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Executive functions, a broadly defined cluster of neu-
rocognitive processes involved in the top-down control 
of cognition and actions, are central to theoretical mod-
els of attention deficit/hyperactivity disorder (ADHD; 
Barkley, 1997; Killeen, Russell, & Sergeant, 2013; Rapport 
et al., 2008; Willcutt, Doyle, Nigg, Faraone, & Pennington, 
2005) and to current cognitive neuroscience research 
aimed at clarifying the condition’s etiology (Coghill, 
Nigg, Rothenberger, Sonuga-Barke, & Tannock, 2005; 
Fair, Bathula, Nikolas, & Nigg, 2012; Roberts, Martel, & 
Nigg, 2017). Of these executive-function constructs, 
deficits in response inhibition, the ability to stop a pre-
potent or ongoing response that is no longer adaptive 
given the current demands of the environment (Logan 
& Cowan, 1984; Miyake et al., 2000), are thought to be 
some of the most robust in group comparisons between 

children with ADHD and their typically developing 
peers (Crosbie et al., 2013; Nigg, 1999; Willcutt et al., 
2005).

Many such findings rely on the measurement of 
response inhibition provided by the stop-signal para-
digm (Logan, 1994; Logan & Cowan, 1984; for a recent 
review, see: Matzke, Verbruggen & Logan, 2018), in 
which individuals complete a choice response time 
(RT) task (e.g., deciding whether a letter stimulus is an 
“X” or an “O”) and are signaled to inhibit their response 
on a subset of trials after the presentation of the choice 

838466 CPXXXX10.1177/2167702619838466Weigard et al.Cognitive Modeling of the Stop-Signal Task in ADHD
research-article2019

Corresponding Author:
Alexander Weigard, Department of Psychiatry, Rachel Upjohn 
Building, University of Michigan, Ann Arbor, MI 48109 
E-mail: asweigar@med.umich.edu

Cognitive Modeling Suggests That 
Attentional Failures Drive Longer  
Stop-Signal Reaction Time Estimates in  
Attention Deficit/Hyperactivity Disorder

Alexander Weigard1, Andrew Heathcote2, Dóra Matzke3,  
and Cynthia Huang-Pollock4

1Department of Psychiatry, Addiction Center, University of Michigan; 2School of Medicine,  
University of Tasmania; 3Department of Psychology, University of Amsterdam; and 4Department  
of Psychology, Penn State University

Abstract
Mean stop-signal reaction time (SSRT) is frequently employed as a measure of response inhibition in cognitive 
neuroscience research on attention deficit/hyperactivity disorder (ADHD). However, this measurement model is 
limited by two factors that may bias SSRT estimation in this population: (a) excessive skew in “go” RT distributions 
and (b) trigger failures, or instances in which individuals fail to trigger an inhibition process in response to the 
stop signal. We used a Bayesian parametric approach that allows unbiased estimation of the shape of entire SSRT 
distributions and the probability of trigger failures to clarify mechanisms of stop-signal task deficits in ADHD. Children 
with ADHD displayed greater positive skew than their peers in both go RT and SSRT distributions. However, they 
also displayed more frequent trigger failures, which appeared to drive ADHD-related stopping difficulties. Results 
suggest that performance on the stop-signal task among children with ADHD reflects impairments in early attentional 
processes, rather than inefficiency in the stop process.
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stimulus. This measurement method assumes that the 
stop signal produces a horse race between a go process, 
triggered by the presentation of the choice stimulus, 
and a stop process, triggered by the presentation of the 
stop signal (Fig. 1a). Whether an individual ultimately 
inhibits his or her response is dependent on whether 
the stop or go process finishes first. The speed of the 
latent stop process is typically estimated using the mean 
method (Verbruggen, Chambers, & Logan, 2013) in 
combination with a staircase tracking procedure (Levitt, 
1971), in which the difference between the onset of the 
go stimulus and the onset of the stop signal, or stop-
signal delay (SSD), is dynamically adjusted on the basis 
of the participant’s performance to produce a roughly 
50% probability of inhibition. Once this rate is achieved, 
an individual’s mean stop-signal reaction time (SSRT) 
can be estimated by subtracting the mean SSD from 
their mean go RT (Verbruggen et al., 2013).

Mean SSRT is thought to index the efficiency of a 
top-down control process that allows individuals to 

inhibit actions (Logan & Cowan, 1984; Matzke, Verbruggen, 
& Logan, 2018), and this metric is frequently adopted in 
the ADHD literature as a measure of individuals’ response-
inhibition ability. Under this measurement assumption, 
theoretical accounts of ADHD that highlight impaired 
response inhibition have been supported by robust find-
ings of group differences in mean SSRT between indi-
viduals with the disorder and their typically developing 
peers (Martel, Nikolas, & Nigg, 2007; Nigg, 1999; 
Willcutt et al., 2005), with overall effect sizes falling in 
the medium range (Lipszyc & Schachar, 2010). Further-
more, mean SSRT appears to be improved by stimulant 
medication treatments for ADHD (Aron, Dowson, 
Sahakian, & Robbins, 2003; Rosch et  al., 2016) and 
displays heritability patterns consistent with the idea 
that slow SSRT is a plausible endophenotype of genetic 
risk for the disorder (Crosbie et al., 2013; Nigg, Blaskey, 
Stawicki, & Sachek, 2004), although recent work using 
polygenetic risk scores has cast doubt on the latter 
finding (Nigg et al., 2018).
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Fig. 1.  Schematics of the horse race and ex-Gaussian models of performance on the stop-signal task. (a) Demonstration of 
single-trial horse races (assuming stop-signal delay, or SSD = 0) in which (from left to right) the stop process wins the race 
(correct inhibit), the go process wins the race (failed inhibit), the stop process fails to be triggered (trigger failure), and the go 
process fails to be triggered (go failure). (b) Schematic of the ex-Gaussian race model in which the distribution of response 
times (RT) for stop trials on which individuals respond despite the signal to inhibit (i.e., the signal-respond RT distribution; light 
gray) is given by a go RT distribution censored by a stop-signal RT distribution, both of which are assumed to be ex-Gaussian 
in shape. (Adapted from Matzke, Love, & Heathcote, 2017.)
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However, there are multiple indications that the pre-
vailing interpretation of performance on the stop-signal 
task—that it primarily reflects top-down inhibitory 
control—may be more tenuous than is typically assumed. 
First, the “mean” method can lead to artificially slow 
estimates of mean SSRT and do so to a greater extent 
when “go” RTs are more positively skewed (Verbruggen 
et al., 2013). Because RT distributions of individuals with 
ADHD are characteristically more positively skewed 
than those of their peers (Epstein et al., 2011; Kofler 
et al., 2013), longer SSRT estimates may result from the 
bias associated with this skew, rather than a core inhibi-
tion deficit.

