕r𝛽i
(104)

𝜕2 cos𝜙

𝜕r𝛼j 𝜕r
𝛽
l

= (d − 1)
𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
l

+ e
𝜕2 cos𝜙

𝜕r𝛼l 𝜕r
𝛽
l

+ 𝜕e

𝜕r𝛽l

𝜕 cos𝜙
𝜕r𝛼l

(105)

𝜕2 cos𝜙

𝜕r𝛼k 𝜕r
𝛽
l

= −d 𝜕
2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
l

− (e + 1)
𝜕2 cos𝜙

𝜕r𝛼l 𝜕r
𝛽
l

− 𝜕e

𝜕r𝛽l

𝜕 cos𝜙
𝜕r𝛼l

(106)

𝜕2 cos𝜙

𝜕r𝛼j 𝜕r
𝛽
j

= (d − 1)
𝜕2 cos𝜙

𝜕r𝛼i 𝜕r
𝛽
j

+ e
𝜕2 cos𝜙

𝜕r𝛽j 𝜕r
𝛼
l

+ 𝜕d

𝜕r𝛽j

𝜕 cos𝜙
𝜕r𝛼i

+ 𝜕e

𝜕r𝛽j

𝜕 cos𝜙
𝜕r𝛼l

(107)

𝜕2 cos𝜙

𝜕r𝛼k 𝜕r
𝛽
k

= −(e + 1)
𝜕2 cos𝜙

𝜕r𝛼k 𝜕r
𝛽
l

− d
𝜕2 cos𝜙

𝜕r𝛽i 𝜕r
𝛼
k

− 𝜕d
𝜕r𝛼k

𝜕 cos𝜙

𝜕r𝛽i

− 𝜕e
𝜕r𝛼k

𝜕 cos𝜙

𝜕r𝛽l
(108)

𝜕2 cos𝜙

𝜕r𝛼j 𝜕r
𝛽
k

= −d 𝜕
2 cos𝜙

𝜕r𝛽i 𝜕r
𝛼
j

− (e + 1)
𝜕2 cos𝜙

𝜕r𝛼j 𝜕r
𝛽
l

− 𝜕d
𝜕r𝛼j

𝜕 cos𝜙

𝜕r𝛽i

− 𝜕e
𝜕r𝛼j

𝜕 cos𝜙

𝜕r𝛽l
(109)

and where

𝜕d
𝜕r𝛼i

= 1
v2
v𝛼 (110)

𝜕d
𝜕r𝛼j

= 1
v

(
(2d − 1)1

v
v𝛼 − 1

v
u𝛼
)

(111)

𝜕d
𝜕r𝛼k

= −1
v

(
2d1

v
v𝛼 − 1

v
u𝛼
)

(112)

𝜕d
𝜕r𝛼l

= 0 (113)

𝜕e
𝜕r𝛼i

= 0 (114)

𝜕e
𝜕r𝛼j

= 1
v

(
2e1
v
v𝛼 − 1

v
w𝛼
)

(115)
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𝜕e
𝜕r𝛼k

= −1
v

(
(2e + 1)1

v
v𝛼 − 1

v
w𝛼
)

(116)

𝜕e
𝜕r𝛼l

= 1
v2
v𝛼 (117)

The strain derivatives are given by[188]

𝜕 (𝜙)
𝜕𝜀𝛼𝛽

= u𝛼 𝜕 (𝜙)

𝜕r𝛽i
+ v𝛼

(
𝜕 (𝜙)

𝜕r𝛽k
+ 𝜕 (𝜙)

𝜕r𝛽l

)
+ w𝛼 𝜕 (𝜙)

𝜕r𝛽l

(118)

𝜕 (𝜙)
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

= f2
𝜕 cos𝜙
𝜕𝜀𝛼𝛽

𝜕 cos𝜙
𝜕𝜀𝜇𝜈

+ f1
𝜕2 cos𝜙
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

+ 1
2

[
𝛿𝛽𝜈

𝜕 (𝜙)
𝜕𝜀𝛼𝜇

+ 𝛿𝛼𝜈
𝜕 (𝜙)
𝜕𝜀𝛽𝜇

+ 𝛿𝛽𝜇
𝜕 (𝜙)
𝜕𝜀𝛼𝜈

+ 𝛿𝛼𝜇
𝜕 (𝜙)
𝜕𝜀𝛽𝜈

]
(119)

The explicit strain derivative terms appearing in the last term in
Equation (119) arise from the action of the strain derivative on the
explicit cell dependence of themicroscopic stress.[181] The formu-
lae for the strain derivatives of the torsion are more conveniently
written down in terms of the natural logarithm of the square of
the cosine of the dihedral angle[188]

𝜕 cos𝜙
𝜕𝜀𝛼𝛽

= 1
2
cos𝜙

𝜕 ln cos2 𝜙
𝜕𝜀𝛼𝛽

(120)

𝜕2 cos𝜙
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

= 1
2
cos𝜙

(
𝜕2 ln cos2 𝜙
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

+ 1
2
𝜕 ln cos2 𝜙

𝜕𝜀𝛼𝛽

𝜕 ln cos2 𝜙
𝜕𝜀𝜇𝜈

)
(121)

The first derivative with respect to strain is given by[188]

𝜕 ln cos2 𝜙
𝜕𝜀𝛼𝛽

= 2
m ⋅ n

𝜕 (m ⋅ n)
𝜕𝜀𝛼𝛽

− 1
m2

𝜕m2

𝜕𝜀𝛼𝛽

− 1
n2

𝜕n2

𝜕𝜀𝛼𝛽

(122)

where

𝜕 (m ⋅ n)
𝜕𝜀𝛼𝛽

= 2(w ⋅ u)v𝛼v𝛽 + (v ⋅ v)
(
w𝛼u𝛽 + u𝛼w𝛽

)
− (w ⋅ v)

(
v𝛼u𝛽 + u𝛼v𝛽

)
− (v ⋅ u)

(
w𝛼v𝛽 + v𝛼w𝛽

)
(123)

𝜕m2

𝜕𝜀𝛼𝛽

= 2
(
v2u𝛼u𝛽 + u2v𝛼v𝛽 − (u ⋅ v)

(
u𝛼v𝛽 + v𝛼u𝛽

))
(124)

𝜕n2

𝜕𝜀𝛼𝛽

= 2
(
v2w𝛼w𝛽 + w2v𝛼v𝛽 − (w ⋅ v)

(
w𝛼v𝛽 + v𝛼w𝛽

))
(125)

The second derivative with respect to strain is given by[188]

𝜕 ln cos2 𝜙
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

= 2
(m ⋅ n)

𝜕(m ⋅ n)
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

− 2
(m ⋅ n)

𝜕(m ⋅ n)
𝜕𝜀𝛼𝛽

𝜕(m ⋅ n)
𝜕𝜀𝜇𝜈

+ 1
m2

𝜕m2

𝜕𝜀𝛼𝛽

𝜕m2

𝜕𝜀𝜇𝜈

+ 1
n2

𝜕n2

𝜕𝜀𝛼𝛽

𝜕n2

𝜕𝜀𝜇𝜈

− 1
m2

𝜕2m2

𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

− 1
n2

𝜕2n2

𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

(126)

where

𝜕(m ⋅ n)
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

= 2
(
w𝛼u𝛽 + u𝛼w𝛽

)
v𝜇v𝜈 + 2v𝛼v𝛽 (w𝜇u𝜈 + u𝜇w𝜈)

−
(
w𝛼v𝛽 + v𝛼w𝛽

)
(u𝜇v𝜈 + v𝜇u𝜈)

−
(
u𝛼v𝛽 + v𝛼u𝛽

)
(w𝜇v𝜈 + v𝜇w𝜈) (127)

𝜕2m2

𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

= 4
(
u𝛼u𝛽v𝜇v𝜈 + v𝛼v𝛽u𝜇u𝜈

)
− 2

(
u𝛼v𝛽 + v𝜇u𝜈

)(
u𝜇v𝜈 + v𝛼u𝛽

)
(128)

𝜕2n2

𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

= 4
(
w𝛼w𝛽v𝜇v𝜈 + v𝛼v𝛽w𝜇w𝜈

)
− 2

(
w𝛼v𝛽 + v𝜇w𝜈

)(
w𝜇v𝜈 + v𝛼w𝛽

)
(129)

The cross-derivative of the strain derivative with respect to po-
sition can again be expressed in terms of Hessian elements

𝜕 (𝜙)

𝜕𝜀𝛼𝛽𝜕r
𝛾
i

= u𝛽 𝜕 (𝜙)

𝜕r𝛼i 𝜕r
𝛾
i

+ v𝛽
𝜕 (𝜙)

𝜕r𝛼i 𝜕r
𝛾
k

+
(
v𝛽 +w𝛽

)𝜕 (𝜙)

𝜕r𝛼i 𝜕r
𝛾
l

+ 𝛿𝛾𝛽
𝜕 (𝜙)
𝜕r𝛼i

(130)

𝜕 (𝜙)

𝜕𝜀𝛼𝛽𝜕r
𝛾
j

= u𝛽 𝜕 (𝜙)

𝜕r𝛼i 𝜕r
𝛾
j

+ v𝛽
𝜕 (𝜙)

𝜕r𝛼j 𝜕r
𝛾
k

+
(
v𝛽 +w𝛽

)𝜕 (𝜙)

𝜕r𝛼j 𝜕r
𝛾
l

+ 𝛿𝛾𝛽
𝜕 (𝜙)
𝜕r𝛼j

(131)

𝜕 (𝜙)

𝜕𝜀𝛼𝛽𝜕r
𝛾
k

= u𝛽 𝜕 (𝜙)

𝜕r𝛼i 𝜕r
𝛾
k

+ v𝛽
𝜕 (𝜙)

𝜕r𝛼k 𝜕r
𝛾
k

+
(
v𝛽 +w𝛽

)𝜕 (𝜙)

𝜕r𝛼k 𝜕r
𝛾
l

+ 𝛿𝛾𝛽
𝜕 (𝜙)
𝜕r𝛼k

(132)

𝜕 (𝜙)

𝜕𝜀𝛼𝛽𝜕r
𝛾
l

= u𝛽 𝜕 (𝜙)

𝜕r𝛼i 𝜕r
𝛾
l

+ v𝛽
𝜕 (𝜙)

𝜕r𝛼k 𝜕r
𝛾
l

+
(
v𝛽 +w𝛽

)𝜕 (𝜙)

𝜕r𝛼l 𝜕r
𝛾
l

+ 𝛿𝛾𝛽
𝜕 (𝜙)
𝜕r𝛼l

(133)

Using the chain rule we can split the derivative in a derivative
of (𝜙ijkl) with respect to the dihedral angle 𝜙 and the derivative
of the dihedral angle 𝜙 with respect to the atomic positions[170]

fi = −𝜕 (𝜙)
𝜕ri

= −𝜕 (𝜙)
𝜕𝜙

𝜕𝜙

𝜕 cos𝜙
𝜕 cos𝜙
𝜕ri

(134)

fi = −𝜕 (𝜙)
𝜕ri

= −𝜕 (𝜙)
𝜕𝜙

𝜕𝜙

𝜕ri
(135)
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Table 6. Common out-of-plane potential functional forms.

CVFF[121], CFF91[111], CHARMM[116]  (𝜒ijkl) = k(𝜒ijkl)
2

The middle term in Equation (134) leads to a singularity term
1∕ sin𝜙 when 𝜙 = 0 or 𝜙 = 𝜋. This is a problem for torsional ex-
pressions like for AMBER/GAFF and CHARMM that have phase
angles 𝜙0 other than 0 or 𝜋. Therefore the equivalent chain-rule
Equation 135 is more convenient.[170]

3.7. Improper Torsions and Out-of-Plane Potentials

Common planar molecules that contain a double bond or sp2

hybridization form planar groups with trigonal centers, for
example, peptidic bonds, the carbon centers in benzene, and
carbon and nitrogen centers in formamide. The mode of motion
is different from bond stretching, bending, and internal rotation,
and mandatory to control planarity. The associated harmonic
potential is

 (𝜒) = 1
2
k(𝜒)2 (136)

with 𝜒 the out-of-plane angle. Two common definitions in use
are: i) the average angle between any bond that extends from the
central atom and the plane defined by the other two bonds, and
ii) the distance of the central atom from the plane defined by the
other three atoms (pyramid height). The out-of-plane potential
can also be used for non-planar structures, for example in chiral
centers to avoid inversion. Another example of its use is coordi-
nation complexes where now the plane of the ligands need no
longer be defined exactly. In square planar complexes it is neces-
sary to define an average plane through the ligands (usually the
least-square plane). Note that the definition include one central
atom which is listed as the second in i-j-k-l: i, k, and l are bonded
to the central atom j. The inversion angle potential is the average
of the three possible inversion angle terms. The first and second
derivatives for out-of-plane bending motion are special cases of
linear bending motion of atoms.[168]

Note that an alternative to the out-of-plane angle is the “im-
proper torsion” potential

 (𝜒) = 1
2
k(1 − cos 2𝜒) (137)

The improper torsion simply treats the four atoms in the plane as
if they were bonded in the same way as in a true torsional angle.
Note that the definition include one central atom which is listed
as the second in i-j-k-l (i, k, and l are bonded to the central atom
j). Improper torsions are often used to keep sp2 atoms planar and
sp3 atoms in a tetrahedral geometry. The CHARMM convention
is to list the central atom first, while there are no rules how to
order the other three atoms. Hence, six possibilities exist for the
definition of an improper torsion. The AMBER convention is
that the out-of-plane atom is listed in the third position and the
order of the other atoms is determined alphabetically by atom
type, and by the atom number (i.e., the order in the molecule)
when atom types are identical. Common out-of-plane potentials
are listed in Table 6.

Table 7. Common intra-molecular cross potential functional forms.

bond-bond coupling

CVFF[121], CFF91[111]  (rij , r
′
ij) = k(rij − r0)(r

′
ij − r′0)

bond-bend coupling

CVFF[121], CFF91[111]  (rij , 𝜃ijk) = k(rij − r0)(𝜃ijk − 𝜃0)

bend-bend coupling

CVFF[121], CFF91[111]  (𝜃ijk , 𝜃
′
ijk
) = k(𝜃ijk − 𝜃0)(𝜃

′
ijk
− 𝜃′0)

bond-torsion coupling

CFF91[111]  (rij ,𝜙ijkl) = (rij − r0)[k1 cos𝜙 + k2 cos(2𝜙) + k3 cos(3𝜙)]

 (rjk,𝜙ijkl) = (rjk − r0)[k1 cos𝜙 + k2 cos(2𝜙) + k3 cos(3𝜙)]

bend-torsion coupling

CVFF[121]  (𝜙ijkl , 𝜃ijk , 𝜃jkl) = k cos(𝜙ijkl)(𝜃ijk − 𝜃0)(𝜃jkl − 𝜃′0)

CFF91[111]  (𝜃ijk ,𝜙ijkl) =
(𝜃 − 𝜃0)[k1 cos𝜙ijkl + k2 cos(2𝜙ijkl) + k3 cos(3𝜙ijkl)]

bend-torsion-bend coupling

CFF91[111]  (𝜃ijk ,𝜙ijkl , 𝜃
′
jkl
) = k cos𝜙(𝜃ijk − 𝜃0)(𝜃

′
jkl
− 𝜃′0)

Nicholas[190]  (𝜃ijk ,𝜙ijkl) = S(𝜃ijk){
1
2
k1[1 + cos𝜙ijkl] +

1
2
k2[1 −

cos(2𝜙ijkl)] +
1
2
k3[1 + cos(3𝜙ijkl)]}S(𝜃jkl)

out-of-plane–out-of-plane coupling

CVFF[121]  (𝜒ijkl ,𝜒
′
ijkl
) = k𝜒ijkl𝜒

′
ijkl

3.8. Cross Terms

The cross terms arise naturally from the energy Taylor expansion
and are not ad hoc functions and allow to reproduce better the
observed spectra of intra-molecular vibrations. Apart from an-
harmonic terms, class II and III force fields contain cross terms
that reflect the coupling between adjacent bonds, angles and di-
hedrals. For example, bonds and bends interact, as the bend angle
becomes smaller the bond lengths tend to increase. The inclusion
of cross-terms leads to two advantages:

• they increase the accuracy of the force field (especially the vi-
brational frequencies),

• they increase the transferability of the diagonal terms
b(r),𝜃(𝜃),𝜙(𝜙),𝜒 (𝜒).

Some typical intra-molecular cross potentials are listed in
Table 7.
For bond angles smaller than the equilibriumbond angle bond

stretching is observed (e.g., cyclobutane), which can be described
by a cross term that couples the bond-lengths and bend angle.

 (r, 𝜃) =
k1
2

(
r − r0

)(
𝜃 − 𝜃0

)
(138)

Similar to the stretch-bend term, the stretch can also couple
to the torsion (stretch-torsion) and the bend couples to the tor-
sion (bend-torsion cross-terms). These interactions are usually
very small and several force fields neglect these potentials. An
important use in zeolite models, however, is to slowly smooth
the torsional energy to zero when the Si-O-Si bend approaches
180◦ (the torsion becomes ill-defined when three atoms are
colinear).[190,191]

Adv. Theory Simul. 2019, 2, 1900135 1900135 (14 of 62) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advtheorysimul.com

3.9. Coulombic Potential and The Multi-Pole Expansion

So far we have discussed the intra-molecular bond, bend, tor-
sion, and out-of-plane terms and these are sufficient to model
small isolated molecules. The non-bonded term is the central
work-horse of force fields and acts between atoms which are not
linked by covalent bonds. It describes the dispersion and elec-
trostatic interactions between molecules, as well as longer-range
interactions within a molecule that are not already described by
the bond, bend, torsion, and out-of-plane terms. It is clear that
1-2 and 1-3 pairs are excluded from Lennard–Jones and electro-
statics (these are already taken into account by explicit bonding
and bending terms), while 1-5 andmore should be included. The
1-4 interaction is a somewhat gray area; some force fields ne-
glect explicit torsions but include dispersion/electrostatics, oth-
ers use only torsions and no dispersion/electrostatics, and some
use both, often with scaling factors (generally 0.5; AMBER uses a
scaling factor of 0.8, a scale factor of 0.75 is used in the MMFF94
force field,[147] and a value of 0.5 is adopted in the OPLS-AA force
field[109]). The latter option (scaling) generally improves agree-
ment and better reproduces the potential energy of rotation.
First, the electrostatic density of the molecules needs to be de-

scribed. Consider two separate molecules A and B and their as-
sociated static charge densities 𝜌A and 𝜌B. The Coulombic inter-
action energy then reads[192,193]

A,B = 1
4𝜋𝜖0 ∬

𝜌A(r
′)𝜌B(r

′′)|r′ − r′′| dV ′dV ′′ (139)

where 𝜖0 is the absolute dielectric permittivity of classical vac-
uum, andwhere the 3D integration is carried out over the volume
V ′ of atomA as described by the vector r′ and over the volumeV ′′

of atom B as described by the vector r′′. If we assume that the ex-
tent of the charge distributions 𝜌A and 𝜌B is much smaller than
their separation we may expand AB in a multipole series with
respect to the center of mass coordinates rA and rB. The first few
multipole moments of the charge distribution 𝜌A are determined
as[192,193]

qA = ∫ 𝜌A
(
r′
)
dV ′ (140)

𝝁A = ∫ 𝜌A
(
r′
)(
r′ − rA

)
dV ′ (141)

↔

QA = ∫ 𝜌A
(
r′
)[
3
(
r′ − rA

)(
r′ − rA

)
−

↔

I ||r′ − rA||2]dV ′ (142)

and similar expressions for the charge distribution 𝜌B. The
monopole moment (q) is a scalar, the dipole moment (𝝁) is a vec-

tor, the quadrupole moment (
↔

Q) is a second-rank tensor, and so
on. With these multipole moments we can express the interac-
tion potential as[194]

A,B(r) =
1

4𝜋𝜖0

[
qAqB
r

+
qA𝝁B ⋅ r

r3
−
qB𝝁A ⋅ r

r3
+

𝝁A ⋅ 𝝁B

r3

−
3
(
𝝁A ⋅ r

)(
𝝁B ⋅ r

)
r5

+⋯

]
(143)

where r = rA − rB. The first term in the expansion is the charge-
charge interaction. It is only non-zero if both charge distribu-
tions carry a net charge. Charge–charge interactions span over
long distances since the distance dependence is only 1∕r. The
next two terms are charge–dipole interactions. They require that
at least one particle carries a net charge. These interactions de-
cay as 1∕r2 and are therefore of shorter range than the charge–
charge interaction. Finally, the fourth term is the dipole–dipole
interaction. It is the most important interaction among neutral
particles. The dipole–dipole interaction decays as 1∕r3 and de-
pends strongly on the dipole orientations. The next higher expan-
sion terms are the quadrupole–charge, quadrupole–dipole, and
quadrupole–quadrupole interactions, which decay approximately
as 1∕r3, 1∕r4, and 1∕r5, respectively.
By introducing the infinitesimal test charge 𝛿q at r, the electro-

static potential 𝜙(r) at r is defined according to

𝜙(r) = lim
𝛿q→0

𝜕
𝜕𝛿q

(144)

where  is the potential energy of the system including the test
charge. The 𝛼-component of the electrostatic field E𝛼(r) at r is
defined as

E𝛼(r) ≡ −𝜕𝜙(r)
𝜕r𝛼

(145)

A non-uniform electrostatic field E distorts a charge distribu-
tion, thereby inducing multipole moments. The total moments
may be expressed (to electric quadrupole order) as[192,194]

𝝁i = 𝝁
(0)
i + 𝛼ijEj +

1
2
aijk∇kEj +

1
6
bijkl∇l∇kEj +⋯ (146)

↔

Qij =
↔

Q
(0)

ij + ajkiEk +
1
2
dijkl∇lEk +⋯ (147)

The tensors 𝛼ij, aijk, bijkl, dijkl, …are also properties of the undis-
torted distribution. They are referred to collectively as polariz-
abilities (𝛼ij is the dipole polarizibility, aijk the quadrupole po-
larizibility, bijkl the octopole polarizibility, etc). The polarizabili-
ties of all but spherically symmetric molecules are anisotropic,
having different values along differentmolecular directions. This
arises because the electronic polarizabilities of bonds, which are a
measure of the response of the electrons to an external field, are
anisotropic. If a charge distribution is unaffected by an applied
field, it is said to be non-polarizable or rigid.
Molecules are often modeled using the lowest non-zero elec-

tric moment. Species such as Na+, Cl− have the charge as their
lowest non-zero moment. Molecules such as N2 and CO2 have
the quadrupole as their lowest non-zero moment; the lowest
non-zero moment for methane and tetrafluoromethane is the
octopole. Each of these multiple moments can be represented
by an appropriate amount of charges. A dipole can be repre-
sented using two charges placed an appropriate distance apart; a
quadrupole can be represented using four charges and octopole
by eight charges. A complete description of the charge distribu-
tion around a molecule requires all of the non-zero electric mo-
ments to be specified.
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3.10. Van der Waals Potentials

At very small inter-atomic distances, the electron clouds of atoms
overlap. A strong repulsive force arises that determines how
close two atoms ormolecules can ultimately approach each other.
These repulsive forces are sometimes referred to as exchange
repulsion, hard core repulsion, steric repulsion, or, for ions,
the Born repulsion.[183] They are characterized by having very
short ranges and increasing very sharply as two molecules come
together. They belong to the category of quantum mechanical
forces, and unfortunately there is no general equation for describ-
ing their distance dependence. Instead, a number of empirical
potential functions have been introduced over the years, all of
which appear to be satisfactory as long as they have the property
of a steeply rising repulsion at small separations. The three most
common such potentials are the hard sphere potential, the in-
verse power-law potential, and the exponential potential.
Three distinct types of forces contribute to the total long-range

interaction between polar molecules.[183] They vary with the in-
verse sixth power of the distance and are collectively known as
the van der Waals force.

1. For the dipole–dipole interaction, a Boltzmann averaging of
the interaction energy over all orientations (which now in-
volves averaging over two polar angles and one azimuthal
angle) leads to an angle-averaged interaction free energy
that varies with the inverse sixth power of the distance.
The Boltzmann-averaged interaction between two permanent
dipoles is usually referred to as the “orientation” or “Keesom
interaction.”

2. For two molecules possessing permanent dipole moments
and polarizabilities their net dipole-induced dipole energy is
1∕r6 distance dependent. This is often referred to as the “De-
bye interaction” or the “induction interaction.”

3. Dispersion forces (often called “London dispersion forces”)
make up the third and perhaps most important contribution
to the total van derWaals force between atoms andmolecules,
and because they are always present (in contrast to the other
types of forces that may or may not be present, depending
on the properties of the molecules), they play a role in a host
of important phenomena such as adhesion, surface tension,
physical adsorption, wetting, the properties of gases, liquids,
and thin films; the strengths of solids; the flocculation of
particles in liquids; and the structures of condensed macro
molecules such as proteins and polymers.[183]

Today, the term “van der Waals” interactions refers often only
to the London-dispersion forces. Dispersion forces are quantum
mechanical in origin. Their origin may be understood intuitively
as follows: For a nonpolar atom such as helium, the time average
of its dipolemoment is zero, but at any instant there exists a finite
dipole moment given by the instantaneous positions of the elec-
trons about the nuclear protons. This instantaneous dipole gen-
erates an electric field that polarizes any nearby neutral atom, in-
ducing a dipole moment in it. The resulting interaction between
the two dipoles gives rise to an instantaneous attractive force be-
tween the two atoms, and the time average of this force is finite.
This can be summarized by calling the dispersion interaction an
interaction between two mutually induced dipoles.[195] The point

charge-induced dipole decays as 1∕r4, induced dipole–dipole de-
cays as 1∕r6, the induced dipole–quadrupole as 1∕r8, the in-
duced dipole–octopole and the induced quadrupole–quadrupole
as 1∕r10. In general, the dispersion contribution is[195]

 disp(r) = −
CAB
6

r6
−
CAB
7

r7
−
CAB
8

r8
−… (148)

The 1∕r6 term dominates the dispersion and for computational
simplicity the higher order terms are usually neglected. An in-
teresting quirk of the multipole series is the 1∕r7 term; this
term is missing for atoms and molecules with an inversion cen-
ter, or when one does rotational averaging, but in general it
is present.[195] This dispersion force results from instantaneous
dipole/induced dipole (transitory dipole) interactions and thus
is also observed acting between noble gas atoms and non polar
molecules with closed shells of electrons. The strength of this
force depends on the dipole moment of the atom inducing the
second dipole and the polarizability of the second atom. The po-
larizability depends on the number of electrons in the outer shell
of an atom. The same is true for the refraction of light, the so-
called “dispersion” – hence the name dispersion forces. However,
nothing is being dispersed by dispersion forces,[195] and for better
or worse we are stuck with the term. The dispersion coefficients
can be written as[196]

CAB
6 = 3

2

(
EA
1 E

B
1

EA
1 + EB

1

)
𝛼A
1 𝛼

B
2 (149)

CAB
8 = 15

4

[
EA
1 E

2
B𝛼

A
1 𝛼

B
2

EA
1 + EB

2

+
EA
2 E

B
1 𝛼

A
2 𝛼

B
1

EA
2 + EA

1

]
(150)

CAB
10 = 7

[
EA
1 E

B
3 𝛼

A
1 𝛼

B
3

EA
1 + AB

3

+
EA
3 E

B
1 𝛼

A
3 𝛼

B
1

EA
3 + AB

3

+
EA
2 E

B
2 𝛼

A
2 𝛼

B
2

EA
2 + AB

2

]
(151)

where EA and EB are the energies of the first electronic transition
in both atoms, 𝛼A and 𝛼B the polarizability of atoms A and B, and
where 1, 2, and 3 denote dipole, quadrupole and octopole, respec-
tively. Nicholson et al.[197] analyzed the magnitude, importance
and origin of these terms for nonpolar molecules in silicalite and
AIPO4-5. The static polarizabilities for the charged lattice species
were estimated from Auger data using a method given in previ-
ouswork,[198] and repulsive parameters were obtained by fitting to
experimental Henry’s law constants. The oxygen atom two-body
dispersion accounts for about 80% of the potential energy, while
the total interaction of the Si species is of the order of 12%. There
are significant contributions from the higher order (C8 and C10)
terms. The induced interaction is extremely small in silicalite, be-
ing less than 0.3% of the total potential energy at the bottom of
the well, even for polarizable xenon. This is due to cancellation
of the O and Si contributions, which are individually quite large.
Unlike Coulomb forces, van der Waals forces are not generally

pairwise additive: the force between any twomolecules is affected
by the presence of other molecules nearby, so one cannot simply
add all the pair potentials of a molecule to obtain its net interac-
tion energy with all the other molecules. This is because the field
emanating from any one molecule reaches a second molecule
both directly and by “reflection” from othermolecules, since they,
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too, are polarized by the field.[183] This effect adds an additional
contribution to the total van derWaals interaction energy. In gen-
eral, we have the expansion

 disp =
∑
i

∑
j>i

 disp
2

(
ri, rj

)
+
∑
i

∑
j>i

∑
k>j>i

 disp
3

(
ri, rj, rk

)
+⋯

(152)

