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Computing Minimax Decisions with Incomplete Observations

Thijs van Ommen T.VANOMMEN@UVA.NL

Universiteit van Amsterdam
Amsterdam (The Netherlands)

Abstract
Decision makers must often base their decisions on incomplete (coarse) data. Recent research has
shown that in a wide variety of coarse data problems, minimax optimal strategies can be recognized
using a simple probabilistic condition. This paper develops a computational method to find such
strategies in special cases, and shows what difficulties may arise in more general cases.
Keywords: coarse data; incomplete observations; minimax decision making.

1. Introduction

Suppose that we are faced with a decision where the loss we will incur depends on the outcome x
of a random experiment. While the distribution of x is known, our observation of x is incomplete:
we only have access to a coarse observation y, a set that we know includes x but may also include
other elements. An infamous example of this problem is the Monty Hall puzzle (Selvin, 1975).

Example 1 In a game show, a car is hidden uniformly at random behind one of three doors. The
contestant picks a door; we will assume the middle one. But now the quizmaster steps in and opens
one of the two remaining doors, revealing a goat behind it. Should the contestant switch to the
remaining door, or stick with his initial guess?

We will make the standard assumptions that the quizmaster always opens a door, always with a
goat behind it. Then this is an instance of the incomplete data problem, where we will either
observe y = {left,middle} (if the quizmaster opens the rightmost door) or y = {middle, right} (if
he opens the leftmost door). It is well known—but quite surprising—that it is wrong to conclude
the remaining doors now each have probability 1/2 of hiding the car. But then what probability
distribution (or set of distributions) should we use to base our decision on?

A key issue here is that we do not know the coarsening mechanism, the random process that
maps the true outcome x to the set y we observe. A common assumption about this mechanism
is coarsening at random (CAR), which says that for each set y, the probability that the coarsening
mechanism reports y is the same no matter which outcome x ∈ y is the true outcome (Heitjan and
Rubin, 1991). But this is a strong assumption that often fails to hold in practice; in fact, in the
Monty Hall puzzle, it can never hold (Grünwald and Halpern, 2003; Gill and Grünwald, 2008).

An approach that avoids any assumptions on the coarsening mechanism is to model the problem
using the credal set P of all joint distributions P on (x, y) that are (a) consistent with the known
distribution of x, and (b) satisfy P (x, y) = 0 for x 6∈ y. This (convex) set P represents both
our aleatory uncertainty about x and our epistemic uncertainty about its relation with y. To then
incorporate an observation y, the generalized Bayes rule can be used; De Cooman and Zaffalon
(2004) apply this approach to coarse data problems. The resulting posterior on the outcomes exhibits
dilation (Seidenfeld and Wasserman, 1993): the prior was a precise distribution, but the posterior
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may be a large set of distributions. If we want to be sure that the true distribution of x given y
is included in this set, then this phenomenon is unavoidable. However, it may lead to suboptimal
decisions, as described by Augustin (2003), Grünwald and Halpern (2011), and others.

By formulating a strategy before making an observation, the effect of dilation on decisions can
be avoided (Seidenfeld, 2004). This approach has been investigated for coarse data problems by
Van Ommen et al. (2016), who found that for many situations, minimax strategies are characterized
by the RCAR condition (which looks like the CAR condition, but with x and y reversed).

To apply these results in practice, we would like efficient computational methods to find RCAR
strategies. How difficult this is depends largely on the family of possible observations. In this
paper, we describe a computational method for a restricted class of such families. This reveals a
relation between minimax optimal strategies and statistical independence. We also point out the
various computational difficulties that may occur in larger classes of families: there finding an exact
solution may involve a combinatorial search, or solving polynomial (rather than linear) equations.

This paper is structured as follows. In Section 2, we summarize the relevant results of Van
Ommen et al. (2016). Section 3 introduces the main tool: homogeneous induced colourings. These
may not exist for all families of possible observations, which leads to a categorization of such
families. A computational procedure, and its limitations, are described in Section 4. Section 5
interprets this procedure for the families where it is guaranteed to work. Section 6 concludes.

