

UvA-DARE (Digital Academic Repository)

An example concerning Sadullaev's boundary relative extremal functions

Wiegerinck, J.J.O.O.

DOI

10.4064/ap180604-19-6

Publication date 2019

Document VersionSubmitted manuscript

Published in Annales Polonici mathematici

Link to publication

Citation for published version (APA):

Wiegerinck, J. J. O. O. (2019). An example concerning Sadullaev's boundary relative extremal functions. *Annales Polonici mathematici*, *123*, 505-508. https://doi.org/10.4064/ap180604-19-6

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

AN EXAMPLE CONCERNING SADULLAEV'S BOUNDARY RELATIVE EXTREMAL FUNCTIONS

JAN WIEGERINCK

In memory of Józef Siciak

ABSTRACT. We exhibit a smoothly bounded domain Ω with the property that for suitable $K \subset \partial \Omega$ and $z \in \Omega$ the Sadullaev boundary relative extremal functions satisfy the inequality $\omega_1(z,K,\Omega) < \omega_2(z,K,\Omega) \leqslant \omega(z,K,\Omega)$.

1. Introduction

In [5] Sadullaev introduced several so-called boundary relative extremal functions for compact sets K in the boundary of domains $D \subset \mathbb{C}^n$, and asked whether their regularizations are perhaps always equal. Recently Djire and the author [1, 2] gave a positive answer in certain cases where D and K are particularly nice.

In this note we show that in general equality does not hold. The example is formed by a suitable compact set in the boundary of the domain Ω that was constructed by Fornæss and the author [3] as an example of a domain D where bounded plurisubharmonic functions that are continuous on D cannot be approximated by plurisubharmonic functions that are continuous on \overline{D} . We start by briefly recalling the definitions of boundary relative extremal functions and the construction of the domain Ω .

1.1. Boundary relative extremal functions. We follow Sadullaev [5, Section 27]. Let D be a domain with smooth boundary in \mathbb{C}^n , $\xi \in \partial D$, and $A_{\alpha}(\xi) = \{z \in D; |z - \xi| < \alpha \delta_{\xi}(z)\}$, where $\alpha \geqslant 1$ and $\delta_{\xi}(z)$ is the distance from z to the tangent plane at ξ to ∂D . For a function u defined on D, put

$$\tilde{u}(\xi) = \sup_{\alpha > 1} \limsup_{\substack{z \to \xi \\ z \in A_{\alpha}(\xi)}} u(z), \quad \xi \in \partial D.$$

Definition 1.1. Let PSH(D) denote the plurisubharmonic functions on D and let $K \subset \partial D$ be compact. We define the following boundary relative extremal functions

(1) $\omega(z, K, D) = \sup\{u(z) : u \in PSH(D), u \leq 0, \tilde{u}|_{K} \leq -1\};$

(2) $\omega_1(z, K, D) = \sup\{u(z) : u \in PSH(D) \cap C(\overline{D}), u \leqslant 0, u|_K \leqslant -1\};$

 $\omega_1(z, K, D) = \sup\{u(z) : u \in PSH(D) \cap C(D), u \leqslant 0, u|_K \leqslant -1\};$ (3)

$$\omega_2(z,K,D) = \sup\{u(z) : u \in \mathrm{PSH}(D), u \leqslant 0, \limsup_{\substack{z \to \xi \\ z \in D}} \leqslant -1, \text{ for all } \xi \in K\}.$$

The upper semi-continuous regularization u^* of a function u on a domain D is defined as

$$u^*(z) = \limsup_{w \to z} \{u(w)\}.$$

The functions ω^* , ω_1^* , ω_2^* are plurisubharmonic. Observing that $\omega_1(z, K, D) \leqslant \omega_2(z, K, D) \leqslant \omega(z, K, D)$, Sadullaev's question is for what j is $\omega^*(z, K, D) \equiv \omega_i^*(z, K, D)$?

 $^{2000\} Mathematics\ Subject\ Classification.\ 32 U05, 32 U20.$

Key words and phrases. plurisubharmonic function; boundary relative extremal function.

1.2. The domain Ω . We briefly recall the construction and properties of the domain Ω from [3].

(1.1)
$$\Omega = \{(z, w) \in \mathbb{C}^2; |w - e^{i\varphi(|z|)}|^2 < r(|z|)\}.$$

Here r and φ are in $\mathbb{C}^{\infty}(\mathbb{R})$ with the following properties: $-1 \leqslant r \leqslant 2$; $r(t) \leqslant 0$ for $t \leqslant 1$ and for $t \geqslant 17$; $r(t) \equiv 1$ for $3 \leqslant t \leqslant 8$ and for $10 \leqslant t \leqslant 15$; r(t) takes its maximum value = 2 precisely at t = 2, 9, and 16. Moreover, r'(t) > 0 on $1 \leqslant t < 2$, 8 < t < 9 and 15 < t < 16, while f'(t) < 0 on 2 < t < 3, 9 < t < 10, and $16 < t \leqslant 17$. Next φ satisfies $\varphi(t) < -\pi/2$ for $t \leqslant 4$ and for $t \geqslant 14$; $\varphi(t) > \pi/2 + 100$ for $5 \leqslant t \leqslant 6$ and for $12 \leqslant t \leqslant 13$ and $\varphi(t) < -\pi/2 + 100$ for 7 < t < 10, and we demand in addition that $\varphi \leqslant 108$.

From [3] we recall that Ω is a Hartogs domain with smooth boundary, and that the annulus

$$(1.2) A = \{(z, w); w = 0, 2 \le |z| \le 15\}$$

is contained in $\overline{\Omega}$.