The effect of the three-body interaction on the energy or force
depends on the relative disposition of the molecules and can be
positive or negative, so the net effect is usually small. In silicalite
it turns out that the 3-body contribution to the total energy ac-
counts for only 3% of the total potential energy for Ar, but is about
15% for Xe.[196] The three body interaction can be quite significant
for polar species. The overall effect of multiple- or multibody (in-
cluding four-body, five-body, etc.) interactions usually results in
an overall reduction in the strength of the summed pair interac-
tions.
Dispersion interactions between two ground-state species

are always attractive (for excited states it can be attractive or
repulsive).[195] Short-range interactions, also labeled exchange or
overlap forces, are always unfavorable. They occur between elec-
trons with the same spin but cannot occupy the same region in
space (Pauli exclusion principle). The analytical formof the repul-
sion is unknown. The most common repulsion/dispersion func-
tional form is the Lennard–Jones (LJ) potential often encountered
in two flavors

 disp(r) = 4𝜖
[(𝜎

r

)12
−
(𝜎
r

)6]
(153)

 disp(r) = 𝜖

[(
Rmin

r

)12

− 2
(
Rmin

r

)6
]

(154)

where 𝜖 is the well-depth and Rmin is the distance of minimum
interaction energy. Note that the potentials are related by Rmin =
21∕6𝜎. The LJ size-parameter 𝜎 is the distance at which the inter-
particle potential is zero. The potential should be viewed as an
effective potential with many effects lumped in together: the van
der Waals term must include not only the long-range induced-
dipole–induced-dipole r−6 dispersion effect, but also the higher
multipoles, the damping of the dispersion, the induction, and
the steric repulsion when two atoms get close (sometimes called
exchange repulsion), and it must also make up for errors in the
highly approximate treatment of electrostatics.[195] A common al-
ternative to the LJ potential is the Hill (also called Buckingham)
potential function,

 disp(r) = k1 exp
(
−k2r

)
−
(𝜎
r

)6
(155)

The Hill potential, having three adjustable parameters vs. two for
Lennard–Jones might be slightly more accurate. A downside of
theHill potential is divergence to large negative energies at r → 0.
Therefore the potential needs to be “blocked” or changed to a
polynomial repulsion (e.g., MM2) at short distances.
It is convenient to separate the VDW pair potential func-

tional form from the other derivatives so that a more general
framework can be used. We therefore define the pair potential

functional derivatives as

f1 =
d (r)
dr

(156)

f2 =
d2 (r)
dr2

(157)

We define r = |rij| = √
rij ⋅ rij. The derivatives of  (r) with

respect to Cartesian coordinates are given by[199]

𝜕 (r)
𝜕r𝛼i

= f1
r𝛼ij
r

(158)

𝜕 (r)
𝜕r𝛼j

= −f1
r𝛼ij
r

(159)

𝜕2 (r)

𝜕r𝛼i 𝜕r
𝛽
i

= 𝜕2 (r)

𝜕r𝛼j 𝜕r
𝛽
j

=
(
f2 −

f1
r

)
1
r2
r𝛼ij r

𝛽
ij + 𝛿𝛼𝛽

1
r
f1 (160)

𝜕2 (r)

𝜕r𝛼i 𝜕r
𝛽
j

= 𝜕2 (r)

𝜕r𝛼j 𝜕r
𝛽
i

= −
(
f2 −

f1
r

)
1
r2
r𝛼ij r

𝛽
ij − 𝛿𝛼𝛽

1
r
f1 (161)

The derivatives of  (r) with respect to strain are derived by
Ray[181,185,199]

𝜕 (r)
𝜕𝜀𝛼𝛽

= f1
1
r
r𝛼ij r

𝛽
ij (162)

𝜕 (r)

𝜕𝜀𝛼𝛽𝜕r
𝛾
i

=
(
f2 −

f1
r

)
1
r2
r𝛼ij r

𝛽
ij r

𝛾
ij +

1
r

(
𝛿𝛼𝛾 f1r

𝛽
ij + 𝛿𝛽𝛾 f1r

𝛼
ij

)
(163)

𝜕 (r)

𝜕𝜀𝛼𝛽𝜕r
𝛾
j

= −
(
f2 −

f1
r

)
1
r2
r𝛼ij r

𝛽
ij r

𝛾
ij −

1
r

(
𝛿𝛼𝛾 f1r

𝛽
ij + 𝛿𝛽𝛾 f1r

𝛼
ij

)
(164)

𝜕 (r)
𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

=
(
f2 −

f1
r

)
1
r2
r𝛼ij r

𝛽
ij r

𝜇
ij r

𝜈
ij

+ 1
2

[
𝛿𝛽𝜈

𝜕 (r)
𝜕𝜀𝛼𝜇

+ 𝛿𝛼𝜈
𝜕 (r)
𝜕𝜀𝛽𝜇

+ 𝛿𝛽𝜇
𝜕 (r)
𝜕𝜀𝛼𝜈

+ 𝛿𝛼𝜇
𝜕 (r)
𝜕𝜀𝛽𝜈

]
(165)

The explicit strain derivative terms appearing in the last term in
Equation (165) arise from the action of the strain derivative on
the explicit cell dependence of the microscopic stress.[181] Note
that these expressions above are identical to the bond-stretching
ones, as both are valid for pair potentials. Note that it is also
common for pair potentials to define f †1 and f

†
2 to further simplify

the equations

f †1 = 1
r
d (r)
dr

= 1
r
f1 (166)

f †2 = 1
r

df †1
dr

=
(
f2 −

f1
r

)
1
r2

(167)
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3.11. Rigid-Body Coordinates and Derivatives

Small molecules and phenyl-rings are often kept fixed in molec-
ular simulations. A convenient formulation of rigid units is to
use the center of mass (three degrees of freedom) and an ori-
entation (zero, two, or three degrees of freedom, depending on
whether it is a single atom, a linear molecule or a non-linear
molecule, respectively). The six degrees of of freedom for a non-
linear rigid body can be defined in terms of the center of mass
coordinates r = (r1, r2, r3) and the three components of a vector
p = (p1, p2, p3) = 𝜃p̂, which specifies both a normalised rotation
axis p̂ through the center of mass, and a magnitude of rotation

𝜃 =
√
p21 + p22 + p23.

[200] For the rotation vector p, the correspond-
ing 3 × 3 rotation matrix R can be expressed as (Rodrigues’ rota-
tion formula)

R = I + p̃2(1 − cos 𝜃) + p̃ sin 𝜃 (168)

where I is a 3 × 3 identity matrix, and p̃ is the skew-symmetric
matrix obtained from p̂

p̃ = 1
𝜃

⎛⎜⎜⎜⎝
0 −p3 p2
p3 0 −p1
−p2 p1 0

⎞⎟⎟⎟⎠ (169)

The product of the skew-symmetric matrix p̃ and any vector v
returns their cross product p̃v = p × v. ThematrixR is then given
by[200]

R =
⎛⎜⎜⎜⎝

cos 𝜃 + p̂21(1 − cos 𝜃) p̂1p̂2(1 − cos 𝜃) − p̂3 sin 𝜃 p̂2 sin 𝜃 + p̂1p̂3(1 − cos 𝜃)

p̂3 sin 𝜃 + p̂1p̂2(1 − cos 𝜃) cos 𝜃 + p̂22(1 − cos 𝜃) −p̂1 sin 𝜃 + p̂2p̂3(1 − cos 𝜃)

−p̂2 sin 𝜃 + p̂1p̂3(1 − cos 𝜃) p̂1 sin 𝜃 + p̂2p̂3(1 − cos 𝜃) cos 𝜃 + p̂23(1 − cos 𝜃)

⎞⎟⎟⎟⎠ (170)

One can transform a quaternion q = [q1, q2, q3, q4]
T to the axis-

angle representation

p̂ =
[
q1, q2, q3

]T√
q21 + q22 + q23

(171)

𝜃 = 2 arccos
(
q4
)

(172)

and the rotation matrix to the axis-angle representation

𝜃 = arccos
[1
2

(
R11 + R22 + R33 − 1

)]
(173)

p1 =
R32 − R23

2 sin 𝜃
(174)

p2 =
R13 − R31

2 sin 𝜃
(175)

p3 =
R21 − R12

2 sin 𝜃
(176)

Denoting the derivative of the matrix A, 𝜕A
𝜕pk

by Ak (k = 1, 2, 3)

we have

Rk =
pk sin 𝜃

𝜃
p̃2 + (1 − cos 𝜃)

(
p̃kp̃ + p̃p̃k

)
+
pk cos 𝜃

𝜃
p̃ + sin 𝜃p̃k

(177)

Remembering 𝜃 =
√
p21 + p22 + p23 the derivatives of p̃ are

[200]

p̃1 = 1
𝜃

⎛⎜⎜⎜⎜⎜⎝

0
p1p3
𝜃2

−
p1p2
𝜃2

−
p1p3
𝜃2

0 −
(
1 − p21∕𝜃

2
)

p1p2
𝜃2

1 − p21∕𝜃
2 0

⎞⎟⎟⎟⎟⎟⎠

p̃2 = 1
𝜃

⎛⎜⎜⎜⎜⎜⎝

0
p2p3
𝜃2

1 − p22∕𝜃
2

−
p2p3
𝜃2

0
p1p2
𝜃2

−
(
1 − p22∕𝜃

2
)

−
p1p2
𝜃2

0

⎞⎟⎟⎟⎟⎟⎠

p̃3 = 1
𝜃

⎛⎜⎜⎜⎜⎜⎝

0 −
(
1 − p23∕𝜃

2
)

−
p2p3
𝜃2

1 − p23∕𝜃
2 0

p1p3
𝜃2

p2p3
𝜃2

−
p1p3
𝜃2

0

⎞⎟⎟⎟⎟⎟⎠
(178)

When 𝜃 = 0 the singularity can be removed giving Rk = p̃(k)
where p̃(k) is obtained from Equation 169 using p̂ with the kth
element set to unity.
The advantage of this scheme is that all the rigid-body coor-

dinate information is stored in the space-fixed frame and the
derivatives of the rotation matrix can all be programmed in
general using a fixed subroutine, which can be called to deal
with site-site isotropic potentials as well as single-site or site-site
anisotropic potentials.
The current prescription can be extended to obtain the sec-

ond derivatives by successive application of the chain rule. We
then need to compute six additional 3 × 3 matrices of two types,
namely 𝜕2R

𝜕p2
k

and 𝜕2R
𝜕pl𝜕pk

which are denoted by Rkk and Rkl

Rkk =
2pk sin 𝜃

𝜃

(
p̃kp̃ + p̃p̃k

)
+

(
p2k cos 𝜃

𝜃2
−
p2k sin 𝜃

𝜃3
+ sin 𝜃

𝜃

)
p̃2

+ (1 − cos 𝜃)
(
2p̃2k + p̃kkp̃ + p̃p̃kk

)
+

(
−
p2k sin 𝜃

𝜃2
−
p2k cos 𝜃

𝜃3
+ cos 𝜃

𝜃

)
p̃

+
2pk cos 𝜃

𝜃
p̃k + sin 𝜃 p̃kk (179)

Adv. Theory Simul. 2019, 2, 1900135 1900135 (18 of 62) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advtheorysimul.com

Rkl =
pk sin 𝜃

𝜃

(
p̃lp̃ + p̃p̃l

)
+
(
pkpl cos 𝜃

𝜃2
−
pkpl sin 𝜃

𝜃3

)
p̃2

+ (1 − cos 𝜃)
(
p̃klp̃ + p̃kp̃l + p̃lp̃k + p̃p̃kl

)
+
pl sin 𝜃

𝜃

(
p̃kp̃ + p̃p̃k

)
−
(
pkpl sin 𝜃

𝜃2
+
pkpl cos 𝜃

𝜃3
+
)
p̃

+
pk cos 𝜃

𝜃
p̃l +

pl cos 𝜃
𝜃

p̃k + sin 𝜃 p̃kl (180)

The derivatives p̃kl are
[200]

p̃11 =
1
𝜃3
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0 p3

(
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2
)
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2
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0 3p1
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2
)
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)
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2
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0

⎞⎟⎟⎟⎠
(181)

p̃12 =
1
𝜃3

⎛⎜⎜⎜⎝
0 −3p1p2p3∕𝜃2 −p1

(
1 − 3p22∕𝜃

2
)

3p1p2p3∕𝜃2 0 p2
(
1 − 3p21∕𝜃

2
)

p1
(
1 − 3p22∕𝜃

2
)

−p2
(
1 − 3p21∕𝜃

2
)

0

⎞⎟⎟⎟⎠
(182)

p̃13 =
1
𝜃3

⎛⎜⎜⎜⎝
0 p1

(
1 − 3p23∕𝜃

2
)

3p1p2p3∕𝜃2

−p1
(
1 − 3p23∕𝜃

2
)

0 p3
(
1 − 3p21∕𝜃

2
)

−3p1p2p3∕𝜃2 −p3
(
1 − 3p21∕𝜃

2
)

0

⎞⎟⎟⎟⎠
(183)

p̃21 =
1
𝜃3

⎛⎜⎜⎜⎝
0 −3p1p2p3∕𝜃2 −p1

(
1 − 3p22∕𝜃

2
)

3p1p2p3∕𝜃2 0 p2
(
1 − 3p21∕𝜃

2
)

p1
(
1 − 3p22∕𝜃

2
)

−p2
(
1 − 3p21∕𝜃

2
)

0

⎞⎟⎟⎟⎠
(184)

p̃22 =
1
𝜃3

⎛⎜⎜⎜⎝
0 p3

(
1 − 3p22∕𝜃

2
)

−3p2
(
1 − p22∕𝜃

2
)

−p3
(
1 − 3p22∕𝜃

2
)

0 p1
(
1 − 3p22∕𝜃

2
)

3p2
(
1 − p22∕𝜃

2
)

−p1
(
1 − 3p22∕𝜃

2
)

0

⎞⎟⎟⎟⎠
(185)

p̃23 =
1
𝜃3

⎛⎜⎜⎜⎝
0 p2

(
1 − 3p23∕𝜃

2
)

−p3
(
1 − 3p22∕𝜃

2
)

−p2
(
1 − 3p23∕𝜃

2
)

0 −3p1p2p3∕𝜃2

p3
(
1 − 3p22∕𝜃

2
)

3p1p2p3∕𝜃2 0

⎞⎟⎟⎟⎠
(186)

p̃31 =
1
𝜃3

⎛⎜⎜⎜⎝
0 p1

(
1 − 3p23∕𝜃

2
)

3p1p2p3∕𝜃2

−p1
(
1 − 3p23∕𝜃

2
)

0 p3
(
1 − 3p21∕𝜃

2
)

−3p1p2p3∕𝜃2 −p3
(
1 − 3p21∕𝜃

2
)

0

⎞⎟⎟⎟⎠
(187)

p̃32 =
1
𝜃3

⎛⎜⎜⎜⎝
0 p2

(
1 − 3p23∕𝜃

2
)

−p3
(
1 − 3p22∕𝜃

2
)

−p2
(
1 − 3p23∕𝜃

2
)

0 −p1
(
1 − 3p23∕𝜃

2
)

p3
(
1 − 3p22∕𝜃

2
)

p1
(
1 − 3p23∕𝜃

2
)

0

⎞⎟⎟⎟⎠
(188)

p̃33 =
1
𝜃3

⎛⎜⎜⎜⎝
0 3p3

(
1 − p23∕𝜃

2
)

−p2
(
1 − 3p23∕𝜃

2
)

−3p3
(
1 − p23∕𝜃

2
)

0 p1
(
1 − 3p23∕𝜃

2
)

p2
(
1 − 3p23∕𝜃

2
)

−p1
(
1 − 3p23∕𝜃

2
)

0

⎞⎟⎟⎟⎠
(189)

When 𝜃 = 0 the singularity can be removed giving Rkk = p̃(k)p̃(k)
and Rkl = p̃(k)p̃(l).
If the coordinates of two rigid bodies are denoted using the

subscripts I and J, and the sites within each rigid body by sub-
scripts i and j, then for site-site isotropic potentials the total en-
ergy is

 =
∑
I

∑
J<I

∑
i∈I

∑
j∈J

 VDW
ij

(
rij
)

(190)

where  VDW
ij is the pair potential between sites i and j, and

rij = rI + RIr
0
i − rJ − RJr

0
j (191)

The first derivatives are given by[200]

𝜕 VDW
ij

𝜕r𝛼I
= f1

1
r
r𝛼ij (192)

𝜕 VDW
ij

𝜕pkI
= f1

1
r
rij ⋅

(
Rk
Ir
0
i

)
(193)

The second derivatives are[200]

𝜕2 VDW
ij

𝜕r𝛼I 𝜕r
𝛽
J

=
⎧⎪⎨⎪⎩
(
f2 −

1
r
f1
)

1
r2
r𝛼ij r

𝛽
ij + f1

1
r
𝛿𝛼𝛽 I = J

−
(
f2 −

1
r
f1
)

1
r2
r𝛼ij r

𝛽
ij − f1

1
r
𝛿𝛼𝛽 I ≠ J

(194)

𝜕2 VDW
ij

𝜕pIk𝜕p
J
l

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
f2 −

1
r
f1
)

1
r2

(
rij ⋅ R

k
Ir
0
i

)(
rij ⋅ R

l
Ir
0
i

)
+ f1

1
r

(
Rk
Ir
0
i

)(
Rl
Ir
0
i

)
+ f1

1
r

(
rij ⋅ R

kl
I r

0
i

) I = J

−
(
f2 −

1
r
f1
)

1
r2

(
rij ⋅ R

k
Ir
0
i

)(
rij ⋅ R

l
Jr
0
j

)
−f1

1
r

(
Rk
Ir
0
i

)(
Rl
Jr
0
j

) I ≠ J

(195)

𝜕2 VDW
ij

𝜕r𝛼I 𝜕p
l
J

=
⎧⎪⎨⎪⎩
(
f2 −

1
r
f1
)

1
r2

(
rij ⋅ R

l
Ir
0
i

)
r𝛼ij + f1

1
r

(
Rk
Ir
0
i

)
I = J

−
(
f2 −

1
r
f1
)

1
r2

(
rij ⋅ R

l
Jr
0
j

)
r𝛼ij − f1

1
r

(
Rl
Jr
0
j

)
I ≠ J

(196)

The strain derivative for rigid units reads[163]

𝜕 VDW
ij

𝜕𝜖𝛼𝛽
=
∑
J≠I

∑
i∈I

∑
j∈J

[
f1
1
r
r𝛼ij r

𝛽
ij −

1
2
f1
1
r

(
r𝛼ij d

𝛽
i + r𝛽ij d

𝛼
i

)]
(197)

where di = rI,i − rI is the distance vector between site i and the
center of mass of rigid unit I. Note that the constraints result in
a torque, and the instantaneous stress-tensor becomes asymmet-
ric (remedied by explicitly symmetrizing the stress-tensor). The
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presence of intra-molecular constraints results in a force term to
be added to the strain derivative of an atomic system.
The derivatives of the energy with respect to strain and cen-

ter of mass position and of the energy with respect to strain and
orientation for pair potentials are given by[163]

𝜕 VDW

𝜕𝜀𝛼𝛽𝜕r
𝛾
I

=
(
f2∕r2 − f1∕r3

)
r𝛼ij r

𝛽
ij r

𝛾
ij + f1

1
r

(
𝛿𝛼𝛾 r

𝛽
ij + 𝛿𝛽𝛾 r

𝛼
ij

)
+ 1
2

[
d𝛽
JI

((
f2∕r2 − f1∕r3

)
r𝛾ij r

𝛼
ij + f1

1
r
𝛿𝛼𝛾

)
+ dJI𝛼

((
f2∕r2 − f1∕r3

)
r𝛾ij r

𝛽
ij + f1

1
r
𝛿𝛽𝛾

)]
(198)

𝜕 VDW

𝜕𝜀𝛼𝛽𝜕p
𝛾
I

= 1
2

[
r𝛽ij + d𝛽JI

][(
f2∕r2 − f1∕r3

)(
rij ⋅ R

𝛾
I r

0
i

)
r𝛼ij + f1

1
r

(
R𝛾
I r

0
i

)𝛼]
+ 1
2

[
r𝛼ij + d𝛼

JI

][(
f2∕r2 − f1∕r3

)(
rij ⋅R

𝛾
I r

0
i

)
r𝛽ij + f1

1
r

(
R𝛾
I r

0
i

)𝛽]
(199)

where d𝛼
JI = (d𝛼J,j − d𝛼

I,i).
For pair potentials we find the strain–strain derivative is given

by[163]

𝜕 VDW

𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

= 1
2

(
f2∕r2 − f1∕r3

)[(
r𝛼ij + d𝛼

JI

)
r𝛽ij r

𝜇
ij r

𝜈
ij + r𝛼ij

(
r𝛽ij + d𝛽

JI

)
r𝜇ij r

𝜈
ij

]
+1
2
f1
1
r

[
𝛿𝛽𝜈

(
r𝛼ij + d𝛼

JI

)
r𝜇ij + 𝛿𝛼𝜈

(
r𝛽ij + d𝛽

JI

)
r𝜇ij

+ 𝛿𝛽𝜇

(
r𝛼ij + d𝛼

JI

)
r𝜈ij + 𝛿𝛼𝜇

(
r𝛽ij + d𝛽

JI

)
r𝜈ij
]

+1
4

(
f2∕r2 − f1∕r3
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r𝛼ij + d𝛼

JI

)
r𝛽ij
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(
r𝛽ij + d𝛽

JI

)
r𝛼ij
)(

d𝜇
JIr

𝜈
ij + d𝜈

JIr
𝜇
ij

)]
+1
4
f1
1
r

[
𝛿𝛽𝜈

(
r𝛼ij + d𝛼

JI

)
d𝜇JI + 𝛿𝛼𝜈

(
r𝛽ij + d𝛽

JI

)
d𝜇JI

+ 𝛿𝛽𝜇

(
r𝛼ij + d𝛼

JI

)
d𝜈JI + 𝛿𝛼𝜇

(
r𝛽ij + d𝛽

JI

)
d𝜈JI
]

(200)

which reduces to Equation (165) for atomic systems.
Miller at al. derived a Hamiltonian form of a minimal,

nonsingular representation of rigid body rotations, the unit
quaternion.[201] The derived NVE integrator is the symplectic and
time reversible integrator for molecules with an arbitrary level of
rigidity. Thermo- and barostats can be combined with the Miller
scheme to control the temperature and pressure.[202–204]

3.12. QM-Corrected Potentials

Carefully calibrated Lennard–Jonesmodels usually give quite sat-
isfactory results. The model captures the first order effects, but
because the parameters are adjustable parameters, also a large
portion of the remaining physics is effectively incorporated. It
performs well at moderate and high temperatures, where the po-
tential energy is a relative small part of the total Hamiltonian.

Quantum effects are expected to become significant when the
Broglie wavelength Λ = h∕

√
2𝜋mkBT is much larger than inter-

particle distance. For T = 300K one has Λ = 1 Å for a hydrogen
atom and Λ = 0.19 Å for a silicon atom. Except for the lightest
ones, all atoms can be treated classically. However, with T be-
coming lower, quantum corrections may be needed. Using the
path-integral formalism[205] the Feynman–Hibbs (FH) potentials
can be obtained that include quantum effects:

 FH(r) =  (r) + 𝛽ℏ2

24𝜇

[ ′′ + 2
r
 ′
]

+ 𝛽2ℏ4

1152𝜇2

[15
r3

 ′ + 4
r
 ′′′ + ′′′′

]
+⋯ (201)

where m = 2𝜇 is the reduced mass of a pair of interacting par-
ticles, 𝛽 = 1∕(kBT) is the inverse temperature, ℏ is the reduced
Planck constant, and where ′ denotes differentiation with re-
spect to r. The thermodynamics given by the FH-potential is
modified.[206] For example, the energy is given by

E =
3NkBT

2
+

⟨
𝛽
∑
i>j

𝜕 FH(r)
𝜕𝛽

⟩
+

⟨∑
i<j

 FH(r)

⟩
(202)

where the second term on the right-hand side can be inter-
preted as a quantum correction to the classical kinetic energy.
Liu et al.[207] found that quantum effects are important for hydro-
gen adsorption in MOFs at cryogenic temperatures. For H2-H2
𝜇 = m∕2 and 𝛽ℏ2∕(24𝜇) = 2.005∕T , while for H2-sorbent 𝜇 = m
and 𝛽ℏ2∕(24𝜇) = 1.002∕T . The Feynman–Hibbs potential, trun-
cated at second order in ℏ, was able to satisfactory account for
quantum effects.

3.13. Hydrogen Bonding

Ion–dipole interactions can be strong enough to lead to mutual
alignment. Dipole–dipole interactions are usually too weak for
that with the exception of the “hydrogen bond” (which is essen-
tially just a particularly strong directional dipole-dipole interac-
tion). Water is the prime example of hydrogen bonds but they
are also found between molecules with O─H, N─H, F─H, and
C─Hbonds. The bondmoment of O−-H+ is unusually large. The
electronegative oxygen atom can get quite close to the highly po-
lar O−-H+ groups and experience a very strong field. Hydrogen
bond strength lies between 10 and 40 kJmol−1 whichmakes them
stronger than a typical van derWaals bond (≈ 1 kJ mol−1) but still
much weaker than covalent or ionic bonds (≈ 500 kJ mol−1).[183]

Even though the hydrogen bond is believed to be purely elec-
trostatics there is no simple equation for the interaction poten-
tial known. The electrostatics consist of charge-transfer, polariza-
tion, dispersion, and electron-exchange. One does find that the
strengths of hydrogen bonds tend to follow a 1∕r2 distance de-
pendence. Hydrogen bonds can occur intermolecularly as well
as intramolecularly and can exist in a nonpolar environment.
While the van derWaals and electrostatic point charge interactions
are more or less isotropic interactions, hydrogen bonds are di-
rectional short-range interactions. The energetically optimum ar-
rangement occurs when the two dipole moments are colinear. Ab
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Table 8. Common hydrogen bonding potential functional forms.

AMBER  (rij) =
Cij

r12
ij

−
Dij

r10
ij

CHARMM[116]  (rij) = [ A

r6AD
− B

r4A
] cosm(𝜙A−H−D) cos

n(𝜙AD−A−H)

initio quantum mechanical simulations have shown that this in-
teraction can be accuratelymodeled by combiningCoulomb’s law
with the Lennard–Jones potential if appropriate partial charges
are used.[208] Therefore several force fields do not model the hy-
drogen bond explicitly but account for this type of interaction by
van der Waals and electrostatic interactions (MM2). Some force
fields employ modified Lennard–Jones potentials (e.g., 12-10, 6-
4, and 8-6 potential functions). Other force fields account for the
directionality of the hydrogen bond (MM3) or even model lone-
pairs explicitly. Some common functional forms for hydrogen
bonding are listed in Table 8.