The contents of Sections 3 to 5 are adapted from Chapter 7 of PhD thesis (Van Ommen, 2015).

2. Optimality of RCAR Strategies

This section summarizes the main results from Van Ommen et al. (2016). We consider coarse
data decision problems with finite outcome space X . The decision maker must pick an action
based on a coarse observation y ⊆ X , which we call a message. The choice of action will de-
pend not only on the received message, but on the entire set of messages that the coarsening
mechanism might produce: the message structure Y ⊂ 2X (in the Monty Hall example, this is
Y = {{left,middle}, {middle, right}}). It will also depend on the (known) distribution p of the out-
comes, which we assume to be nowhere zero, and on the loss function L : X × A → [0,∞].1 We
assume throughout that L satisfies the technical conditions in (Van Ommen et al., 2016, Theorem 3);
these are in particular satisfied for all finite L, and also for logarithmic loss L(x,Q) = − logQ(x).

The decision problem is modelled as a zero-sum game between a quizmaster and a contestant.
The (imaginary) quizmaster picks as strategy a joint distribution P onX×Y from the credal setP =
{P |

∑
y P (x, y) = px for all x, P (x, y) = 0 for all y ∈ Y, x /∈ y}. Simultaneously, the contestant

picks as strategy a function A : Y → A. The two players seek to maximize resp. minimize the
expected loss ∑

x,y

P (x, y)L(x,A(y)) =
∑
x

px
∑

y∈Y,y3x
P (y | x)L(x,A(y)),

where the second expression reflects that the quizmaster’s influence is limited to P (y | x), with x
always sampled from the fixed marginal p. Strategies achieving this maximum/minimum are called
worst-case optimal. If the action space is rich enough, this game has a Nash equilibrium; then

1. In (Van Ommen et al., 2016), the decision maker’s action space A is always taken to be the set of distributions on
X , and the actions are interpreted as probability updates. But due to the generality of the loss functions allowed, the
same theory can be applied for arbitrary action spaces.
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Figure 1: Overview of classes of message structures. As shown by Van Ommen et al. (2016),
the RCAR condition characterizes worst-case optimal P for many games, including all graph and
matroid games. The other classes shown in this figure are defined and explored in Sections 3 and 5.

given a worst-case (maximin) optimal P for the quizmaster, we can easily determine a worst-case
(minimax) optimal A for the contestant.2 Thus we focus on finding a worst-case optimal P .

For several classes of games, a strategy P is worst-case optimal if, for some vector q ∈ [0, 1]X ,
it satisfies the RCAR condition:

qx = P (x | y) for all y ∈ Y with P (y) > 0 and all x ∈ y, and∑
x∈y

qx ≤ 1 for all y ∈ Y. (1)

Such a strategy is called an RCAR strategy, and the vector q is called an RCAR vector. The three
classes of games where this holds are illustrated in Figure 1: if L is logarithmic loss or an affine
transformation of it (this represents Kelly gambling games with arbitrary payoffs); if Y is a graph
(each message consists of two outcomes); and if Y is a matroid (defined in (3) below). In the latter
two cases, there is also a symmetry condition on the loss function L. What is surprising here is that,
as long as we are in one of these cases, we can find a worst-case optimal P without knowing what
the loss function is, because the RCAR condition is purely probabilistic and does not depend on L.
The rest of this paper deals with the problem of computing an RCAR strategy for a given game.

3. Induced Colourings

Fix a set Y ′ ⊆ Y with
⋃

y∈Y ′ y = X , and assume that an RCAR strategy P exists with support
YP := {y ∈ Y | P (y) > 0} equal to Y ′. (For example, we may in many cases take Y ′ = Y .)
We will now consider different properties of YP that may help us find P . The classes of message

2. In many cases, A(y) is simply the optimal response to P (· | y) for each y ∈ Y . This is not always well-defined; a
general solution is given by Theorem 7 of (Van Ommen et al., 2016), using Theorem 3 to determine λ∗.
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structures defined by these properties, and the inclusion relations between them that we establish
here, are shown graphically in Figure 1, and examples are given in Figure 2.

