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Abstract
Aim: Vegetation	structure	is	a	key	determinant	of	animal	diversity	and	species	distri-
butions.	The	 introduction	of	Light	Detection	and	Ranging	 (LiDAR)	has	enabled	the	
collection	of	massive	amounts	of	point	cloud	data	for	quantifying	habitat	structure	at	
fine	resolution.	Here,	we	review	the	current	use	of	LiDAR‐derived	vegetation	metrics	
in	diversity	and	distribution	research	of	birds,	a	key	group	for	understanding	animal–
habitat	relationships.
Location: Global.
Methods: We	review	50	relevant	papers	and	quantify	where,	 in	which	habitats,	at	
which	spatial	scales	and	with	what	kind	of	LiDAR	data	current	studies	make	use	of	
LiDAR	metrics.	We	also	harmonize	and	categorize	LiDAR	metrics	and	quantify	their	
current	use	and	effectiveness.
Results: Most	studies	have	been	conducted	at	local	extents	in	temperate	forests	of	
North	 America	 and	 Europe.	 Rasterization	 is	 currently	 the	main	method	 to	 derive	
LiDAR	metrics,	 usually	 from	airborne	 laser	 scanning	data	with	 low	point	densities	
(<10	points/m2)	and	small	footprints	(<1	m	diameter).	Our	metric	harmonization	sug-
gests	that	40%	of	the	currently	used	metric	names	are	redundant.	A	categorization	
scheme	allowed	to	group	all	metric	names	 into	18	out	of	24	theoretically	possible	
classes,	defined	by	vegetation	part	(total	vegetation,	single	trees,	canopy,	understo-
rey,	and	other	single	layers	as	well	as	multi‐layer)	and	structural	type	(cover,	height,	
horizontal	variability	and	vertical	variability).	Metrics	related	to	canopy	cover,	canopy	
height	and	canopy	vertical	variability	are	currently	most	often	used,	but	not	always	
effective.
Main conclusions: Light	Detection	and	Ranging	metrics	play	an	important	role	in	un-
derstanding	animal	space	use.	Our	review	and	the	developed	categorization	scheme	
may	facilitate	future	studies	in	the	selection,	prioritization	and	ecological	interpreta-
tion	of	LiDAR	metrics.	The	increasing	availability	of	airborne	and	spaceborne	LiDAR	
data	and	the	development	of	voxel‐based	and	object‐based	approaches	will	further	
allow	novel	ecological	applications,	also	for	open	habitats	and	other	vertebrate	and	
invertebrate	taxa.
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1  | INTRODUC TION

A	key	 goal	 of	 biodiversity	 and	 conservation	 research	 is	 to	 predict	
and	understand	species	distributions	 (Franklin	&	Miller,	2009)	and	
diversity	patterns	(Ricklefs	&	Schluter,	1993).	In	this	context,	climate	
and	habitat	heterogeneity	are	among	the	most	widely	studied	de-
terminants	of	terrestrial	species	diversity	and	distribution	(Hawkins	
et	al.,	2003;	Stein,	Gerstner,	&	Kreft,	2014).	While	climate	is	often	
thought	to	be	the	key	determinant	at	large	spatial	extents	(Pearson	
&	Dawson,	2003),	vegetation	structure	often	becomes	particularly	
relevant	at	 small	 spatial	extents	and/or	 fine	grain	sizes	 (Zellweger,	
Braunisch,	Baltensweiler,	&	Bollmann,	2013).	Vertical	and	horizontal	
structure	of	 vegetation	has	 long	been	 recognized	as	 an	 important	
factor	driving	animal	diversity	and	species	distributions,	especially	
of	 birds	 (Cody,	 1985;	 Dunlavy,	 1935;	 MacArthur	 &	 MacArthur,	
1961).	However,	measuring	the	fine‐scale	habitat	structure	and	3‐D	
characteristics	of	vegetation	across	large	regions	is	difficult	and	la-
bour‐intensive,	and	hence	limits	most	animal–habitat	studies	to	the	
local	or	landscape	scale	(i.e.,	<200	km).	Nevertheless,	recent	devel-
opments	in	remote	sensing	now	provide	unprecedented	opportuni-
ties	for	measuring	vegetation	structure	across	broad	spatial	extents	
(Kissling,	 Seijmonsbergen,	 Foppen,	 &	 Bouten,	 2017;	 Lausch	 et	 al.,	
2016;	Skidmore	et	al.,	2015).