4. Coulomb Potential in Periodic Systems: Ewald
Summation

The main challenge in calculating long-range potentials in pe-
riodic systems is their slow convergence with distance. The de
facto method to deal with this problem is the Ewald summa-
tion. Suppose there are N point charges q1, q2,… , qN at positions
ri, r2,… , rN within the unit cell satisfying q1 + q2 +⋯ + qN = 0.
The vectors a𝛼 , which need not be orthogonal, form the edges of
the unit cell. The conjugate reciprocal vectors a∗𝛼 are defined by
the relations

a∗𝛼 ⋅ a𝛽 = 𝛿𝛼𝛽 𝛼, 𝛽 = {x, y, z} (203)

Let a be the 3 × 3 matrix having the lattice vectors a𝛼 as columns.
Note that the volumeV of the unit cell is given by the determinant
of a. Furthermore a−1 is the 3 × 3 matrix having the reciprocal
lattice vectors a∗𝛼 as rows. The point charge qi at position ri has
fractional coordinates s𝛼i defined by

s𝛼i = a∗𝛼 ⋅ ri (204)

The charges interact according to Coulomb’s law with periodic
boundary conditions. Thus a point charge qi at position ri inter-
acts with all other charges qj (with j ≠ i) at positions rj as well
as with all of their periodic images at positions rj + n1a1 + n2a2 +
n3a3 for all integers n1, n2, n3. It also interacts with its own pe-
riodic images at ri + n1a1 + n2a2 + n3a3 for all integers n1, n2, n3
not all zero. The electrostatic energy of the unit cell  can be
written

 (r1,… , rN) =
1
2

∑
n′

∑
ij

qiqj|ri − rj + n| (205)

where the outer sum is over the vectors n = n1a1 + n2a2 + n3a3,
the prime indicating that terms with i = j for n = 0 are omitted.
We define the reciprocal lattice vectors k by

k = 2𝜋
(
k1a

∗
1 + k2a

∗
2 + k3a

∗
3

)
(206)

with k1, k2, k3 integers not all zero and the structure factor
S(k) by

S(k) =
N∑
j=1

qj exp(𝜄k ⋅ rj) (207)

The structure factor S(k) can be viewed as a discrete Fourier
transform of a set of charges place irregularly within the
unit cell.
The technique of Ewald summation is applicable to true pe-

riodic systems, that is, the simulation region or unit cell is ef-
fectively replicated in all spatial directions. For short-ranged po-
tentials like the Lennard–Jones, the cutoff is usually chosen as
smaller than half the shortest width of the unit cell, such that
only summations over interactions in the main cell are required.
For distances larger than half the shortest width of the unit cell,
neighboring simulation volumes need to be taken into account.
In the minimum image convention, the potential seen by a par-
ticle is summed over all other particles or their periodic images,
whichever is closest. For long-range potentials this construction
is inadequate because the contributions from more distant im-
ages at 2L, 3L etc, are no longer negligible. One might think that
these contributions should approximately cancel and they nearly
do. One has to take care in which order to do the sum as il-
lustrated by an example. Consider a system of two oppositely
charged ions, periodically extended to form an infinite 1D line
of charges, each separated by a distance R. The potential energy
of the reference ion with charge −q is:[38]

 = −2q2
( 1
R

− 1
2R

+ 1
3R

− 1
4R

…
)

= −
2q2

R

(
1 − 1

2
+ 1
3
− 1
4
…
)

= −
2q2

R
log 2

(208)

The factor 2 log 2 is the Madelung constant, which is of cen-
tral importance in the theory of ionic crystals. The series is ac-
tually conditionally convergent, i.e. the results depends on the
summation order. We can choose a different ordering, for
example[209]

1 + 1
3
− 1
2
+ 1
5
+ 1
7
− 1
4
+ 1
9
+⋯ (209)

that is, two positive terms followed by a negative term. Then it
can be shown it now converges to 3

2
log 2, which is 50% higher

potential energy then before.[209] The problem is in what order
should we sum over periodic images. An intuitive and elegant
way of doing this is to build up sets of images contained within
successively larger spheres surrounding the simulation region.
According to this scheme the energy is expressed as in Equa-
tion (205). However, using the Ewald transformation, the single
divergent summation can be replaced with two convergent sum-
mations.
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4.1. Ewald Transformation

For an infinite system, a meaningful energy can be defined by
use of the Ewald transformation. The basic idea of the Ewald ap-
proach is as follows[210,211]

1
r
= erf(𝜂r)

r
+ erfc(𝜂r)

r
(210)

where the error function erf(x) and its complement are defined
as

erf(x) = 2√
𝜋 ∫

x

0
e−t

2
dt (211)

erfc(x) = 1 − erf(x) = 2√
𝜋 ∫

∞

x
e−t

2
dt (212)

In Equation (210), the first term goes to a constant ( 2𝜂√
𝜋
) as

r → 0, but has a long tail as r → ∞. The second term has a
singular behavior as r → 0, but vanishes exponentially as r → ∞.
Ewald’s idea is to replace a single divergent summation with two
convergent summations. The first summation has a convergent
summation in the form of its Fourier transform and the second
has a convergent direct summation. Thus the calculation of the
electrostatic energy would be evaluated using

 = 1
8𝜋𝜖0

∑
i≠j

qiqj|ri − rj| (213)

= 1
8𝜋𝜖0

(∑
i≠j

qiqjerf
(
𝜂|ri − rj|)|ri − rj| +

∑
i≠j

qiqjerfc
(
𝜂|ri − rj|)|ri − rj|

)

For an appropriate choice of the parameter 𝜂, the second sum-
mation converges quickly and can be evaluated directly. The first
term in the summation must be transformed into Fourier space.
In order to describe these summations explicitly, we assume

that we have a periodic lattice so that every ion can be located by
ri = r

′

i + n, that is a location r
′

i within a unit cell and a periodic
translation vector n. In this way, the summation becomes∑
ij

= N
∑
i,j,n

, (214)

where N denotes the number of unit cells in the system. Since
we have a periodic system, N is infinite, but the energy per unit
cell ∕N is well defined. A sum over lattice translation nmay be
transformed into an equivalent sum over reciprocal lattice trans-
lations k according to the identity:∑
n

𝛿3(r − n) = 1
V

∑
k

e𝜄k⋅r, (215)

where V denotes the unit cell volume. The first term thus
becomes∑
i≠j

qiqjerf
(
𝜂|ri − rj|)|ri − rj|

=
∑
i,j

qiqjerf
(
𝜂|ri − rj|)|ri − rj| −

∑
i=j

qiqjerf
(
𝜂|ri − rj|)|ri − rj| (216)

= N

(∑
i,j

qiqj
∑
n

erf
(
𝜂|ri − rj + n|)|ri − rj + n| − 2𝜂√

𝜋

∑
i

q2i

)
(217)

where the last term comes from subtracting out the self-
interaction (i = j) term from the complete lattice sum. Using
rij = ri − rj, the lattice sum reads

1
V

∑
k
∫ e𝜄k⋅r

erf
(
𝜂|rij + n|)|rij + n| d3r

= 4𝜋
V

⎛⎜⎜⎝
∑
k≠0

e−𝜄k⋅rij e
− k2

4𝜂2

k2
+ 1
2 ∫

𝜂

0

1
u3

du
⎞⎟⎟⎠ (218)

The last term in Equation (218) comes from the k = 0 contribu-
tion. The omission of this term is called a “tin-foil” boundary con-
dition and corresponds to a system embedded in a medium with
infinite dielectric constant (a perfectly conducting medium).[212]

If the surrounding medium is a vacuum (dielectric constant of
unity) then an additional surface energy term appears in the
equations. However, tin-foil boundary conditions are standard
and for ionic systems the use of this type of boundary condition
is essential.[84] The Ewald expression is found to be


V

=
∑
i,j

qiqj
8𝜋𝜖0

⎛⎜⎜⎝
∑
n′

erfc
(
𝜂|rij +n|)|rij +n| + 4𝜋

V

∑
k≠0

e−𝜄k⋅rij e
− k2

4𝜂2

k2
− 2𝜂√

𝜋
𝛿ij

⎞⎟⎟⎠
(219)

=
∑
i,j

qiqj
8𝜋𝜖0

∑
n′

erfc
(
𝜂|rij + n|)|rij + n|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Real part

+ 1
2V𝜖0

∑
k≠0

e
− k2

4𝜂2

k2
|S(k)|2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Reciprocal part

− 1
4𝜋𝜖0

∑
i

𝜂√
𝜋
q2i

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Self part

(220)

where the ′ in the summation over the lattice translations n in-
dicates that all self-interaction terms should be omitted, and the
triple sum over k, i, and j in the reciprocal term in Equation (219)
has been replaced by a double sum over k and i (in the structure
factor S(k)) in Equation (220).

4.2. Units

The total electrostatic potential energy of interaction between
point charges qi at the positions ri is given by

 = 1
4𝜋𝜖0

∑
i<j

qiqj|ri − rj| (221)

A note on the prefactor of the Coulomb potential and conversion
to internal simulation units. The dielectric constant of vacuum is
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𝜖0 = 8.8541878176 × 10−12 F/m (where Farad F = C2∕J).

1
4𝜋𝜖0

=
(
charge unit

)2
(4𝜋) ×

(
8.8541878176 × 10−12

)
×
(
length unit

)
×
(
energy conversion

)
(222)

where the conversion of energy in internal units is (mass unit) ×
(lenght unit)2∕(time unit). For example, using Angstrom (10−10

m) as the length scale, picoseconds (10−12 s) as the time scale,
Kelvin as the temperature, atomic mass (1.6605402×10−27 kg)
as the unit of mass, and atomic charge (1.60217733×10−19 C
per particle) as the unit of charge, then the units of energy
will be 10 J mol−1 (1.6605402×10−23 J) and the Coulombic con-
version will be 138935.48. This factor is needed to convert the
electrostatic energy to the internal units at every evaluation.
The factor corresponds to 167101.1 K, 1389.36 kJ mol−1, and
332.067 kcal mol−1. In the remainder, the prefactor will be omit-
ted for notational convenience.

4.3. General Formalism Finite System

Nymand and Linse have provided a general formalism for atomic
charges, dipoles, and polarizabilities and this section is taken
from their article.[213] Consider a finite system of interacting
molecules possessing atomic charges, dipoles, and anisotropic
polarizabilities. Throughout, the Einstein summation conven-
tion is used for Greek letter indices. The following interactions
tensors are employed

ij = 1
rij

(223)

 𝛼
ij = ∇𝛼ij = −

r𝛼ij
r3ij

(224)

 𝛼𝛽
ij = ∇𝛼∇𝛽ij =

3r𝛼ij r
𝛽
ij

r5ij
−

𝛿𝛼𝛽

r3ij
(225)

 𝛼𝛽𝛾
ij = ∇𝛼∇𝛽∇𝛾ij = −

15r𝛼ij r
𝛽
ij r

𝛾
ij

r7ij
+
3
(
𝛿𝛽𝛾 r

𝛼
ij + 𝛿𝛼𝛾 r

𝛽
ij + 𝛿𝛼𝛽r

𝛾
ij

)
r5ij

(226)

Here, r𝛼ij = r𝛼i − r𝛼j , where r𝛼i is the 𝛼-component of the posi-
tion vector of atom i. After a generalization of the approach by
Veseley,[214] the total potential energy of a finite system contain-
ing a set of atoms possessing charges, dipoles, and anisotropic
polarizabilities can be expressed as[213]

 = int +pol (227)

int =
1
2

∑
i,j≠i

qiijqj
⏟⏞⏞⏞⏟⏞⏞⏞⏟
charge-charge

− 1
2

∑
i,j≠i

qi 𝛼
ij 𝜇

𝛼
j

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
charge-total dipole

+1
2

∑
i,j≠i

𝜇𝛼
i  𝛼

ij qj

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
total dipole-charge

−1
2

∑
i,j≠i

𝜇𝛼
i  𝛼𝛽

ij 𝜇𝛽
j

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
total dipole-total dipole

(228)

pol =
1
2

∑
i

𝜇ind
i,𝛼 𝛼−1

i,𝛼𝛽𝜇
ind
i,𝛽 (229)

where qi is the charge on atom i, 𝜇𝛼
i the 𝛼-component of the total

dipole moment of atom i, 𝜇ind
i,𝛼 the 𝛼-component of the induced

dipole moment of atom i, and 𝛼i,𝛼𝛽 the 𝛼𝛽-component of the po-
larizability tensor of atom i. In Equation (228) the four terms in
int represent the charge-charge, the charge-total dipole, the total
dipole-charge, and the total dipole-total dipole interaction, respec-
tively, whereas pol represents the work of forming the induced
dipoles. The total dipole moment of atom i is given by

𝜇𝛼
i = 𝜇stat

i,𝛼 + 𝜇ind
i,𝛼 , (230)

where 𝜇stat
i,𝛼 denotes the 𝛼-component of the permanent (static)

dipole moment of atom i.
By introducing a infinitesimal test charge 𝜕q at r, the electro-

static potential 𝜙(r) at r is defined according to

𝜙(r) ≡ lim
𝛿q→0

𝜕
𝜕𝛿q

(231)

where  is the potential energy of the system including the test
charge. The 𝛼-component of the electrostatic field E𝛼(r) is defined
as

E𝛼(r) ≡ −𝜕𝜙(r)
𝜕r𝛼

, (232)

and the 𝛼𝛽-component of the electric field gradient E𝛼𝛽 (r) at r as

E𝛼𝛽 (r) ≡ 𝜕E𝛼(r)
𝜕r𝛽

. (233)

The inclusion of the test charge in the summation of Equa-
tion (227) and the application of Equations (231)–(233) on Equa-
tion (227) gives the electrostatic potential, field, and field gradi-
ents. The corresponding quantities on atom i become (after omis-
sion of any self-terms)[213]:

𝜙i ≡ 𝜙
(
ri
)
=
∑
j≠i

(ijqj −  𝛼
ij 𝜇j,𝛼

)
, (234)

E𝛼
i ≡ E𝛼

(
ri
)
=
∑
j≠i

(
− 𝛼

ij qj +  𝛼𝛽
ij 𝜇𝛽

j

)
, (235)

E𝛼𝛽
i ≡ E𝛼𝛽

(
ri
)
=
∑
j≠i

(
− 𝛼𝛽

ij qj +  𝛼𝛽𝛾
ij 𝜇𝛾

j

)
. (236)

The induced dipole moments are determined by a minimization
of  with respect to 𝜇ind

i,𝛼

𝜇ind
i,𝛼 = 𝛼i,𝛼𝛽E

𝛽
i , (237)

where E𝛼
i is the 𝛼-component of the electrostatic field on atom i

arising from other charges and total dipole moments as given by
Equation (235).
The potential energy is often separated into two physically ap-

pealing contributions: an electrostatic and an induction term.
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With the use of Equations (230) and (237), Equation (227) can
be recast according to

 = elec +ind (238)

where the electrostatic energy is given by

elec =
1
2

∑
i

(
qi𝜙

stat
i − 𝜇stat

i,𝛼 E
stat
i,𝛼

)
, (239)

and the induction energy by

ind = −1
2

∑
i

𝜇ind
i,𝛼 E

stat
i,𝛼 , (240)

with 𝜙stat
i denoting the electrostatic potential and Estati,𝛼 the 𝛼-

component of the electrostatic field at atom i arising from other
charges and static dipoles. The quantities 𝜙stat

i and Estati,𝛼 are ob-
tained from Equation (234) and Equation (235) by replacing 𝜇𝛼

j

with 𝜇stat
j,𝛼 according to

𝜙stat
i =

∑
j≠i

(ijqj −  𝛼
ij 𝜇

stat
j,𝛼

)
, (241)

and

Estati,𝛼 =
∑
j≠i

(
− 𝛼

ij qj +  𝛼𝛽
ij 𝜇stat

j,𝛽

)
. (242)

By taking the derivative of the total potential energy  given by
Equation (227) with respect to the position of atom i and not-
ing that  is stationary with respect to variation of 𝜇ind

i,𝛼 , the 𝛼-
component of the force on atom i arising from its interactionwith
atom j can be obtained according to

f 𝛼ij = −qi 𝛼
ij qj + qi 𝛼𝛽

ij 𝜇𝛽
j − 𝜇𝛽

i  𝛽𝛼
ij qj + 𝜇𝛽

i  𝛽𝛼𝛾
ij 𝜇𝛾

j . (243)

The 𝛼-component of the total force acting on atom i can conve-
niently be expressed as[213]

f 𝛼i =
∑
j≠i

f 𝛼ij = qiE
𝛼
i + 𝜇𝛽

i E
𝛽𝛼
i , (244)

where E𝛼
i is the 𝛼-component of the electrostatic field and E𝛼𝛽

i the
𝛼𝛽-component of the field gradient on atom i arising from other
charges and total dipole moments as given by Equation (235) and
Equation (236), respectively.
Finally, the virial Φ, which enters the expression for the pres-

sure, p = pideal − Φ∕3V , is given by

Φ = 3V
⟨𝜕

𝜕V

⟩
, (245)

whereV denotes the volume of the system. The virial for amolec-
ular system composed of charges, static, and induced dipole mo-
ments formally is given by

Φ = −1
2

∑
i,j≠i

rij ⋅ fij +
∑
i

di ⋅ fi, (246)

with fij and fi given by Equation (243) and Equation (244),
respectively.

4.4. General Formalism Periodic System

Nymand and Linse extended the formalism to periodic systems
using the Ewald summation.[213] Also this section is directly taken
from their work. When applying truly periodic boundary condi-
tions, the summations over j ≠ i are replaced by infinite lattice
sums. In the Ewald formalism, the expression of a given property
is conventionally divided into four different terms viz. i) a real
term arising from the short-range interaction in the real space,
ii) a reciprocal term arising from the long-range interaction in
the reciprocal space iii) a self-term correcting an over-counting
in the reciprocal space, and iv) a surface term appearing in sys-
tems with nonconducting surroundings. The modified interac-
tions tensors are denoted as ̂ . In practice, this surmounts to
replacing r−(2n+1), n ∈ {0, 1, 2, 3}, in the interaction energy expres-
sions by its screened counterpart r̂−(2n+1), where

1̂
r
= erfc(𝜂r)

r
(247)

and

1̂
r2n+1

= 1
r2

[
1̂

r2n−1
+

(
2𝜂2

)n√
𝜋𝜂(2n − 1)

e−𝜂2r2

]
, (248)

for n > 0. Note that this can straightforwardly be extended to
higher order moments through the use of the recursion for-
mula Equation (248). We define ij =  𝛼

ij = T𝛼𝛽
ij =  𝛼𝛽𝛾

ij ≡ 0 when
atoms i and j belong to the same molecule. The modified tensors
read

̂ij =
erfc

(
𝜂rij
)

rij
(249)

̂ 𝛼
ij = ∇𝛼 ̂ij =

⎛⎜⎜⎝−
2𝜂e

−𝜂2r2
ij√

𝜋r2ij
−
erfc

(
𝜂rij
)

r3ij

⎞⎟⎟⎠r𝛼ij (250)

̂ 𝛼𝛽
ij = ∇𝛼∇𝛽 ̂ij =

⎛⎜⎜⎝
6𝜂e

−𝜂2r2
ij√

𝜋r4ij
+ 4𝜂3e

−𝜂2r2
ij√

𝜋r2ij
+
3erfc

(
𝜂rij
)

r5ij

⎞⎟⎟⎠r𝛼ij r𝛽ij
+ 𝛿𝛼𝛽

⎛⎜⎜⎝−
2𝜂e

−𝜂2r2
ij√

𝜋r2ij
−
erfc

(
𝜂rij
)

r3ij

⎞⎟⎟⎠ (251)

̂ 𝛼𝛽𝛾
ij = ∇𝛼∇𝛽∇𝛾 ̂ij

=
⎛⎜⎜⎝−

30𝜂e
−𝜂2r2

ij√
𝜋r6ij

− 20𝜂3e
−𝜂2r2

ij√
𝜋r4ij

− 8𝜂5e
−𝜂2r2

ij√
𝜋r2ij

−
15erfc

(
𝜂rij
)

r7ij

⎞⎟⎟⎠r𝛼ij r𝛽ij r𝛾ij
+
⎛⎜⎜⎝
6𝜂e

−𝜂2r2
ij√

𝜋r4ij
+ 4𝜂3e

−𝜂2r2
ij√

𝜋r2ij
+
3erfc

(
𝜂rij
)

r5ij

⎞⎟⎟⎠
×
[
𝛿𝛼𝛽r

𝛾
ij + 𝛿𝛼𝛾 r

𝛽
ij + 𝛿𝛽𝛾 r

𝛼
ij

]
(252)
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Similar tensors denoted ̃ij = erf(𝜂dij)∕dij are defined

̃ij =
erf
(
𝜂dij

)
dij

(253)

̃ 𝛼
ij = ∇𝛼 ̃ij =

⎛⎜⎜⎝
2𝜂e

−𝜂2d2
ij√

𝜋d2ij
−
erf
(
𝜂dij

)
d3ij

⎞⎟⎟⎠d𝛼ij (254)

̃ 𝛼𝛽
ij = ∇𝛼∇𝛽 ̃ij =

⎛⎜⎜⎝−
6𝜂e

−𝜂2d2
ij√

𝜋d4ij
− 4𝜂3e

−𝜂2d2
ij√

𝜋d2ij
+
3erf

(
𝜂dij

)
d5ij

⎞⎟⎟⎠d𝛼ijd𝛽
ij

+ 𝛿𝛼𝛽

⎛⎜⎜⎝
2𝜂e

−𝜂2d2
ij√

𝜋d2ij
−
erf
(
𝜂dij

)
d3ij

⎞⎟⎟⎠ (255)

̃ 𝛼𝛽𝛾
ij = ∇𝛼∇𝛽∇𝛾 ̃ij

=
⎛⎜⎜⎝
30𝜂e

−𝜂2d2
ij√

𝜋d6ij
+ 20𝜂3e

−𝜂2d2
ij√

𝜋d4ij
+ 8𝜂5e

−𝜂2d2
ij√

𝜋d2ij
−
15erf

(
𝜂dij

)
d7ij

⎞⎟⎟⎠d𝛼ijd𝛽
ijd

𝛾
ij

×
⎛⎜⎜⎝−

6𝜂e
−𝜂2d2

ij√
𝜋d4ij

− 4𝜂3e
−𝜂2d2

ij√
𝜋d2ij

+
3erf

(
𝜂dij

)
d5ij

⎞⎟⎟⎠
×
[
𝛿𝛼𝛽d

𝛾
ij + 𝛿𝛼𝛾d

𝛽
ij + 𝛿𝛽𝛾d

𝛼
ij

]
(256)

where dij is the intra-molecular distance between atom i and j.

The tensors ̃ij are used to remove intra-molecular electrostat-
ics. In real space these interactions can simply be skipped. The
Fourier part can then be corrected by subtracting real space value
̃ij for excluded pairs, that is, by correcting in real space. An im-
portant note is that sometimes numerical divergences can occur.
For example, in the core-shell models the shell can overlap with
its core. This can be resolved by replacing them by analytical ex-
pressions for the limit r → 0 for small values of d, for example,
d < 10−4 Å. We have

lim
d→0

̃ij = 2𝜂√
𝜋

(257)

lim
d→0

̃ 𝛼
ij = −4𝜂

3

3𝜋
d𝛼ij (258)

lim
d→0

̃ 𝛼𝛽
ij = 8𝜂5

4𝜋
d𝛼ijd

𝛽
ij − 𝛿𝛼𝛽

4𝜂3

3𝜋
(259)

lim
d→0

̃ 𝛼𝛽𝛾
ij = − 16𝜂7

7𝜋
d𝛼
ijd

𝛽
ijd

𝛾
ij +

8𝜂5

4𝜋
d𝛼ij
[
𝛿𝛼𝛽d

𝛾
ij + 𝛿𝛼𝛾d

𝛽
ij + 𝛿𝛽𝛾d

𝛼
ij

]
(260)

The real-space cancellation is imperfect and better cancellation
can be achieved if the excluded interactions are subtracted out
using a reciprocal-space expression.[81,215]

Nymand and Linse provided expressions for  , 𝜙i, E
𝛼
i , E

𝛼𝛽
i ,

f 𝛼i , and Φ for a truly infinite periodic system of charges, static
dipoles, and anisotropic polarizabilities. The expressions cor-
rectly reduce to those for systems of only charges, or of only
dipoles. The volume is defined by V = LxLyLz, where Lx, Ly, and

Lz denote the lengths of the box edges, Ak is defined according
to

Ak =
1
k2
e
− k2

4𝜂2 , (261)

and Qq𝜇 according to

Qq𝜇 = Qq +Q𝜇 (262)

Qq =
∑
j

qje
−𝜄k⋅rj (263)

Q𝜇 = Q𝜇(stat) +Q𝜇(ind) (264)

=
∑
j

𝜄
(
𝝁
stat
j ⋅ k

)
+
∑
j

𝜄
(
𝝁
ind
j ⋅ k

)
e𝜄k⋅rj , (265)

where 𝜄2 ≡ −1. The bar-notation Q̄q𝜇 is used for the complex con-
jugate of Qq𝜇.
The Potential Energy: For a system of charges, static dipoles,

and anisotropic polarizabilities in an infinite lattice, the potential
energy can be written as[213]

 = 1
2

∑
i,j≠i

(
qi̂ijqj − qi̂ 𝛼

ij 𝜇
𝛼
j + 𝜇𝛼

i ̂ 𝛼
ij qj − 𝜇𝛼

i ̂ 𝛼𝛽
ij 𝜇𝛽

j

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Real part

+ 2𝜋
V

∑
k≠0

Ak
||Qq𝜇||2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Reciprocal part

⎛⎜⎜⎜⎜⎜⎝
−
∑
i

(
𝜂√
𝜋
q2i +

2𝜂3

3
√

𝜋
𝜇2
i

)
−1
2

∑
p

∑
i,j≠i;i,j∈p

(
qi̃ijqj − qi̃ 𝛼

ij 𝜇
𝛼
j + 𝜇𝛼

i ̃ 𝛼
ij qj − 𝜇𝛼

i ̃ 𝛼𝛽
ij 𝜇𝛽

j

)
⎞⎟⎟⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Self part

+ 2𝜋(
2𝜖sur + 1

)
V

⎡⎢⎢⎢⎢⎢⎢⎣

(∑
i

qiri

)2

+ 2

(∑
i

qirj

)
⋅

(∑
j

𝝁j

)
+

(∑
i

𝝁i

)2

⎤⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Surface part

+pol (266)

where the four terms are the real, the reciprocal, the self, and
the surface contribution, respectively, to the potential energy and
pol represents the work of forming the induced dipoles.
From Equation (266) and on, the Ewald convergence param-

eter 𝜂 is assumed to be chosen such that the screening is suf-
ficiently large to ensure that only particles in the primary box
need to be considered when calculating the real space sum. In
the self-termself, the single sum over i is always present. In the
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remaining part, the index p runs over all particles and the no-
tation i, j ∈ p means that atomic sites i and j both reside within
particle p. Hence, the double sum over i and j contributes only if
atom i and j belongs to the same particle.
Finally, the surface term sur originates from the total dipole

moment of the simulation box. The quantity 𝜖sur entering insur
is the dielectric constant of the continuum surrounding the repli-
cated sample, and is often chosen to be either ∞ (tinfoil condi-
tions) or 1 (vacuum conditions). For systems such as ionic and
dipolar ones, where long-range interactions are important, Ewald
summation with tinfoil boundary conditions corresponds to the
physically most desirable situation. The general energy expres-
sion reduces correctly for systems consisting of i) only charges
by setting 𝝁stat = 𝝁

ind = 0 and ii) only dipoles by setting q = 0 and
𝝁
ind = 0.
The Electrostatic Potential: The electrostatic potential on atom

i arising from other charges and total dipolemoments is obtained
from Equation (266), and becomes[213]

𝜙i =
∑
j≠i

(̂ijqj − ̂ 𝛼
ij 𝜇

𝛼
j

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

real part

+ 4𝜋
V

∑
k≠0

AkRe
(
e𝜄k⋅ri Q̄q𝜇

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

reciprocal part

− 2𝜂√
𝜋
qi −

∑
j≠i;i,j∈p

(̃ijqj − ̃ 𝛼
ij 𝜇

𝛼
j

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

self-term

+ 4𝜋(
2𝜖sur + 1

)
V

[
ri ⋅

∑
j

(
qjrj + 𝝁j

)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

surface part

(267)

For systems of only atoms the sum in the self-term vanishes.
For a system of charge neutral molecules the surface term may
be written as

𝜙sur
i = − 2𝜋(

2𝜖sur + 1
)
V

∑
j

[
qj
(
rj − ri

)2 + 2𝝁i ⋅
(
rj − ri

)]
. (268)

The Electrostatic Field: Similarly, the expression for the corre-
sponding 𝛼-component of the electrostatic field on atom i is[213]

Ei,𝛼 =
∑
j≠i

(
−̂ 𝛼

ij qj + ̂ 𝛼𝛽
ij 𝜇𝛽

j

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

real part

−4𝜋
V

∑
k≠0

Akk𝛼
[
Re
(
𝜄e𝜄k⋅ri Q̄q𝜇

)
− 𝜇𝛽

i k𝛽
]
+ 4𝜋
3V

𝜇𝛼
i

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
reciprocal part

−
∑

j≠i;i,j∈p

(
−̃ 𝛼

ij qj + ̃ 𝛼𝛽
ij 𝜇𝛽

j

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

self part

− 4𝜋(
2𝜖sur + 1

)
V

∑
j

(
qjr

𝛼
j + 𝜇𝛼

j

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

surface part

(269)

In particular, for a system consisting of only charges the recipro-
cal term reduces to

Ereci,𝛼 = −4𝜋
V

∑
k≠0

Akk𝛼Re
(
𝜄e𝜄k⋅ri Q̄q

)
, (270)

and for a system of only static dipoles it becomes

Ereci,𝛼 = −4𝜋
V

∑
k≠0

Akk𝛼
[
Re
(
𝜄e𝜄k⋅ri Q̄𝜇(stat)

)
− 𝜇stat

i,𝛽 k𝛽
]
+ 4𝜋
3V

𝜇stat
i,𝛼 (271)

where Qq and Q𝜇(stat) were defined in Equations (263) and (265).
For an atomic system, the self term is zero. The 𝛼-component
of the electrostatic field on atom i arising from other induced
dipoles only, Eindi,𝛼 , is needed later, and it is obtained from Equa-
tion (269) by setting Qi = 0 and by replacing 𝜇𝛼

i by 𝜇ind
i,𝛼 and Qq𝜇

by Q𝜇(ind).
For the periodic system, Nymand and Linse showed that i) the

induced dipolemoments are still given by Equation (237), but Ei,𝛼
is now given by Equation (269), and ii) the potential energy can
again be separated into an electrostatic and induction term ac-
cording to Equation (238). The electrostatic termele is still given
by Equation (239) and the induction term by Equation (240),
but 𝜙stat

i and Estati,𝛼 are now given by Equation (267) and Equa-
tion (269), respectively, after replacing 𝜇i,𝛼 with 𝜇stat

i,𝛼 and Qq𝜇 by
Qq +Q𝜇(stat).
The Electrostatic Gradient: The 𝛼𝛽-component of the field gra-

dient i on atom i is given by[213]

Ei,𝛼𝛽 =
∑
j≠i

(
−̂ 𝛼𝛽

ij qj + ̂ 𝛼𝛽𝛾
ij 𝜇𝛾

j

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

real part

+ 4𝜋
V

∑
k≠0

Akk𝛼k𝛽
[
Re
(
e𝜄k⋅ri Q̄q𝜇

)
− qi

]
− 4𝜋
3V

qi𝛿𝛼𝛽

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
reciprocal part

−
∑

j≠i;i,j∈p

(
−̃ 𝛼𝛽

ij qj + ̃ 𝛼𝛽𝛾
ij 𝜇𝛾

j

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

self term

(272)

For an atomic system, the self-term is zero. Note that Esuri,𝛼𝛽
is zero.
The Force: The expressions for the 𝛼-component of the force

on atom i is readily available from Equation (266) by taking its
derivative with respect to ri,𝛼 and reads

[213]

f 𝛼i =
∑
j≠i

(
−qi̂ 𝛼

ij qj + qi̂ 𝛼𝛽
ij 𝜇𝛽

j − 𝜇𝛽
i ̂ 𝛽𝛼

ij qj + 𝜇𝛽
i ̂ 𝛽𝛼𝛾

ij 𝜇𝛾
j

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

real part

−4𝜋
V

∑
k≠0

Akk𝛼Re
[(
𝜄qi − 𝜇𝛽

i k𝛽
)
e𝜄k⋅ri Q̄q𝜇

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

reciprocal part
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−
∑

j≠i;i,j,∈p

(
−qi̃ 𝛼

ij qj + qi̃ 𝛼𝛽
ij 𝜇𝛽

j − 𝜇𝛽
i ̃ 𝛽𝛼

ij qj + 𝜇𝛽
i ̃ 𝛽𝛼𝛾

ij 𝜇𝛾
j

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

self part

− 4𝜋(
2𝜖sur + 1

)
V
qi
∑
j

(
qjr

𝛼
j + 𝜇𝛼

j

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

surface part

(273)

Nymand and Linse showed that the use of E𝛼
i (given by Equa-

tion (269)) andE𝛼𝛽
i (given by Equation (272)) leads exactly to Equa-

tion (244), and that Equation (244) holds term-wise. For a system
consisting of only charges the reciprocal term reduces to

f reci,𝛼 = 4𝜋
V

∑
k≠0

Akk𝛼qiIm
[
e𝜄k⋅ri Q̄q

]
, (274)

and for a system consisting of only static dipoles the reciprocal
term reduces to

f reci,𝛼 = 4𝜋
V

∑
k≠0

Akk𝛼k𝛽𝜇
stat
i,𝛽 Re

[
e𝜄k⋅ri Q̄𝜇(stat)

]
. (275)

Note that the self-term is not constant due to the presence of 𝜇𝛼
i .