Although the block-wise integration method of esti-
mating SSRT provides a way to address this challenge 
(Verbruggen et al., 2013), it cannot address a second 
major challenge: the possibility that the inhibition pro-
cess fails to be triggered by the stop signal on a subset 
of trials (see Fig. 1a). These instances, known as trigger 
failures (Matzke, Love, & Heathcote, 2017), which 
Logan (1994) acknowledged early on, result in failed 
inhibition because the “stop” process never enters the 
race. Applications of Bayesian parametric methods have 
estimated that trigger failures occur on roughly 7% to 
10% of stop-signal trials in healthy adult populations 
and can lead to the dramatic overestimation of SSRTs 
if they are not accounted for (Matzke, Love, et al., 2017). 
Adults diagnosed with schizophrenia display trigger 
failure rates as high as 18% (Matzke, Hughes, Badcock, 
Michie, & Heathcote, 2017). Evidence for nontrivial 
rates of trigger failure in healthy populations and even 
higher rates in clinical groups suggests that trigger fail-
ures could also play a role in how well children with 
ADHD perform on the stop-signal task. Specifically, 
greater trigger failure rates in children with ADHD may 
cause systematic overestimation of SSRT in such chil-
dren. If true, this would indicate that aberrant perfor-
mance on the stop-signal task in children with ADHD 
reflects impairments in early perceptual or attentional 
processes rather than, or in addition to, inefficiency in 
the top-down inhibitory control process.

A novel parametric approach in which the entire 
distribution of SSRTs and go RTs (rather than just the 
mean) are estimated in a Bayesian framework (Matzke, 
Dolan, Logan, Brown, & Wagenmakers, 2013) provides 
a promising way of addressing both pitfalls of SSRT 
measurement and indexing the incidence of trigger fail-
ures in ADHD. In common with other methods of esti-
mating SSRT, this approach assumes the distribution of 
go RTs is the same for go trials and for stop-signal trials 
(i.e., context independence), so that the signal-respond 
RT distribution (i.e., RTs on stop-signal trials, or failed 
inhibitions) can be treated as a go RT distribution cen-
sored by the latent SSRT distribution (Fig. 1b). Finishing 

times for the go and stop processes are assumed to 
follow an ex-Gaussian distribution, which is a Gaussian 
distribution, defined with mean µ and standard devia-
tion σ, convolved with an exponential distribution with 
mean τ (i.e., the slow tail of the distribution). Previous 
simulation work has suggested that although µ, σ, and 
τ do not selectively index underlying cognitive pro-
cesses, reduced efficiency of cognitive processing leads 
to increases in both the mean and variability of ex-
Gaussian distributions (Matzke & Wagenmakers, 2009). 
Hence, increases in the latency or variability of the stop 
process’s RT distribution would suggest inefficiencies 
in the stop process. Because positive skew of the go 
RT distribution is explicitly modeled in this framework, 
the method provides an index of the stop process that 
is not biased by this feature of performance. To index 
the incidence of trigger failures, Matzke, Heathcote, and 
Love (2017) extended the ex-Gaussian race model to 
include a trigger failure parameter (PTF), which quanti-
fies the probability that an individual will fail to trigger 
the stop process on a given stop-signal trial.

Hence, the full ex-Gaussian race model may be able 
to advance the literature on stop-signal task perfor-
mance in ADHD and related psychopathologies in two 
ways. First, it could provide a measurement method for 
estimating processes of theoretical interest while con-
trolling for other potentially confounding features of 
task performance in ADHD (e.g., skew in the go RT 
distribution), which may in turn improve researchers’ 
ability to link these processes to clinical outcomes or 
neural correlates of the disorder. Second, although the 
ADHD field has largely assumed that SSRT measure-
ments provide an index of trait-level response inhibition 
(cf. Alderson, Rapport, & Kofler, 2007; Alderson, Rapport, 
Sarver, & Kofler, 2008; Lijffijt, Kenemans, Verbaten, & 
van Engeland, 2005), the ex-Gaussian race model allows 
for a more nuanced and mechanistic understanding of 
individual variation in this ability. If response inhibition 
is defined as the functional ability to inhibit prepotent 
responses (i.e., how frequently an individual can pre-
vent a “go” response), individual variation in this ability 
may be due to individual differences in either (a) mech-
anisms that allow top-down inhibitory control pro-
cesses to be triggered in response to environmental 
cues or (b) the efficiency of the top-down inhibitory 
control processes themselves. By indexing the former 
mechanism with PTF and the latter with the ex-Gaussian 
parameters of the SSRT distribution, the model allows 
these separate determinants of response inhibition abil-
ity to be measured and explicitly distinguished.

To this end, the current study applies the ex-Gaussian 
race model with the PTF parameter to stop-signal-task 
data from a large existing sample of children with 
ADHD and age-matched control subjects. The first goal 
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of the study is to use the Bayesian parametric approach 
to estimate entire SSRT distributions of children with 
ADHD and compare them with those of their peers. 
Although ex-Gaussian analyses of choice RT tasks have 
revealed robust τ increases in the disorder (Epstein 
et al., 2011; Kofler et al., 2013), features of the SSRT 
distribution have never been previously evaluated in 
this group. In doing so, our second goal is to determine 
whether children with ADHD display greater latency or 
variability of SSRTs when skew in their go RT distribu-
tions is accounted for. If so, this finding would support 
the prevailing view of children with ADHD as display-
ing deficits in top-down inhibitory control processes. 
Finally, our third goal is to estimate the prevalence of 
trigger failures in ADHD and determine whether 
increases in these rates can partially, or fully, explain 
differences in performance on the stop-signal task 
between these children and their typically developing 
peers. The latter outcome would indicate that deficits 
in performance on the stop-signal task in children with 
ADHD reflect impairments in early perceptual or atten-
tional processes instead of, or in addition to, impair-
ments in inhibitory control processes.

Method

Sample

An initial sample of 234 children with ADHD and 108 
age-matched typically developing control subjects com-
pleted the stop-signal task as part of a larger battery of 
tests administered in an ongoing study of childhood 
ADHD. The study was approved by the Pennsylvania 
State University’s institutional review board and was 
carried out in accordance with the provisions of the 
Declaration of Helsinki. This initial sample included all 
children who had met the larger study’s full inclusion 
criteria (detailed below) and had completed the stop-
signal paradigm by the time that the current study was 
first conceived by the authors (December 2015). Of this 
initial sample, 25 children with ADHD (11%) and 9 
control subjects (8%) were excluded before modeling 
because of data-quality concerns (described below), 
leaving a final sample of 209 children with ADHD and 
99 control subjects (Table 1). Although the sample size 
was not determined a priori, it was sufficient to accom-
plish the study’s goal of investigating between-groups 
effects in parameter values,1 and no additional data 
were added to the sample after analyses began. The 
larger study included a number of other experimental 
paradigms in addition to the stop-signal task, and 
description of these measures is beyond the scope of 
the current study. However, all experimental conditions 
of the stop-signal task and all data exclusions are 

reported in the current article. This study was not prereg-
istered because this practice was less commonly required 
of authors at the time data analyses began and because 
the primary goals of this study were exploratory.

Children in the study were community recruited from 
several sites in Pennsylvania, spanning urban, subur-
ban, and semirural settings and representing the ethnic 
and racial demographics of the region (78% White/
non-Hispanic, 5% White/Hispanic, 2% other Hispanic, 
6% African American, 1% Asian, 6% mixed race, and 3% 
unknown or lacking data). Children’s average annual 
family income fell between $60,000 and $80,000. To 
qualify for a diagnosis of ADHD, children had to meet 
full criteria from the fourth edition, text revision, of the 
Diagnostic and Statistical Manual of Mental Disorders 
(DSM–IV-TR; American Psychiatric Association, 2000), 
including age of onset, duration, cross-situational sever-
ity, and impairment, which were determined using par-
ent report on the Diagnostic Interview Schedule for 
Children Version IV (DISC-IV; Shaffer, Fisher, & Lucas, 
1997). The DISC-IV was administered to one parent, 
either father or mother, by trained research assistants. 
In addition, at least one parent report (from the same 
parent who was administered the DISC) and one 
teacher report of behavior on the Attention, Hyperactiv-
ity, or ADHD subscales of the Behavioral Assessment 
Scale for Children (Reynolds & Kamphaus, 2004) or the 
Conners’ Rating Scales (Conners, 2008) was required to 
exceed the 85th percentile (T score > 61). The “or” 
algorithm was used to integrate DISC-IV and teacher 
reports of symptoms, following DSM–IV field trials 
(Lahey et al., 1994), to establish symptom counts. Non-
ADHD control subjects did not meet the DSM–IV crite-
ria, had never been previously diagnosed or treated for 
ADHD, and all of their scores on the above listed rating 
scales were below the 80th percentile (T score ≤ 58) 
for both parent and teacher report.

