
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Work In Progress: Design-Space Exploration of Multi-core Processors for
Safety-Critical Real-Time Systems

Sapra, D.; Altmeyer, S.
DOI
10.1109/RTSS.2017.00040
Publication date
2017
Document Version
Author accepted manuscript
Published in
2017 IEEE Real-Time Systems Symposium

Link to publication

Citation for published version (APA):
Sapra, D., & Altmeyer, S. (2017). Work In Progress: Design-Space Exploration of Multi-core
Processors for Safety-Critical Real-Time Systems. In 2017 IEEE Real-Time Systems
Symposium: proceedings : 5-8 December 2017, Paris, France (pp. 360-362). IEEE Computer
Society. https://doi.org/10.1109/RTSS.2017.00040

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1109/RTSS.2017.00040
https://dare.uva.nl/personal/pure/en/publications/work-in-progress-designspace-exploration-of-multicore-processors-for-safetycritical-realtime-systems(795f563b-733a-403a-8096-e661712363cf).html
https://doi.org/10.1109/RTSS.2017.00040


Work In Progress: Design-Space Exploration of
Multi-core Processors for Safety-Critical Real-Time Systems

Dolly Sapra
University Of Amsterdam

D.Sapra@uva.nl

Sebastian Altmeyer
University Of Amsterdam

altmeyer@uva.nl

Abstract— In this paper we outline Design Space Exploration
methodology aimed at homogeneous multi-core architectures,
where the safety-criticality is the crux of a system design.
Multi-core architectures provide better computational abilities,
but at the same time complicate the computation of timing
bounds. Determining suitable architectures that achieve timing
requirements is an important aspect for a system designer.

The proposed work conceptualizes ways to automate and
explore different design facets of a multi-core processor. The
intention is to ensure that the particular application meets its
deadlines, while optimizing other objectives such as minimiz-
ing hardware costs, energy consumption and floor area. The
automated exploration builds upon Mulitcore Response Time
Analysis for timing verification and multicube for heuristic
search methods. The aim is to generate an architecture design in
the end that can be used directly to build a custom application
specific processor.

I. INTRODUCTION

With the increasing computational demand of future
embedded systems, single-core processors will be replaced by
modern, often application-specific multi-core designs. Multi-
cores provide better performance/power ratio as well as
more freedom to architect an application-specific embedded
system. The assemblage of types of cores, number of cores,
memory system, bus policy etc. allow the system designer to
select an architecture which satisfies a range of application’s
design objectives. A design objective of real-time embedded
systems, such as automotive or aerospace systems, is timing
correctness, typically expressed via deadline requirements. In
case of safety-critical systems, these requirements are strict,
which means that the system do not serve its purpose if a
task in the application fails to complete before its deadline.

The large design-space combined with the stringent timing
requirements, poses a significant challenge to the designer
of safety-critical multi-core systems: finding an application-
specific multi-core design which fulfils all timing require-
ments, while optimizing all other design objectives, such
as for instance minimizing power consumption, hardware
costs, etc. In this paper, we sketch a design-space exploration
for safety-critical real-time multi-core systems. We combine
design-space exploration (DSE) techniques – well known
already within the realm of multimedia applications – using
genetic algorithms, with novel timing analysis techniques.

Ultimately, we aim to automatically create a multi-core
architecture design, following the result of the DSE, that can
directly be used to build a prototype FPGA processor. Such a
customized application-specific processor (that ensures timing
correctness of safety-critical applications) can help build a
quick prototype to be used in later design stages, or even
serve as an end product for low volume systems.

II. MULTI-CORE TIMING VERIFICATION

We assume an application consisting of a number of tasks,
which realize different functionalities of the system. Timing
analysis derives bounds on execution times, i.e., worst-case
execution times (WCET) for each task. On a single core,
timing bounds can be achieved through analysing execution
times of tasks in isolation along with the processor scheduling
policy. The WCETs of all tasks are then fed to a schedulability
analysis, which computes each task’s worst-case response
time (WCRT), i.e., the worst-case delay between task release
and task completion. If a task’s WCRT is less than or equal
to its deadline, the task is deemed schedulable. A task set is
deemed schedulable if every task is deemed schedulable.

In a multicore system however, timing analysis is more
complicated as there can be cross-core interference from
shared hardware resources such as memory subsystems and
common interconnects. Deriving WCETs in isolation, as
commonly done for single-core system, will lead to either
imprecise or optimistic execution time bounds.

Recently, a novel timing verification approach [1] for
multicore systems has been developed, which combines
the WCET and WCRT analysis in one framework, called
the Multicore Response Time Analysis (MRTA). The MRTA
framework dissects the effects of the individual components
of a multicore system (processor and memory demands) that
contribute to the execution-time and re-assembles them at the
level of the worst-case response time analysis. The analysis
considers the worst-case behaviour of hardware resources,
such as the memory bus, over long durations equating to
task response times, rather than summing the worst case over
short durations, such as single bus accesses. We build the
DSE framework by extending this MRTA framework.