Consider the system of linear equations∑
x∈y

qx = 1 for all y ∈ Y ′. (2)

If an RCAR strategy P ∈ P exists with support Y ′ and RCAR vector q, then q is positive and
satisfies (2). The converse is not true: if Y ′ 6= Y , then (1) additionally imposes inequalities on
messages y ∈ Y \ Y ′. We will start our search for RCAR strategies by examining the solutions
of (2). (A similar system is studied in the CAR literature, where it plays a role in characterizing
message structures that admit a CAR coarsening mechanism; see Grünwald and Halpern (2003);
Jaeger (2005); Gill and Grünwald (2008). Since we study RCAR rather than CAR, the roles of
outcomes and messages are reversed here.)

Define a colouring as a partition of X . We say a colouring is induced by a set of messages Y ′ if
the system of linear equations (2) has at least one solution q with qx > 0 for all x, and x, x′ are in the
same class of the colouring (‘have the same colour’) if and only if qx = qx′ for all such solutions to
that system (in other words, the colour classes are the equivalence classes of this relation on X ). If
the system has at least one positive solution, then the colouring induced by Y ′ is unique; otherwise,
there is no induced colouring.

We say a colouring is homogeneous on Y ′ if the number of outcomes of each colour is the
same for every message in Y ′ (for example, if each message consists of one ‘red’ and two ‘blue’
outcomes). This is only possible if Y ′ is uniform: all messages in Y ′ have the same size. We
are interested in Y ′ whose induced colouring is homogeneous. One class of such Y ′ is defined
in terms of pairs of messages y1, y2 that differ by the exchange of one outcome, meaning that
|y1\y2| = |y2\y1| = 1. We callY ′ exchange-connected if, for each pair of messages y(a), y(b) ∈ Y ′,
there exists a sequence of messages y1, y2, . . . , y` ∈ Y ′ (an exchange-path) with y1 = y(a) and
y` = y(b) whose adjacent messages differ by the exchange of one outcome. Finally, Y ′ is a matroid
if it satisfies the basis exchange property: for all y1, y2 ∈ Y ′ and x1 ∈ y1 \ y2,

(y1 \ {x1}) ∪ {x2} ∈ Y ′ for some x2 ∈ y2 \ y1. (3)

Figure 2 illustrates these definitions with a few examples. Each table represents a message
structure Y as an incidence matrix: each row represents a message, and (coloured) stars mark the
outcomes it contains.

The message structure shown in Figure 2a has no induced colouring: any solution of (2) must
have qx3 = 1−qx4 = qx5 = 1−qx1 and thus qx2 = 0, so there is no positive solution, and it follows
that no RCAR strategy P exists with P (y) > 0 for all y ∈ Y ′. On the other hand, any uniform
game has an induced colouring, because there is at least one solution to (2):

qx = 1/k for all x ∈ X , (4)

where k is the size of the game’s messages.
Figures 2b and 2c are examples of message structures that do have an induced colouring, but

one that is not homogeneous. In both these examples, all outcomes have different colours in the
induced colouring, because no pair of outcomes necessarily has the same value of q in a solution of
(2). The message structure shown in Figure 2c will be revisited in Example 2 in the next section.
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x1 x2 x3 x4 x5
y1 ∗ ∗ ∗ − −
y2 − − ∗ ∗ −
y3 − − − ∗ ∗
y4 ∗ − − − ∗

(a) No induced colouring.

x1 x2 x3 x4
y1 ∗ ∗ − −
y2 − ∗ ∗ ∗

(b) Induced colouring but not uniform.

x1 x2 x3 x4 x5 x6
y1 ∗ ∗ ∗ − − −
y2 − − ∗ ∗ ∗ −
y3 ∗ − − − ∗ ∗

(c) Uniform but induced colouring not homoge-
neous.

x1 x2 x3 x4 x5 x6
y1 ∗ ∗ ∗ − − −
y2 − − ∗ ∗ ∗ −
y3 ∗ − − − ∗ ∗
y4 − ∗ − ∗ − ∗

(d) Homogeneous induced colouring but not
exchange-connected.

x1 x2 x3 x4 x5
y1 ∗ ∗ ∗ − −
y2 − ∗ ∗ ∗ −
y3 − − ∗ ∗ ∗

(e) Exchange-connected but not a matroid.

x1 x2 x3 x4 x5
y1 ∗ ∗ ∗ − −
y2 ∗ ∗ − ∗ −
y3 ∗ − ∗ ∗ −
y4 ∗ − ∗ − ∗
y5 ∗ − − ∗ ∗

(f) Matroid.