To ensure that group differences could not be attrib-
uted to differences in general intelligence, we estimated 
IQ from the two-subtest short form (Vocabulary, Matrix 
Reasoning) of the Wechsler Intelligence Scale for Children–
IV (Wechsler, 2003). Non-ADHD control subjects with 
an estimated IQ greater than 115 and children in either 
group who had an IQ less than 80 were excluded. 
Children with ADHD who were prescribed a psycho-
stimulant medication (n = 69) ceased taking their medi-
cation 24 to 48 hr in advance of the day of testing 
(median washout = 57 hr). The presence of common 
psychiatric comorbidities, including generalized anxiety 
disorder, major depression, oppositional defiant disor-
der, and conduct disorder was assessed on the DISC-IV 
and rating scales. However, these diagnoses were not 
exclusionary (Table 1). We chose to include individuals 
with comorbidity because comorbidity in ADHD is the 
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rule, not the exception (Angold, Costello, & Erkanli, 
1999; Larson, Russ, Kahn, & Halfon, 2011), and exclu-
sion of children with co-occurring disorders would 
therefore limit the generalizability of our results.

Stop-signal task

Children completed the stop-signal task seated in front 
of a computer monitor in the presence of a trained 
graduate or undergraduate research assistant. Each trial 
began with a 200-ms fixation cross presented in the 
center of the screen, followed by the 1,000-ms presenta-
tion of a letter stimulus (either an “X” or an “O”) in the 
same location and a 2,300-ms interstimulus interval, 
during which the screen was blank. Participants were 
instructed to indicate whether an “X” or an “O” had 
appeared at any time during the stimulus presentation 

period or subsequent interstimulus interval by pressing 
response box buttons labeled with each response. Chil-
dren completed a 20-trial practice round, followed by 
five blocks of 40 trials presented in a pseudorandom 
order, with an optional rest period before each block. 
An auditory tone was played on 25% of experimental 
trials (a total of 50 trials, interspersed pseudorandomly) 
signaling that the participant should inhibit their 
response. The SSD on each trial was determined using 
a standard staircase algorithm: On the first stop trial, 
the tone was presented for 250 ms before a running 
average of the participant’s RT across all previous trials. 
If the participant successfully inhibited a response, the 
next stop signal was presented 200 ms before the par-
ticipant’s mean RT at that time. If they failed to inhibit 
a response, however, the next stop signal was presented 
300 ms before the mean RT. In this way, the SSD was 

Table 1.  Descriptive, Demographic and Behavioral Summary Statistics of Each Group in the Final 
Sample

Statistic Control ADHD p BF d

N (male:female) 99 (46:53) 209 (140:69) — — —
Number of each subtype H = 5, I = 85, C = 119 — — —
Age 10.23 (1.26) 10.20 (1.31) .874 .14 0.03
Estimated full-scale IQ 103.79 (7.61) 103.47 (12.18) .814 .14 0.02
Hyperactivity/impulsivity  

Total number of symptoms 0.28 (.54) 5.49 (2.93) < .001 > 10,000 2.14
Parent BASC-2 42.42 (5.41) 65.03 (13.69) < .001 > 10,000 1.93
Parent Conners 45.83 (3.34) 67.09 (14.12) < .001 > 10,000 2.69
Teacher BASC-2 43.74 (3.42) 60.30 (13.07) < .001 > 10,000 1.52
Teacher Conners 45.53 (2.80) 59.45 (12.41) < .001 > 10,000 1.35

Inattention  
Total number of symptoms 0.54 (.69) 8.02 (1.30) < .001 > 10,000 6.59
Parent BASC-2 43.47 (6.42) 66.62 (6.72) < .001 > 10,000 3.50
Parent Conners 45.74 (3.87) 70.12 (10.68) < .001 > 10,000 2.69
Teacher BASC-2 43.52 (5.36) 62.27 (6.98) < .001 > 10,000 2.88
Teacher Conners 46.15 (4.55) 60.35 (11.37) < .001 > 10,000 1.46

Comorbidity (past year)  
MDD 0 9 — — —
GAD 0 23 — — —
ODD/CD 3/0 82/15 — — —

Task summary statistics  
Go mean RT 0.771 (0.149) 0.818 (0.146) .01 3.13 0.32
Signal-respond mean RT 0.666 (0.119) 0.720 (0.125) < .001 58.62 0.44
Go accuracy 0.976 (0.039) 0.949 (0.053) < .001 2716.18 0.56
Signal-respond accuracy 0.970 (0.051) 0.937 (0.069) < .001 589.30 0.52
Mean SSD 0.454 (0.180) 0.394 (0.204) .012 2.66 0.31
Mean SSRT estimate 0.317 (0.105) 0.424 (0.162) < .001 > 10,000 0.72
Overall p(response) 0.528 (0.060) 0.577 (0.099) < .001 2012.00 0.56

Note: Means are displayed with standard deviation in parentheses. All ratings scales reported in T scores. For subtypes: 
H = hyperactive, I = inattentive, C = combined. For comorbidities: MDD = major depressive disorder, GAD = generalized 
anxiety disorder, ODD = oppositional defiant disorder, CD = conduct disorder. Frequentist inferences (p value), Bayesian 
inferences (BF), and frequentist point estimates of effect size (d) were drawn from independent-samples t tests conducted 
in JASP.



Cognitive Modeling of the Stop-Signal Task in ADHD	 861

dynamically adjusted throughout the task in increments 
of 50 ms and locked to the updated average of RT.

Model-based analyses

The ex-Gaussian race model was specified and esti-
mated using the Dynamic Models of Choice software 
(DMC; Heathcote et al., 2018), which consists of a free 
set of functions for conducting model-based choice RT 
analyses in a Bayesian framework using the R software 
environment (R Core Team, 2015).

Before model fitting, data-quality checks were used 
to exclude individuals with data that indicated noncom-
pliance or inadequate understanding of the task or that 
violated key assumptions of the model. Exclusion cri-
teria were selected by the authors after visual inspec-
tion of group distributions of relevant summary statistics 
(e.g., accuracy and omission rates) with the goals of 
(a) retaining as many children with ADHD as possible, 
so as to have a representative sample, while also (b) 
excluding participants for whom there was clear evi-
dence of problematic data (e.g., we made the assump-
tion that individuals with accuracy rates < 55% were 
probably not performing the task above chance and 
were therefore likely to be noncompliant). First, chil-
dren who were unable to maintain accuracy levels 
greater than 55% or who had an excessive proportion 
of omissions on go trials (> 40%) were excluded from 
analysis (20 children with ADHD, 6 control subjects). 
Second, because the model assumes that an individual’s 
mean RT does not speed up or slow down significantly 
over the course of the task, regression slopes were 
calculated to measure the change in RT over time for 
each individual. Any participant who displayed an RT 
reduction or an increase of greater than 500 ms through-
out the task was excluded from analysis (5 children 
with ADHD, 3 control subjects).