2. Negative answer to Sadullaev's question

Theorem 2.1. Let $K = \{(z, w \in \partial \Omega; |z| = 2 \text{ or } |z| = 16\}$. Then

$$\omega_1((z,w),K,\Omega) < \omega_2((z,w),K,\Omega)$$

for (z, w) in an open neighborhood of $\{w = 0, |z| = 9\}$.

Proof. Let $u \in \mathrm{PSH}(\Omega) \cap C(\overline{\Omega})$, $u \leq 0$, $u|_K \leq -1$. Then by the maximum principle, $|u| \leq -1$ on the discs $|w - e^{i\varphi(|z|)}| \leq 2$, where z is fixed and satisfies |z| = 2 or |z| = 16, and in particular on the circles $C_1(w) = \{(z, w) : |z| = 2\}$ and $C_2(w) = \{(z, w) : |z| = 16\}$, where |w| < 1. Because Ω is a smoothly bounded domain, it follows from [3, Theorem 1] (see also [4] for recent extensions of this theorem), that u can be approximated uniformly on $\overline{\Omega}$ by smooth plurisubharmonic functions v defined on shrinking neighborhoods of $\overline{\Omega}$.

Let $\Omega_{\delta} = \{\zeta \in \mathbb{C}^2; d(\zeta, \overline{\Omega}) < \delta\}$. Then given $\varepsilon > 0$, there exist $\delta > 0$ and $v \in \mathrm{PSH}(\Omega_{\delta})$, such that $|u - v| < \varepsilon$ on $\overline{\Omega}$. For $|w| < \delta$ the annulus $A_w = \{(z, w) : 2 \leqslant |z| \leqslant 16\}$ is contained in Ω_{δ} . On its boundary, which equals $C_1(w) \cup C_2(w)$, we have that $v < -1 + \varepsilon$, hence this also holds on A_w . It follows that $u < -1 + 2\varepsilon$ on $A_w \cap \overline{\Omega}$, in particular $u < -1 + 2\varepsilon$ on the open set $V = \{(z, w) : 8 < |z| < 10, |w| < \delta, |w| < r(|z|) - 1\} \subset \Omega$. It follows that $\omega_1((z, w), K, \Omega) \leqslant -1 + 2\varepsilon$ on V, and therefore also $\omega_1^*((z, w), K, \Omega) \leqslant -1 + 2\varepsilon$ on V.

Next we will construct a plurisubharmonic function in the family that determines ω_2 . The construction is as in [3, Section 2]. On $\Omega \cap (\{3 < |z| < 8\} \cup \{10 < |z| < 15\})$ there exists a continuous branch of $\arg w$, denoted by h(z, w), such that

$$\varphi(z) - \pi/2 \leqslant h(z, w) \leqslant \varphi(z) + \pi/2.$$

In [3] we constructed the following plurisubharmonic function.

$$f(z,w) = \begin{cases} 0 & \text{if } |z| < 4 \text{ or if } |z| > 14 \\ \max\{0, h(z, w)\} & \text{if } 3 < |z| < 6 \text{ or if } 12 < |z| < 14 \\ \max\{100, h(z, w)\} & \text{if } 5 < |z| < 8 \text{ or if } 10 < |z| < 13 \\ 100 & \text{if } 7 < |z| < 11. \end{cases}$$

It satisfies $f \leq 110$ on Ω , $f \equiv 0$ on $\{|z| \leq 3\}$ and on $\{|z| \geqslant 14\}$, hence f extends continuously by 0 to $\overline{\Omega} \cap (\{|z| \leq 3\} \cup \{|z| \geqslant 14\})$, and f = 100 on V. The plurisubharmonic function g on Ω defined by

$$g(\zeta) = \frac{f(\zeta) - 110}{110}, \quad (\zeta = (z, w))$$

is negative, identically equal to -1 on $\overline{\Omega} \cap (\{|z| \leq 3\} \cup \{|z| \geqslant 14\})$, and equal to -10/11 on V. Hence also $\omega_2^*((z,w),K,\Omega) \geqslant \omega_2((z,w),K,\Omega) \geqslant -10/11$ on V. Choosing $\varepsilon < 1/10$ completes the proof.

References

- [1] Djire, I. K., Wiegerinck, J. Characterizations of boundary pluripolar hulls, Comp. Var. and Ellip. Equat. 61 (2016) no. 8, 1133–1144.
- [2] Djire, I. K., Wiegerinck, J. On a question of Sadullaev concerning boundary relative extremal functions, arXiv:1611.01132v3 [math.CV]. To appear in Math. Scand.
- [3] Fornæss, J.E., Wiegerinck, J. Approximation of plurisubharmonic functions. Ark. Mat. 27 (1989), 257—272.
- [4] Persson, H., Wiegerinck, J. A note on approximation of plurisubharmonic functions. Ark. Mat. 55 (2017), no. 1, 229—241.
- [5] Sadullaev, A. Plurisubharmonic measures and capacities on complex manifolds, (Russian) Uspekhi Mat. Nauk **36** (1981) no. 4, 53–105. English translation in Russian Math. Surveys, **36** (1981), no. 4, 61–119.

KdV Institute for Mathematics, University of Amsterdam, Science Park 105-107, P.O. box 94248, $1090~{\rm GE}$ Amsterdam, The Netherlands

 $E\text{-}mail\ address{:}\ \texttt{j.j.o.o.wiegerinck@uva.nl}$