Figure 2: Examples of messages structures and their induced colourings.

The three remaining message structures do have homogeneous induced colourings. Figure 2d
shows that it is possible for a message structure to have a homogeneous induced colouring without
being exchange-connected. In this message structure, which adds the message y4 to the structure
in Figure 2c, each pair of messages differs by two exchanges. Yet the added message changes the
induced colouring: for example, qx1 = qx4 follows because by the equalities from (2) on y1 and
y3, 1 − qx1 = qx2 + qx3 = qx5 + qx6 , and by y2 and y4, 1 − qx4 = qx3 + qx5 = qx2 + qx6 ; thus
2− 2qx1 = 2− 2qx4 = qx2 + qx3 + qx5 + qx6 .

The message structure shown in Figure 2e is exchange-connected. For such structures, it easy
to determine the induced (homogeneous) colouring: if messages y1, y2 differ by the exchange of
one outcome (x1 for x2), then any solution of (2) must satisfy qx1 = qx2 , so such x1, x2 must be
the same colour. Any vector q that satisfies all these equalities and satisfies

∑
x∈y qx = 1 for any

one message y ∈ Y ′ satisfies (2) for all messages in Y ′, so this determines the induced colouring.
This colouring is clearly homogeneous on any pair of message that differ by the exchange of one
outcome; because exchange-paths exist between all pairs of messages, it follows that the induced
colouring of an exchange-connected game is homogeneous.

Finally, the class of matroid games is a subclass of exchange-connected games: (3) requires the
existence of not just one, but possibly many different exchange-paths between any pair of messages.
Figure 2f gives an example. The structure in Figure 2e is not a matroid: there is no outcome in y3\y1
that can be added to y1 \ {x2} = {x1, x3} to make a message.
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The following lemma gives two alternate characterizations of the induced colouring of a ma-
troid. The first of these is in terms of a concept from matroid theory: the colour classes of the
induced colouring coincide with the 2-connected components of the matroid. (We refer to Oxley
(2011) for the definition.) We observed above (when discussing Figure 2e) that if messages exist
that differ in the exchange of one outcome, then the outcomes being exchanged must be the same
colour. The second characterization shows that for matroids, the converse also holds.

Lemma 1 (Matroid colouring) Given a matroid (X ,Y) and two elements x1, x2 ∈ X , the follow-
ing statements are equivalent:

1. x1 and x2 are in the same colour class of the induced colouring of Y;

2. x1 and x2 are in the same 2-connected component of (X ,Y);

3. There exist y1, y2 ∈ Y such that y1 \ y2 = {x1} and y2 \ y1 = {x2}.

4. A Computational Procedure for Finding RCAR Strategies

Consider the case that Y ′ induces a homogeneous colouring, and assume as before that an RCAR
strategy P exists with YP = Y ′. Then the corresponding RCAR vector q must be a solution of the
linear system (2). Additionally, P must agree with the marginal p. These constraints allow us to
compute the vector q directly.

Let S be the set of all outcomes with a particular colour. Then there is some value qS such that
P (x | y) = qx = qS for all y ∈ Y , x ∈ S ∩ y. Let kS = |S ∩ y| (this is independent of y by
homogeneity). We must have

kSqS = kSqS
∑
y

P (y) =
∑
y

kSP (y)qS =
∑
y

∑
x∈S∩y

P (y)qS =
∑
x∈S

∑
y3x

P (y)P (x | y) =
∑
x∈S

px,

so that qS can be computed by

qS =
1

kS

∑
x∈S

px. (5)

A simple case is when the induced colouring assigns the same colour to all outcomes: then we see
that as in (4), we get qx = 1/k for all x ∈ X , where k is the size of the messages. When a colour
consists of just one outcome x (which must then be an element of every message for the colouring
to be homogeneous), we find qx = px.