Excessive error trials can distort SSRT estimates from 
parametric methods (Matzke, Curley, Gong, & Heathcote, 
2019), and it is common for researchers to exclude 
participants or experimental blocks that do not have 
high accuracy rates (e.g., > 70%–95%: Ashare & Hawk, 
2012; Matzke, Hughes, et al., 2017; Matzke, Love, et al., 
2017; Nigg, 1999). However, because of developmental 
differences in cognitive ability, maintaining such criteria 
would preclude the retention of a representative sample 
of children. To address this issue, we conducted two 
model-based analyses: (a) our main analysis, described 
below, for which we used an inclusion criteria of accu-
racy greater than 55% and a modification of the ex-
Gaussian race model (Matzke et al., 2019) that explicitly 
accounts for error RTs and (b) a secondary analysis, 
reported in the Supplemental Material available online, 

using the standard model that does not account for go 
errors (Matzke, Love, et al., 2017). This secondary anal-
ysis included only correct RTs from children with accu-
racy rates of more than 95% (121 children with ADHD, 
88 control subjects). Because between-groups effects 
in the secondary analysis were not substantively differ-
ent from those in the main analysis, we report results 
using the modification of the race model that allows 
for the inclusion of a more representative sample of 
children.

The modified ex-Gaussian race model (Matzke et al., 
2019) explains the accuracy of RTs by postulating one 
go process for each go response as well as a stop pro-
cess (i.e., a race with three runners). In line with evi-
dence accumulator models of choice RT (Brown & 
Heathcote, 2008; Logan, Van Zandt, Verbruggen, & 
Wagenmakers, 2014), this framework assumes that cor-
rect responses occur when the “matching” go process 
(e.g., the process triggering an “X” response when the 
stimulus is an “X”) finishes before the “mismatch” go 
process (e.g., the process triggering an “O” response), 
whereas error responses occur when the mismatch pro-
cess finishes first. Preliminary analyses that attempted 
to fit a model that estimated all three ex-Gaussian 
parameters (µ, σ, τ) separately for the mismatch process 
revealed that these parameters were poorly constrained 
and led to convergence problems, potentially because 
of the relatively low number of go errors per participant 
or the relatively high level of positive skew in children 
with ADHD’s RT distributions. We therefore estimated 
separate µ and σ parameters for the match (µgo-match, 
σgo-match) and mismatch (µgo-mismatch, σgo-mismatch) RT dis-
tributions, but we assumed that both distributions 
shared the same τ parameter (τgo) because this param-
eterization led to more stable and well-constrained 
estimates.

The shape of the SSRT distribution was described 
with three separate parameters (µstop, σstop, τstop), 
whereas a trigger-failure parameter (PTF) estimated the 
probability that the stop-signal tone failed to trigger an 
inhibition process on a given trial. Previous research 
on trigger failures in the ex-Gaussian race model that 
was conducted using data from adult subjects (Matzke, 
Hughes, et al., 2017; Matzke, Love, et al., 2017) did not 
consider the possibility of “go failures,” or instances in 
which the go process, rather than the stop process, fails 
to be triggered. However, because many children in the 
current sample displayed relatively high rates of omis-
sions on go trials, it was possible that go failures were 
present in the data and would bias estimates of the 
other model parameters if not accounted for. Therefore, 
we also estimated a go-failure parameter (PGF; Matzke 
et al., 2019; Tannock, Schachar, Carr, Chajczyk, & Logan, 
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1989) for the probability that the go process failed to 
be triggered. Although mechanistic interpretations of 
go failures are beyond the scope of this study, the 
results reported below suggest that both children with 
ADHD and their peers display nontrivial rates of go 
failure.

We used a hierarchical modeling approach that treats 
subject-level parameters as random effects described 
by group-level distributions. On average, this method 
(a) provides more accurate estimates of individual-level 
parameters, because the group-level parameters serve 
as priors that constrain individual estimates (parameter 
“shrinkage”) and (b) allows for robust estimation of the 
mean and standard deviation of the individual param-
eters for each group, even in situations with relatively 
sparse observations at the individual level. For the cur-
rent model, all 10 individual-level parameters were 
assumed to follow (truncated) normal distributions, 
specified by a location parameter (M, the group mean 
for nontruncated distributions) and a scale parameter 
(S, the group standard deviation for nontruncated dis-
tributions), estimated separately for each group. 
Because the current data set contains a relatively low 
number of trials at the individual level but a relatively 
large sample of participants in each group, the group-
level parameters provided a robust summary of the 
groups, despite high levels of uncertainty in the 
individual-level estimates. Thus, only the group-level 
parameters were used for inference.

Before estimation, RTs less than 200 ms were 
excluded from analysis as fast guesses (< 1% of trials) 
following standard procedures for fitting choice RT 
models (Ratcliff & Tuerlinckx, 2002). Differential Evolu-
tion Markov chain Monto Carlo simulations (Turner, 
Sederberg, Brown, & Steyvers, 2013) were used to sam-
ple from the posterior distribution of all group- and 
individual-level model parameters. Following previous 
work (Matzke, Hughes, et al., 2017), sampling for the 
PTF and PGF parameters used probabilities that were 
projected onto the real line using a probit transforma-
tion. Relatively broad and uninformative priors were 
posited for all group-level parameters, although limits 
were placed on some parameters to prevent the estima-
tion of impossible values (for example, group location 
and scale parameter values for the µ, σ, and τ param-
eters that fall below 0 ms). Priors for all group scale (S) 
parameters consisted simply of exponential distribu-
tions with a scale of 1, whereas priors for group loca-
tion (M) parameters were truncated normal (TN) 
distributions with the following locations, scales, and 
bounds (note that probability parameters are on the 
probit scale):

µgo match location 1 scale 2 lower upper 3− = = = =( )~ , , ,TN 0

σgo match location 5 scale 2 lower upper 1− = = = =( )~ . , , ,TN 0

µgo mismatch location 1 scale 2 lower upper 3− = = = =( )~ , , ,TN 0

σgo mismatch location 5 scale 2 lower upper 1− = = = =( )~ . , , ,TN 0

τgo location 5 scale 2 lower upper 1~ . , , ,TN = = = =( )0

µstop location 5 scale 2 lower upper 3~ . , , ,TN = = = =( )0

σstop location 25 scale 2 lower  upper 1~ . , , ,TN = = = =( )0

τstop location 25 scale 2 lower upper 1~ . , , ,TN = = = =( )0

P TNGF location 1 scale 2 lower upper~ ( , , , )= = = =− − ∞ ∞

P TNTF location 1 scale 2 lower upper~ ( , , , )= = = = ∞− − ∞

Start points of the sampling process for all param-
eters were determined using the means and variance 
of samples from earlier nonhierarchical fits at the 
individual-subject level. A total of 30 chains (three times 
the number of parameters) were used for sampling of 
each group- and individual-level parameter. An initial 
burn-in period using a migration step with 5% migration 
probability (Turner et  al., 2013) was followed by a 
second burn-in period with migration turned off. This 
second period lasted until both visual inspection of 
chains and the Gelman-Rubin statistic (Gelman & Rubin, 
1992) indicated convergence (Gelman-Rubin statistic < 
1.1 for all parameters). After convergence, a final sam-
ple of 100 iterations was retained for analysis, providing 
a total of 3,000 (30 × 100) posterior samples for each 
parameter. The goodness-of-fit of the model was 
explored with posterior predictive plots (see the Sup-
plemental Material).