For an atomic system, the self-term is zero.
The Virial: The virial can be expressed as[213]

Φ = −1
2

∑
i,j≠i

rij ⋅ f
real
ij

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
real part

−4𝜋
V

∑
k≠0

Ak

[
Re
(
Q𝜇Q̄q𝜇

)
+ 1
2
|Qq𝜇|2(1 − k2

2𝜂2

)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

reciprocal part

−1
2

∑
p

∑
i,j∈p

dij ⋅ f
self
ij

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
self part

−( sur,qq + 2 sur,q𝜇 + 3 sur,𝜇𝜇)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

surface part

+
∑
i

di ⋅
(
f reali + f reci + f suri

)
(276)

where

 sur,qq ≡ 2𝜋(
2𝜖sur + 1

)
V

(∑
i

qiri

)2

, (277)

 sur,q𝜇 ≡ 4𝜋(
2𝜖sur + 1

)
V

(∑
i

qiri

)
⋅

(∑
j

𝝁j

)
, (278)

 sur,𝜇𝜇 ≡ 2𝜋(
2𝜖sur + 1

)
V

(∑
i

𝝁i

)2

(279)

4.5. Charge Only Systems

The expressions of the previous section reduce to the familiar
ones for systems consisting of only charges. They are easily in-
corporated into the usual Ewald summation routines.
The Potential Energy: The potential energy can be written as

 =  real + rec + self (280)

where

 real = 1
2

∑
i,j≠i

qiqj
erfc

(
𝜂rij
)

rij
(281)

 rec = 2𝜋
V

∑
k≠0

1
k2
e
− k2

4𝜂2

⎛⎜⎜⎝
||||||
N∑
i=1

qi cos
(
k ⋅ ri

)||||||
2

+
||||||
N∑
i=1

qi sin
(
k ⋅ ri

)||||||
2⎞⎟⎟⎠

(282)

 self = −
∑
i

𝜂√
𝜋
q2i (283)

The Electrostatic Potential: The electrostatic potential in atom
i arising from other charges is given by

𝜙i = 𝜙real
i + 𝜙rec

i + 𝜙self
i (284)

where

𝜙real
i = 1

2

∑
j≠i

qj
erfc

(
𝜂rij
)

rij
(285)

𝜙rec
i = 4𝜋

V

∑
k≠0

1
k2
e
− k2

4𝜂2

[
cos

(
k ⋅ ri

) N∑
j=1

qj cos
(
k ⋅ rj

)

+ sin
(
k ⋅ ri

) N∑
j=1

qj sin
(
k ⋅ rj

)]
(286)

𝜙self
i = − 2𝜂√

𝜋
qi (287)

The Electrostatic Field: The 𝛼-component of the electrostatic
field on atom i is given by

E𝛼
i = Ereali,𝛼 + Ereci,𝛼 (288)

where

Ereali,𝛼 =
∑
j≠i

qj
⎛⎜⎜⎝
2𝜂e

−𝜂2r2
ij√

𝜋r2ij
+
erfc

(
𝜂rij
)

r3ij

⎞⎟⎟⎠r𝛼ij (289)

Ereci,𝛼 = 4𝜋
V

∑
k≠0

1
k2
e
− k2

4𝜂2 k𝛼

[
sin

(
k ⋅ ri

)∑
j

qj cos
(
k ⋅ rj

)

− cos
(
k ⋅ ri

)∑
j

qj sin
(
k ⋅ rj

)]
(290)
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The Electrostatic Field Gradient: The 𝛼𝛽-component of the
field gradient on atom i is given by

E𝛼𝛽
i = Ereali,𝛼𝛽 + Ereci,𝛼𝛽 (291)

where

Ereali,𝛼𝛽 = −
∑
j≠i

qj
⎛⎜⎜⎝
6𝜂e

−𝜂2r2
ij√

𝜋r4ij
+ 4𝜂3e

−𝜂2r2
ij√

𝜋r2ij
+
3erfc

(
𝜂rij
)

r5ij

⎞⎟⎟⎠r𝛼ij
+ 𝛿𝛼𝛽

∑
j≠i

qj
⎛⎜⎜⎝
2𝜂e

−𝜂2r2
ij√

𝜋r2ij
+
erfc

(
𝜂rij
)

r3ij

⎞⎟⎟⎠ (292)

Ereci,𝛼𝛽 = 4𝜋
V

∑
k≠0

1
k2
e
− k2

4𝜂2 k𝛼k𝛽

[
cos

(
k ⋅ ri

) N∑
j=1

qj cos
(
k ⋅ rj

)

+ sin
(
k ⋅ ri

) N∑
j=1

qj sin
(
k ⋅ rj

)
− qi

]

− 4𝜋
3V

qi𝛿𝛼𝛽 (293)

The Force: The 𝛼-component of the force on atom i is given
by

f 𝛼i = f reali,𝛼 + f reci,𝛼 (294)

where

f reali,𝛼 = qi
∑
j≠i

qj
⎛⎜⎜⎝
2𝜂e

−𝜂2r2
ij√

𝜋r2ij
+
erfc

(
𝜂rij
)

r3ij

⎞⎟⎟⎠r𝛼ij (295)

f reci,𝛼 = qi
4𝜋
V

∑
k≠0

1
k2
e
− k2

4𝜂2 k𝛼

[
sin

(
k ⋅ ri

)∑
j

qj cos
(
k ⋅ rj

)

− cos
(
k ⋅ ri

)∑
j

qj sin
(
k ⋅ rj

)]
(296)

The Hessian: The atomic expression for the Hessian can be
written out explicitly as[163]

𝜕2 real

𝜕r𝛼i 𝜕r
𝛽
i

= 𝜕2 real

𝜕r𝛼j 𝜕r
𝛽
j

=
∑
i<j

qiqj
⎛⎜⎜⎝
6𝜂e

−𝜂2r2
ij√

𝜋r4ij
+ 4𝜂3e

−𝜂2r2
ij√

𝜋r2ij
+
3erfc

(
𝜂rij
)

r5ij

⎞⎟⎟⎠r𝛼ij r𝛽ij
−𝛿𝛼𝛽

∑
i<j

qiqj
⎛⎜⎜⎝
2𝜂e

−𝜂2r2
ij√

𝜋r2ij
+
erfc

(
𝜂rij
)

r3ij

⎞⎟⎟⎠ (297)

𝜕2 real

𝜕r𝛼i 𝜕r
𝛽
j

= 𝜕2 real

𝜕r𝛼j 𝜕r
𝛽
i

= −
∑
i<j

qiqj
⎛⎜⎜⎝
6𝜂e

−𝜂2r2
ij√

𝜋r4ij
+ 4𝜂3e

−𝜂2r2
ij√

𝜋r2ij
+
3erfc

(
𝜂rij
)

r5ij

⎞⎟⎟⎠r𝛼ij r𝛽ij
+𝛿𝛼𝛽

∑
i<j

qiqj
⎛⎜⎜⎝
2𝜂e

−𝜂2r2
ij√

𝜋r2ij
+
erfc

(
𝜂rij
)

r3ij

⎞⎟⎟⎠ (298)

𝜕2Urec

𝜕r𝛼i 𝜕r
𝛽
j

= 4𝜋
V

∑
k≠0

Akk𝛼k𝛽

{
−𝛿ij

[(
N∑
l=1

ql cos
(
k ⋅ rl

))
qj cos

(
k ⋅ rj

)

+

(
N∑
l=1

ql sin
(
k ⋅ rl

))
qj sin

(
k ⋅ rj

)]
+
[
qi cos

(
k ⋅ ri

)
qj cos

(
k ⋅ rj

)
+ qi sin

(
k ⋅ ri

)
qj sin

(
k ⋅ rj

)]}
(299)

and is similar to the expression given by Krishnan and
Balasubramanian.[177] Note that the Hessian requires a double
summation over particles.
The Strain Derivatives: The strain derivative of the Ewald

summation reads[182]

𝜕Ureal

𝜕𝜀𝛼𝛽

= −
∑
i<j

qiqj
⎛⎜⎜⎝
2𝜂e

−𝜂2r2
ij√

𝜋r2ij
+
erfc

(
𝜂rij
)

r3ij

⎞⎟⎟⎠r𝛼ij r𝛽ij (300)

𝜕Urec

𝜕𝜀𝛼𝛽

= −2𝜋
V

∑
k≠0

Ak

⎡⎢⎢⎣
(

N∑
i=1

qi cos
(
k ⋅ ri

))2

+

(
N∑
i=1

qi sin
(
k ⋅ ri

))2⎤⎥⎥⎦Θ𝛼𝛽 (301)

where

Θ𝛼𝛽 = 𝛿𝛼𝛽 − 2
k𝛼k𝛽
𝜆2

(302)

1
𝜆2

= 1
4𝜂2

+ 1
k2

(303)

The Ewald expressions for positional cross derivatives read[163]

𝜕 real

𝜕𝜀𝛼𝛽𝜕r
𝛾
i

=
∑
i<j

qiqj
⎛⎜⎜⎝
6𝜂e

−𝜂2r2
ij√

𝜋r4ij
+ 4𝜂3e

−𝜂2r2
ij√

𝜋r2ij
+
3erfc

(
𝜂rij
)

r5ij

⎞⎟⎟⎠r𝛼ij r𝛽ij r𝛾ij
−
∑
i<j

qiqj
⎛⎜⎜⎝
2𝜂e

−𝜂2r2
ij√

𝜋r2ij
+
erfc

(
𝜂rij
)

r3ij

⎞⎟⎟⎠
(
𝛿𝛼𝛾 r

𝛽
ij + 𝛿𝛽𝛾 r

𝛼
ij

)
(304)
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𝜕 real

𝜕𝜀𝛼𝛽𝜕r
𝛾
j

= −
∑
i<j

qiqj
⎛⎜⎜⎝
6𝜂e

−𝜂2r2
ij√

𝜋r4ij
+ 4𝜂3e

−𝜂2r2
ij√

𝜋r2ij
+
3erfc

(
𝜂rij
)

r5ij

⎞⎟⎟⎠r𝛼ij r𝛽ij r𝛾ij
+
∑
i<j

qiqj
⎛⎜⎜⎝
2𝜂e

−𝜂2r2
ij√

𝜋r2ij
+
erfc

(
𝜂rij
)

r3ij

⎞⎟⎟⎠
(
𝛿𝛼𝛾 r

𝛽
ij + 𝛿𝛽𝛾 r

𝛼
ij

)
(305)

𝜕2 rec

𝜕𝜀𝛼𝛽𝜕r
𝛾
i

= 4𝜋
V

∑
k≠0

Ak

[(
N∑
j=1

qj cos
(
k ⋅ rj

))
qi sin

(
k ⋅ ri

)

−

(
N∑
j=1

qj sin
(
k ⋅ rj

))
qi cos

(
k ⋅ ri

)]
Θ𝛼𝛽k𝛾 (306)

The strain-strain derivative for the Ewald summation is given
by[182]

𝜕 real

𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

=
∑
i<j

qiqj
⎛⎜⎜⎝
6𝜂e

−𝜂2r2
ij√

𝜋r4ij
+ 4𝜂3e

−𝜂2r2
ij√

𝜋r2ij
+
3erfc

(
𝜂rij
)

r5ij

⎞⎟⎟⎠r𝛼ij r𝛽ij r𝜇ij r𝜈ij
+ 1
2

[
𝛿𝛽𝜈

𝜕
𝜕𝜀𝛼𝜇

+ 𝛿𝛼𝜈
𝜕
𝜕𝜀𝛽𝜇

+ 𝛿𝛽𝜇
𝜕
𝜕𝜀𝛼𝜈

+ 𝛿𝛼𝜇
𝜕
𝜕𝜀𝛽𝜈

]
(307)

𝜕 rec

𝜕𝜀𝛼𝛽𝜕𝜀𝜇𝜈

= 2𝜋
V

∑
k≠0

Ak

⎡⎢⎢⎣
(

N∑
i=1

qi cos
(
k ⋅ ri

))2

+

(
N∑
i=1

qi sin
(
k ⋅ ri

))2⎤⎥⎥⎦Ω𝛼𝛽𝜇𝜈 (308)

where

Ω𝛼𝛽𝜇𝜈 = Θ𝛼𝛽Θ𝜇𝜈 +
(
𝛿𝛼𝜇𝛿𝛽𝜈 + 𝛿𝛼𝜈𝛿𝛽𝜇

)
+ 4

k𝛼k𝛽k𝜇k𝜈
k4

− 2
k𝛼k𝜈𝛿𝛽𝜇 + k𝛽k𝜈𝛿𝛼𝜇 + k𝛽k𝜇𝛿𝛼𝜈 + k𝛼k𝜇𝛿𝛽𝜈

𝜆2
(309)

4.6. Polarization via Induced Dipoles

There are basically three methods to generate induced
dipoles[95,216]

1. The Drude oscillator model (also called Core-Shell model).
In the shell model, the electronic polarizability is incorporate
by representing an atom as a two-particle system: a “core”
charge zi + qi is attached by a harmonic spring (with spring
constant k) to a “shell” to a shell charge−qi.[216] Atomic polariz-
ability 𝛼i, is related to force constant k of the harmonic spring
connecting the core and shell and is determined by[96,216]

𝛼i = q2i ∕k (310)

The shells are massless. For minimization of core-shell mod-
els theHessianmatrix contains both the core and the shells
because the shells needs to be minimized with respect to the
cores too.[217] The set of vibrational frequenecies can be ob-
tained by diagonalization of the dynamical matrix 
 = M− 1

2
[core-core −core-shell−1

shell-shellshell-core

]
M− 1

2 (311)

whereM is a diagonal matrix that contains the masses of the
atoms. For use in MD, Mitchell and Fincham assigned small
masses to the shells (typically taken to be less than 10% of the
total particle mass) and proposed amethod to determine their
motion using adiabatic dynamics.[218]

2. The Fluctuation–Charge (FQ) model,
The FQ model is based on the principle of electronegativity
equalization (EE): a charge flows between atoms until elec-
tronegativities of the atoms become equalized.[96] The partial
charges on each atom qi of the molecule are found by min-
imizing the electrostatic energy of the system (equivalent to
equalizing electronegativities) in a given configuration sub-
ject to the constraint that the total charge is conserved. Since
charges depend on interactions with other charges located on
the same molecule or other molecules, their values change
with every time step or sampled configuration during a sim-
ulation. During the charge equalization process, charges may
be constrained to movement within a molecule or movement
between any atom pairs. Application of the latter option leads
to charge-transfer effects. The method is further described in
Subsection 4.13.

3. The point-polarizable dipole model,
In the classical point dipole approach, polarization energy
is described as the interaction between static point charges
and static dipoles and the dipole moments they induce.[96]

A straightforward way to choose the sites of the inducible
dipoles is to put them on all atoms of the system.[95] In a
molecular simulation, numerically problemsmay occur when
two inducible dipoles come spatially too close to each other,
and the dipolar interaction between them will mutually en-
hance their induced dipoles to infinite size. The polarization
catastrophe can be avoided in several ways,[95] for example
by chosing VDW parameters large enough such that inter-
atomic distances are always larger than this critical distance.
Chosing dipole sites that do not reside on atoms is possible
but leads to more complicated expressions for the forces on
these atoms.

The procedure for induced dipoles in the formulation of Ny-
mand and Linse for calculating the electrostatic and induc-
tion contributions of the energy, forces, and the virial in a
molecular system, where each molecule is described by atomic
charges, dipole moments, and anisotropic polarizabilities, is as
follows[213]

1. Calculate the electrostatic potential 𝜙stat
i and the electrostatic

field Estati,𝛼 from charges and static dipole moments, according
to Equation (241) and Equation (242), respectively.

2. Calculate the induced dipole moments 𝜇ind
i,𝛼 either by pre-

diction, or self-consistent iteration using Equation (237) and
E𝛼
i = Estati,𝛼 + Eindi,𝛼 with Eindi,𝛼 =

∑
j≠i  𝛼𝛽

ij 𝜇ind
j,𝛽 .
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3. Calculate the electrostatic energy elec and the induction en-
ergy ind from Equation (239) and Equation (240), respec-
tively.

4. If the induced dipole moments were predicted above, calcu-
late Eindi,𝛼 .

5. Calculate the electrostatic field gradient Ei,𝛼𝛽 from charges and
total dipole moments according to Equation (236).

6. Calculate the forces f 𝛼i from Equation (244).
7. Calculate the virial Φ from Equation (246).

Due to the many-body nature of polarization, the interactions
between all molecules change and have to be re-computed for
every step. In MD simulations the full recomputation has to be
done any way, but simple MCmoves work via computing energy-
differences between the new and old state for only the atoms that
are changed. Having to recompute the full energy for the new
and old state means an order-of-magnitude penalty in efficiency.
Lachet et al. therefore proposed a procedure to mitigate this limi-
tation by using only the first term of the multipole expansion.[219]

The induction energy is then given by

Uind = −1
2

∑
i∈ads

𝛼i ⋅ ||Ei||2 (312)

where 𝛼i is the atomic polarizability of interaction site i of the ad-
sorbate atoms, and Ei is the electrostatic field at the position of
atom i due to the partial charges of all the framework atoms. The
approach accounts solely for polarization between the framework
and neglects polarization caused by induced dipoles (called the
“back-polarization”). In this way, the difference in induction en-
ergy to the previous configuration can simply be added as another
energy term in the acceptance rule of the Monte Carlo algorithm,
and the computational cost is similar to simulations without con-
sidering explicit polarization. Lachet et al. showed that for xylene
NaY zeolite system this procedure captures around 94% of the
total induction energy (the back-polarization effect accounts for
only about 6% of the total induction energy).[219]

When explicitly accounting for polarization, one has to ensure
that the force field parameters describing the remaining interac-
tions do not include an implicit polarization contribution which
would have to be removed. Otherwise, the contribution of polar-
ization would be double counted, once implicitly and once explic-
itly. The removal of implicit polarization is necessary if a standard
force field is used as starting point for the development of a polar-
izable force field, because current force fields are likely to be cal-
ibrated to reproduce certain experimentally observed properties.

4.7. Electric-Field Dependent Potentials

Cicu et al. proposed a general method to include electric-field-
dependent terms in empirical potential functions representing
interatomic interactions,[220] and this subsection is taken from
their work. Let us consider a system ofN charged particles, inter-
acting with each other via a potential energy function depending
on their positions and on the electric field acting upon each of
them and generated by other particles (which also depend on the

positions of the particles):

 =  (
r1,… , rN|E1,… ,EN

)
=  (

{ri}|Ei{rj})
(i, j = 1,… , N) (313)

where ri are the positions of the particles and ri are the electric
fields. The force acting on a particle i is given by[220]

fi = −𝜕
𝜕ri

= −
(

𝜕
𝜕ri

)
E

−
∑
j

𝜕
𝜕Ej

𝜕Ej
𝜕ri

(314)

where E stands for {Ei}. In particular, it is worth to note that the
terms in Equation (314) including the 3N × 3N matrix,

𝜕Ej
𝜕ri

(315)

corresponds to many-body forces involving in principle all the
particles of the system as it is better illustrated if the atom pair ap-
proximation is assumed. In this approximation, the potential en-
ergy is represented by the sum of pairwise interactions p(rij|E)
between i and j. Therefore Equation (314) and Equation (315)
become[220]

 =
∑
i

∑
j>i

p

(
rij|E) (316)

fi = −

(∑
j>i

𝜕p

(
rij|E)

𝜕ri

)
E

−
∑
j>i

𝜕p

(
rij|E)

𝜕Ei

𝜕Ei
𝜕ri

−
∑
k≠i

∑
j>k

𝜕p

(
rki|E)

𝜕Ek

𝜕Ek
𝜕ri

(317)

where, again, E stands for {Ei} and the terms containing the elec-
tric field gradients have been grouped in two sums, the former
including the gradient of the electric field acting on particle i for
which the force is calculated, and the latter including the gradient
of the electric field acting on all the other particles multiplied by the
derivatives, with respect to these electric fields, of the potential function
terms involving particle j, even though these terms do not include ex-
plicitly any interaction with the particle i. It is worthy to note that
in general the last group of terms is not zero: indeed it ensured
that the third law of the dynamics (as generalized for many-body
forces) is obeyed.

4.8. Charged Frameworks

A minor complication arises when the framework has a non-
zero net electric charge compensated by counter ions. Let us as-
sume the framework is kept fixed, but the cations are allowed
to move. Although the system a whole may be electrically neu-
tral, the omission of framework-framework interactions from the
calculation also means the Ewald Fourier-contributions should
be splitted into separate sums which are each net-charged. Not
only the interactions of a framework atomswith other framework
atoms should be omitted, but also the interactions with all its im-
ages.
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Splitting of the potential energy into separate contribution in-
volves computing cross terms between component  and . In
real space this is trivially accomplished, but the reciprocal sepa-
ration is more difficult. Cross term interaction energies in recip-
rocal space are given by

 rec, = 2𝜋
V

∑
k≠0

1
k2
e
− k2

4𝜂2

[(∑
i∈

qi cos
(
k ⋅ ri

))(∑
i∈

qi cos
(
k ⋅ ri

))

+

(∑
i∈

qi sin
(
k ⋅ ri

))(∑
i∈

qi sin
(
k ⋅ ri

))]
(318)

It is important to note that Equation (318) only applies when both
the separate sums over species A and B are charge neutral. This
is in general not the case. For example, in MC adsorption simu-
lations one often encounters a negatively charged zeolite charge-
compensated by either cations or protons. All-silica zeolites de-
void of cations are neutral, but framework ions like aluminum
induce a net-charge.
It is customary to treat charged periodic systems via a uniform

neutralizing background plasma. However, this leads to serious
artifacts in both system energy and pressure and leads to unreal-
istic behavior.[221] Bogusz et al. corrected these artifacts by insti-
tuting a net-charge correction term that consists of subtracting
off the Ewald sum for a single particle with charge equal to the
net charge.[221] This correction implicitly restores 𝜂-independence
in net-charged systems. We define𝜁 as the reciprocal energy of
single ion place at the center of charge o

𝜁 =
2𝜋
V

∑
k≠0

1
k2
e
− k2

4𝜂2
[
(cos (k ⋅ o))2 + (sin (k ⋅ o))2

]
− 𝜂√

𝜋
. (319)

If only the energy is needed the particle can simply be placed at
the origin. Note that the term then only depends on the shape
and size of the simulation cell and has be computed only once if
the cell does not change. The charge–charge interaction energy
, of component and  is given by

, =  real, + rec, + self, + corr (320)

 self, = −
(
1 − 𝛿B

) 𝜂√
𝜋

∑
i∈,

q2i (321)

 corr =

(∑
i∈

qi

)(∑
i∈

qi

)
𝜁 (322)

where 𝛿ij = 1 if i = j, zero otherwise, denotes the Kronecker delta.
These expressions are valid in any kind of net-charge arrange-
ment, including a net-charge of the total system.