If an RCAR strategy P exists with YP = Y ′ where Y ′ induces a homogeneous colouring, then
P must have the vector q determined by (5) as its RCAR vector. However, it may be the case that
no such strategy exists. To find P if it exists, we still need to determine the P (y)’s. We can find
a nonnegative solution or determine that no nonnegative solution exists by solving the following
linear programming problem (which we can do in polynomial time):

maximize
∑
y∈Y

ry

subject to
∑
y3x

ry ≤
px
qx

for all x ∈ X ,
(6)
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with r ∈ RY≥0. If a vector achieving
∑

y∈Y ry = 1 is found, we have a strategy P with r as the
marginal on messages (P (x, y) = qxry for all x ∈ y). If no vector r achieves the value 1, there is
no RCAR strategy P satisfying the assumption YP = Y ′.

Now we may want to apply this procedure in practice to find an RCAR strategy for a given
game. (By Lemma 11 from Van Ommen et al. (2016), such a strategy always exists.)

When doing so we encounter two problems: we need to provide the procedure with an Y ′ such
that

⋃
Y ′ = X , and even if we have an idea about what Y ′ to take, it may not have a homogeneous

induced colouring. Still, let us investigate what happens if we just guess an Y ′. We will then
encounter one of the cases 1, 2a-2c which we now describe. Briefly, in case 1, the procedure cannot
be used because it cannot determine q, and in case 2a and 2b it gives an inconclusive result; in case
2c we have success. We now consider each case in detail.

1. Y ′ has no homogeneous induced colouring.

In this case, the procedure is not applicable. Indeed, finding an RCAR vector may be a more difficult
type of problem, as illustrated by the following example which uses the message structure from
Figure 2c. (This example is a uniform game; the class of uniform games is the smallest class among
those identified in the previous section that strictly contains the class of games with a homogeneous
induced colouring.)

Example 2 (Irrational RCAR vector) Consider the problem with X = x1, . . . , x6, Y = {y1 =
{x1, x2, x3}, y2 = {x3, x4, x5}, y3 = {x1, x5, x6}}, and marginal p and strategy P given by the
following table:

P x1 x2 x3 x4 x5 x6

y1 1/10 1/10 3
10 −

1
10

√
5 − − −

y2 − − 1
10

√
5− 1

10 1/5 1
10

√
5− 1

10 −

y3 1/10 − − − 3
10 −

1
10

√
5 1/10

qx
1
4 + 1

20

√
5 1

4 + 1
20

√
5 1

2 −
1
10

√
5 1

5

√
5 1

2 −
1
10

√
5 1

4 + 1
20

√
5

px 1/5 1/10 1/5 1/5 1/5 1/10

The strategy P is RCAR, with the vector q that is also shown in the table. We see that the RCAR
strategy P and RCAR vector q (both of which are unique) contain irrational numbers, while the
marginal p was rational. The solution techniques used in this section (the formula (5) for q and
linear optimization for (6)) do not yield irrational results when given rational inputs, so this example
shows that these techniques will not suffice in general for games that do not have a homogeneous
induced colouring. (General-purpose convex optimization techniques could be used here instead.)

Conclusion: in this case, an RCAR strategy P with YP = Y ′ may exist, but it may be not be easy
to find. So in general, for such Y ′, we do not know how to efficiently determine if such a P exists.

2. Y ′ does have a homogeneous induced colouring.

In this case, we can use (5) to compute a candidate q for the RCAR vector. We distinguish three
subcases:
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2a. If Y ′ 6= Y , there may be a message y ∈ Y \ Y ′ for which
∑

x∈y qx > 1.

This may happen because the described procedure ignores the existence of messages not in Y ′.
However, the RCAR condition (1) puts an inequality constraint on

∑
x∈y qx even for messages y

with P (y) = 0. If the vector q computed by (5) does not satisfy this constraint, then q is not an
RCAR vector: we chose the wrong Y ′.