Hypothesis testing

Behavioral summary statistics (accuracy, RT, SSD) were 
analyzed using both frequentist significance tests  
(p values) and Bayes factors (BFs) from t tests and 
analyses of variance (ANOVAs) conducted in JASP 
( JASP Team, 2018), a free software package designed 
to replicate the functionality of SPSS for frequentist 
analyses and allow Bayesian versions of the same analy-
ses to be easily conducted by users. BFs quantify the 
probability of the data under a research hypothesis, 
such as the hypothesis that the effect size is not 0, 
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relative to the probability of the data under the null 
hypothesis. A BF of 10, for example, indicates that the 
data are 10 times more likely under the research 
hypothesis, whereas a BF of .25 indicates that the data 
are 4 times more likely under the null hypothesis.2 
According to commonly used guidelines ( Jeffreys, 
1961), BFs between 1 and 3 provide only “anecdotal” 
or ambiguous evidence for the research hypothesis, 
whereas BFs of 3 to 10 provide substantial evidence, 
BFs greater than 10 provide strong evidence, and BFs 
greater than 100 provide decisive evidence.

Group differences in model parameters were quanti-
fied using Bayesian p values, following previous studies 
using the ex-Gaussian race model (Matzke, Hughes, 
et al., 2017). These p values were calculated for each 
group difference by subtracting the posterior distribu-
tion of the group that had lower values, overall, from 
the posterior distribution of the other group, and count-
ing the proportion of posterior samples for which this 
difference was positive. Thus, p values close to 0 pro-
vided evidence that one group’s parameter value was 
greater than that of the other group. The null-hypothesis 
testing convention of rejecting the null hypothesis if  
p < .05 does not apply to Bayesian p values. Rather, 
they quantify the degree to which the posterior distri-
bution of the difference between groups is consistent 
with the hypothesis that a group difference exists.

Results

Behavioral summary statistics

For analyses of summary statistics (Table 1), BFs were 
used as the primary method of quantifying evidence 
for the presence or absence of effects, but frequentist 
statistics are also reported for ease of interpretation. In 
mean RT, there was positive evidence for a main effect 
of group, F(1, 306) = 9.69, η2 = .03, p = .002, BF = 11.76, 
indicating that children with ADHD had longer RTs than 
their peers. A main effect of stop signal, F(1, 306) = 
781.64, η2 = .72, p < .001, BF > 10,000, indicated that 
RTs were shorter on signal-respond trials (responses 
on trials with a stop signal) than on go trials. There was 
evidence for the absence of a Group × Stop Signal 
interaction, F(1, 306) = 1.14, η2 = .001, p = .286, BF = 
0.18. The group effect is consistent with previous 
research on ADHD, whereas the stop-signal effect was 
expected because the race model assumes that the inhi-
bition process on stop-signal trials censors longer RTs. 
Children with ADHD were less accurate than their 
peers, F(1, 306) = 22.29, η2 = .07, p < .001, BF = 3,386.11, 
and responses on stop trials were less accurate than 
go-trial responses F(1, 306) = 11.46, η2 = .04, p < .001, 
BF = 168.03, but evidence for an interaction was 

ambiguous, F(1, 306) = 1.16, η2 = .004, p = .282, BF = 
1.01. The effect of stop signal on accuracy suggested 
that error RTs were faster than correct RTs because fast 
responses would be censored to a lesser extent on 
signal-respond trials. Indeed, error RTs were faster, on 
average, than correct RTs, t(281) = 4.26, p < .001, BF = 
407.2.3 This pattern could indicate that a proportion of 
RTs are fast guesses, where participants make a random 
response before considering evidence for the decision 
or that participants emphasized speed over accuracy, 
which commonly produces fast error RTs (Ratcliff & 
Rouder, 1998).

Despite the flaws, discussed above, of the “mean 
method” for estimating SSRT, we used this method to 
compare our results with those commonly reported in 
previous studies of SSRT in ADHD in which this method 
was used (e.g., Karalunas & Huang-Pollock, 2013; Nigg, 
1999; Rosch et al., 2016). When SSRT was estimated in 
this way, there was strong evidence that individuals 
with ADHD displayed longer mean SSRTs than their 
peers, t(306) = 5.98, d = 0.72, p < .001, BF > 10,000. 
Thus, findings based on this index are consistent with 
previous research on ADHD.

Model-based analyses

Posterior predictive checks (see the Supplemental Mate-
rial) suggested that the model provided a good descrip-
tion of go RTs, signal-respond RTs, and inhibition 
functions in both groups. The group-level location (M, 
which approximates the group mean) and scale (S, 
which approximates the group standard deviation) 
parameters were directly used to assess group differ-
ences in the means and standard deviations of race 
model parameters, with two exceptions. First, the 
group-level M parameters for the trigger-failure (PTF) 
and go-failure (PGF) parameters were transformed back 
to the probability scale using an inverse-probit trans-
formation, which allowed us to approximate the group 
medians on the probability scale.4 Second, as group 
distributions of the SSRT variability parameters (σstop 
and τstop) displayed severe truncation at 0 (i.e., the 
appearance of an exponential shape, rather than a nor-
mal shape, because the parameter values of many sub-
jects were clustered close to 0), the group-level M and 
S parameters for σstop and τstop do not provide an accu-
rate description of the central tendency and between-
subjects variability of these parameter values. To 
address this issue, we transformed5 the posterior sam-
ples for the group-level M and S parameters to the mean 
and standard deviation of the group-level truncated 
normal distributions. The transformed parameters were 
then used to make inferences about group differences 
in means and variability of σstop and τstop.
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Posterior distributions of group M parameters are 
displayed as violin plots in Figure 2a, whereas posterior 
medians for group M and S parameters are displayed 
in Table 2 along with Bayesian p values for group dif-
ferences. For go RT distributions, there was little evi-
dence for a differences in Gaussian mean (µgo-match),  
p = .330, but strong evidence for greater values of 
Gaussian variability (σgo-match) p < .001, and exponential 
variability (τgo), p < .001, in the ADHD group. Although 
τgo was collapsed across match and mismatch accumu-
lators, our secondary analysis of only correct RTs (see 
the Supplemental Material) also found group differ-
ences in τgo. Thus, consistent with previous findings, 
children with ADHD appear to display increased Gauss-
ian and exponential RT variability on go trials. For 
parameters that described the RT distributions of signals 
that are mismatched with the stimulus, children with 
ADHD displayed evidence of lower µgo-mismatch, p = .031, 
but little evidence for differences in σgo-mismatch, p = .355, 
compared with their typically developing peers. The 
lower µgo-mismatch in ADHD likely reflects how the model 
explains the ADHD group’s increased error rate; in 
addition to having more variable match signal RTs than 
control subjects, mismatch signal RTs in children with 
ADHD also have a slightly shorter latency, leading to 
the higher incidence of errors.