4.9. MD Implementation

In an MD simulation, all atoms move according to Newton’s
equations of motion and the forces computed on the atoms.
Equation (296) shows that we basically need to compute two

sums:

∑
k≠0

[
N∑
i=1

qi cos
(
k ⋅ ri

)]
and

∑
k≠0

[
N∑
i=1

qi sin
(
k ⋅ ri

)]
(323)

However, cosine and sine are very expensive to compute, onmod-
ern CPU’s roughly 10 times more expensive than multiplication
and 15 times more expensive then addition or subtraction. One
trick is to compute the sin and cos only for the first k-vector and
use recursion to build up the higher terms. Chebyshev method is
a recursive algorithm for finding the nth multiple angle formula
knowing the (n − 1)th and (n − 2)th values

cos (nx) = 2 cos (x) cos ((n − 1)x) − cos ((n − 2)x] (324)

sin (nx) = 2 cos (x) sin ((n − 1)x) − sin ((n − 2)x) (325)

Alternative, we can start with cos(a + b) = cos(a) cos(b) −
sin(a) sin(b) and substitute nx = a and x = b and obtain

cos (nx + x) = cos (nx) cos (x) − sin (nx) sin (x) (326)

This way we obtain for cos(nx) and sin(nx)

cos (nx) = cos ((n − 1)x) cos (x) − sin ((n − 1)x) sin (x) (327)

sin (nx) = sin ((n − 1)x) cos (x) + cos ((n − 1)x) sin (x) (328)

Thismeans we have to compute cos(x) and sin(x) once, and build
up the multiple angles via the recursion formula using addi-
tion/subtraction and multiplication only.
A doubling in efficiency can be gained by making use of the

symmetry of the reciprocal lattice. The loop over all k-vectors k =
2𝜋( nx

Lx
,
ny
Ly
, nz
Lz
) range over[222]:

• nx ranges over the value 0 to k
max
x

• ny ranges over the values −kmax
y to kmax

y except when nx = 0
where it ranges over 0 to kmax

y
• nz ranges over the values−kmax

z to kmax
z except when nx = ny = 0

where it ranges over 1 to kmax
z

The Ewaldmethod has an execution time which scales asN3∕2 for
appropriate 𝜂 and number of k-vectors.[223] When the total time is
optimized it is roughly equally divided between real and recipro-
cal space parts of the calculation.[223,224] The parameter 𝜂 dictates
the rate of convergence of the real and Fourier-space sums. The
real space sum is truncated at rcut and 𝜂 must be chosen such
that the contributions beyond rcut are negligible. The errors for
certain cutoffs can be estimated.[224–226] The cutoff rcut is usually
set to rcut = L∕2 and in practice 𝜂 is close to 6∕L and typically
200–300 wavectors are used in the real-space sum.[78] DL_POLY
computes the 𝜂 and kmax-vectors given an input precision 𝜀 and
cutoff rcut

[222]

𝜀′ = min (|𝜀|, 0.5) (329)
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𝜉 =
√|||log (𝜀′rcut)||| (330)

𝜂 =
√|||log (𝜀′rcut𝜉)|||∕rcut (331)

𝜒 =
√

− log
(
𝜀′rcut(2𝜉𝜂)

2) (332)

kmax
x = rint

(
0.25 + Lx𝜂𝜒∕𝜋

)
(333)

kmax
y = rint

(
0.25 + Ly𝜂𝜒∕𝜋

)
(334)

kmax
z = rint

(
0.25 + Lz𝜂𝜒∕𝜋

)
(335)

where Lx, Ly, and Lz are the cell lengths, and the function ”rint”
rounds off to the nearest integer. These estimates for the Ewald
parameters are largely based on relative error estimates for the
real and reciprocal space terms

𝜀 ≈ erfc
(
𝜂rcut

)
∕rcut ≈ exp

[
−
(
𝜂rcut

)2]∕rcut (336)

𝜀 ≈ exp
[
−k2max∕

(
4𝜂2

)]
∕k2max (337)

In LAMMPS,[227] the 𝜂 parameter is chosen as

𝜉 = 𝜀
√
NrcutLxLyLz∕

(
2
∑
i

q2i

)
(338)

𝜂 =

{√
− log 𝜉 𝜉 < 1.0

1.35 − 0.15 log (𝜀)∕rcut 𝜉 >= 1.0
(339)

The kmax are obtained by iterating from kmax = 1 until the error
estimate

𝜀 =

(
2
∑
i

q2i

)
(𝜂∕L)

√
𝜋kmaxN exp

[
−
(

𝜋kmax

𝜂L

)2
]

(340)

is smaller than the desired precision.
As mentioned, the structure factor S(k) (Equation (207)) can

be viewed as a discrete Fourier transform of a set of charges
place irregularly within the unit cell. The Smooth Particle Mesh
Ewald (SPME) method is such an FFT-based method for the fast
evaluation of electrostatic interactions under periodic boundary
conditions.[228] The reciprocal-space cost of the Ewald summa-
tion is reduced to (N logN) and hence SPME is much faster
for large systems. However, the pre-factor is much larger, and
it is estimated that the cross-over point happens around 10 000
ions.[217] Cisneros et al. reviewed the classical Ewald summations,
particle–particle particle–mesh, particle–mesh Ewald algorithms,
multigrid, fast multipole, and local methods.[229] As we shall see
in the next section, conventional Ewald is more convenient for
MC algorithms. An alternative for condensed matter systems is
to omit the Fourier part because in these systems the inherent
screening results in an effective short-ranged interaction. An ex-
ample is theWolf direction summationmethod.[230] Rahbari et al.
showed that this direct summation method gave similar results
as the Ewald summation in aqueous methanol mixtures.[231]

4.10. MC Implementation

Most MC moves are based on changing the coordinates of a sin-
gle molecule and computing the energy difference of a new trial-
molecule with respect to the old molecule. As the positions of
all the other molecules are unchanged it is unnecessary to re-
compute the reciprocal energy of the non-moving molecules. An
important example is a rigid zeolite. The precomputing and stor-
ing of the Ewald sums makes the Ewald-summation method the
preferred method for Monte Carlo simulations.
Let’s define

(, k) =
∑
i∈A

qie
𝜄(k⋅ri) (341)

We assume the simulation starts with a full computation of Equa-
tion (322), and the sums per k vector are stored in (, k). For
each of the n-species the sums (, k) and the net-charges per
species needs to be stored. After an accepted move the sums and
net-charges are updated

∀k(, k) → (, k) +(New, k) −(Old, k) (342)

 () →  () +
∑
i∈New

qi −
∑
i∈Old

qi (343)

The difference of a selected molecule in the new state and the
old molecule belonging to species can be calculated by

Δ rec = 2𝜋
V

∑
k≠0

1
k2
e
− k2

4𝜂2
[||(, k) +(New, k) −(Old, k)||2

−||(, k)||2] + 𝜂√
𝜋

[ ∑
i∈New

q2i −
∑
i∈Old

q2i

]

+
⎡⎢⎢⎣
(∑

i∈
qi +

∑
i∈New

qi −
∑
i∈Old

qi

)2

−

(∑
i∈

qi

)2⎤⎥⎥⎦𝜁 (344)

 rec, = 2𝜋
V

∑
k≠0

1
k2
e
− k2

4𝜂2 Re
[((, k) +(New, k)

−(Old, k))(, k) − (, k)(, k)]
+

[(∑
i∈

qi

)(∑
i∈New

qi

)
−

(∑
i∈

qi

)(∑
i∈Old

qi

)]
𝜁 (345)

4.11. Rigid Frameworks

The effect of flexibility on adsorption in zeolites is known to be
small.[232] Significant speedups can be obtained by keeping the
framework fixed and pre-computing the potential energy sur-
face induced by the framework.[233,234] Instead of looping over all
framework atoms in order to compute the host-adsorbate energy
at each time step, one can construct a 3D grid before the sim-
ulation and then obtain the energy by interpolation during the
simulation. The more points in the grid the higher the accuracy.
RASPA[235] implements the triclinic grid interpolation scheme in
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three dimensions of Lekien andMarsden.[236,237] The algorithm is
based on a specific 64 × 64 matrix that provides the relationship
between the derivatives at the corners of the elements and the
coefficients of the tricubic interpolant for this element. The cu-
bic interpolant and its first three derivatives are continuous and
consistent. The same grids can therefore be used for both MC
and MD with no additional energy drift besides the drift due to
the integration scheme, that is, the energy gradients are the exact
derivatives of the energy at each point in the element.
For LJ potentials a separate grid needs to be generated for each

𝜎 parameter. However, for the real part of the Ewald summation
a single grid generated with a probe charge of unity will suffice.
The real part of the Ewald summation can be obtained by sim-
ple multiplication of the grid-value with the actual charge of the
atom. Note that the grid depends on 𝜂, and hence the real-space
grid depends on the number of used unit cells.

4.12. Bond-Dipoles in Periodic Systems

The MM2 and MM3 force fields are able to calculate the electro-
static interaction in non-charged polar molecules by using bond
dipoles. The electrostatic interaction is then given by

𝜇 =
𝜇i𝜇j

𝜀r3ij

(
cos𝜒 − 3 cos 𝛼i cos 𝛼j

)
(346)

where 𝜒 is the angle between the two dipoles and 𝛼i and 𝛼j are
the angles between the dipoles and the vector connecting them.
There is little difference if properly parameterized. However, al-
most all force fields prefer the charge model because it is eas-
ier to parameterize. Amirjalayer et al. extended the MM3 force
field and used a building block approach for the parameterization
of IRMOF-1.[238] We will derive here the expressions to integrate
the host bond-dipole model with adsorbate models that contain
atomic charges using the Ewald summation framework.
Consider bond-dipoles between pairs of atoms a and b. We de-

note rabi as the separation vector or bond vector of the two atoms
in the bond-dipole i, rabi is the bond distance, and 𝝁i is the bond-
dipole with predefined (fixed) magnitude 𝜇i

rabi = rbi − rai (347)

rabi =
√
rabi ⋅ rabi (348)

𝝁i = 𝜇îr
ab
i ≡ 𝜇i

rabi
rabi

(349)

ri = (1∕2)
(
rai + rbi

)
(350)

The dipole has a direction along the normalized bond separation
vector and is located at the center ri of the bond. Using B0 = 1∕r,
B1 = 1∕r3, B2 = 3∕r5, B3 = 15∕r7 we can write the energies for
the charge-charge, charge–bond-dipole, and bond-dipole–bond-
dipole as

ch−ch =
Nch−1∑
i=1

Nch∑
j=i+1

B0qiqj (351)

ch−bdp =
Nbd∑
i=1

Nch∑
j=1

−B1qj
(
𝝁i ⋅ rij

)
(352)

bdp−bdp =
Nbd−1∑
i=1

Nbd∑
j=i+1

[
B1

(
𝝁i ⋅ 𝝁j

)
− B2

(
𝝁i ⋅ rij

)(
𝝁j ⋅ rij

)]
(353)

where Nch is the number of charges, Nbd the number of bond-
dipoles, rij = ri − rj the distance between charges and/or centers
of bond-dipoles, and qj denote the charge of ion j. Note that al-
though the energy expressions are the same for bond-dipoles and
point dipoles, the expressions for forces and stress/pressure are
not. For bond-dipoles, the forces are exerted on the two atoms of
the bond-dipole.
The force expression for charge i and charge j is given by

f 𝛼i = B1qiqjr
𝛼
ij , fj = −fi (354)

We derive the force expressions for bond-dipole i and charge j
as

f 𝛼i,a = −qj

[
1
2

(
B2

(
𝝁i ⋅ rij

)
r𝛼ij − B1𝜇i,𝛼

)
+ B1

𝜇i

rabi
r𝛼ij − B1

(
𝝁i ⋅ rij

)
rabi 𝜇i

𝜇i,𝛼

]
(355)

f 𝛼i,b = −qj

[
1
2

(
B2

(
𝝁i ⋅ rij

)
r𝛼ij − B1𝜇i,𝛼

)
− B1

𝜇i

rabi
r𝛼ij + B1

(
𝝁i ⋅ rij

)
rabi 𝜇i

𝜇i,𝛼

]
(356)

f 𝛼j = qj
[
B2

(
𝝁i ⋅ rij

)
r𝛼ij − B1𝜇i,𝛼

]
(357)

and the expression for bond-dipole i and bond-dipole j

f 𝛼i,a =

{
1
2

[
B3

(
𝝁i ⋅ rij

)(
𝝁j ⋅ rij

)
r𝛼ij − B2

(
𝝁i ⋅ 𝝁j

)
+
(
𝝁j ⋅ rij

)
𝜇i,𝛼 +

(
𝝁i ⋅ rij

)
𝜇j,𝛼

]
+

[
B1

(
𝝁i ⋅ 𝝁j

) 𝜇i,𝛼

riab𝜇i

− B2

(
𝝁i ⋅ rij

)(
𝝁j ⋅ rij

) 𝜇i,𝛼

riab𝜇i

−B1

𝜇i

riab
𝜇j,𝛼 + B2

𝜇i

riab

(
𝝁j ⋅ rij

)
r𝛼ij

]}
(358)

f 𝛼i,b =

{
1
2

[
B3

(
𝝁i ⋅ rij

)(
𝝁j ⋅ rij

)
r𝛼ij − B2

(
𝝁i ⋅ 𝝁j

)
+
(
𝝁j ⋅ rij

)
𝜇i,𝛼 +

(
𝝁i ⋅ rij

)
𝜇j,𝛼

]
−

[
B1

(
𝝁i ⋅ 𝝁j

) 𝜇i,𝛼

riab𝜇i

− B2

(
𝝁i ⋅ rij

)(
𝝁j ⋅ rij

) 𝜇i,𝛼

riab𝜇i

−B1

𝜇i

riab
𝜇j,𝛼 + B2

𝜇i

riab

(
𝝁j ⋅ rij

)
r𝛼ij

]}
(359)
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f 𝛼j,a =

{
− 1
2

[
B3

(
𝝁i ⋅ rij

)(
𝝁j ⋅ rij

)
r𝛼ij − B2

(
𝝁i ⋅ 𝝁j

)
+
(
𝝁j ⋅ rij

)
𝜇i,𝛼 +

(
𝝁i ⋅ rij

)
𝜇j,𝛼

]
+

[
B1

(
𝝁i ⋅ 𝝁j

) 𝜇j,𝛼

rjab𝜇j

− B2

(
𝝁i ⋅ rij

)(
𝝁j ⋅ rij

) 𝜇j,𝛼

rjab𝜇j

−B1

𝜇j

rjab
𝜇i,𝛼 + B2

𝜇j

rjab

(
𝝁i ⋅ rij

)
r𝛼ij

]}
(360)

f 𝛼j,b =

{
− 1
2

[
B3

(
𝝁i ⋅ rij

)(
𝝁j ⋅ rij

)
r𝛼ij − B2

(
𝝁i ⋅ 𝝁j

)
+
(
𝝁j ⋅ rij

)
𝜇i,𝛼 +

(
𝝁i ⋅ rij

)
𝜇j,𝛼

]
−

[
B1

(
𝝁i ⋅ 𝝁j

) 𝜇j,𝛼

rjab𝜇j

− B2

(
𝝁i ⋅ rij

)(
𝝁j ⋅ rij

) 𝜇j,𝛼

rjab𝜇j

−B1

𝜇j

rjab
𝜇i,𝛼 + B2

𝜇j

rjab

(
𝝁i ⋅ rij

)
r𝛼ij

]}
(361)

The stress 𝜎 and pressure (related to the trace of the stress-
tensor) can be obtained using the results for point-dipoles[213]

but corrected. The contribution for each charge-charge, charge–
bond-dipole, and bond-dipole–bond-dipole interaction is

𝜎ch−ch𝛼𝛽 = 1
V
f 𝛼i,brij,𝛽 (362)

𝜎bdp−ch𝛼𝛽 = − 1
V
qj
[1
2

(
B2

(
𝝁i ⋅ rij

)
r𝛼ij − B1𝜇i,𝛼

)]
rij,𝛽

− f 𝛼i,a
(
r𝛽i,a − r𝛽i

)
− f 𝛼i,b

(
r𝛽i,b − r𝛽i

)
(363)

𝜎bdp−bdp𝛼𝛽 = − 1
V

[
B3

(
𝝁i ⋅ rij

)(
𝝁j ⋅ rij

)
r𝛼ij − B2

(
𝝁i ⋅ 𝝁j

)
+
(
𝝁j ⋅ rij

)
𝜇i,𝛼 +

(
𝝁i ⋅ rij

)
𝜇j,𝛼

]
rij,𝛽

− f 𝛼i,a
(
r𝛽i,a − r𝛽i

)
− f 𝛼i,b

(
r𝛽i,b − r𝛽i

)
− f 𝛼j,a

(
r𝛽j,a − r𝛽j

)
− f 𝛼j,b

(
r𝛽j,b − r𝛽j

)
(364)

where V is the volume and the corresponding force expressions
are given above. This procedure is related to the conversion be-
tween atomic and molecular stress for rigid molecules. Usu-
ally this conversion produces a torque and an asymmetric stress
which needs to be symmetrized.
The expressions given above still apply for the real part of the

Ewald summation if the following expressions are used

B0 =
erfc

(
𝜂rij
)

rij
(365)

B1 =
2𝜂e−(𝜂rij)

2√
𝜋r2ij

+
erfc

(
𝜂rij
)

r3ij
(366)

B2 =
6𝜂e−(𝜂rij)

2√
𝜋r4ij

+ 4𝜂3e−(𝜂rij)
2√

rijr
2
ij

+
3erfc

(
𝜂rij
)

r5ij
(367)

B3 =
30𝜂e−(𝜂rij)

2√
𝜋r6ij

+ 20𝜂3e−(𝜂rij)
2√

rijr
4
ij

+ 8𝜂5e−(𝜂rij)
2√

rijr
2
ij

+
15erfc

(
𝜂rij
)

r7ij
(368)

where erfc is the error-function complement.
The Fourier part of the charge–charge, charge–bond-dipole,

and bond–dipole—bond–dipole energies is

ch−ch = 2𝜋
V

∑
k≠0

e−k2∕4𝜂2

k2

(|||||
∑
i

qi cos
(
k ⋅ ri

)|||||
2

+
|||||
∑
i

qi sin
(
k ⋅ ri

)|||||
2)

− 𝜂√
𝜋

∑
i

q2i (369)

ch−bdp = 2𝜋
V

∑
k≠0

e−k2∕4𝜂2

k2

(∑
i

qi sin
(
k ⋅ ri

)∑
j

(
𝝁j ⋅ k

)
cos

(
k ⋅ rj

)

−
∑
i

qi cos
(
k ⋅ ri

)∑
j

(
𝝁j ⋅ k

)
sin

(
k ⋅ rj

))
(370)

bdp−bdp = 2𝜋
V

∑
k≠0

e−k2∕4𝜂2

k2

(|||||
∑
i

(
𝝁i ⋅ k

)
cos

(
k ⋅ ri

)|||||
2

+
|||||
∑
i

(
𝝁i ⋅ k

)
sin

(
k ⋅ ri

)|||||
2)

−
∑
i

2𝜂3𝜇2
i

3
√

𝜋
(371)

The force in direction 𝛼 on a charge exerted by other charges
is given by

f ai,𝛼 = qi
4𝜋
V

∑
k≠0

e−k
2∕(4𝜂2)

k2
k𝛼

(
sin

(
k ⋅ ri

)∑
j

cos
(
k ⋅ rj

)

− cos
(
k ⋅ ri

)∑
j

sin
(
k ⋅ rj

))
(372)

The force in direction 𝛼 on a charge exerted by the bond-dipoles
is given by

f ai,𝛼 = −qi
4𝜋
V

∑
k≠0

e−k
2∕(4𝜂2)

k2
k𝛼

(
cos

(
k ⋅ ri

)∑
j

(
𝝁j ⋅ k

)
cos

(
k ⋅ rj

)

+ sin
(
k ⋅ ri

)∑
j

(
𝝁j ⋅ k

)
sin

(
k ⋅ rj

))
(373)

The forces in direction 𝛼 on atom a and b, respectively, of bond
dipole i exerted by charges are given by
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f ai,𝛼 = 4𝜋
V

e−k
2∕(4𝜂2)

k2

{
1
2

(
𝜇i ⋅ k

)
k𝛼

[
cos

(
k ⋅ ri

)∑
j

cos
(
k ⋅ rj

)

+ sin
(
k ⋅ ri

)∑
j

sin
(
k ⋅ rj

)]
+

(
k𝛼

𝜇i

rabi
−
(
𝝁i ⋅ k

) 𝜇i,𝛼

𝜇ir
ab
i

)

×

(
cos

(
k ⋅ ri

)∑
j

sin
(
k ⋅ rj

)
− sin

(
k ⋅ ri

)∑
j

cos
(
k ⋅ rj

))}
(374)

f bi,𝛼 = 4𝜋
V

e−k
2∕(4𝜂2)

k2

{
1
2

(
𝜇i ⋅ k

)
k𝛼

[
cos

(
k ⋅ ri

)∑
j

cos
(
k ⋅ rj

)

+ sin
(
k ⋅ ri

)∑
j

sin
(
k ⋅ rj

)]
−

(
k𝛼

𝜇i

rabi
−
(
𝝁i ⋅ k

) 𝜇i,𝛼

𝜇ir
ab
i

)

×

(
cos

(
k ⋅ ri

)∑
j

sin
(
k ⋅ rj

)
− sin

(
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(375)

The forces in direction 𝛼 on atom a and b, respectively, of bond
dipole i exerted by other bond-dipoles are given by

f ai,𝛼 = 4𝜋
V

e−k
2∕(4𝜂2)

k2

{
1
2
k𝛼
(
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)
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(
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)
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)

−
(
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)
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(
𝝁j ⋅ k

)
sin

(
k ⋅ rj

))

+
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𝜇i
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𝜇ir
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i
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))}
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f bi,𝛼 = 4𝜋
V
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(377)

In Table 9 we have compiled numerical data on various sys-
tems with charges and/or bond-dipoles. The Ewald results differ
from the results of a finite systems and the difference is due the
infinite periodic images. For this box-size the results are close
though and serve as a good check for the derived expressions.
Some bond-dipole systems are chosen such that the results are
identical in energy to the point-dipole systems discussed by Ny-
mand and Linse.[213] Note that the forces differ, albeit that they
are related (the bond-dipole expressions contain a term identical
to the one for point-dipoles).

4.13. Charge Equilibration Methods

Related to electrostatics is the problem of computing atomic
charges in periodic systems. In the charge equilibration mod-
els, effective atomic charges are obtained by minimizing a po-
tential energy function in which the adjustable parameters are
atomic parameters.[239] Ongari et al. recently evaluated various
charge equilibration methods to generate electrostatic fields in
nanoporous materials.[240] The following section is based on the
papers of Wilmer and Snurr.[241,242] They begin by assuming a
Taylor series form for the energy of an isolated (gas-phase) atom
as a function of its charge, EA(q), centered about some particular
partial charge q∗

EA(q) = EA(q∗) +
(

𝜕E
𝜕q

)
q=q∗

(q − q∗) + 1
2

(
𝜕2E
𝜕q2

)
q=q∗

(q − q∗)2 +⋯

(378)

The original Qeq method[243] expands around q∗ = 0 but when
atoms are expected to have large positive charges, such as the
transition metals in MOFs, the atomic energy given by a second-
order Taylor series centered at q∗ = 0 is unlikely to yield accurate
results because the energy is based on an extrapolation far from
the measured value. Significantly improved results are obtained
for mono or divalent ions in metal-organic frameworks by Tay-
lor expanding around its oxidation state. By adding and subtract-
ing EA(q∗ + 1) and EA(q∗ − 1) from EA(q∗) expressions for the first
and second partial derivatives can be obtained(

𝜕E
𝜕q

)
q=q∗

= 1
2

(
Iq∗+1 + Iq∗

) ≡ 𝜒q∗ (379)

(
𝜕2E
𝜕q2

)
q=q∗

= Iq∗+1 − Iq∗ ≡ Jq∗ (380)
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Table 9. Calculated energy and forces for charge and bond-dipoles as obtained from the finite and infinite system (Ewald summation). Box size Lx = Ly =
Lz = 10, reduced units: the unit of charge is 1e, the unit of length is 1 Å, and 4𝜋𝜖 = 1. The spherical cutoff is L∕2. The Ewald results are corrected for non-
zero net charge of the system using the method of Bogusz et al.,[221] e.g. the uncorrected energy of a single +1 charge of the system is = −0.1402549,
while the corrected energy is  = 0. The definition of the bond-dipole is that it points from a to b; toward the partially positively charged atom if the
magnitude 𝜇 is positive.

charge i, qi = +1, ri = (0, 0, 0)

Finite =0 (0,0,0) (0,0,0)

Ewald =0 (0,0,0) (0,0,0)

charge i, qi = +1, ri = (− 1
2
, 0, 0), and charge j, qj = −1, rj = ( 1

2
, 0, 0)

Finite =-1.0 (1.0,0,0) (−1.0,0,0)

Ewald =−1.0021255 (0.9956865,0,0) (−0.9956865,0,0)

bond-dipole i, 𝜇i = +1, ri,a = (− 1
2
, 0, 0), ri,b = ( 1

2
, 0, 0)

Finite =0 (0,0,0) (0,0,0)

Ewald =−0.0020944 (0,0,0) (0,0,0)

charge i, qi = +1, ri = (− 1
2
, 0, 0), and bond-dipole j, 𝜇j = 1, rj,a = (0, 0, 0), rj,b = (1, 0, 0)

Finite =−1.0 (2,0,0) (−1,0,0) (−1,0,0)

Ewald =−0.9977809 (2.0045637,0,0) (−1.0022818,0,0) (−1.0022818,0,0)

charge i, qi = +1, ri = (− 1
2
, 0, 0), and bond-dipole j, 𝜇j = 1, rj,a = ( 1

2
,− 1

2
, 0), rj,b = ( 1

2
, 1
2
, 0)

Finite =0.0 (0,−1,0) (−1,− 1
2
,0) (1, 1

2
,0)

Ewald =−0.0020944 (0,−0.9959987,0) (−0.9956865,−0.4979993,0) (0.9956865,0.4979993,0)

bond-dipole i: 𝜇i = +1, ri,a = (−1, 0, 0), ri,b = (0, 0, 0), j: 𝜇j = +1, rj,a = (0, 0, 0), rj,b = (1, 0, 0)

Finite =−2 (3,0,0) (3,0,0) (−3,0,0) (−3,0,0)

Ewald = −2.0087525 (2.9996230,0,0) (2.9996230,0,0) (−2.9996230,0,0) (−2.9996230,0,0)

bond-dipole i: 𝜇i = +1, ri,a = (− 1
2
,− 1

2
, 0), ri,b = (− 1

2
, 1
2
, 0), j: 𝜇j = +1, rj,a = ( 1

2
,− 1

2
, 0), rj,b = ( 1

2
, 1
2
, 0)

Finite = 1.0 (−1.5,0,0) (−1.5,0,0) (1.5,0,0) (1.5,0,0)

Ewald = 0.9918097 (−1.4998115,0,0) (−1.4998115,0,0) (1.4998115,0,0) (1.4998115,0,0)

where 𝜒q∗ is the electronegativity (also known as Mulliken elec-
tronegativity and Jq∗ is the idempotential (also known as the atomic
hardness). The atom energy can now be described solely as a func-
tion of its charge and measured parameters that are available in
the literature for most of the periodic table (currently available
up to Z = 86). This leads to a quadratic energy function for every
atom based entirely on measured quantities

EA(q) = EA(q∗) + 𝜒q∗ (q − q∗) + 1
2
Jq∗ (q − q∗)2 (381)

The energy of the entire system Esys can be expressed as a
sum of individual atomic energies and pairwise Coulombic
interactions[242]

Esys
(
q1, q2,… , qN

)
=

N∑
k=1

(
EA
k

(
q∗k
)
+ 𝜒q∗

k

(
qk − q∗k

)
+ 1
2
Jq∗

k

(
qk − q∗k

)2 + ECoulk + EOrb
k

)
(382)

where EOrbk is the orbital energy term for the kth atom (a pair-
wise damping term to prevent infinite charge separation when
two atoms are brought arbitrarily close together), and ECoulk is the
energy of the charge on the kth atom interacting with the charges
of all other atoms in the system. For a non-periodic system, ECoulk
can be computed using a direct sum, but for a periodic system
the Ewald methodology is needed.

The charges q1, q2,… , qN are determined by finding the mini-
mum energy in Equation (382) in a noniterative manner (regard-
less of whether the system is periodic), subject to the constraint
that

N∑
k=1

qk = qtot (383)

where qtot is the net charge of the system (which must be zero in
the periodic case). The general approach to minimizing a func-
tion of many variables subject to constraints is via Lagrange mul-
tipliers,

∇Esys − 𝜆∇

(
N∑
k=1

qk − qtot
)

= 0 (384)

where the gradient vector ∇ spans the N dimensional space de-
fined by the partial charges. Matching the vector components of
Equation (384), we get the following N − 1 equations:

𝜕Esys

𝜕q1
= 𝜕Esys

𝜕q2
= ⋯ = 𝜕Esys

𝜕qN
(385)

Combining Equations (385) and (383) providesN equations with
N unknowns (the charges) which can be solved simultaneously,
without iteration.[242]
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5. Molecular Mechanics

5.1. Energy Expansion

The potential energy surface  of a (periodic) system can be
Taylor-expanded around a configuration x of the system[162]

 (x + 𝛿x) =  (x) + h‡𝛿x + 1
2
𝛿x‡𝛿x +⋯ (386)

where h = ( 𝜕
𝜕x𝛼

i
) is the gradient and = 𝜕2

𝜕x𝛼
i
𝜕x𝛽

j

is usually referred

to as theHessianmatrix. The superscript ‡ denotes the transpose
of a vector or matrix. The real potential energy surfaces of com-
mon force fields are rarely harmonic, but still the expansion is
usually truncated at the second order (i.e., harmonic analysis).
This assumes the energy surface is at least locally quadratic and
can iteratively be used to find the nearest local minimum. The
steps through the energy landscape can therefore not be taken
too large. If the potential energy surface truly were quadratic, a
method like Newton–Raphson would be able to find the mini-
mum energy configuration in a single step. At the minimum
energy configuration the first derivatives are zero, and all har-
monic information on the system is therefore described by the
Hessian matrix. The generalized Hessian, having dimensions
(3N + 6) × (3N + 6) with N being the number of atoms, is given
as

 =
⎛⎜⎜⎝
ij =

𝜕2
𝜕ri𝜕rj

i𝜖 =
𝜕2
𝜕ri𝜕𝜖

𝜖i =
𝜕2
𝜕𝜖𝜕ri

𝜖𝜖 =
𝜕2
𝜕𝜖𝜕𝜖

.

⎞⎟⎟⎠ (387)

with the force constant matrix ij (3N × 3N) and the Born term
𝜖𝜖 (6 × 6) being the second-order derivative of the internal en-
ergy with respect to position and strain, respectively. The strain
(and also stress tensor) is symmetric and can be simplified to
a 6D vector using Voigt notation: 𝜀 = (𝜀xx, 𝜀yy, 𝜀zz, 𝜀yz, 𝜀xz, 𝜀xy) =
(𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5, 𝜀6) The Born term accounts for distortions of the
lattice, i𝜖 and 𝜖i are cross-terms. The 0 K elastic tensor is de-
fined as the derivative of the stress with respect to the strain[244,245]

at zero gradient h = 0 and can be expressed in terms of the gen-
eralized Hessian[181]

𝛼𝛽𝜇𝜈 = − 1
V

𝜕𝜎𝛼𝛽

𝜕𝜖𝜇𝜈

|||||h=0 = 1
V

𝜕2
𝜕𝜖𝛼𝛽𝜕𝜖𝜇𝜈

|||||h=0 (388)

= 1
V

⎡⎢⎢⎢⎢⎢⎣
𝜕2

𝜕𝜖𝛼𝛽𝜕𝜖𝜇𝜈
⏟⏞⏟⏞⏟
Born term

− 𝜕2
𝜕𝜖𝛼𝛽𝜕ri𝜆

(−1)
i𝜆,j𝜉

𝜕2
𝜕𝜖𝜇𝜈𝜕ri𝜉

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Relaxation term

⎤⎥⎥⎥⎥⎥⎦
(389)

= 1
V

[𝜖𝜖 −𝜖i

(ij

)−1i𝜖

]
(390)

The relaxation term arises whenmore than one particle is present
in the unit cell.[181] When the system is strained the atoms need
to relax relative to one another, because before and after the strain
applied the system must be in a state of zero net force. Note

that the generalized Hessian  encompasses the conventional
Hessian  and hence all information on the vibrational spec-
trum. In addition to the vibrational information, elastic constants
also contain information on the gradients and second derivatives
on the cell, and the cross terms of position gradient and cell
gradients.