2b. No solution r of (6) achieves
∑

y∈Y ry = 1.

This also means that our choice of Y ′ was incorrect.

2c. Otherwise, q is an RCAR vector, and together with r determines an RCAR strategy P .

In this case, we can report success.
In cases 2a and 2b, Y ′ has a homogeneous induced colouring but we find that no RCAR strategy

P exists with YP = Y ′. Then we may face two problems. First, it is not clear how we might choose
a different Y ′ on which to try the procedure next. For small message structures, it may be feasible
to try all candidates. For larger structures, the number of possible choices grows exponentially, and
a more efficient way of searching would be needed.

The second problem is that in general, Y ′ might not induce a homogeneous colouring even
though Y does. For example, if Y is the message structure shown in Figure 2e, but there is no RCAR
strategy P with YP = Y for our marginal p, we have to conclude that the RCAR strategy must have
YP = {y1, y3} (because this is the only other choice of Y ′ that satisfies

⋃
Y ′ = X ). However,

this message structure is no longer exchange-connected, and in fact does not have a homogeneous
induced colouring, so that we end up in case 1.

In Section 5, we will see a subclass of matroid games for which the procedure is guaranteed
to succeed for the choice Y ′ = Y . So for that class of inputs, the procedure discussed here is an
efficient algorithm for finding an RCAR strategy (which is worst-case optimal for any loss function
by the results of Van Ommen et al. (2016)).

Two efficient algorithms, for graph games and for matroid games, are given in Van Ommen
(2015, Chapter 8). These algorithms can also be viewed as instances of the computational procedure
in this section: both essentially compute q and r as we did here; then, if

∑
y∈Y r < 1, they pick a

new set Y ′, guided by properties of the linear optimization problem (6). The choice of Y ′ is such
that each new Y ′ is a subset of the previous Y ′ (i.e. no backtracking is needed), and such that case
2a will never occur.

Case 1 will never occur either for these algorithms: the chosen Y ′ will always have a homoge-
neous induced colouring. This happens for different reasons for the two cases of graph and matroid
games. These reasons shed light on what makes graphs and matroids special among more general
message structures, so we conclude this section by giving brief explanations.

For graphs: Any connected component of a graph is also exchange-connected, and thus in-
duces a homogeneous colouring. While some choices of Y ′ may produce a disconnected graph
(X ,Y ′), each component of this graph will have a homogeneous induced colouring, and the al-
gorithm can be applied to each of these components recursively.

For matroids: On a matroid game, for any RCAR strategy P , YP determines a homogeneous
colouring. (This colouring is not induced in the usual sense, but is uniquely determined by the
equalities on YP combined with inequalities for Y \ YP ; see (Van Ommen et al., 2016, proof of
Theorem 19) for details.) The conditional probabilities P (x | y) respect this colouring.
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5. Partition Matroids

We now describe a class of games for which a worst-case optimal strategy can be completely com-
puted using the procedure from the previous section, because regardless of the marginal p, we can
take Y ′ = Y and the procedure will succeed in finding an RCAR strategy.

A message structure Y is called a partition matroid if X can be partitioned into nonempty sets
S1, . . . , Sk such that Y consists of all subsets of X that take one element from each of the sets Si
(Oxley, 2011). This class forms a subclass of matroids, so if Y is a partition matroid, it induces a
homogeneous colouring. Using Lemma 1, it is easy to see that this colouring is given by the sets
Si. An example of a partition matroid is given in Figure 3a; the matroid we saw in Figure 2f is not
a partition matroid.

x1 x2 x3 x4 x5
y1 ∗ − ∗ − −
y2 ∗ − − ∗ −
y3 ∗ − − − ∗
y4 − ∗ ∗ − −
y5 − ∗ − ∗ −
y6 − ∗ − − ∗

(a) Partition matroid but not a sunflower.

x1 x2 x3 x4 x5
y1 ∗ ∗ ∗ − −
y2 ∗ ∗ − ∗ −
y3 ∗ ∗ − − ∗

(b) Sunflower with singleton petals.

Figure 3: More examples of messages structures and their induced colourings.