For SSRT distributions, there was little evidence of 
group differences in µstop and σstop (all ps > .30), but 
children with ADHD appeared to display greater expo-
nential variability (τstop) than their peers, p = .006, which 
suggests inefficiency in the top-down inhibition pro-
cess. There was also strong evidence, p < .001, for a 
large increase in trigger failures (PTF) in the ADHD 
group; children with ADHD appeared to have more 
than twice the incidence of trigger failures (31% of tri-
als) compared with their typically developing peers 
(13% of trials), who had rates slightly higher than those 
of healthy adults reported in previous investigations 
(ranging from 7% to 10%; Matzke, Hughes, et al., 2017; 
Matzke, Love, et al., 2017). Consistent with the deficits 
in early perceptual or attentional processing implied 
by the PTF findings, there was also strong evidence,  
p < .001, for increased go failures (PGF) in ADHD, 
although these rates were much lower overall than the 
rates of trigger failures (5% for ADHD and 2% for con-
trol subjects). Taken together, this pattern of results 
suggests that trigger failures occur at relatively high 
rates for both children with ADHD and their typically 
developing peers and that group differences in perfor-
mance on the stop-signal task can be attributed to larger 
trigger failure rates, in addition to differences in the 
integrity of the top-down inhibition process itself.

Although the group S parameters, which quantify the 
level of between-subjects variability in a group, were 

not the primary focus of the study, there was evidence 
for several effects (displayed in Table 2) that are poten-
tially informative given recent findings of cognitive and 
neurophysiological heterogeneity in ADHD (Fair et al., 
2012; Karalunas, Fair, et  al., 2014). Specifically, the 
ADHD group displayed greater between-subjects vari-
ability in two parameters that describe intraindividual 
variability in go RT distributions, σgo-match, p = .007, and 
τgo, p = .013, which suggests that children with ADHD 
not only have greater Gaussian and exponential vari-
ability in the go process but also have more between-
subjects heterogeneity in these types of variability. More 
relevant to the current study, there was strong evidence 
that children with ADHD displayed greater between-
subjects variability in τstop, p = .002, and suggestive 
evidence of greater between-subjects variability in PTF, 
p = .051. Taken together, these effects indicate that both 
parameters are more heterogeneous in the ADHD 
group, which suggests that there may be considerable 
individual differences in the causes of children with 
ADHD’s impaired performance on the task. Because 
the current sample does not have enough trials at the 
individual level to reliably assess individual differences 
(our primary reason for focusing on the group-level 
parameters for inference), future work with larger sam-
ples of stop-signal trials would be instrumental in 
exploring this possibility.

Simulations to determine the 
contributions of each parameter to 
stopping impairments

The analyses reported above suggested that differences 
in both exponential variability of the SSRT distribution 
(τstop) and the probability of trigger failures (PTF) con-
tribute to the difficulty that children with ADHD experi-
ence in stopping a dominant response. However, the 
degree to which each of these processes contributes is 
unclear. To determine the relative contributions of each 
parameter to stopping deficits in the disorder, we con-
ducted a simulation study. First, the group-level M poste-
riors for each group were used to simulate stop-signal-task 
data to determine the magnitude of stopping difficulties 
experienced by children with ADHD, which was quanti-
fied by identifying the SSD for which each group had 
a .50 probability of responding (SSD-50). This metric 
relies on the well-supported assumptions that (a) 
greater stopping difficulties—regardless of whether 
they are due to trigger failures, on the one hand, or 
slow or variable SSRTs, on the other—will necessarily 
increase probability of responding at a given SSD, and 
(b) probability of responding increases with SSD 
latency. Under these assumptions, a group’s SSD-50 
will necessarily increase with increases in stopping 
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Fig. 2.  (a) Violin plots representing posterior distributions of the group-level location (M) parameters of typically developing control sub-
jects (blue) and children with ADHD (orange). For go- and stop-signal RT distributions, µ = Gaussian mean, σ = Gaussian variability, τ = 
exponential variability; PTF = probability of trigger failures, PGF = probability of go failures. Because of concerns about truncation (detailed 
in the text), posterior samples for σstop, and τstop have been transformed to the mean of the group-level truncated normal distributions. The 
group-level parameters for PTF and PGF have been transformed back to the probability scale for clarity, and approximate the median values 
for each group. Each panel contains a standard box-and-whiskers plot representing the posterior samples within a kernel density plot of the 
same samples. In each box plot, the white dot represents the median, and the top and bottom of the black box indicate the 75th and 25th 
percentiles, respectively. Whiskers represent 1.5 times the interquartile range below the first quartile and above the third quartile. (b) Results 
of the simulation studies aimed at determining the relative contributions of τstop, PTF and PGF to stopping difficulties in ADHD. The group dif-
ference in value for stop-signal delay for which each group had a .50 probability of responding (SSD-50) is displayed for the simulation that 
used estimated parameter values of each group (black) and each simulation in which specific values for the ADHD group were “normalized” 
by setting them to the value of the control group (gray).
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difficulties. The SSD-50 was determined by simulating 
a total of 5,000 trials at each SSD (the large number 
was chosen to produce stable estimates) over a range 
of 300 to 600 ms at 10-ms increments and using R’s 
approx() function to identify the exact SSD value for 
which each group showed a .50 probability of respond-
ing. Next, the SSD-50 value for the ADHD group was 
subtracted from the SSD-50 value for the control group 
to obtain an estimate of the magnitude of children with 
ADHD’s stopping difficulties (SSD-50 difference).

After this, two separate simulations were conducted 
in which (a) the τstop parameter of the ADHD group 
was set to the τstop parameter value of the control group 
and (b) the PTF parameter of the ADHD group was set 
to the PTF parameter value of the control group. Because 
this procedure would “normalize” the ADHD group’s 
deficits in τstop and PTF, respectively, reductions in the 
magnitude of the SSD-50 difference in each simulation 
(Fig. 2b) reflect these parameters’ individual contribu-
tions to stopping difficulties in the disorder. To assess 
the contributions of PGF deficits, which would be 
expected to have the opposite effect on stopping 

difficulties (i.e., with more go failures, the probability 
of responding on a stop-signal trial would be decreased), 
we also conducted a simulation in which the PGF param-
eter was “normalized” in ADHD.

Relative to the SSD-50 difference suggested by the 
parameters estimated from the empirical data (84 ms), 
fixing the τstop parameter to be the same between 
groups reduced the magnitude of ADHD-related stop-
ping difficulties to roughly half (46 ms). However fixing 
the PTF parameter to be the same between groups led 
to an SSD-50 difference of almost 0 (5 ms). Thus, this 
analysis suggests that if the average PTF of children with 
ADHD was similar to that of their typically developing 
peers, their ability to stop the dominant response would 
be roughly comparable with that of their peers. As 
expected, fixing PGF to be the same between groups 
increased the ADHD-related SSD-50 difference (117 ms). 
Taken together, the outcomes of these simulations suggest 
that although children with ADHD display evidence of 
increased variability in SSRTs, failure to trigger the inhibi-
tion process in response to the stop signal is, aggregate, 
the primary driver of stopping difficulties in the disorder.

Discussion

The goal of this study was to use the ex-Gaussian race 
model (Matzke, Dolan, Logan, Brown, & Wagenmakers, 
2013; Matzke, Love, et al., 2017), a Bayesian parametric 
approach for estimating stop-signal RT distributions and 
the incidence of trigger failures, to better clarify the 
latent cognitive mechanisms responsible for ADHD-
related performance differences on the stop-signal task. 
The model-based analysis indicated that children with 
ADHD display more variable SSRTs than their typically 
developing peers and, specifically, more positive skew 
in their SSRT distributions, a finding that was, notably, 
also present in their distributions of go RTs. However, 
their difficulties stopping the dominant go response 
appeared to primarily be driven by failures to trigger 
the inhibition process rather than impairments in the 
inhibition process itself. Furthermore, the PGF parameter 
revealed low overall rates of failure to initiate the go 
process, but a disproportionate difficulty in ADHD, sug-
gesting that ADHD-related deficits on the stop-signal 
task reflect broad problems with initiating goal-directed 
behaviors in response to relevant cues. Although previ-
ous lines of research have questioned the common 
interpretation that performance differences on the stop-
signal task in children with ADHD reflect impairments 
in inhibitory control processes (Alderson et al., 2007, 
2008; Lijffijt et al., 2005), the current study is the first 
to use a parametric approach to identify specific cogni-
tive mechanisms that can explain these differences.