Light	Detection	and	Ranging	(LiDAR)—an	active	remote	sensing	
technique—is	 a	 technology	 that	 provides	 fine‐grained	 information	
about	 the	 3‐D	 physical	 structure	 of	 ecosystems	 (Davies	 &	 Asner,	
2014;	 Lefsky,	 Cohen,	 Parker,	 &	 Harding,	 2002;	 Simonson,	 Allen,	
&	Coomes,	2014;	Vierling,	Vierling,	Gould,	Martinuzzi,	&	Clawges,	
2008).	LiDAR	sensors,	for	example	installed	on	airplanes	or	satellites	
(Figure	1a),	measure	the	return	time	of	an	emitted	pulse	of	laser	light	
and	convert	this	time	to	a	distance.	Especially,	airborne	laser	scan-
ning	(ALS)	data	are	often	used	because	they	cover	 large	areas	and	
country‐wide	datasets	are	becoming	increasingly	available.	For	ALS,	
a	plane	or	helicopter	serves	as	the	platform	from	which	the	LiDAR	
sensor	is	operated.	In	most	cases,	near‐infrared	light	is	used	which	
partially	penetrates	the	vegetation	and	therefore	allows	to	measure	
both	 the	canopy	and	 subcanopy	vegetation	 structure.	 LiDAR	data	
are	recorded	as	full	waveform	(FWF)	or	discrete	echoes	(i.e.,	returns	
of	one	or	more	energy	reflections	from	the	FWF;	Figure	1a).	The	re-
sulting	dataset	is	called	a	“point	cloud”	(Figure	1a)	and	consists	of	the	
x,y,z	coordinates	of	the	points	together	with	intensity	values.	LiDAR	
is	widely	used	in	forestry	to	measure	3‐D	forest	structure	(Maltamo,	
Naesset,	&	Vauhkonen,	2014),	but	applications	in	ecology,	biodiver-
sity	and	conservation	planning	are	also	increasing	(Davies	&	Asner,	
2014;	 Simonson	 et	 al.,	 2014).	 Nevertheless,	 using	 and	 processing	
the	massive	amounts	of	LiDAR	data	across	large	spatial	extents	re-
mains	challenging	(Bergen	et	al.,	2009;	Kissling	et	al.,	2017)	and	most	

current	LiDAR	applications	are	restricted	to	local	study	sites	as	well	
as	forest	habitats	(Wulder	et	al.,	2012).

Recent	reviews	on	the	use	of	LiDAR	data	for	measuring	3‐D	hab-
itats	of	animals	show	that	vegetation	structure	can	be	quantified	in	
many	ways	(e.g.,	Davies	&	Asner,	2014;	Hill,	Hinsley,	&	Broughton,	
2014).	A	potential	confusion	for	ecologists	could	be	that	a	multitude	
of	LiDAR	metrics	exists	to	quantify	structural	vegetation	attributes.	
For	 instance,	canopy	height	can	be	calculated	as	the	maximum	re-
turn,	the	mean	height	of	the	first	returns	or	the	height	of	the	95th	
percentile	of	returns	in	a	raster	cell	(Ackers,	Davis,	Olsen,	&	Dugger,	
2015;	Coops	et	al.,	2016;	Smart,	Swenson,	Christensen,	&	Sexton,	
2012).	Additionally,	 there	 are	 also	many	 technical,	methodological	
and	 data	 quality	 aspects	 that	 may	 influence	 how	 LiDAR‐derived	
vegetation	structure	 is	quantified.	For	 instance,	 in	many	cases	the	
point	cloud	is	rasterized	(i.e.,	simplified	into	pixels)	or	voxelized	(i.e.,	
into	three‐dimensional	voxels;	Figure	1b).	LiDAR‐derived	vegetation	
metrics	(e.g.,	mean	canopy	height)	are	then	calculated	to	summarize	
the	 vegetation	 structural	 information	 from	 the	 point	 cloud	within	
each	pixel	 or	 voxel.	An	 advantage	of	 such	 area‐based	 approaches	
(i.e.,	 rasterization)	 and	 voxel‐based	 approaches	 (i.e.,	 voxelization)	
is	 that	they	are	computationally	efficient,	but	they	also	 lead	to	 in-
formation	 loss	 regarding	 the	 3‐D	 information	 of	 the	 point	 cloud	
(Ciuti	et	al.,	2018).	An	alternative	is	to	use	object‐based	approaches	
(Figure	1b)	where	either	the	point	cloud	or	a	derived	rasterized	map	
is	segmented	into	objects	such	as	trees,	forest	stands,	reed	beds	or	
hedges	based	on	similarities	and	differences	 in	neighbourhood	 in-
formation	around	points	or	grid	cells	(Höfle,	Hollaus,	&	Hagenauer,	
2012;	Koch,	Kattenborn,	Straub,	&	Vauhkonen,	2014).	This	is	com-
putationally	demanding,	but	also	provides	new	ways	of	quantifying	
3‐D	habitat	 structure	 compared	 to	 area‐based	or	 voxel‐based	 ap-
proaches.	Other	 specific	 technical	 and	methodological	 constraints	
include	 point	 cloud	 density,	 footprint	 size	 and	 conditions	 of	 the	
flight	campaign	such	as	 flight	altitude	and	season	 (leaf‐on	vs.	 leaf‐
off).	The	season	of	LiDAR	data	acquisition	might	also	be	influential	
when	mapping	3‐D	animal	habitats	 (e.g.,	understorey	 in	deciduous	
or	 broad‐leaf	 forests;	Hill	 &	 Broughton,	 2009).	 Currently,	 there	 is	
no	overview	available	on	how	LiDAR	data	characteristics	are	repre-
sented	in	ecological	studies	of	animal–habitat	relationships.