As an illustration, suppose a shopkeeper sells items of brands x1 and x2, in colours x3, x4 and
x5, and customers buy items based on a preference for either a brand or a colour. The shopkeeper
observes a customer buying an item, but would like to know the underlying preference for recom-
mendation purposes. This coarse data problem corresponds to the partition matroid in Figure 3a.

Because a partition matroid induces a homogeneous colouring, we can carry out the procedure
described in the previous section to find for each x that qx =

∑
x′∈Si

px′ , where Si is the set
containing x. Now a solution for the P (y)’s that satisfies

∑
y3x P (y)qx = px always exists:

P (y) =
∏
x∈y

px
qx
.

In words, this means that given the true outcome x, it is worst-case optimal for the quizmaster to
choose a message by randomly sampling an outcome from each set Si 63 x according to the marginal
probabilities conditioned on Si, and give the message consisting of x and these outcomes. The
existence of this strategy shows that, for partition matroid games, the procedure always succeeds in
finding a worst-case optimal strategy for the choice Y ′ = Y .

Example 1 (continued) The message structure Y = {{left,middle}, {middle, right}} in the Monty
Hall puzzle is a partition matroid with sets {left, right} and {middle}. For an arbitrary prior p on
the three doors, the RCAR strategy and vector are given by

qleft = qright = pleft + pright; qmiddle = pmiddle;

P ({left,middle}) = pleft/(pleft + pright); P ({middle, right}) = pright/(pleft + pright).
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What does a message Y generated by this strategy tell the contestant about the true (random)
outcome X? Clearly, it means that if X ∈ Si for some i, then X must be the unique outcome in
Y ∩ Si. Of course, the contestant does not know which of these sets contains X . Write I for the
(random) index of the set containing X . Does Y tell the contestant anything about I? The answer
is no: For each index i, regardless of whether I = i, the outcome in Y ∩ Si will be randomly
distributed according to the marginal p conditioned on Si, independently of Y ∩ Sj for j 6= i. This
implies that Y is independent of I . Then for each outcome x ∈ Y , the probability that X = x given
message Y equals the probability that I = i, where i is the index of the set containing x. These
are exactly the probabilities that appear in the RCAR vector q. We know from (Van Ommen et al.,
2016, Theorem 19) that the same is true also if the quizmaster is using a worst-case optimal strategy
different from the one described above.

In more general message structures, there may be a message that must be excluded from Y ′, so
that the worst-case optimal P cannot be computed so easily:

Theorem 2 If a game induces a homogeneous colouring but is not a partition matroid, then there
exist a marginal p and a message y ∈ Y such that P (y) = 0 for all RCAR strategies P .

We distinguish one subclass of the class of partition matroid games. A message structure in
which the intersection of any two messages is constant is called a sunflower (Jukna, 2001). The
common intersection is called the core, and each set difference between a message and the core is
called a petal. An example of a sunflowers with singleton petals is shown in Figure 3b. The Monty
Hall game itself (Example 1) is another example.

If a message structure is a sunflower with singleton petals, it is a partition matroid: each outcome
in the core forms a (singleton) class of the partition, and another class contains all the petals. Among
partition matroids, sunflowers can be recognized by the property that all of its colour classes except
one are singleton outcomes. For this class of games, the strategy P described above is the unique
RCAR strategy: a strategy P ′ with P ′(y) 6= P (y) for some y ∈ Y would disagree with the unique
RCAR vector.

The message structure shown in Figure 3a is a partition matroid, but not a sunflower. Because
at least two of its colour classes are not singletons, such a message structure contains a cycle of four
messages in which neighbouring messages differ by the exchange of one outcome, but the pairs of
messages on opposite sides of the cycle differ by two outcomes. (In Figure 3a, there are three such
cycles; one is (y1, y2, y5, y4).) For this type of game, the strategy P found above can be modified
by increasing P (y) for two messages at opposite sides of the cycle, and decreasing it by the same
amount for the other two, leaving the conditionals unchanged. Thus P is not the unique RCAR
strategy. In fact, RCAR strategies exist with P (y) = 0 for some y ∈ Y . For such a strategy P , we
have YP ( Y , but we do still have

∑
x∈y qx = 1 even for messages y with P (y) = 0.