The ability to rapidly utilize cues or changes in the 
environment to guide goal-directed behavior is 

Table 2.  Posterior Medians of All Group-Level Parameters 
and Bayesian p Values for Each Group Difference

Posterior median
Bayesian  
p valueParameter Control ADHD

Group M  
  µgo-match 0.594 0.601 .330
  σgo-match 0.108 0.125 < .001
  µgo-mismatch 2.587 1.918 .031
  σgo-mismatch 0.882 0.813 .355
  τgo 0.179 0.228 < .001
  µstop 0.171 0.172 .429
  σstop 0.017 0.014 .428
  τstop 0.027 0.027 .480
  σstop (mean) 0.043 0.038 .300
  τstop (mean) 0.072 0.114 .006
  PGF 0.019 0.047 < .001
  PTF 0.134 0.305 < .001

Group S  
  µgo-match 0.120 0.114 .302
  σgo-match 0.033 0.043 .007
  µgo-mismatch 0.577 0.434 .123
  σgo-mismatch 0.169 0.030 < .001
  τgo 0.076 0.099 .013
  µstop 0.040 0.029 .010
  σstop 0.045 0.041 .300
  τstop 0.076 0.128 .001
  σstop (SD) 0.030 0.027 .282
  τstop (SD) 0.051 0.083 .002
  PGF 0.755 0.893 .187
  PTF 0.446 0.485 .051
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essential for the implementation of cognitive control 
(Verbruggen, McLaren, & Chambers, 2014; Verbruggen, 
Stevens, & Chambers, 2014). In turn, effective detection 
and utilization of such cues has been hypothesized to 
be dependent on the top-down biasing of attentional 
competition toward stimuli that are most relevant to 
behavior (Desimone & Duncan, 1995) or on a ventral 
frontoparietal neural network that reorients attention 
toward previously unattended, but task-relevant, envi-
ronmental stimuli (Corbetta, Patel, & Shulman, 2008; 
Corbetta & Shulman, 2002). Studies using visuospatial-
orienting tasks and those that manipulate visual per-
ceptual load have suggested that early selective 
attention processes are largely intact in ADHD (Huang-
Pollock & Nigg, 2003; Huang-Pollock, Nigg, & Carr, 
2005). However, children with ADHD show marked 
impairment on tasks that require the active maintenance 
of goals or rules to guide behavior over a longer time 
scale, such as working memory paradigms (Kasper, 
Alderson, & Hudec, 2012; Rapport et  al., 2008) and 
decision-making tasks that require the updating of 
action rules (Shahar, Teodorescu, Karmon-Presser, 
Anholt, & Meiran, 2016). Thus, rather than reflecting 
early selection deficits, trigger failures may reflect “goal 
neglect” (Duncan, Emslie, Williams, Johnson, & Freer, 
1996), in which the goals of a task are understood and 
are possible for the individual to accomplish, but the 
top-down biasing of attention toward stimuli that are 
task-relevant is poorly or inconsistently implemented.

In line with this account, a previous investigation of 
trigger failures in schizophrenia (Matzke, Hughes, et al., 
2017) found a relationship between the PTF parameter 
and the latency of an electrophysiological waveform 
commonly associated with attentional processes (the 
N1). Furthermore, as in the schizophrenia literature 
(Hughes, Fulham, Johnston, & Michie, 2012), neuroim-
aging studies of ADHD have revealed aberrant activity 
in the right inferior frontal gyrus during performance 
of stop-signal tasks ( Janssen, Heslenfeld, van Mourik, 
Logan, & Oosterlaan, 2015; Rubia, Smith, Brammer, 
Toone, & Taylor, 2005). This region is strongly associ-
ated with the stop-signal task (Aron & Poldrack, 2006) 
but also appears to be broadly involved in the detection 
of task-relevant cues, regardless of whether these cues 
lead to inhibition (Hampshire, Chamberlain, Monti, 
Duncan, & Owen, 2010), which lends support to an 
attentional account of stop-signal-task deficits.

Between-group differences in τstop were also detected, 
but they did not appear to be a major driver of stopping 
difficulties in ADHD. Furthermore, we also found an 
increase in the exponential variability of go-process RTs 
in ADHD, consistent with the previous literature apply-
ing ex-Gaussian analyses to choice tasks in the disorder 
(Epstein et  al., 2011; Kofler et  al., 2013). Thus, τstop 

deficits, rather than reflecting specific impairments in 
inhibitory control, may simply reflect the positive skew 
that is ubiquitous in processing-time distributions of 
individuals with ADHD. This finding extends the work 
of Kofler et al. (2013), who provided compelling meta-
analytic evidence that RT distributions of children with 
ADHD are primarily characterized by greater τ, in that 
it demonstrates that their latent distributions of stop-
signal RTs show the same feature. Although ex-Gaussian 
parameters do not correspond to unique cognitive con-
structs (Matzke & Wagenmakers, 2009), formal sequen-
tial sampling models of choice tasks (Ratcliff, Smith, 
Brown, & McKoon, 2016) have consistently suggested 
that greater positive skew in the RT distributions of 
children with ADHD reflects less efficient information 
processing (Huang-Pollock, Karalunas, Tam, & Moore, 
2012; Karalunas & Huang-Pollock, 2013; Karalunas, 
Huang-Pollock, & Nigg, 2012; Metin et al., 2013; Weigard 
& Huang-Pollock, 2017). Less efficient processing in 
ADHD has, in turn, been hypothesized to reflect impair-
ments in top-down attentional systems related to 
arousal and state-regulation (Karalunas, Geurts, Konrad, 
Bender, & Nigg, 2014), suggesting a possible attentional 
link between RT variability and trigger failures.

Taken together, the overall pattern of results suggests 
that mechanistic accounts positing inhibitory control as 
a core deficit in ADHD are not supported by features 
of performance on the stop-signal task in children with 
ADHD. However, children with ADHD have also been 
found to display poorer performance on other tasks 
that are putative indices of inhibitory control, including 
go/no-go (Wright, Lipszyc, Dupuis, Thayapararajah, & 
Schachar, 2014), flanker, and Simon paradigms (Mullane, 
Corkum, Klein, & McLaughlin, 2009). The ex-Gaussian 
race model describes only the stop-signal task, but it 
is possible that parameters similar to PTF, which index 
the probability that control processes fail to be initiated, 
could be added to formal models of these other tasks 
in future work to evaluate the hypothesis that such 
parameters can account for poor performance across 
response-inhibition measures. Because formal models 
that describe go/no-go and interference tasks are 
already being developed and evaluated (Ratcliff, Huang-
Pollock, & Mckoon, 2018; White, Servant, & Logan, 
2018), this research direction would likely provide a 
strong and comprehensive test of this hypothesis.