5.2. Normal Mode Analysis

Normal Mode Analysis (NMA) has become one of the standard
techniques in the study of the dynamics of molecules.[246] It is
the study of motions of small amplitudes in harmonic potential
wells by analytical means. Here, small means small enough that
the harmonic approximation holds. Usually this means that har-
monic vibrational analysis can provide a very good description of
the system at low temperature. A NMA contains all timescales.
However, disadvantages include limited motion around a single
stable conformation and lack of anharmonic features that are
small but sometimes important. Despite these obvious limita-
tions, NMA has found widespread use.
The equation of motion of a molecule in a harmonic well is

given by

M
d2(𝛿x)
dt2

= −𝛿x (391)

where M is a diagonal matrix that contains the masses of the
atoms.[87,246] Substitution of the general solution 𝛿x = A cos(𝜔t +
𝜙) into the equation results in

A = 𝜔2MA (392)

To remove the dependence on the mass matrix on the right side,
one can rearrange the equation as

(
M−1∕2M−1∕2)(M1∕2A

)
= 𝜔2

(
M1∕2A

)
(393)

and denoting the new quantities with new symbols we have

′A′ = 𝛼A′ (394)

Here, ′ = M−1∕2M−1∕2 is the mass-weighted Hessian matrix,
A′ = M1∕2A is the eigenvector of the mass-weighted Hessian ma-
trix and needs to be unmass weighted for normal modes A =
M−1∕2A′, and 𝛼 = 𝜔2. The mass-weighted Hessian is usually pro-
jected to remove the translation, rotation, and constraints.
The harmonic frequencies 𝜈 are related to the eigenvalues of

the projected and mass-weighted Hessian by

𝜈i =
√

𝛼i

2𝜋
(395)

The normal mode i is given by Ai =
A′
i√
mi
. The eigenvectors give

the direction and relative amplitude of each atomic displacement.
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The value Ai∕𝛼i is an arbitrary amplitude for displacement along
normal mode i. If atoms are undergoing thermal fluctuations
along each mode, the standard deviation of each atom is given by
setting Ai =

√
2kBT∕mn, where mn is the atomic mass of atom

n.[87,246] For the generation of the trajectory of normal mode i us-
ing N frames, the following expression applies:

𝛿xi(t) =

√
2kBT∕M

𝛼i
Âi sin (2𝜋t∕N) t = 0,… , N (396)

The magnitude of the motion depends on temperature and is
inversely proportional to its frequency. The largest contribution
to the atomic displacement comes from the lowest frequency nor-
mal modes, whereas for high-frequency eigenvectors, only a few
atoms contribute. As mentioned, the low-frequency modes de-
termine large scale framework flexibility[31,32] and are responsible
for structural rearrangement as a function of external stimuli.[20]

5.3. Optimization

One can differentiate the energy Taylor expansion Equation (386)
with respect to 𝛿x, set the result to zero and solve to obtain what
is known as the Newton–Raphson step[87]

𝛿x = −−1h (397)

The Newton–Raphson step can also be expressed as a sum over
the eigenvectors ei (called local principal modes) and eigenvalues
𝜆i of the Hessian matrix

𝛿x = −
∑
i

(
eTi h

)
𝜆i

ei (398)

where eTi h is the component of the gradient along the eigen-
mode ei. For zero eigenvalues, the corresponding step compo-
nent is set to zero. A zero eigenvalue means that for a displace-
ment in the direction of the eigenvector the energy does not
change, while a positive and negative value mean an increase
and decrease in energy, respectively. Therefore, a true minimum
has all positive eigenvalues. A first-order saddle point has exactly
one negative eigenvalue. The Newton–Raphson steps minimize
along the eigenvectors with positive eigenvalues and maximize
along eigenvectors with negative eigenvalues. Therefore, when
the starting configuration is of the correct curvature (the desired
number of negative eigenvalues) the Newton–Raphson step is a
good one to take. In general, however, the step must be modified
to obtain a structure of the desired curvature.[248] A simple but
very powerful modification is to use a shift parameter 𝛾 which
shifts the value of the eigenvalues[249]

𝛿x = −
∑
i

eTi h

𝜆i − 𝛾
ei (399)

Simons et al.[250] derived an equation to find the shift parameter

𝛾 = −
∑
i

(
eTi h

)2
𝛾 − 𝜆i

(400)

which can be solved by iteration. Note that, besides minimiza-
tion, the method can also be used to find saddle points.[248] Tak-
ing a big step leads to an increased likelihood of moving out of
the region where theHessian was valid. Therefore it makes sense
to set a maximum tolerance on the size of any calculated 𝛿x and
scale down 𝛿x accordingly if this maximum is exceeded.[250] The
mode-following technique is also applicable to minimizations of
large quantum mechanical systems. Here, the analytical evalu-
ation of the Hessian might be computational and memory de-
manding, but efficient parallel distributed data algorithms have
been developed.[251]

An an illustration, the minimization process using the gen-
eralized Hessian is shown in Figure 3 for the MIL-53 with 0,
1, or 2 water molecules per unit cell. The initial configuration
is the experimental crystal structure[252] with the water at ran-
dom positions. To find the lowest energy configuration the min-
imization was repeated 1000 times for the systems with water.
Initially, there are many negative eigenvalues present and the
number increases with the amount of water in the system. The
number of minimization steps therefore depends on the amount
and initial positions of the adsorbates. Slowly but steadily the
number of negative eigenvalues is reduced to zero, although it
is possible that the number increases before decreasing again.
This usually corresponds to a substantial structural change (an-
gle and shape change). As can be seen, once zero eigenvalues
have been reached the convergence is very fast. The stopping cri-
teria has been that each of the gradients on the particles and on
the cell have to be smaller than 10−10 kJ mol−1/Å2. Initially the
gradients are high and the volume increases. This behavior in-
creases with water content, because the water is placed randomly
inside the structure. During the minimization the structure re-
laxes and for no water or one water molecule per unit cell the
volume stays close to the open-pore starting structure. However,
when two water molecules are optimized, the structure collapsed
to the narrow-pore structure.
The method can be of great utility in force field development

and to assess the influence of adsorbates on the framework
structure. It is able to provide the correct solution, that is, zero
gradients and the desired number of negative eigenvalues, by
construction, where other methods can give wrong solutions.
The method can be applied to unit cell minimization of periodic
systems such as metal-organic frameworks and zeolites, for
vibrational analysis (IR spectra and mode analysis), for force
field development and for the computation of elastic constants
at zero Kelvin. In Subsection 6.9 we will discuss an application
of this methodology: the fitting of MOF force fields on elastic
constants.

6. Parameterization

6.1. Force Field Optimization of Biological Systems

As an example to see how a biological force field is optimized,
let us discuss how the CHARMM force field is optimized as

Adv. Theory Simul. 2019, 2, 1900135 1900135 (38 of 62) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advtheorysimul.com

Figure 3. Mode-following minimization of MIL-53 using the model of Salles et al.[247] with zero, one and two water molecules per unit cell: a) the
number of negative eigenvalues, b) the convergence of the energy, c) the convergence of the maximum of the gradients on the particles (trans-
lation and rotational) and on the cell, and d) the volume of the unit cell. Reproduced with permission.[163] Copyright 2009, American Chemical
Society.

described in ref. [253]. The CHARMM potential energy function
is[118]

 =
∑
bonds

Kb

(
b − b0

)2 +∑
UB

KUB

(
S − S0

)2 + ∑
angle

K𝜃

(
𝜃 − 𝜃0

)2
+

∑
dihedrals

K𝜙(1 + cos (n𝜙 − 𝛿)) +
∑

impropers

Kimp

(
𝜒 − 𝜒0

)2

+
∑

nonbond

𝜖ij

⎡⎢⎢⎣
(
Rmin,ij

rij

)12

− 2

(
Rmin,ij

rij

)6⎤⎥⎥⎦ +
qiqj
𝜖0rij

(401)

Figure 4 is a flow diagram of the CHARMM parameter opti-
mization procedure.[253] Loops I, II, and III were included in the
optimization of the CHARMM22 force field for nucleic acids,
with loop IV representing an extension of that approach included
in the CHARMM27 optimization.

In the CHARMM22 nucleic acid parameter optimization a va-
riety of model compounds were selected with target data col-
lected on those compounds. This target data included both ex-
perimental and ab initio data and solely acted as the basis for the
parameter optimization. Empirical force field calculations were
performed on the model compounds with the computed prop-
erties compared with the target data. The parameters were then
manually adjusted to better reproduce the target data. Part of this
process involved iterative procedures where, upon changing one
class of parameters, a set of previously optimized parameters
were re-adjusted if necessary (loops I, II, and III in Figure 4).
For example, a set of partial atomic charges would be assigned to
a model compound following which dihedral parameters would
be adjusted to reproduce a target potential energy surface for that
model compound. The partial atomic charges would then be rein-
vestigated due to possible changes in geometry associated with
optimization of the dihedral parameters that could effect the re-
production of the target data for the charge optimization. This ap-
proach yields a parameter set that accurately reproduces a variety
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Figure 4. Flow diagramof the CHARMMparameter optimization. Iterative
loops included in the parameterization are indicated by roman numerals.
Adapted with permission.[253] Copyright 2000, John Wiley & Sons, Inc.

of internal (e.g., geometries, vibrational spectra, conformational
energetics) and interaction (e.g., interactions with water, heats, of
sublimation) target data for the selectedmodel compounds. Once
the optimization procedure at the model compound level was
complete, the resultant parameters were then used to perform
simulations of B and Z DNA in their crystal environments, both
of which yielded satisfactory agreement with experiment. At this
point, the CHARMM22 parameterization was considered com-
plete.
Re-optimization of the protein backbone parameters to sys-

tematically deviate from the QM energetic data led to improved
properties for the protein backbone. This additional procedure is
represented by loop IV in Figure 4. The need for this additional
loop may reflect limitations associated with the level of theory
of the QM data as well as the simplified form of the potential
energy function in Equation (401), and emphasizes the impor-
tance of including macro-molecular properties as part of the tar-
get data for the parameter optimization procedure. The fitting
procedure highlights that all the terms in Equation (401) influ-
ences each other. In iterative schemes, the long-range interac-
tions are usually chosen first before optimizing the internal pa-
rameters. Recent developments and future trends in force fields
for biomolecular simulations have been reviewed by Nerenberg
en Head-Gordon.[254]

6.2. Force Field Optimization for Adsorption and Diffusion
in MOFs and Zeolites

In contrast to biological systems, MOFs and zeolites are funda-
mentally different and are usually considered a host–guest sys-
tem. The host is the framework, the guests are small adsorbate
molecules that are adsorbed inside the nanopores. The adsor-

bates experience confinement induced by the structure. Adsorp-
tion is driven by dispersion interactions and it is crucial to accu-
rately describe the long-range interactions in the system. There
is a natural separation of the system into a model for the adsor-
bates, a model for the adsorbate-framework interactions, and if
the framework is taken as flexible, a model for the framework
itself.
The long-range interactions are: 1) theCoulombic interactions,

and 2) the van derWaals interactions. A commonworkflow is first
to develop models for the adsorbates. The TraPPE models aim to
have a high degree of accuracy in the prediction of thermophys-
ical properties when applied to a range of different compounds,
different state points, different compositions, and different prop-
erties. This makes TraPPE one of the few force fields generally
suitable formaterials and industrial applications. For nonbonded
interactions, parameters for representative simple molecules are
found by empirical fitting procedures that reproduce experimen-
tal phase equilibrium data, typically the vapor-liquid coexistence
curve (VLCC) but also binarymixtures and vapor-solid equilibria.
Fitting to phase equilibrium data provides accurate benchmarks
against multiple phases, temperatures, and densities.
The advantage of adsorbate models that reproduce phase

equilibrium data is that the saturation value of the adsorption
isotherm is well-reproduced by construction. This is important,
because it allows an examination of the state of the pores of
the framework, that is, is there pore-blocking? are there remain-
ing solvent or template molecules in the structure? The TraPPE
model and many others use the approximation of fixed point
charges. For small molecules, the charges follow from the dipole
or quadrupole moment. However, this approximation immedi-
ately shows why water is difficult to model, it has a different
dipole-moment in the gas-phase compared to the liquid-phase.
Also, the bend-angle is altered in the adsorbed state. One ap-
proach to handle this is to make the potentials electric-field
dependent.[220] The framework-atoms are also usually modelled
with the LJ+Coulombic approach. The next subsection focuses
on how to obtain point charges. Once the charge is determined,
the next step is to obtain the van der Waals parameters. We dis-
cuss two ways: the VLE fitting for the adsorbate-adsorbate in-
teraction, and 2) fitting to inflection point in isotherms to fit
the adsorbate-framework interactions. The next subsection deals
with QM-derived potential for open-metal sites. Then, we discuss
how to obtain models for the framework itself, and we close with
a discussion on force fields for modeling mechanical properties.

6.3. Point Charges

Charge is not a quantum mechanical observable. Electrons are
smeared out, and their charge is shared among nearby atoms.
We are faced with the difficult problem of how to map the elec-
tron density onto classical atomic point charges.[255] Many algo-
rithms were defined over the past 60 years to divide molecules
into atomic parts,[256] for example Mulliken Population Analy-
sis (MPA),[257] Natural Population Analysis (NPA),[258] Bader’s
AIM scheme,[259] Lowdin Population Analysis (LPA),[260] Hirsh-
feld partitioning,[261] Hirshfeld-I partitioning.[262] One approach
is the concept of Atoms in Molecules (AIM)[263] and then try to
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introduce AIM subspaces within the molecule. The Hirshfeld-I
has been extended to periodic bulk materials[264] and Verstealen
et al. proposed a simple Extended Hirshfeld (Hirshfeld-E or HE)
scheme to solve an ambiguity in the Hirshfeld-I scheme when
applied to inorganic oxide clusters.[265] Manz and Sholl devel-
oped an AIM-based method called Density Derived Electrostatic
and Chemical (DDEC) charges[266–268] method. Here, the elec-
tron density is partitioned and assigned to each atom employing
spherically symmetrical weighting functions[269] with the partial
charges optimized to simultaneously reproduce realistic chem-
ical states, together with the QM electrostatic potential. This
method gives accurate results for a variety of periodic and non-
periodic materials including molecular systems, solid surfaces,
porous solids, and nonporous solids.[268]

A second class of methods is to fit the reproduced QM Electro-
Static Potential (ESP):

𝜙(r) =
N∑
i=1

qi||r − Ri
|| − ∫

𝜌(r)|r′ − r| dr′ (402)

This quantity can be used to fit point charges.[270] Subsequently
the method was refined by introducing least-squares fitting of
point charges on a grid,[271] ESP on spherical shells surrounding
atom (CHELP), CHELP on a grid instead of spheres (ChelpG)
which removed the problem with CHELP of not satisfying rota-
tional invariance, and the RESPmethod (Restrained electrostatic
potential fit) that applies restraints to partial charges on some
atoms to remove the problem of erratic charges for buried atoms.
In the REPEAT method,[272] Campana et al. introduced a new er-
ror functional which acts on the relative differences of the poten-
tial and not on its absolute values, as it is currently done with
molecular ESP charge derivation methods. Conventional ESP fit-
ting procedures developed formolecular systems, in general, will
not work for crystalline systems because the electrostatic poten-
tial in periodic systems is ill-defined up to a constant offset at each
spatial position. The method produces sensible partial atomic
charges for periodic systems. There is no need to extract chemi-
cally sensible and neutral moiety from the framework. Problems
like capping/terminate the fragment to satisfy unfilled valences
can be avoided. For many systems, minimal user intervention is
required to generate the REPEAT charges, which is necessary for
the automation of the charge derivation procedure. Such automa-
tion is very useful in high throughput computational studies of
nanoporous materials. However, Watanabe et al. found for the
ZIF-8 system that the REPEAT charges (especially for Zn) signif-
icantly depend on the details of the fitting-volume.[267] The grid
used in fitting theREPEAT charges should cover a volume similar
to that which is available to an adsorbate molecule. It is therefore
critical to exclude points near an atomic nucleus in the fitting of
REPEAT charges.[267,272] Wannabe et al.[267] proposed to directly
use the electrostatic potential energy calculated from plane wave
DFT. This method removes an ambiguity that has been inherent
in all previous models of these materials in which point charges
are assigned to atoms in the adsorbent. By definition, the DDEC,
Hirshfeld, and REPEAT charges sum over the unit cell to the cor-
rect total charge.
ESP methods have problems with buried atoms. Some al-

ternative methods, which are not affected by the presence of

buried atoms, have been proposed. The dipole preserving and
polarization consistent (DPPC) charges method,[273] based on
a Lagrangian optimization to reproduce atomic dipoles and
multipoles,[274] has been developed with the introduction of pe-
culiar features, including charge redistribution based on relative
atomic electronegativity and the treatment of molecular dipole
polarization. Resulting charges are able to accurately reproduce
the molecular dipole moments, thus ensuring a good descrip-
tion of the system local properties (which may be spoiled by
basic ESP fitting). Two major improvements to the state-of-the-
art REPEAT method, for generating accurate partial charges for
molecular simulations of periodic structures, were developed by
Gabrieli et al.[275] The first, D-REPEAT, consists in the simulta-
neous fit of the ESP, together with the total dipole fluctuations
(TDF) of the framework. The second, M-REPEAT, allows the fit of
multiple ESP configurations at once. When both techniques are
fused into one, DM-REPEAT method, the resulting charges be-
come remarkably stable over a large set of fitting regions, giving
a robust and physically sound solution to the buried atoms prob-
lem. The method capabilities were extensively studied in ZIF-8
framework, and subsequently applied to IRMOF-1 and ITQ-29
crystal structures.[275] InfiniCharges[276] is a tool for generating re-
liable partial charges for molecular simulations in periodic sys-
tems using the DM-REPEAT method. The stability of the result-
ing charges, over a large set of fitting regions, is obtained through
the simultaneous fit of multiple electrostatic potential (ESP) con-
figurations together with the total dipole fluctuations (TDF). The
program can also perform standard REPEAT fit and its multi-
frame extension (M-REPEAT), with the possibility to restrain the
charges to an arbitrary value.
A third approach for the computation of effective charge is

through charge equilibration models,[277] as discussed in Sub-
section 4.13. Charge equilibration tries to find the set of par-
tial atomic charges that minimize the energy of the system.
The method of Rappe and Goddard required iteratively minimiz-
ing the system energy in a self-consistent manner.[243] In con-
trast, the recently proposed method of Wilmer et al. requires no
iteration,[241,242] which makes it better suited for high through-
put screening ofmaterials and for calculating fluctuating charges
on the fly throughout a molecular simulation. The method of
Wilmer is applicable to MOFs: the Taylor series is expanded
around the charged metal atom, and the ionization potentials
and electron affinities corresponding to the cation are used. The
charge equilibration is able to compute charges at only a tiny frac-
tion of the computational cost of DFTmethods. Charge equilibra-
tion methods have been evaluated for the generation of electro-
static fields in nanoporous materials.[278]

Many charge sets have been published for frameworks like
MOFs,[279–281] COFs,[282] ZIFs,[283,284] and siliceous zeolites.[285]

The different methods available to calculate atomic partial
charges in MOFs have been reviewed by Hamad et al.[256] They
demonstrated the influence of even small structural variations
on atomic charges, and the influence of the choice of charges on
computed properties. The decision about whatmethod is the best
is not a simple one, and the choice will depend on factors such
as the knowledge and experience of the researcher, the codes that
he or she has access to, the type of systems that will be studied,
etc.[256] A relatively new approach to charge assignment is Ma-
chine Learning.[286–288] Also note that the force-match procedure,
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Table 10. Selection of TraPPE models for molecules calibrated on exper-
imental vapor-liquid equilibrium data. Cross terms are computed using
Lorentz-Berthelot mixing rules.

Molecule type All-atom Type 𝜖∕kB [K] 𝜎 [Å] q [e] Cutoff Shifted

Alkanes[153] no CH4 148 3.73 − 14 no

no CH3 98 3.75 − 14 no

no CH2 46 3.95 − 14 no

Branched alkanes[154] no CH 10 4.68 − 14 no

no C 0.5 6.4 − 14 no

CO2, bond-distance
1.16 Å[157]

yes O 79.0 3.05 −0.35 10 no

yes C 27.0 2.80 −0.70 10 no

N2, bond-distance 1.1
Å[157]

yes N 36.0 3.31 −0.482 10 no

− Dummy 0.0 0.0 +0.964 10 no

CH4
[289] no CH4 158.5 3.72 0.0 12 yes

to be discussed in Subsection 6.7, naturally includes the fit of par-
tial charges.

6.4. Vapor–Liquid Equilibrium Data

A computational very efficient model is the Transferable po-
tentials for Phase Equilibria TraPPE force field by Martin
and Siepmann.[153,154] The force field describes linear, mono-
branched and di-branched alkanes,[153,154] benzene, pyridine,
pyrimidine, pyrazine, pyridazine, thiophene, furan, pyrrole,
thiazole, oxazole, isoxazole, imidazole, and pyrazole,[298] pri-
mary, secondary, and tertiary amines, nitroalkanes and nitroben-
zene, nitriles, amides, pyridine, and pyrimidine,[299] ethers, gly-
cols, ketones, and aldehydes,[158] thiols, sulfides, disulfides, and
thiophene,[159] as well as some smaller molecule like CO2 and
N2

[157] and ethane and ethylene.[300] Despite the fact that the
model lumps CH3, CH2, and CH into single interaction centers,
it very accurately reproduces the experimental phase diagram and

critical points. This united atom approach allows formuch longer
simulation times and larger systems because each of the CHx-
groups is charge-neutral and charge-charge interaction can be
omitted. Some TraPPE models for small molecules are listed in
Table 10.
The TraPPE model is calibrated incrementally using Vapor–

Liquid Equilibrium (VLE) data, for example, CH4 using methane
data, CH3 using ethane data, CH2 using propane data, CH
using isobutane, and C using neopentane. This then constitutes
the “calibration-set” (Figure 5a). With the final parameters in
hand the remaining experimental data, for example, for heptane
or isopentane, can then be used to validate the predictions of
the model. If for this “validation set” unsatisfactory results are
obtained and the experimental calibration data are not in doubt,
then the model needs to be refined. A more sophisticated model
could include explicit hydrogens[155] or anisotropic sites.[187,301]

However, the united-atom TraPPE model for alkanes is able to
accurately describe alkanes properties over a wide range of chain-
lengths, densities, pressures, and temperatures (Figure 5b).
The TraPPE alkane fitting strategy results in a well depth

that increases, and a diameter that decreases, with increasing
number of hydrogens. At first it might be surprising that the
LJ diameter of a methyl pseudo atom is smaller than that of
a methylene group. However, it has been pointed out that the
incremental volume of a methyl group remains much larger
than the incremental volume of a methylene group as proposed
by Bondi[302] because of the large overlap between a methy-
lene pseudoatom and its two neighbors.[153,154] Furthermore,
it is plausible that the diameter of a methylene pseudoatom
containing two long C-C bonds and two (relatively) short C-H
bonds might be larger than that of a pseudoatom containing
a single long C-C bond and three short C-H bonds.[153,154] The
TraPPE-UA force field parameters for a given pseudo-atom do
not depend upon its neighboring pseudo-atoms. While it could
be argued that the parameters of pseudo-atoms should depend
upon their nearest neighbors, such a force field for the alkanes
would have 69 different types of pseudo-atoms.[154]

Figure 5. Alkane model based on VLE fitting (left) calibration of CH4 using methane data, CH3 using ethane data, CH2 using propane data, CH using
isobutane, and C using neopentane (right) density vs. pressure for a united-atom TraPPE-UA propanemodel. Experimental data from the NIST database.
a) Reproduced with permission.[90] Copyright 2013, The Authors, published by Taylor & Francis. b) Reproduced with permission.[235] Copyright 2015,
The Authors, published by Taylor & Francis.
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Table 11. Selection of models by the Calero-group using shifted LJ potentials (cutoff 12 Å) for molecules calibrated on experimental vapor–liquid equi-
librium data. These potentials can be used by both MC and MD. Cross terms are computed using Lorentz–Berthelot mixing rules.

Molecule type All-atom Type 𝜖∕kB [K] 𝜎 [Å] q [e] Cutoff Shifted

N2, bond-distance 1.1 Å
[290] yes N (N2) 38.298 3.306 −0.405 12 yes

(0.55 Å from N atom) − Dummy 0.810 12 yes

O2, bond-distance 1.2 Å
[290] yes O (O2) 53.023 3.045 −0.112 12 yes

(0.6 Å from O atom) − Dummy 0.224 12 yes

Ar[290] yes Ar 124.070 3.380 0.0 12 yes

CCl4
[290] no CCl4 519.730 5.140 0.0 12 yes

CO, bond-distance 1.128 Å[291] yes C 16.141 3.636 −0.2424 12 yes

yes O 98.014 2.979 −0.2744 12 yes

(0.6443 Å from C atom) − Dummy 0.5168 12 yes

CO2, bond-distance 1.149 Å
[292] yes O 85.671 3.017 −0.3256 12 yes

yes C 29.933 2.745 −0.6512 12 yes

SO2, bond-distance 1.431 Å
[293] yes S 189.353 3.41 0.402 12 yes

(bond angle of 119◦) yes O 58.725 3.198 −0.201 12 yes

SF6, bond-distance 1.565 Å
[294] yes F 73.130 2.843 − 12 yes

yes S − − − 12 yes

H2S, bond-distance 1.34 Å[295] yes S 275 3.7 −0.32 12 yes

(bond angle of 92◦) yes H − − 0.16 12 yes

Alkenes[296] no — — — 12 yes

propylene[297] no CH3 93.0 3.685 0.87 12 yes

no CH 51.0 4.0 0.87 12 yes

(Dummy-CH2 bond length 0.704 Å) — Dummy −1.74 12 yes

— CH3 108.0 3.76 − 12 yes

Adjusting these force field parameters to VLE data is currently
a cumbersome and computationally expensive task. For alkanes
an incremental optimization (e.g. first CH3 from ethane, then
CH2 from propane, etc) is possible due to the simplistic nature
of alkanes, but this is an exception rather than the rule. As men-
tioned before, a force field optimization via the VLE of, for exam-
ple, CO2 involves optimizing the van derWaals interactions of the
carbon and oxygen atom type simultaneously, therefore requiring
many time-consuming iterations. An objective function can be
defined as the squared deviation between the computed and the
experimental data. Current fitting strategies involve lowering this
function below a defined threshold using Simplex- or gradient-
based methods. Each iteration point requires a full molecular
simulation run. Van Westen et al. developed a method to over-
come this limitation.[303] The actual optimization is performed in
a faster, different framework than molecular simulation, that is.
using the PC-SAFT equation of state.[304] The PC-SAFT is able to
sufficiently capture the size and shape of molecules and the dis-
persion interactions of fluids to reduce the amount of iterations
to only two or three.
The TraPPE model was mainly developed for MC purposes.

For pure alkanes, the Radial Distribution Function (RDF) tends
to converge to unity beyond 14 Å. This indicates that longer range
order is absent. The Van der Waals potential is then truncated
at this distance and the energy-correction due to this truncation
is approximated (the “tail-correction”). The truncation distance
and whether or not to use tail-correction should be considered

as part of the force field. For molecular dynamics the truncation
in the energy leads to a divergence in the forces. Common
approaches include the use of switching function where the
energy is forced to smoothly go to zero, and to shift the Van der
Waals potential to zero at the cutoff. An alternative is to use the
Ewald summation to compute the Van der Waals term,[305,306] but
only a few codes have a that capability (an example is GULP[307]).
The Calero-group (re-)calibrated many small molecules model
for a shifted Van der Waals potential and a cutoff of 12 Å (see
Table 11) for use in both MC and MD. Compared to similar
molecules in Table 10 we notice that the size parameter 𝜎 is
slightly smaller and the strength parameter 𝜖 has become larger
to make up for the lost attraction due to the shifting of the
potential.
Subtle differences in energy and structure have been exploited

to develop a force field for molecular simulation of martensitic
phase transitions.[308] Phase equilibria are extremely sensitive to
potentials parameters of empirically determined classical force
field. The reason the VDW parameters are so sensitive to the
VLCC is that the molecule experiences two different environ-
ments, the low density and the high density, and the param-
eters need to fit both simultaneously. Likewise, inflections in
isotherms are caused by the filling up of two (or more) adsorp-
tion sites that differ in energy. While VLE can fix the parameters
for adsorbate–adsorbate interactions, the fitting on inflections
in isotherms allows the accurate determination of adsorbate-
framework parameters.
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Figure 6. The calibration of isobutane in MFI zeolite. a) For a fixed 𝜎 that is too small the inflection is not reproduced, b) for a fixed 𝜎 that is too large
the inflection is too large (for several different 𝜖). c) Only a single 𝜖, 𝜎-pair is able to reproduced the experimental isotherm. Other models are not able
to model the inflection of isobutane in MFI accurately. d) The resulting model predicts the experimental isobutane isotherms for two sources at various
temperatures accurately. Reproduced with permission.[309] Copyright 2004, American Chemical Society.