6. Conclusion

We have presented an efficient algorithm for finding the minimax optimal strategy in a coarse data
problem where the message structure is a partition matroid. While this problem could also be solved
using general-purpose convex optimization algorithms, this would be much less efficient. We have
also seen how RCAR strategies may be qualitatively different beyond partition matroids, suggesting
that in the general case, exact computation of these strategies may be a harder problem.
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Appendix A. Proofs

Proof [Lemma 1] (2 ⇐ 3) Two elements x1 6= x2 of X are in the same 2-connected component if
and only if there is a circuit (minimal dependent set) containing both (Oxley, 2011). Since a basis
y ∈ Y is a maximal independent set, y1 ∪ y2 is dependent. Find a circuit C ⊆ y1 ∪ y2; this circuit
contains both x1 and x2, as otherwise it would be contained in a basis and thus independent.

(2⇒ 3) Let C be a circuit with {x1, x2} ⊆ C; our goal is to find the bases y1, y2, which we will
do iteratively. Let y1 be a basis containing the independent set C \ {x2}, and y2 a basis containing
C \ {x1}. While y1 \ {x1} 6= y2 \ {x2}, pick any x′1 ∈ y1 \ (y2 ∪ {x1}) and use basis exchange to
find a basis y′ = (y1 \ {x′1})∪ {x′2} for some x′2 ∈ y2 \ y1. Note that x′2 6= x2, as that would result
in C ⊆ y′. Replace y1 by y′ and repeat until y1 \ {x1} = y2 \ {x2}. This process terminates, as the
set difference becomes smaller with each step.

(1 ⇔ 3) For exchange-connected message structures, the colour classes are the equivalence
classes of the transitive reflexive closure of the relation on X stated in point 3. For matroids, the
equivalence of points 2 and 3 shows that this relation is already transitive. Thus for all x1 6= x2,
points 1 and 3 are equivalent.

Proof [Theorem 2] We will construct a marginal p with the required property by first finding a
vector q that is the RCAR vector for some game with the given message structure. We distinguish
two cases. If there exists y′ ⊂ X that is consistent with the homogeneous induced colouring but
y′ 6∈ Y , then pick 0 < ε < 1/(k(k − 1)) and set initial values for q as

qx =

{
1
k + ε for x ∈ y′;
1
k − (k − 1)ε otherwise.

Each message contains at least one outcome with the smaller qx, so
∑

x∈y qx ≤ 1 for all y ∈ Y .
Otherwise, if Y is not a partition matroid there must exist a colour class C ⊆ X for which the

number of outcomes of this colour occurring in a message is at least two. Then pick any x+ ∈ C
and 0 < ε < 1/k, and initialize q according to

qx =


1
k + ε for x = x+;
1
k − ε for x ∈ C but x 6= x+;
1
k otherwise.

Again we see
∑

x∈y qx ≤ 1 for all y ∈ Y .
Starting from the values of q determined above, we apply a greedy algorithm that repeatedly

increases qx for some x until none can be increased further, maintaining
∑

x∈y qx ≤ 1 for all
y ∈ Y . For the resulting vector q, let P be the joint distribution on x, y with P (y) uniform on
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{y ∈ Y |
∑

x∈y qx = 1}, P (x | y) = qx for all x ∈ y, and P (x, y) = 0 elsewhere. This P is an
RCAR strategy for the game with marginal px =

∑
y3x P (x, y), and q is the unique RCAR vector.

In the first case, there must exist some x− ∈ X with qx− ≤ 1/k. Let C be the colour class
containing x−, and let x+ be the unique outcome in C ∩ y′. In the second case, there must exist
some x− ∈ C with qx− ≤ 1/k. Thus in either case, we have two outcomes x− and x+ of the
same colour C but with qx− ≤ 1/k < 1/k + ε ≤ qx+ . Because this contradicts the definition of
an induced colouring, there must be a message for which q violates the equality (2). This message
must have P (y) = 0 in any RCAR strategy for the game with message structureY and marginal p.
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