We represent an application with a set of n sporadic tasks
{τ1, . . . ,τn}, each task τi has a minimum period or inter-
arrival time Ti and a deadline Di. Deadlines are assumed
to be constrained, hence Di ≤ Ti. The execution of task τi
is modelled using a set of traces Oi , where each trace
is an ordered list of instructions. Each instruction carries
information about the memory locations accessed (if any).

We assume that the tasks are independent, i.e., they do not
share mutually exclusive software resources, however, tasks
compete for hardware resources such as the processor, mem-
ory, and the bus. The index of each task is unique and thus
provides a global priority order, with τ1 having the highest
priority and τn the lowest. A subset of the tasks is assigned
to each core, with local priority ordering. Furthermore, tasks
follow fixed-priority preemptive scheduling.



In MRTA, the response time Ri of task τi on core Px is
given by the following recurrence relation:

Ri = PDi + IPROC(i,x,Ri)+ IBUS(i,x,Ri)+ IDRAM(i,x,Ri) (1)

where PDi is the processor demand, which equates to the
execution time of task τi in isolation assuming a perfect bus
and memory with zero latency. IPROC is the interference
on the core due to higher priority tasks preempting or
delaying task τi. IBUS is the interference on the bus computed
using a mathematical model of the bus arbiter. IDRAM is
the interference due to DRAM refreshes. The processor
demand PD, but also the memory demand MD, which
denotes the number of bus accesses of a task and feeds into
the computation of the IBUS and IDRAM, are computed by
analysing the task’s execution traces. The iterations start with
the no-interference response time and completes either when
a task’s response time bound exceed the task’s deadline, or
when each task’s response-time bound reaches a fixed-point
less than or equal to the task’s deadline, in which case the task
set is deemed schedulable. We use this analysis to determine
if a task set is schedulable on the given architecture.

The MRTA framework represents a generic and compo-
sitional solution for response time analysis. It is flexible in
that it can be instantiated with various architecture design
selections. It can model variable number of cores, with
different arbitration policies, as well as multifarious memory
models (uncached systems, data and instruction caches,
scratchpads, etc., and any combination of them). We refer
to [1] and [2] for details on the MRTA framework.

III. DESIGN-SPACE EXPLORATION OF
SAFETY-CRITICAL EMBEDDED SYSTEMS

In any embedded system, ensuring that all design objectives
are met is not trivial. We can think of design space as a union
of parameters and objective space (See Figure 1). Parameters
are the available design choices and due to a number of
possible parameter combinations, the parameter space can
be exponentially large. The values of the objective space
need to be acquired from relevant evaluation mechanisms,
which in real-life design can not usually be trivially derived
in reasonable time.

Fig. 1. Design space broken down into parameter and objective space.
(taken from [3])

Most of the times, the true optimum is hard to find because
there simply might not be a solution where all objectives
are simultaneously met. This problem is compounded by the
fact that the parameter space is too large to allow for an
analysis of each point in the parameter space. For this reason,

finding a design point that meets design requirements as best
as possible is often considered sufficient.

Evaluating a single design point can take a considerable
amount of time. Therefore, an efficient DSE should be able
to use each evaluation result to either reject unsuitable parts
of the design space or determine the direction of traversal in
subsequent iterations. The aim is to minimize total number of
evaluations needed to find a good solution (which might not
be the best solution – a trade-off between time and accuracy).

DSE frameworks typically starts with a randomly chosen
design point to evaluate and with each iteration attempts
to move towards the optima. There are numerous heuristic
algorithms available, like genetic algorithm, particle swarm
optimization, simulated annealing and ant colony optimization,
that govern the design space traversal by utilizing the
evaluation result as feedback.

A. Application model

A given application is the starting point for this Design
Space Exploration. We build our application model on the
MRTA’s task model, which in turn uses traces containing
memory access information for each instruction. The memory
information is needed to evaluate interferences based on
memory demands on local memory as well as bus demands
for main global memory and traces represent that information
without overly complicating the analysis.

Initially we propose to use Mälardalen benchmark suite [4]
to provide traces and later we aim to get traces from a real
time application. The benchmarks have been compiled to the
ARMv7-architecture, which also serves as the initial selection
for our DSE framework.

B. Parameter Space

In our context, we model a generic homogeneous mul-
ticore architecture. Such a platform consists of l timing-
compositional cores P1, . . . ,Pl as depicted in Figure 2. By
timing-compositional cores we mean cores where it is safe
to separately account for delays from different sources, such
as computation on a given core and interference on a shared
bus [5]. We assume homogenous cores, each with a local
memory connected via a shared bus to a global memory
and IO interface. We assume constant delays to retrieve data
from global memory under the assumption of an immediate
bus access. Bus transactions are atomic, which are not re-
ordered, and non-preemptable busy waiting on the processor
for requests to be serviced. Further, we assume that bus access
may be given to cores for one access at a time.

Fig. 2. Typical Multi-core platform with l cores with local memories,
connected via a shared bus to the global memory.