Beyond evidence from controlled experimental tasks, 
the disinhibition hypothesis of ADHD is also appealing 
because it intuitively explains behavioral impulsivity, a 
core symptom of the disorder. We note that if the com-
bined evidence from this and future studies involving 
a range of response-inhibition tasks ultimately demon-
strates that performance deficits are due to trigger fail-
ures, such evidence would not invalidate the idea that 



868	 Weigard et al.

behavioral symptoms of ADHD are caused by difficul-
ties with inhibiting impulsive responses. Instead, it 
would suggest a different mechanistic explanation for 
behavioral impulsivity by supporting theories positing 
that individuals with ADHD have difficulty initiating 
control processes in response to corresponding cues 
and changes in the environment (Nigg & Casey, 2005) 
as opposed to difficulty enacting top-down control of 
cognition or behavior. Indeed, tentative findings of 
error-processing abnormalities in ADHD (Shiels & Hawk, 
2010), and evidence that children with the diagnosis 
have difficulty adjusting their performance strategy in 
response to subtle changes in task demands (Weigard & 
Huang-Pollock, 2014; Weigard, Huang-Pollock, & Brown, 
2016), also support this general conceptualization.

Although the evidence for this account is prelimi-
nary, prior work that has emphasized the involvement 
of state-regulation processes in ADHD suggests a plau-
sible mechanism for trigger failures and general difficul-
ties initiating top-down control processes in response 
to cues. ADHD-related deficits in arousal or vigilance, 
which are commonly indexed by measures from formal 
response-time models (drift rates) and signal detection 
theory (d′), have recently shown promise as a putative 
endophenotype of the disorder (Nigg et al., 2018). Such 
deficits have been hypothesized to reflect dysfunction 
in noradrenergic systems that modulate attentional 
states in response to task demands, leading children 
with ADHD to exhibit greater RT variability and greater 
difficulty parsing task-relevant signal from task-irrelevant 
noise (Karalunas, Geurts, et al., 2014; Weigard, Huang-
Pollock, Brown, & Heathcote, 2018). Because difficulties 
parsing task-relevant information from noise would 
probably affect an individual’s ability to attend to the 
stop signal and other task-relevant cues, it is plausible 
that deficient arousal causes trigger failures and other 
difficulties with the initiation of top-down control pro-
cesses. However, until a clear link between trigger fail-
ures and measures of arousal is established, this idea 
remains speculative. A crucial direction for future 
research on the causes of trigger failures in ADHD 
would be to experimentally assess the effects of arousal, 
as well as secondary factors such as motivation and 
affective state, on parameters of the race model. The 
complex etiology of ADHD also requires that future 
work longitudinally link ex-Gaussian race model 
parameters to other factors that are relevant to the 
development of ADHD, such as genetic, affective, and 
environmental variables.

Several additional research directions are also essen-
tial. First, the fact that PTF estimates of typically devel-
oping children were slightly higher than those reported 
in previous studies of healthy adults (Matzke, Hughes, 
et  al., 2017; Matzke, Love, et  al., 2017) suggests that 

there are developmental differences in the incidence 
of trigger failures. However, an investigation of perfor-
mance on a stop-signal task with similar parameters 
across multiple age bands is needed to clarify develop-
mental differences. Second, further investigation of the 
construct validity of the novel PGF parameter would be 
helpful; although we interpreted this parameter as an 
index of attentional processing, it could be argued that, 
because of the high salience of the choice stimuli, this 
parameter is more an index of noncompliance. Further-
more, as neuroimaging research and animal models of 
the stop-signal task suggest that the go and stop pro-
cesses have distinct neural bases (Aron et  al., 2007), 
additional work is necessary to qualify our assumption 
that PGF and PTF index similar constructs. In addition, 
findings of greater between-subjects variability in the 
τstop and PTF parameters in ADHD, which suggest pos-
sible mechanistic subtypes of individuals with inhibi-
tion deficits compared with trigger failure deficits, are 
consistent with the emerging literature on neuropsy-
chological and neurophysiological heterogeneity in the 
disorder (Fair et al., 2012; Gates, Molenaar, Iyer, Nigg, 
& Fair, 2014). However, as the individual-level param-
eter estimates from this analysis were too uncertain to 
explore individual differences, application of the ex-
Gaussian race model to a different data set with a larger 
number of trials at the individual level would be instru-
mental for exploring the possibility of mechanistic sub-
types and selective relationships with relevant covariates 
(e.g., symptom dimensions, neural measures).

The current study has several additional limitations. 
First it is possible that parameters added to the model 
to account for features of the data set (e.g., the addition 
of the PGF parameter and the ex-Gaussian parameters 
for mismatch RTs to account for omission rates and 
errors) may have led to problems related to “overfitting” 
the model to the data in this sample (Pitt & Myung, 
2002). However, because the same parameters have 
recently been added to the ex-Gaussian race model for 
analyses of different data sets and were found to be 
necessary to account for behavior in those samples 
(Matzke et al., 2019), it is unlikely that these additions 
reflect overfitting. Likewise, because of the low per-
subject number of error trials, the τgo parameter was 
fixed for match- and mismatch-process RTs to constrain 
the model. Although our secondary analysis suggested 
that most effects of group on model parameters were 
robust to this decision, this modification of the ex-
Gaussian race model may have led to misfits of the 
model to error RTs (see the Supplemental Material) and 
prevented the model from providing a comprehensive 
description of behavior. Therefore, this limitation 
underscores the importance of replicating our results 
in a data set with more trials at the individual level. A 
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final limitation of the current study is that the analysis 
plan was not preregistered, which would have reduced 
the likelihood that researcher degrees of freedom may 
have influenced results. Hence, preregistered replication 
of our findings in independent samples is necessary.

In sum, the current study provided evidence that 
performance aberrations observed in children with 
ADHD on the stop-signal task are, in the aggregate, 
more likely to be due to problems with triggering goal-
directed processes in response to environmental cues 
than to specific deficits in the efficiency of top-down 
inhibitory control processes. Crucially, these findings 
not only challenge the common interpretation of per-
formance on the stop-signal task in children with ADHD 
but also advance a mechanistic explanation for stop-
signal-task deficits that can be tested with a formal 
model and can, ideally, be more closely linked to causal 
explanations at the neurophysiological level in future 
research. More broadly, as originally argued by Matzke, 
Love, and Heathcote (2017), the results demonstrate 
that trigger failures must be considered when using the 
stop-signal task to answer clinical and other applied 
questions and that Bayesian parametric methods pro-
vide an ideal approach for doing so.
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Notes

1. The current sample size was several times larger than sample 
sizes in previous studies that successfully used the ex-Gaussian 
race model to estimate group means and standard deviations, 
and to assess between-group differences in model parameter val-
ues (e.g., Matzke, Hughes et al., 2017; Matzke, Love, et al., 2017).
2. Bayesian tests in JASP used standard Cauchy priors for effect 
size under the research hypothesis, with scale = .707 for t tests, 
scale = .5 for fixed factors in ANOVAs, and scale = 1 for random 
factors in ANOVAs.
3. This analysis was limited to the subset of participants that did 
not have perfect accuracy (199 children with ADHD, 83 control 
subjects).
4. Inverse-probit transformations of a group mean on the probit 
scale approximate the group median, rather than the mean, 
on the probability scale. We elected to use medians because a 
more complex bivariate transformation is necessary to calculate 
group means on the probability scale.

5. 
n M S= +

ϕ(α) − ϕ(β)
Φ β − Φ(α)

×
( )

,

SD S=



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2

2
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αϕ(α) − βϕ(β)
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−
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where M is 
the location and S is the scale parameter of the truncated nor-
mal distribution, α = (lower – M)/S, β = (upper – M)/S, ϕ is the 
probability density function of the standard normal distribution, 
and Φ is its cumulative distribution function.
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