Diversity	 and	 distribution	 studies	 usually	 aggregate	 raw	 data	
from	opportunistic	observations	or	standardized	and	structured	sur-
veys	to	represent	the	presence,	presence–absence,	population	size	
or	richness	of	species	across	space	and	time	(Gaston,	1996;	Kissling	
et	al.,	2018).	Such	aggregated	field	observations	(e.g.,	presence‐only	
or	atlas	data)	can	then	be	mapped	and	used	in	species	distribution	
models	 (SDMs;	Guisan,	 Thuiller,	&	 Zimmermann,	 2017)	 or	 species	
richness	 analyses	 to	 quantify	 the	 relationship	with	 environmental	
predictor	 variables,	 to	map	 and	 predict	 spatial	 distributions,	 or	 to	

K E Y W O R D S

airborne	laser	scanning,	animal	diversity,	habitat	use,	LiDAR,	literature	review,	species	
distribution	modelling,	structural	heterogeneity,	vertical	vegetation	structure
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test	ecological	hypotheses	 (Figure	1c).	 In	most	 large‐scale	studies,	
environmental	information	related	to	climate,	productivity,	topogra-
phy	and	land	cover	is	used	to	quantify	predictor	variables	(Guisan	et	
al.,	2017;	Hawkins	et	al.,	2003),	but	information	on	fine‐scale	habitat	

structure	(e.g.,	density,	cover	and	openness	of	vegetation)	and	3‐D	
vegetation	distribution	 (e.g.,	 vertical	 and	horizontal	 distribution	of	
biomass)	 is	often	 lacking	 (Kissling	et	 al.,	 2017).	An	exciting	oppor-
tunity	 to	 improve	 statistical	 models	 of	 species	 distributions	 and	

F I G U R E  1   	Sampling	and	processing	of	Light	Detection	and	Ranging	(LiDAR)	data	and	its	use	in	species	distribution	modelling.	(a)	LiDAR	
data	can	be	obtained	from	spaceborne	or	airborne	sensors	with	a	certain	footprint	size,	recorded	as	full	waveform	or	discrete	echo	and	then	
processed	into	point	clouds	with	low	or	high	point	densities.	(b)	LiDAR	point	clouds	can	be	further	processed	using	area‐based	approaches	
(i.e.,	rasterization	into	grid	cells),	voxel‐based	approaches	(i.e.,	voxelization	into	3‐D	voxels)	or	object‐based	approaches	(e.g.,	segmentation	
into	objects	such	as	trees).	(c)	Applications	of	species	distribution	models	use	mapped	species	observations	together	with	environmental	
data	and	LiDAR	metrics	in	a	statistical	model	to	predict	the	spatial	distribution	of	species
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species	 richness	 is	 therefore	 the	 increasing	availability	of	airborne	
and	spaceborne	LiDAR	data	which	allows	one	to	derive	a	diversity	
of	metrics	that	quantify	many	aspects	of	the	3‐D	structure	of	vege-
tation.	This	is	particularly	relevant	because	individual	species	show	
strong	 preferences	 for	 particular	 habitat	 structures	 (Cody,	 1985)	
and	because	species	richness	tends	to	increase	with	larger	available	
niche	 space	 in	 structurally	 heterogeneous	 and	 complex	 habitats	
(Stein	et	al.,	2014).