In such a general multicore system, design parameters that
can be varied and used for evaluation are
• Number of cores
• Local memory types - cache, partitioned cache and

scratchpads
• Local memory, data and instruction, cache sizes
• Global memory delays
• Bus arbitration policy
• Task to core mapping
These parameters have different types of justifiable values

and they need to be appropriately defined for the exploration.
For example, memories can have fixed ranges, i.e. minimum
and maximum allowed values which also have power of
two progression. Bus arbitration policy is chosen from one
of possible type like FIFO, Fixed Priority etc. The MRTA
framework, which we use to evaluate individual design points
is able to handle any combination of these paramters.

C. Evaluation Strategy

For an efficient exploration, we need fast and accurate
evaluation mechanism for all objectives. Timing correctness
comes from MRTA, which tells us if the application is
schedulable or unschedulable after the analysis. Along with
schedulability we need to evaluate the overall hardware cost
and the floor area on an FPGA.

To have a single module that performs all evaluations, we
have created a wrapper around MRTA, which accepts an
architecture file, evaluates time bounds and then using simple
metrics calculates the hardware cost. In future we aim to find
suitable FPGA for floor plan evaluations as well as to generate
an appropriate design file in the end. In exploration automated
tools, objectives are also called system metrics. The tool is
instantiated with configurable settings to optimize (maximize
or minimize) a system metric over multiple iterations. To
fasten up evaluation, we reuse partial evaluations in different
iterations wherever possible and do not calculate other system
metrics when a task is deemed unschedulable.

D. DSE Methodology

Incorporating all the ideas presented above, we build the
whole framework as depicted in Figure 3. A full search with
evaluation of each and every single point in the design space
is prohibitively slow due to the size of the design space and
since the analysis may take several minutes to validate the
schedulability on a mutlicore design. The number of design
points that can be realistically evaluated is hence limited.

We use heuristic search techniques that can be used to
search the design space using a subset of design point
evaluations for an optimal solution. A good search technique
should be able to take feedback from evaluation results and
modify its search methodology accordingly. A few automated
DSE frameworks already exist, for example, Multicube [6]
and FADSE [7], that can be utilised to explore the design
space based on various heuristics like genetic algorithms,
particle swarm optimization and simulated annealing.

We have two modules in the proposed approach – an
automated design-space exploration module and an evaluation

Fig. 3. Experimental design-space exploration setup

module. They communicate back and forth using predefined
communication protocol. MRTA framework is used inside
the wrapper module that also analyses other system metrics.

We have built the framework with Multicube explorer and
the evaluation module with partial implementation of the
parameter space. We still have to implement variable number
of cores and dynamic task to core mapping. With the smaller
parameter space, we have done full search, which is taking a
long time (days) already, and we are currently working on
setting up a genetic algorithm traversal.

IV. CONCLUTIONS

In this paper we presented our ongoing work towards
finding appropriate multi-core architecture that meets strict
timing requirements of an application. The framework con-
tributes towards ensuring all application requirements are
met, building upon automated design-space exploration and
MRTA. We still need to work on covering all of parameter
space, which is only partially done so far. Also, hardware
cost analysis needs to be updated for realistic market values.
We will evaluate heuristic algorithms, compare results and
establish an efficient way to achieve the architecture design
file. Future work is to integrate FPGA evaluation and synthesis
into the framework to achieve a custom application specific
processor.

REFERENCES

[1] S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke,
“A generic and compositional framework for multicore response time
analysis,” in Proceedings of the 23rd International Conference on Real
Time and Networks Systems, ser. RTNS ’15, 2015, pp. 129–138.

[2] R. I. Davis, S. Altmeyer, L. S. Indrusiak, C. Maiza, V. Nelis,
and J. Reineke, “An extensible framework for multicore response
time analysis,” Real-Time Systems, Jul 2017. [Online]. Available:
https://doi.org/10.1007/s11241-017-9285-4

[3] M. Thompson, “Tools and techniques for efficient system-level design
space exploration,” Ph.D. dissertation, University of Amsterdam, 2012.

[4] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET Benchmarks: Past, Present And Future,” in 10th International
Workshop on Worst-Case Execution Time Analysis (WCET 2010), 2010,
pp. 136–146.

[5] S. Hahn, J. Reineke, and R. Wilhelm, “Towards compositionality in
execution time analysis: Definition and challenges,” SIGBED Rev.,
vol. 12, no. 1, pp. 28–36, Mar. 2015.

[6] C. Silvano, W. Fornaciari, G. Palermo, V. Zaccaria, F. Castro, M. Mar-
tinez, S. Bocchio, R. Zafalon, P. Avasare, G. Vanmeerbeeck, C. Ykman-
Couvreur, M. Wouters, C. Kavka, L. Onesti, A. Turco, U. Bondik,
G. Mariani, H. Posadas, E. Villar, C. Wu, F. Dongrui, Z. Hao, and
T. Shibin, “Multicube: Multi-objective design space exploration of multi-
core architectures,” in 2010 IEEE Computer Society Annual Symposium
on VLSI, July 2010, pp. 488–493.

[7] H. Calborean and L. Vinan, “An automatic design space exploration
framework for multicore architecture optimizations,” in 9th RoEduNet
IEEE International Conference, June 2010, pp. 202–207.