6.5. Fitting on Inflections in Adsorption Isotherms

Early work on alkanes in zeolites used the Kiselev-model where
adsorbate-framework interactions were optimized to reproduce
experimental Henry coefficient and heats of adsorption.[310] The
Kiselev approach models the zeolite as a rigid network of oxy-
gen atoms.[12] This is a very common approximation because the
large oxygen atoms account for most of the potential energy and
essentially shield the much smaller silicon atoms. The oxygen-
adsorbate potential is an effective potential which implicitly in-
cludes the Si-contribution. The advantage of such a simplicity is
that when combined with a united atommodel, one can uniquely
optimize an alkane-zeolite model (e.g., the obtained parameters
are the best ones possible). Fitting on Henry coefficients and
heats of adsorption does not uniquely fix the LJ-parameters. The
methodology proposed by Dubbeldam et al. is based on fitting
isotherms with inflection points.[309,311] These inflection points
are due to adsorption sites which differ significantly in energy.
One site is predominantly filled up first, before the other sites fill

up (as a function of pressure). The inflection in the isotherm re-
flects this subtle difference in adsorption energetics of the sites.
Inflections are extremely sensitive to the van der Waals parame-
ters which is the dominating mechanism for physisorption.
It is instructive to discuss the role of the size-parameter 𝜎O-CHx

.
In Figure 6 we show the influence of the 𝜎 parameters on the
inflection of 2-methylpropane in MFI. The O-CH parameters
remain fixed at 𝜎 = 3.92 Å and 𝜖∕kB = 40 K, while 𝜖O-CH3

is exam-
ined over a range of reasonable values for two values of 𝜎O-CH3

:
one significantly too small and one significantly too large. A cru-
cial observation is that only a single strength/size parameter pair
is able to describe the inflection and the entire isotherm properly.
This is in contrast with the common belief that for each value
of 𝜎 there is a corresponding 𝜖 that can describe the isotherm
correctly.[312] The shape of the isotherm and the inflection points
are the most sensitive to the size-parameter of the interactions,
whereas the loading at a given pressure is most sensitive to
the strength-parameter of the interaction. A higher strength
parameter 𝜖 induces an increased loading, and a lower strength
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Figure 7. a) Total energy of a single CO2 molecule in Mg-MOF-74 calculated using the developed polarizable force field as a function of the distance to
the open-metal site. Comparison between interactions with and without back-polarization (units left axis), and the difference between with and without
backpolarization (units right axis) b) Comparison of the polarization energy computed with the developed polarizable force field without considering
back-polarization and the orbital interaction energy from DFT calculations as a function of the distance between a CO2 molecule and the Mg ion.[313]

Reproduced with permission.[313] Copyright 2017, American Chemical Society.

parameter results in a decrease in loading (for a fixed pressure).
The amount of inflection is controlled by the size parameter 𝜎.
These properties can be exploited to obtain unique parameters.
In practice, one proceeds as follows. A reasonable starting size

parameter is chosen. For this parameter one iteratively searches
for the corresponding strength parameter thatmatches the exper-
imental data at a pressure significantly below the inflection. The
entire isotherm is then followed for increasing pressure until a
deviation from the experimental data is observed. The updated
size parameter is then found by choosing a higher value for a
deviation to the left of the experimental data, and by choosing a
lower value for the size parameter for a deviation to the right of
the experimental data. This scheme proceeds iteratively until the
entire experimental isotherm is accounted for.
The fitting to well-established inflection points in the

isotherms has many advantages[309,311]: i) a unique set of parame-
ters is obtained directly related to a well defined physical property,
ii) the parameters are determined accurately, iii) inflections are
found at moderate pressures and here the experimental data is
most reliable, iv) the inflection is directly related to the structure
(e.g., for n-heptane and 2-methylpropane in MFI the inflection
occurs exactly at four molecules per unit cell) and v) by explic-
itly fitting to full adsorption isotherms the proper reproduction
of properties such as Henry coefficients, heats of adsorption, ad-
sorption entropies, and maximum loadings is guaranteed.

6.6. Polarizable and QM-Derived Force Fields for Open-Metal
Sites

When simple force fields fail to accurately describe experimental
data, physically based next-generation force fields that efficiently

describe effects like polarization needs to be adapted.[314] Mg-
MOF-74 has been shown to be a promising candidate for carbon
capture due to its high CO2 uptake capacity at low partial pres-
sures. Despite the significant progress, it is still amajor challenge
to accurately capture the change of interaction strength with vary-
ing metal ions in M-MOF-74 in molecular simulations. One ap-
proach is to use ab initio derived force fields,[315,316] another to
include explicitly polarization effects. Guest molecules are polar-
ized in the vicinity of the open-metal sites in M-MOF-74 and this
interaction contributes to the enhanced CO2 affinity. Since this is
local effect it is not possible to simply re-parametrized the guest-
host interactions. Considering polarization explicitly can help to
create force fields that overcome the shortcomings of current
generic force fields.[313,317–320]

Lachet et al. explored polarization in MC simulations us-
ing solely polarization between the framework and adsor-
bate molecules and neglecting polarization caused by induced
dipoles, so-called back-polarization.[219] Thereby, an iterative
scheme is avoided and the computational costs of themethod are
drastically reduced. In fact, the computational costs can be simi-
lar to simulations without considering explicit polarization. Fig-
ure 7a shows the most favorable position for CO2 in Mg-MOF-74
at approximately 2.4 Å, the difference in total energy is approxi-
mately 7%. This deviation seems to be acceptable in comparison
with the considerable speedup of the simulations.
Note that one can not just add polarization on top of an ex-

isting force field. Most likely, the VDW parameters are fitted to
experimental data, and hence implicitly contain some sort of av-
erage polarization. Becker et al. therefore removed the contribu-
tion of implicitly considered polarization to the interaction poten-
tial, by applying a global scaling parameter to all Lennard–Jones
energy parameters developed without explicit polarization.[313] In
Figure 7b, we compare the polarization energy of a CO2 molecule
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Figure 8. Comparison between the experimental results of Herm et al.[321] (open), Queen et al.[322] (yellow), Yu et al.[323] (orange), and Dietzel et al.[324]

(brown) and simulation results using the polarizable force field of Becker et al.[313] (black), the UFF force field (blue) and the DFT- derived non-polarizable
force field ofMercado et al.[325] (green) for CO2 inMg-MOF-74. a) adsorption isotherm at 298 K (Herm et al.[321] 313K) (b) heat of adsorption as a function
of uptake. Reproduced with permission.[313] Copyright 2017, American Chemical Society.

approaching theMg ion of Mg-MOF-74 estimated with the devel-
oped polarizable force field to the orbital interaction energy cal-
culated from ADF. For relevant distances, both methods show a
comparable trend for the energy contributions. Themost relevant
distance between the CO2 molecule and the Mg ion is where the
total energy is the lowest (i.e., 2.3–2.5 Å, as shown in Figure 7a).
At this distance the polarizable force field predicts that the polar-
ization energy of a single CO2 molecule in Mg-MOF-74 has a sig-
nificant contribution of around 30% to the total energy. For larger
distances the contribution of polarization decreases rapidly.
The resulting adsorption isotherms for CO2 in Mg-MOF-74

in comparison to experimental measurements, the UFF force
field, and the DFT-derived non-polarizable force field of Mer-
cado et al.[325] are shown in Figure 8a. The simulation results
with the polarizable force field clearly display the inflection of
the experimental adsorption isotherm. The predicted behavior
is significantly better than with the UFF force field. This is
expected, because the scaling factors are adjusted to reproduce
the experimental data. The overall agreement with the exper-
imental measurements is comparable with the DFT-derived
non-polarizable force field of Mercado et al.[325] Both force
fields can predict the low fugacity region which is particularly
important for carbon capture. For higher fugacities, simulations
with all compared force fields predict higher CO2 uptakes in
comparison to the experiments. This can be attributed to the fact
that a certain degree of inaccessibility due to diffusion limitation
or defects in the crystal structure is inherent with experimental
structures. It should be noted that Mercado et al.[325] scaled the
calculated CO2 uptakes with 0.85 to account for inaccessibility
of open-metal sites. This scaling procedure mainly improves
the agreement between experiments and computations for the
high fugacity region. Figure 8b shows the heat of adsorption as a
function of CO2 molecules per metal ion. The distinct inflection
of the adsorption isotherm caused by the strong affinity of the
CO2 molecule toward the metal ions is reflected by the change of

the heat of adsorption with increasing gas uptake. The calculated
heat of adsorption has an inflection around one CO2 per metal
ion. Before and after the rapid decrease at one CO2 molecule per
metal ion, the heat of adsorption increases slightly. This increase
can be related to a rise in the total number of adsorbed CO2 and
therefor a larger contribution of the CO2–CO2 interactions to the
total energy.

6.7. Fitting of Force Field Parameters against Ab Initio Generated
PES Data

Fitting algorithms are generally based on optimizing a “merit
function” that corresponds to minimizing a weighted sum of
square deviations between the classical data and reference data
points from the QM PES.[76,113] The key quantity is the “sum of
squares” F which measures how good your fit is

F =
∑

all observables

w
(
fcalc − fobs

)2
(403)

where fcalc and fobs are the calculated and observed quantities and
w is a weighting factor. The aim of a fit is to minimize the sum of
squares by varying the potential parameters. Also “Force Match-
ing” can be done[326] and even a more generalized match on en-
ergy E, forces F, and stresses S

𝜉1 =
√(

Edft − Emd

)2
(404)

𝜉2 =
√(

Fdft − Fmd

)2
(405)

𝜉3 =
√(

Sdft − Smd

)2
(406)
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F = min
(
w1𝜉1 + w2𝜉2 + w3𝜉3

) ∑
i

wi = 1 (407)

The weight factors are usually in the order: forces ≫ stresses
> energies.
There are several codes able to do the parameterization for sev-

eral classical force fields. GULP[162] allows fitting on many ob-
servables like elastic constants, stresses, heat capacity, entropy,
bond lengths and angles, relative energies, and on energy sur-
faces. To fit an energy surface it is basically necessary to input all
the structures and the energies that correspond to them. ForceFit
is a code to fit classical force fields to quantum mechanical po-
tential energy surfaces.[327] ForceFit interfaces with three molec-
ular mechanics codes, DL_POLY, Amber, and LAMMPS. Potfit
(https://github.com/potfit) is a free implementation of the force-
matching algorithm to generate effective potentials from ab initio
reference data.[328] DFTFIT (https://github.com/costrouc/dftfit)
is a python code that uses ab initio data from DFT calculations
such as VASP, Quantum Espresso, and Siesta to develop molec-
ular dynamic potentials. DFTFIT uses the least square method
to fit the stresses, total energy, and forces of a given set of con-
figurations. The user has the flexibility of changing the weights
for fitting and uses relative error to judge the fitness of parame-
ters. Atomicrex is a versatile tool for the construction of advanced
atomistic models.[329] In a general sense, it allows one to de-
velop models that describe a given scalar or vectorial property
(e.g., total energies and forces) as a function of an atomic (or
atom-like) configuration. GAFit is a software package based on
a genetic algorithm that fits an analytic function to a given set
of data points.[330] The code was interfaced with the CHARMM
and MOPAC programs in order to facilitate force field parame-
terizations. GARFfield (Genetic Algorithm based Reactive Force
Field optimizer) is a multi-platform, multi-objective parallel hy-
brid genetic algorithm (GA)/conjugate-gradient (CG) based force
field optimization framework.[331] GARFfield currently supports a
range of force field engines, via the LAMMPS Parallel Molecular
Dynamics Simulator (including the adiabatic ReaxFF).MEAM-fit
is an interatomic potential fitting code capable of fitting embed-
ded atom method (EAM) and reference-free modified embedded
atom method (RF-MEAM) potentials to energies and/or atomic
forces produced by the VASP density functional theory (DFT)
package.[332] As a last example, we would like tomentionmachine
learning interpolation of atomic potential energy surfaces to en-
able the nearly automatic construction of highly accurate atomic
interaction potentials.[333]

6.8. Genetic Algorithms

A common fitting approach is to use Genetic Algorithms
(GA).[334] A genetic algorithm has been used to generate plausible
crystal structures from the knowledge of only the unit cell dimen-
sions and constituent elements. Woodley et al. successfully gen-
erated 38 known binary oxides and various known ternary oxides
with the Perovskite, Pyrochlore, and Spinel structures, from start-
ing configurations which include no knowledge of the atomic ar-
rangement in the unit cell.[335]

There have been a number of approaches to parameterize a
force field directly from the quantum chemical calculations (see

ref. [336] and references therein). Since the true potential energy
surface (PES) can be approximated using quantum mechanical
methods, a force field can be directly fit to a calculatedQMPES by
numerically matching the gradients or energy. Sufficiently accu-
rate description of the PES enables fitting a variety of terms in the
force field including harmonic bonding constants, as well as an-
harmonic and coupling terms, using, for example, a freely avail-
able code like “ForceFit.”[327] Note that it is very hard, if not im-
possible, to obtain potentials from, for example, rotational energy
curves. These profiles are the result of a complicated interaction
of many potentials and to separate these special methods were
developed. Although it is theoretically possible to include non-
bonded interactions in the fitting, it is more common to obtain
charges and van der Waals parameters separately and use these
as input. Tafipolsky et al. parameterized a force field from first
principles reference data by optimizing a novel objective func-
tion with a GA.[334] The objective function was based on a repre-
sentation of both structure and Hessian matrix in a redundant
internal coordinate set, which can in principle be defined auto-
matically by the connectivity of the molecular mechanics force
field. The van derWaals parameters and electrostatics were given
as input, as well as the functional forms of the bonded terms
and a quantum-optimized representative cluster. The GA algo-
rithm then is able to efficiently parameterize the bonded terms,
which reproduce as close as possible the DFT results (structure
and vibrational modes). It can be used in combination with any
quantum-mechanical package that is able to provide the opti-
mized structure and theHessianmatrix in Cartesian coordinates.
The evaluation of the fitness of an individual parameter set com-
prises several basic steps:

1. MM geometry optimization of the reference structure based
on the selected functional form (Tafipolsky et al. use MM3)
and a trial set of parameters

2. Calculation of the Hessian matrix in Cartesian coordinates
3. Transformation of both the Cartesian coordinates and the

Hessian matrix into the principal axes system
4. Transformation of theHessianmatrix fromCartesian to a pre-

defined set of redundant internal coordinates
5. Calculation of the sum of mean square deviations between a

trial solution and the reference data

The stopping criteria for the GA can be set up by separate con-
vergence thresholds for the metric parameters (bonds, angles)
and Hessian terms or by a fixed number of generations to be
evolved.

6.9. Elastic Constants

Gale and coworkers used the elastic constant tensor for the
optimization of core-shell zeolite models.[162] However, only
a hand-full of parameters need to be optimized and there is
little ambiguity in the functional forms of the model. MOFs
are chemically much more diverse, but fortunately there are
many generic force fields available for the linker-molecules. The
difficult part is to connect the linkers together via the hinges
while making sure the model reproduces the correct mechanical
behavior. Heinen et al.[337] argue that reproducing the flexible
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Figure 9. Elastic tensor-based force field parameterization approach: functional forms and corresponding parameters are changed and/or added until
the classical force field elastic tensor agrees with the ab initio derived elastic tensor. Reproduced with permission.[337] Copyright 2017, American Chemical
Society.

behavior of the hinges in MOFs can be done by parameterizing
the flexible force field on the elastic tensor. The elastic constant
can be obtained from experiment when available, but otherwise
can be computed by ab initio calculations. The ab initio computa-
tion of the elastic tensor for various MOFs have been performed
by Tan et al.[32,338,339] and Coudert et al.[340,341] Understanding
mechanical properties is crucial as it has been argued that the
elastic tensor can predict flexible behavior.[338]

The large-scale flexibility and low frequency modes in MOFs
revolves around the behaviour of metal-clusters that are thought
of as “hinges” acting between rigid “struts.”[2] Heinen et al. pro-
pose to fit the parameters of the hinges of MOFs on DFT de-
rived elastic constants.[20,337] It is the hinges that determine the
mechanical behavior and modeling these correctly is vital. The
fourth-rank elastic tensor  is related to the second-rank stress 𝜎
and strain 𝜖 tensors via Hooke’s law[245]

𝜎𝛼𝛽 =
∑
𝜇𝜈

𝛼𝛽𝜇𝜈𝜖𝜇𝜈 (408)

with Greek indices denoting Cartesian components. For an
orthorhombic unit cell, there are nine independent elas-
tic constants when considering Voigt symmetry as shown
below.

ij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 12 13 0 0 0

12 22 23 0 0 0

13 23 33 0 0 0

0 0 0 44 0 0

0 0 0 0 55 0

0 0 0 0 0 66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(409)

The first three diagonal components of the elastic tensor in
Voigt notation 11, 22, and 33 represent the stiffness along the
principal crystal axes. The other diagonal components 44, 55,
and 66 are the shear coefficients that determine the resistance
against angular deformation due to shear strain. The off-diagonal

components 12, 13, and 23 are the tensile-coupling interactions
between two principal axes.
The proposed fitting procedure of the hinges is shown in

Figure 9. First, target elastic constants are computed from DFT.
This is non-trivial by itself as the energy-landscape around the
hinges can be shallow. Very high precision computations are
needed, and since second derivatives are usually computed
numerically in DFT using finite differences from the forces, the
dependence on the step-length of the differentiation needs to be
investigated. Next, the parameters of hinges can be initialized
with reasonable values based on previous work, other force
fields, or intuition. The structure is minimized and the elastic
constants are examined. By examining the values to the target
values a new set of parameters is chosen. By applying an iterative
process, the final set is obtained.

6.10. Machine Learning (ML)

A few examples of the use ofmachine learning in the field of clas-
sical simulations for materials science are the deep neural net-
work learning of complex binary sorption equilibria frommolec-
ular simulation data,[342] solving vapor–liquid flash problems
using artificial neural networks,[343] predicting thermodynamic
properties of alkanes,[344] charge assignment,[286–288] prediction of
partition functions,[345] simulation of infrared spectra,[346] predict-
ing themechanical properties of zeolite frameworks,[347] CO2 cap-
ture usingMOFs,[348,349] prediction ofmethane adsorption perfor-
mance of MOFs,[350,351] chemically intuited, large-scale screening
of MOFs,[352] screening for precombustion carbon capture using
MOFs,[353] screening of MOF Membranes for the separation of
gas mixtures,[354] and screening of MOFs for use as electronic
devices.[355] Using ML to combine the accuracy and flexibility of
electronic structure calculations with the speed of classical po-
tentials is a very active research field.[356–358] The predictive accu-
racy of Machine Learning (ML) models of molecular properties
depends on the choice of the molecular representation.[359] Ma-
chine learning for atomistic force fields can be used in two dif-
ferent ways
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• to find parameters for a force field with specified functional
forms (for example, see ref. [360]),

• to replace the classical or QM force field altogether.

In the second approach the vectorial force on an atom is com-
puted directly from its environment. By directly mapping quan-
tummechanical-derived force components to the numerical rep-
resentation of an atoms local environment, accurate, and compu-
tationally inexpensive force fields can be developed.[361–363] A typ-
ical workflow is to systematically construct reference data, repre-
senting the atomic environments with a numerical fingerprint,
sampling nonredundant data, and learning the forces. The ML
databases can be pre-computed or updated on the fly when re-
quired. An example of the on-the-fly approach is the paper of Li
et al.[364] Forces on atoms are either predicted or, if necessary, can
be computed by on-the-fly QM calculations and added to a grow-
ing ML database, whose completeness is, thus, never required.
As a result, the scheme is accurate and general, while progres-
sively fewer QM calls are needed when a new chemical process
is encountered for the second and subsequent times.
Atomistic Machine-learning Package (Amp) is an open-source

package designed to easily bring machine learning to atomistic
calculations.[365] This allows one to predict (or really, interpolate)
calculations on the potential energy surface, by first building up a
regression representation from a “training set” of atomic images.
The Amp calculator works by first learning from any other calcu-
lator (usually quantummechanical calculations) that can provide
energy and forces as a function of atomic coordinates. Depending
upon the model choice, the predictions from Amp can take place
with arbitrary accuracy, approaching that of the original calcula-
tor. Amp is designed to integrate closely with the Atomic Simu-
lation Environment (ASE).
DeePMD-kit, a package written in Python/C++ that has been

designed to minimize the effort required to build deep learning-
based representation of potential energy and force field and to
perform molecular dynamics.[366] DeePMD-kit is interfaced with
TensorFlow (https://www.tensorflow.org), one of the most pop-
ular deep learning frameworks, making the training process
highly automatic and efficient. On the other end, DeePMD-kit
is interfaced with high-performance classical molecular dynam-
ics and quantum (path-integral) molecular dynamics packages,
that is, LAMMPS and the i-PI, respectively. Thus, upon train-
ing, the potential energy and force field models can be used
to perform efficient molecular simulations for different pur-
poses. Based on DeePMD-kit, Zhang et al. used active learning
to obtain uniformly accurate interatomic potentials for materials
simulation.[367]

Jpred (http://www.compbio.dundee.ac.uk/jpred4)[368] predicts
secondary structural elements for an amino acid sequence using
machine learning approaches, based on known 3D structural in-
formation as available in the Protein Data Bank. Machine learn-
ing approaches can predict protein–ligand binding accurately.[369]

Tangadpalliwar et al. developed “ChemSuite,”[370] a stand-alone
application for chemoinformatics calculations and machine-
learningmodel development. Availability of multi-functional fea-
turesmakes it widely acceptable in various fields. Force field such
as UFF is incorporated in tool for optimization of molecules.
“SchNet” is another software package that can accurately predict
a range of properties across chemical space for molecules and

Table 12. Functional form of the core-shell model for zeolites, metal-oxides
and minerals. Note that the interaction between a core and its shell is
skipped in the VDW and Ewald real-part, and a correction-term is added
to the Fourier sum.

 total =  core-shell + 3-body + nonbonded

 core-shell

core-shell energy  core-shell(rij) =
∑

core-shells
1
2
k(rij)

2

 3-body

three body energy  3-body(𝜃ijk) =
∑

bends
1
2
k(𝜃ijk − 𝜃0)

2

 nonbonded =  VDW + Ewald

Van der Waals energy  VDW =
∑

i<j A exp[−rij𝜌ij ] − (Cijr
−6
ij )

Ewald charge energy  Ewald =  real + rec + self + exclusion where

 real =
∑

i<j qiqj
erfc(𝜂rij)

rij

 rec = 2𝜋
V

∑
k≠0 1

k2
e
− k2

4𝜂2 (|∑N
i=1 qi cos(k ⋅ ri)|2

+ |∑N
i=1 qi sin(k ⋅ ri)|2)

 self = − 𝜂√
𝜋

∑
i q

2
i

 exclusion = −
∑

i<j qiqj
erf(𝜂rij)

rij

materials, where their model learns chemically plausible embed-
dings of atom types across the periodic table.[371]

7. Zeolite and MOF Force Fields

7.1. Zeolite Force Fields

Metal-oxides are very successfully modeled using the Core-Shell
method.[69,307,372–374] To model polarization on the oxygen, the
charge of the oxygen is divided over the “core” and the “shell”
which are separated by a spring. Typically, a Buckingham poten-
tial is used for the metal (with no attraction term), while for the
oxygen both the exponential repulsion and the 1∕r6 attraction
term are used. The attraction of the oxygen is very strong (see ref.
[335] for a compilation of metal-oxide parameters). A common
functional form of the model is shown in Table 12. In the shell
model, the short-range repulsion and van der Waals interactions
are taken to act between the shell particles. This finding has the
effect of coupling electrostatic and steric interactions in the sys-
tem: in a solid-state systemwhere the nuclei are fixed at lattice po-
sitions, polarization can occur not only from the electric field gen-
erated by the neighboring atoms, but also from the short-range
interactions with close neighbors. This ability to model both elec-
trical and mechanical polarization is one reason for the success
of shell models in solid-state ionic materials.[216]

The core-shell modes are also very successfully applied to
zeolites.[69,307,374–378] The predicted crystal structures agreed very
well with experimental crystallographic data. The core-shells ap-
proach allowed to study structural phase transitions, zeolite hy-
dration processes, phonon-dispersion curves, and negative ther-
mal expansion in zeolitic materials. However, it unfortunately
proved difficult to combine these models with adsorbate mod-
els to study adsorption. The core-shell model requires formal
charges on the atomswhile charges based on ab initio approaches
are significantly lower. In addition, this type of model increases
the amount of particles in the system. This reduces the efficiency
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of the calculation. To overcome these inherent drawbacks several
other force fields for zeolite were proposed.
The Demontis model consists of an O-Si bond-potential

and an Urey–Bradley Si-T-Si potential (bond potential between
1-3).[379,380] The models are restricted to the simulation of adsor-
bates without the use of charge. This includes alkanes as simu-
lated in the united-atom approach. The advantage of the model is
not its accuracy, but its efficiency. The model was extended to hy-
drated aluminosilicates including cations and Coulombic inter-
actions were added.[381] The BKS force field was developed by van
Beest et al. to describe the geometries, andmechanical properties
of silicas and aluminophosphates.[382] The parameterization is
based on both ab initio and experimental data. The force field con-
tains four atom types: Si, O, Al, and P. One important observation
by the authors is that when the inter-atomic interactions goes
beyond nearest neighbors it is inevitable to also use macroscopic
information (here elastic constants) in the force field parame-
terization. Kramer et al. further outlined their route to develop
effective inter-atomic force fields for zeolites from ab initio
calculations on small clusters.[383] The Nicholas model used
bond-, bend-, torsion-potential, as well as Lennard–Jones and
Coulombic long-ranged interactions.[190] A Urey–Bradley term
was included on the Si─Si nonbonded distance for each Si─O─Si
angle to couple the bond-stretching to the bend-angle (in silicates
the Si─O bond is known to lengthen as the Si─O─Si bond angle
becomes smaller). When the Si─O─Si angle is close to linear, it
is possible for it to invert, causing a discontinuity in the torsional
potential that contains the Si─O─Si angle. Therefore, the torsion
potential was coupled to the related Si─O─Si angle, so that
the torsional energy goes smoothly to zero as the Si─O─Si
bond becomes linear. The force field has been demonstrated to
reproduce the structure and dynamics of silica sodalite with use
of energy minimization, normal mode analysis, and molecular
dynamics techniques. Schrimpf et al.[384] developed a mode
for zeolite NaY, accounting for the flexibility of the lattice. It is
mainly based on effective pair potentials between neighboring
atoms. The comparison of calculated and experimental data
shows that the main structural and dynamical properties of the
zeolite are reproduced.[384] Smirnov and coworkers parameter-
ized the simplified general valence force field (SGVFF) to study
window fluctuations and Raman and infrared spectra of zeolites
and aluminosiliciates.[385–388] In a comparison to experimental
data of spectra generated by different force fields, Bueno-Pérez
et al. found that the Nicholas and Hill force fields generate
the most similar IR spectra.[389] However, none of these force
fields allowed the identification of frameworks based on their
experimental spectra. Hill and Sauer derived a CFF force field
for the simulation of aluminum-free zeolite structures[390] and
aluminosilicates[391] from results of ab initio calculations on
molecular models which represent typical structural elements
of zeolites. In addition to the Nicholas forms, they also included
bond-bond, bond-bend, bend-bend, and angle-angle-torsion
terms. Flexibility is essential for studying properties of the
zeolites themselves, and for example transition between phases.
Yamahara et al. performed MD simulations on MFI and re-
produced the temperature-induced phase transition between
orthorhombic and monoclinic phases.[392] Bordat et al.[393] mod-
ified the BKS model with reduced partial atomic charges and
re-optimized covalent bond potential wells and reproduced

both the structure of the framework and its monoclinic to
orthorhombic transition. Combined with the SPC/E model of
water, the model also reproduces the important result that pure
unhydroxylated silica is hydrophobic.
Zeolites with germanium substitutions have also been mod-

eled with force fields with Buckingham potentials.[376] The study
of these zeolites has been interesting for the synthesis of pure
silica zeolites. These force fields allow the study of the position
and distribution of germanium atoms in the structure.[394,395] The
predicted germanium distribution agreed very well with experi-
mental NMR data.
To study diffusion of benzene in Na-Y and develop a transport

theory for cationic zeolites, Auerbach modeled the zeolite fully
flexible.[396] The Si and Al atoms were replaced with an average
tetrahedral-site atom (T-atom) because of the difficulty in exper-
imentally determining A1 distributions in disordered zeolites.
The work was the first long length scale simulation of diffusion
in cation containing zeolites. Jaramillo and Auerbach developed
and validated a new force field for cations in zeolites, which ex-
plicitly distinguishes Si and Al atoms, as well as different types
of oxygens in the framework.[397] Their molecular dynamics sim-
ulations show that most cations are immobile in Na-X and Na-
Y on the MD time scale, even at 1000 K. The MD simulations
also show that cation movement is highly correlated. Most of the
studies up to this time used force fields with the same partial
charge on silicon and aluminum. However, because of the close
proximity between cations and framework atoms this approach is
unsuited for modeling cations in zeolites and it cannot account
for the allocation of cations to specific positions. The model of
Jaramillo and Auerbach was extended by Calero et al. to model
adsorption of hydrocarbons in Na-Y and their results showed that
these cations not only have a large influence on diffusion but also
on adsorption.[398]

Jeffroy et al. provide a general and transferable force field able
to predict the structure of zeolites for various type of extra- frame-
work cations.[399] Based on simple functional forms and interac-
tions, it can be easily implemented in most common molecu-
lar simulation codes. The optimized force field is validated on
structural properties (lattice parameters and Si─O─Al angles)
for a large variety of zeolites, including faujasites of different
Si/Al ratio and different extra-framework cation types (Li+, Na+,
K+, Mg2+, Ca2+, and Co2+). The transferability of the force field
was successfully tested on zeolites of different topologies such as
FAU, LTA, MFI, FER, and TON. Shi et al. studied the tempera-
ture dependence of zeolite pore sizes using ab initio and classical
simulations[400] for all-silica zeolites SOD, FER, andMFI over the
temperature range 300–900 K. Such simulations are important
for understanding and predicting zeolite/guest fit, especially for
relatively bulky guest species. Several force fields were tested and
a modified BKS force field was found to give the best agreement
with the simulated properties listed above, especially for MFI.
Some more recent work focuses on moving toward more

generic force fields. Pedone et al. developed a new empirical
pairwise potential model for ionic and semi-ionic oxides.[401] Its
transferability and reliability have been demonstrated by testing
the potentials toward the prediction of structural andmechanical
properties of a wide range of silicates. Gabrieli et al. created a
new force field for fast MD simulations in flexible aluminosil-
icates by adapting to the CHARMM functional form.[402] This
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new force field allows the execution of large-scale simulations in
a parallel environment via the most common packages available
and correctly reproduce the crystallographic structures and the
vibrational properties for silicalite and zeolites Na A, Ca A, Na
Y, and Na X. The CHARMM functional form was also used by
Praprotnik et al.[403] to construct a new all-atom force field for
molecular dynamics simulation of an AlPO4-34 molecular sieve.
Zimmerman et al. proposed a modified CHARMM force-field

(ZHB potential) with low point charges for silica.[404] Lennard–
Jones zeolite parameters were chosen to be compatible with ex-
isting CHARMMparameters. Sahoo and Nair modified the ZHB
potential (MZHB) by reformulating its bonding potential, while
retaining the nonbonding potential as in the ZHB force-field.[405]

They showed that several structural and dynamic properties of
silica, like the IR spectrum, distribution functions, mechanical
properties, and negative thermal expansion computed using the
MZHBpotential agreewell with experimental data. Gu andHam-
mond developed a potential energy model for siliceous zeolites
based in part on fits to infrared (IR) spectra by extending the
MZHB potential.[406] This potential is tested in terms of its abil-
ity tomodel seven silica polymorphs (𝛼-quartz, 𝛼-cristobalite, and
five siliceous zeolites: zeolite Y, sodalite, silicalite-1, zeolite A,
and chabazite). A sensitivity analysis shows significant sensitivity
of the lattice parameter to the atomic partial charges, indicating
a possible target for the parameterization of the atomic partial
charges for crystalline materials. The Hill–Sauer force field for
silica has recently been improved and the transferability of the
force field was tested on 13 experimentally known silica eight-
ring zeolites.[407]

7.2. MOF Force Fields

The first work on flexible force fields was on the prototypical
IRMOF-1 structure and started around 2006. Greathouse and Al-
lendorf studied water decomposition of IRMOF-1 using a model
adapted from the generic CVFF force field.[408] To incorporate
the possible breakdown of the structure, the Zn–O interactions
were modeled using a nonbonding approach. Using this model,
Greathouse and Allendorf demonstrated a structural collapse oc-
curring around 4%water content. An understanding of the water
stability and adsorption concepts has been reviewed by Burtch, Ja-
suja, and Walton.[409] The Greathouse and Allendorf model was
later extended to other isoreticular zinc carboxylate coordina-
tion polymers.[410] Three other flexible force fields for IRMOF-
1 were introduced in 2007 by Amirjalayer et al.,[238] Dubbeldam
et al.,[411] and Han and Goddard.[412] Amirjalayer et al. extended
the MM3 force field and used a building block approach for
the parameterization of IRMOF-1. It correctly predicts the struc-
ture of IRMOF-1 and the MM3 force field was chosen for a
more accurate reproduction of the vibrational modes. The pa-
rameters for the Zn4O moiety were refined based on first prin-
ciples DFT of nonperiodic model systems.[413] Dubbeldam et al.
re-parameterized the Greathouse and Allendorf force field by
reproducing the experimental lattice parameters, and CO2 and
methane adsorption isotherms.[411] These authors showed that
IRMOFs have exceptionally large negative thermal expansion co-
efficients and that this phenomenon is likely a generic feature

of MOFs associated with the struts-and-spring, large-pore nature
of MOFs. Negative thermal expansion in MOFs is related to rel-
atively rigid linkers connected to rigid metal clusters via flexi-
ble groups such as carboxylate groups and the porosity of the
structure that allows adequate volume for motion. The linker
molecule undergoes transverse motions due to thermal vibra-
tions such that at lower temperatures the linker becomes more
rigid and stretches out. The simulations were in excellent agree-
ment with later experiments using neutron powder diffraction
and first-principles calculations using minimization of the free
energy.[414] Han and Goddard used the DREIDING force field to
further elucidate the mechanism of negative thermal expansion
in MOFs.[412] The magnitude of the negative thermal expansion
effect was found to be sensitive to the specific types of organic
linker used. This change in thermal expansion can also change
from negative to positive with the action of the pressure from
adsorbed molecules.[415] Huang et al. developed a force field for
IRMOF-1 and calculated the phonon thermal conductivity and
vibrational power spectra.[416] Using the approach based on the
MM-type force field Schmid and Tafipolsky,[417] and Amirjalayer
et al.[418] developed force fields for COF-102 and boron based co-
valent organic frameworks (COFs) in general, respectively.
The Dubbeldam model for IRMOF-1 force field reproduced

the experimental thermal expansion properties well. A later re-
finement was made to reproduce the ab initio elastic tensor.[419]

The classical model of IRMOF-1 of Dubbeldam et al. gave 11 =
29.3 GPa, 12 = 11.9 GPa, and 44 = 0.985 GPa. DFT calcula-
tions gave 11 = 29.2 GPa, 12 = 13.1 GPa, and 44 = 1.4 GPa for
LDA quantum using VASP,[70] and the experimental and DFT
combined work of Zhou and Yildirim found 11 = 29.42 GPa,
12 = 12.56 GPa, and 44 = 1.16 GPa.[71] In order to refine the
model for reproduction of elastic constants the generalized Hes-
sianmatrix was used to optimize the IRMOF-1 structure to a true
minimum with all positive eigenvalues. The second use of the
generalized Hessian was to analytically compute the elastic con-
stants with machine precision. This mode-following optimiza-
tion mechanism was previously applied to core-shell models of
minerals and zeolites and available in the GULP software.[307] Us-
ing this optimization procedure on MOFs showed that, for ex-
ample, the Greathouse and Allendorf minimum structure was a
structure with 32 negative eigenvalues. A further optimization
using generalized Hessian matrix showed that their model ac-
tually leads to an asymmetric and Zn4O distorted structure (in
disagreement with the experimental structure). Mode-following
optimization is therefore an incredibly powerful tool to identify
problems in force fields.
The IRMOF-1 structure does not show large-scale structural

changes. Rather the atoms vibrates largely around their equi-
librium positions. Ford et al. only found minor differences be-
tween the diffusion results from the rigid and flexible frame-
work models for several short n-alkanes and benzene in IRMOF-
1.[420] Extreme examples of framework flexibility are the ”breath-
ing MOFs,” with the MIL-53 structure as a prime example.[26]

Pore breathing structures can expand or shrink to admit guest
molecules. MIL-53 is a three dimensional MOF containing uni-
directional diamond-shaped channels. The open form of MIL-
53 (MIL-53lp) is obtained upon calcination of the as-synthesized
compound, while the adsorption of water at room tempera-
ture leads to the closed, narrow-pore form (MIL-53np). Upon
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heating, the water adsorption is reversed, leading to a recovery of
the open form.[26,421] Salles et al. used MD simulations to study
the unusually complex case of guest-induced structural transfor-
mations of MIL-53.[247] The model successfully captures the two-
step structural switching, as induced by CO2 adsorption in the Cr-
containing framework at finite temperatures. Coombes et al. de-
velop a hybrid force field combining ionic-model potentials, used
for modeling inorganic solids, with molecular mechanics terms
for the organic part. This gives an energy difference of close to
30 kJ mol−1 between the large- and narrow-pore forms.[422] Water
molecules are being more strongly stabilized in the narrow-pore
form which then favor pore closure at loadings of more than one
molecule per unit cell. The flexibility of MIL-53 is controlled by
weak dispersion forces.[423] Coudert et al. developed the osmotic
thermodynamic model, a general thermodynamic framework
for the understanding of guest-induced structural transitions in
hybrid organic–inorganic materials.[424] Another semi-analytical
model for rationalizing the breathing of MIL-53 type materials
was developed by Vanduyfhuys et al.[425] The model can predict
breathing behavior of other flexible materials, using as an input
the free energy of the empty host, the interaction energy between
a guest molecule and the host matrix and the pore volume acces-
sible to the guestmolecules. TheMIL-53models were further im-
proved by Vanduyfhuys et al. by being calibrated against density
functional theory calculations on nonperiodic clusters.[426] The
force field predicts geometries and cell parameters that compare
well with the experimental values both for the large and narrow
pore phases. The relative stability of the two phases critically de-
pends on the VDW parameters, and theMM3 dispersion interac-
tion has the tendency to overstabilize the np phase. Una-Triguero
et al.[427] studied a similar breathing effect of ZJU-198MOF. They
predicted a structural phase transition from a np to a lp phase
upon the adsorption of acetylene, ethene, and carbon dioxide.
However, methane and nitrogen are not able to produce struc-
tural changes in ZJU-198. The np phase corresponds with the
as-synthesized structure, while the lp phase was obtained by a
geometry optimization of the framework loaded with adsorbates.
These calculations were performed by energy minimization sim-
ulation using theDREIDING inter-atomic potential.Monte Carlo
simulations using the optimized structures were performed to
obtain the adsorption isotherms of small gases in ZJU-198, show-
ing a good agreement with the experimental data.
MIL-47 has VIVO6 octahedra linked by rigid terephthalate an-

ions and, in contrast to MIL-53, is quite rigid at ambient condi-
tions. Despite the same topology, the use of Al or Cr instead of V
leads to large-scalemotion. Because of that tight relation between
MIL-47 and MIL-53, the MIL-47 is also heavily studied. Hamon
et al. created a MIL-47(V) framework model by combining the
generic Universal Force Field for the inorganic part of the crys-
talline lattice (the metal center with its oxygen environment) and
the DREIDING inter-atomic potential for the organic part.[428]

MIL-47(VIV) does not collapse even upon high mechanical pres-
sure, but there is a structural transition for the MIL-47(VIV) solid
uponmechanical pressure.[429] Yot et al. developed a bonded force
field for treating the flexibility of the MOF framework that was
inspired on the isostructural MIL- 53(CrIII). Wieme et al. devel-
oped a first-principles-based force field forMIL-47. Specific terms
were added for the materials at hand to describe the asymmetry
of the 1D vanadium- oxide chain and to account for the flexibility

of the organic linkers.[430] The large-scale flexibility in MOFs re-
volves around the behavior of metal clusters that can be thought
of as “hinges” acting between rigid “struts.”[2,431] Based on this
observation, Heinen and Dubbeldam used fitting on elastic con-
stants fromDFT to refine the parameters of the hinges of the Yot-
model for MIL-47. To assess the effect of framework flexibility, it
was shown for MIL-47(V) that framework flexibility has negligi-
ble influence on the adsorption and diffusion properties for small
guest molecules.[337]

DMOF-1 is a 3D, jungle-gym-type MOF that breathes upon
adsorption of benzene or isopropyl alcohol, but remains rigid
with CO2 and H2.

[432] Using a flexible model for DMOF-1, de-
rived from ab initio data, Grosch and Paesani obtained funda-
mental insights into the molecular mechanisms that determine
the breathing behavior upon adsorption of benzene and iso-
propyl alcohol.[433] Changing the identity of the linear, ditopic lig-
and in either the 2D layer or the pillaring third dimension al-
lows targeted modulation of the chemical functionality, porosity,
and interpenetration of the framework.[434] By varying the func-
tional groups on the 1,4-benzenedicarboxylic acid (BDC) linker
of DMOF, tune the kinetic water stability of this isostructural,
pillared family of MOFs can be systematically tuned.[435] Also
cobalt-, nickel-, copper-, and zinc-based pillared MOFs have been
made.[436] Burtch et al. adapted the model of Grosch and Pae-
sani to study the rotation of the 1,4-diazabicyclo [2.2.2] octane
(DABCO) ligand in the pillared Zn-DMOF and Zn-DMOF-TM
(TM=tetramethyl) structures.[437] In another study, Burtch et al.
studied properties that are inherent to the DMOF frameworks
themselves such as thermal expansion and ligand flexibility.[438]

Besides IRMOF-1, themost famousMOF is probably Cu-BTC,
also known as HKUST-1.[439] At the open metal site, competi-
tive adsorption can take place that enhances adsorption of ad-
sorbates like CO2 when water molecules are present.[440] Ryder
et al. demonstrated that the co-existence of soft modes and in-
trinsic shear distortions connected to the THz lattice dynamics in
Cu-BTC dictate a range of anomalous elastic phenomena, for ex-
ample: negative Poisson’s ratio (auxeticity), negative thermal ex-
pansion (NTE), and exceedingly low shear moduli properties.[32]

A flexible force field for Cu-BTC was developed by Tafipolsky
et al.,[441] based on the established MM3 force field, extended by
additional cross terms and specific bond-stretching and angle-
bending terms for the square-planar CuO4 coordination envi-
ronment. Zhao et al. constructed a force field for Cu-BTC us-
ing density functional theory calculations and other parts from
other force fields, which reproduce well the experimental crys-
tal structure, negative thermal expansion, vibrational properties
as well as adsorption behavior in Cu-BTC.[442] STAM-1[443] is a
MOF constructed with the same organic linker (benzene-1,3,5-
tricarboxylic acid) and metal center as Cu-BTC. A monomethyl
esterification of the organic linker during the synthesis gives
rise to a new MOF with unique properties. STAM-1 shows a
gate-opening mechanism during the adsorption of light alcohols
and water. However, this effect was not observed for non-polar
molecules such as alkanes, carbon dioxide, oxygen, and nitro-
gen. This flexibility of the structure combined with the pres-
ence of hydrophilic/hydrophobic 1D channel system and open
metal sites results in interesting adsorption properties of this
material. Slawek et al.[444] investigated the origin of the gate
opening mechanism upon the adsorption of polar adsorbates
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in STAM-1 by means of experimental and molecular simula-
tion techniques. Slawek et al. used the flexible force field de-
veloped by Zhao et al.[442] for Cu-BTC, due to the similarity be-
tween the two MOFs. MC simulations in the osmotic ensemble
andMD simulations using this flexible force field provided an ac-
curate description of the framework flexibility upon the adsorp-
tion of methanol in STAM-1. The prediction of accurate multi-
component adsorption isotherms for mixtures containing olefin
and paraffin molecules in open-metal site materials like Cu-BTC
is difficult. Ideal Adsorption Solution Theory (IAST) fails, but
Heinen et al. have shown that accurate results can be obtained
by explicit binary-mixture simulations using a force field that cap-
tures the relevant orbital interactions using an additional charge-
induced-dipole-like term.[35] Recently, Durholt et al. parameter-
ized a coarse grained force field for the copper paddle-wheel
basedHKUST-1,[445] allowing to extend both length and timescale
in the simulation of MOFs.
The zirconium-based MOF UiO-66(Zr)[446] is comprised of zir-

coniumoxide clusters connected by benzene dicarboxylate (BDC)
linkers. The framework demonstrates excellent chemical, hy-
drothermal, andmechanical stability,[446] possesses reverse shape
selectivity in the adsorption of hexane and xylene isomers.[447,448]

Yang et al. studied CO2 and CH4 mixture adsorption and diffu-
sion in UiO-66 using a fully flexible framework.[449] The force
constants for the organic ligand in UiO-66(Zr) were directly
taken from the CVFF force field, while the equilibrium bond dis-
tances and angles were assigned by averaging the values obtained
from the DFT optimized crystal structure. The interactions be-
tween the inorganic and organic parts, that is, the torsion and
bend term, were re-parameterized. The LJ potential parameters
were taken from the DREIDING force field. A more transferable
model, the BTW-FF model, included UiO-66 and UiO-67 in the
initial parameterization set.[450]

ZIF materials combine the topology and stability of zeolites
with the chemical diversity of MOFs. Typical flexibility effect
in ZIFs are for example the gate-opening behavior observed in
ZIF-8,[451] and flexibility of ZIF-7 and its structural impact in al-
cohol adsorption.[452] Zheng et al. presented a full set of force
field parameters for ZIF-8, based on the AMBER database and
on previously computed partial charges, well reproducing the
ZIF-8 structural properties over a wide range of temperatures
and pressures.[453] The AMBER force field was also the basis of
the flexible force field of Hu et al.,[454] with several parameters
taken from quantum chemical calculations. A structural transi-
tion from crystalline to amorphous as found in experiment was
observed. Only with the structural flexibility included were the
predicted diffusivities of CH4 and CO2 close to reported data
in the literature. Also, generic force fields like DREIDING were
used to model ZIF-8.[455] Recently, more general and transferable
intra-molecular ZIF force fields were developed by Verploegh
et al.[456], ZIF-FF by Weng et al.[457] and MOF-FF for ZIFs by
Durholt et al.[458]

Several other general approaches and force field for MOFs
have been developed. MOF-FF, a third generation force field of
Schmid and coworkers is based on the building block method-
ology. The first generation has been discussed in the preceding
paragraphs.[238] In the second generation, a generic algorithm
was used to derive force field potentials for the zinc benzoate and
dilithium terephthalate.[336] In the third generation, a new en-

ergy expression was proposed as well as a new parameterization
scheme for Cu and Zn paddlewheel-based structures and Zn4O
and Zr6(OH)4-based MOFs.[459] A popular approach is to use a
building block methodology utilizing ab initio calculations on
nonperiodic clusters to fit parameters. QuickFF is a program for a
quick and easy derivation of force fields for metal-organic frame-
works from ab initio input.[460] The QuickFF force field protocol
was extended for an improved accuracy of structural, vibrational,
mechanical, and thermal properties of metal-organic frame-
works like IRMOF-1, MIL-53(Al), CAU-13, and NOTT-300.[461]

UFF4MOF[462,463] is an extension of the original Universal force
field UFF (UFF) that incorporates additional atom types found
in the Computation-Ready Experimental (CoRE) Database.[464]

The BTW-FF model is a transferable inter-atomic potential that
can be applied to MOFs regardless of metal or ligand identity.
The initial parameterization set included IRMOF-1, IRMOF-10,
IRMOF-14, UiO-66, UiO-67, and HKUST-1.[450] By extending
the BTW-FF model, Bristow et al. developed the vibrational
metal-organic framework (VMOF) force field.[465] Here, force
field parameters are explicitly fitted on DFT-PBEsol calculated
phonon spectra of periodic binary oxides such as ZnO, ZrO2,
TiO2, and Al2O3. A modified MM3 Buckingham potential for the
metal-linker interaction was needed to reproduce the ab initio
and experimental structural and mechanical properties of the
binary oxides more accurately.

8. Outlook

Bottom-Up vs Top-Down: Long-range interactions necessi-
tate the use of macroscopic information in the force field
parameterization.[382] Thatmeans that system properties like unit
cell size/shape and elastic constants are used to fit local param-
eters in a top-down approach. In contrast, local interactions, like
bond, bend, and torsions can be efficiently obtained from small
clusters using ab initio data as a reference. Small clusters are
unsuitable for obtaining long-range interactions, and more and
more approaches are based on using the full crystallographic unit
cell. Another reason for using full unit cell or even larger cells is
the modeling of defects.[466,467]

Ab Initio Approach vs Empirical Fitting: Parameters from one
force field are in principle not transferable to another. Force field
design and parameterization is highly non-trivial as evidenced
by the large number of different force fields. For the different
classes of force fields the explanation is rather obvious: they
have very different function forms, but the reasons per class
are different. For class I force fields, the lack of cross-terms
makes the diagonal parameters less transferable. Class II force
fields applied to systems where polarization and charge transfer
is negligible are potentially more accurate, but require more
parameters to optimize. However, most of the additional pa-
rameters are additional intra-molecular interactions that can be
obtained from genetic algorithm using ab initio structural and vi-
brational information as target data. The main reason why force
fields parameterization is difficult is the treatment of long-range
interactions.
VDW interactions are notoriously difficult to compute accu-

rately at the ab initio level. Yet they are responsible for most
of interaction energies involved in adsorption and for the
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large-scale structural changes of flexible MOFs. But even if you
could compute them with unlimited precision, there is no one-
to-one mapping of a classical force field on the QM PES. If one
traces the energy for a CO2 molecule in different orientations as
a function of distance to a metal-site, then all of these energy-
distance curves have different errors, but all of them have an
intrinsic error. This error will be magnified at high temperature
where entropy comes into play (and sometimes becomes domi-
nant). Therefore, fitting the ab initio data for VDW potentials is
often replaced by fitting to experimental data. Fitting VDW po-
tentials to experimental data (such as VLE curves) has additional
advantages. It “lumps” other errors, like the assumption of a
rigidmolecule, into themix which then are optimized as a whole.
Even when flexibility and polarization are not explicitly included
in the model, they implicitly enter via the fitted parameters.
Machine Learning: Molecular simulation is a powerful tool

to conduct “in-silico” experiments on atomic systems. DFT is
currently applicable to hundreds of atoms, but using a classical
formulation trillions of atoms can be used.[468] However, while
the increase in computational power and algorithms enables
simulation of larger systems that can be run for longer times,
one simulation itself is just one typical reproduction of the
physics. To really get to the bottom of the physical-, chemical-,
and biological phenomena that occur, it is vital to elucidate the
what, why, and hows. Therefore, even if you could atomically
simulate the system on large space and timescales, in many
cases it is preferable to simplify the system significantly to focus
on one particular aspect. For example, using transition state
for rare events, the reaction coordinate provides valuable infor-
mation what exactly happens during the transition and why it
occurs.
The main use of molecular simulation is to provide un-

derstanding. For this purpose, qualitative agreement with
experimental data is sufficient. Reproducing experiments is not
the end point, but rather the start point for obtaining understand-
ing. A decomposition of the total energy in terms with chemical
meaning is essential to be able to investigate microscopic origins
of physical behavior. For example, one could switch off terms
like electrostatics to check the effect and influence, or increase
point charges, or fix certain torsion angles, etc. Molecular sim-
ulations can therefore be viewed as “doing experiments on the
computer.”
Machine learning can be used as a machinary to better

parameterize an existing force field, but also as a new force
field approach by itself. Replacing a force field by a machine
learning approach has up- and downsides. A downside is that the
machine learning force field might contain correlations that are
artificial or potentially produce physics that is not real. However,
if one sees this approach as an additional tool amongst many
others, then one could take advantage of it in situations where
it really could do great things. One such example is screening of
a large set of structures for specific applications.[347,352,353,469–471]

Here, the problem of false positives would not matter too much
because it is used to reduce the millions of structures to a small
set of promising structures. This reduced dataset, usually a few
dozen, are then re-evaluated and ranked using conventional
simulation approaches. Zeolite databases on hypothetical struc-
tures have been used to analyze structure–property relations.[472]

The Computation-Ready Experimental (CoRE) Database is one

of the first attempts to construct a large set of MOF struc-
tures for analysis.[464,473,474] For the purpose of screening, new
methodologies are actively developed to generate large sets of
hypothetical structures,[475] as well as methods to detect and
avoid duplicates.[476,477] Potentially the results of screening could
depend on the used force field, but for small molecules not
much difference was found in the ranking of materials for the
tested DREIDING and UFF force fields.[478]

GPU Computing: Graphics processing units (GPUs) were
initially designed to deliver computer graphics. It was soon re-
alized that the massive parallelism could also be exploited in
many other computational tasks, for example, molecular simu-
lation. This leads to GPGPU (General Purpose GPU) program-
ming. Modern GPUs contain hundreds of processing units and
potentially offer large speedups compared to CPU-computing.
The growth of the market used to be driven by evolving graphic
games, but currently augmented reality (AR), virtual reality (VR),
and AI on the GPU are gaining a lot of traction.
The last decade GPU-accelerated molecular modeling has re-

ally matured.[479] Although capable of very high rates of floating-
point arithmetic, GPUs are also intrinsically highly parallel pro-
cessors and their effective exploitation typically requires ex-
tensive software refactoring and development.[480] CPU paral-
lelism can be achieved with SIMD, OPENMP, and MPI which is
more task-parallel, but for the GPU specialist programming lan-
guages such as CUDA and OpenCL were developed. Many force
field implementations have now GPU-support, for example,
Amber[481–483] AMOEBA,[484] and MFF and UFF.[485] Examples of
codes that are designed to run on the GPU are the OpenMM[486]

for MD, and GOMC[487] for MC. The programming paradigms
for GPU computing are vastly different in CUDA/OpenCL.
In these languages, a computation must be mapped to work-
groups of work-items that can be executed in parallel on the
compute units. That means that new algorithms had to be de-
veloped that map optimally on GPU hardware. Examples of
thesemodifications are: nonbonded-interactions[488] and efficient
cell list implementations,[489] electrostatics,[490–492] many-body
potentials,[493,494] ReaxFF,[495] rigid-body constraints,[496] Monte
Carlo,[487,497–501] and MD.[502–504] Other use cases are to speed up
post-processing,[505] screening,[506] accelerating analysis of void
space in porous materials on multicore and GPU platforms,[507]

and boosting theoretical zeolitic framework generation for the de-
termination of new materials structures.[508] The iRASPA GPU-
accelerated visualization software for materials allows interactive
examination of energy surfaces and computation of surface areas
and void volume[509]

While on the CPU there is little difference in performance be-
tween double- and single-precision (except when using SIMD
units), the GPU is optimized for single-precision (which is suffi-
cient for the dominant use case: graphics). Besides that double-
precision is much slower on the GPU, there are also signifi-
cantly less computing units of it. Therefore, most GPU codes use
only single-precision.[510] However, for challenging systems the
use of single-floating point precision may result in quantitatively
and even physically wrong results.[511] The goal of many algo-
rithms is to obtain the same accuracy but better performancewith
more low-precision computations. The relation between compu-
tational precision and final accuracy is complicated. The chal-
lenge in using single-precision operations is the reduction of
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cancellation or round-off errors in the calculation results. One
solution is to use mixed precision models,[512] another one is
to use quasi double-precision methods to accelerate scientific
applications.[510] Many simulation methods require a large num-
ber of independent random variables generated at each step.
Some solutions include generating randomnumbers on the CPU
and uploading these sets to the GPU before use. However, also
solutions have been proposed that generate random numbers on
the GPU.[513,514]

The future looks bright for GPGPU. Increasing higher perfor-
mance will be achieved by increasing the number of computing
units. Also tensor-cores have been recently introduced for ac-
celeration of ML on the GPU. An alternative is that also on
the CPU side more and more cores are and will be introduced.
However, GPUs currently significantly outperform CPUs on
both bandwidth and floating point operations, and this gap
is growing.
Open Force Field Initiative: Current force fields are very suc-

cessful at what they were constructed for, but at the same time
limited in accuracy and transferability when applied to other sys-
tems. There is no “one force field to rule them all,” as evidenced
by the large amount of different force fields in common use (Ta-
ble 1). The core of present day force fields has remained almost
the same since the 1980s and 1990s. Relatively few new efforts
have been undertaken since then. Developing force field is hard
and time-consuming.
Scientific software is called a “community code” if it is freely

available, written by a team of developers who welcome user in-
put, and has attracted users beyond the developers.[515] Recent
contributions to the LAMMPS code by other authors are, for ex-
ample, an implementation of the neural network potential within
the molecular dynamics package LAMMPS,[516] OCTP, a tool for
on-the-fly calculation of transport properties of fluids with the
order-n algorithm,[517] and PyLAT, an open-source Python-based
post-processing routines to compute viscosities, self-diffusivities,
ionic conductivities, molecule or ion pair lifetimes, dielectric
constants, and radial distribution functions using best-practice
methods.[518]

The Open Force Field Consortium (https://openforcefield.org)
is one such effort to bundle resources via community codes.
The Open Force Field Consortium aims to solve these and other
significant problems by developing a new generation of open
force fields, along with the open software infrastructure and
open datasets to advance the field and accelerate progress. The
consortium seeks to improve force field science and accelerate
progress. It aims to make force field fitting/extension straight-
forward by automating derivation of: i) numerical parameters ii)
classification of atom types, bond types, etc., and iii) confidence
metrics.
The initiative generate/curates open datasets necessary for

producing high-accuracy (bio-)molecular force fields, but also de-
velops a machinery to automatically parameterize molecular me-
chanics force fields. One important aspect is automating chemi-
cal perception, that is, the way force field parameters are assigned
to a molecule based on chemical environment. The SMIRKS
Native Open Force Field (SMIRNOFF) avoids the complexities
of atom typing and the format allows for changes to easily be
made in both the chemical perception and quantitative param-
eter space.[519]
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