Here,	we	 provide	 a	 review	 on	 the	 use	 of	 LiDAR	 data	 in	 avian	
species	 distribution	 and	 diversity	 research.	 We	 focus	 on	 studies	
of	species	distributions	 (based	on	occupancy,	presence‐only,	pres-
ence–absence	 and	 abundance	 data)	 and	 species	 richness	 (based	
on	range	maps,	inventories	or	atlas	data)	because	these	are	widely	
studied	aspects	 in	spatial	ecology	and	biogeography	(Guisan	et	al.,	
2017;	Kissling	et	al.,	2018;	MacArthur	&	MacArthur,	1961;	Stein	et	
al.,	2014).	We	further	focus	on	birds	because	they	strongly	depend	
on	 3‐D	 habitat	 structure	 (Cody,	 1985;	 MacArthur	 &	 MacArthur,	
1961)	and	because	they	are	among	the	most	widely	studied	organ-
isms	in	this	particular	research	field	(Davies	&	Asner,	2014).	We	first	
summarize	the	representativeness	of	published	studies	 in	terms	of	
geographical	coverage,	habitat	types	and	spatial	study	extents.	We	
then	review	some	of	the	technical,	methodological	and	data	quality	
characteristics	of	the	employed	LiDAR	datasets	(e.g.,	point	density,	
footprint	 sizes,	 leaf‐on	 vs.	 leaf‐off	 data,	 area‐based	 vs.	 voxel‐/ob-
ject‐based	 approaches).	 Finally,	 we	 quantify	 which	 LiDAR‐derived	
vegetation	metrics	are	most	commonly	used	and	what	relationship	
they	show	with	individual	species	distributions	and	species	richness,	
respectively.	We	expect	that	most	studies	have	been	conducted	in	
Northern	 Hemisphere	 temperate	 forests	 (Davies	 &	 Asner,	 2014;	
Maltamo	et	al.,	2014),	predominantly	at	local	(1–10	km)	or	landscape	
(10–200	km)	 scales	 (Simonson	 et	 al.,	 2014),	 and	 with	 area‐based	
rather	 than	 object‐based	 or	 voxel‐based	 approaches	 (Blaschke	 et	
al.,	2014;	Kissling	et	al.,	2017;	Maltamo	et	al.,	2014).	We	further	hy-
pothesize	that	metrics	related	to	canopy	height	and	cover	are	most	
widely	used	(Davies	&	Asner,	2014)	and	that	metrics	describing	ver-
tical	heterogeneity	and	distribution	of	vegetation	are	most	effective	
(MacArthur	&	MacArthur,	 1961;	 Stein	 et	 al.,	 2014).	 In	 comparison	
with	a	recent	review	on	this	topic	(Davies	&	Asner,	2014),	our	study	
provides	more	detailed	insights	and	technological	background	of	the	
employed	LiDAR‐derived	vegetation	metrics	and	how	they	are	cur-
rently	used	in	avian	diversity	and	distribution	research.

2  | METHODS

2.1 | Article selection

Our	 review	 is	 based	 on	 a	 total	 of	 50	 articles	 which	 focused	 on	
analysing	 bird	 species	 distributions	 and	 bird	 species	 richness	 in	
relation	 to	 LiDAR‐derived	 vegetation	 metrics	 (see	 Supporting	
Information	 Appendix	 S1).	 These	 articles	 were	 found	 with	 key-
word	searches	in	the	Web	of	Science	on	11	September	2017	(see	
workflow	in	Supporting	 Information	Appendix	S2).	 Included	key-
words	 were	 “avian”	 or	 “bird”	 for	 the	 bird	 component,	 “LiDAR,”	

“ALS”	or	“airborne	 laser	scanning”	for	the	LiDAR	component	and	
“vegetation	 structure,”	 “landscape	 structure”	 or	 “habitat	 struc-
ture”	for	the	vegetation	component.	These	keywords	were	used	in	
all	possible	combinations	for	the	bird	and	LiDAR	components,	with	
the	vegetation	component	as	an	optional	addition.	This	search	ini-
tially	 resulted	 in	 a	 total	 of	 128	 articles	 (Supporting	 Information	
Appendix	S2).

We	 further	 improved	 the	 article	 selection	 by	 applying	 several	
selection	 criteria	 (Supporting	 Information	 Appendix	 S2).	 Articles	
with	 a	 focus	outside	 the	 field	of	 ecology	 (e.g.,	 LiDAR	applications	
for	urban	planning)	were	excluded	(n	=	29).	From	the	remaining	99	
articles,	we	further	excluded	articles	that	were	not	related	to	birds	
(n	=	24),	review	papers	(n	=	13),	articles	that	used	LiDAR	but	not	for	
deriving	specific	vegetation	metrics	(n	=	8),	studies	that	did	not	use	
direct	field	observations	of	birds	(n	=	3),	and	studies	that	focused	on	
breeding	success	 (n	=	2)	or	beta	diversity	 (n	=	1).	Finally,	we	added	
two	papers	that	were	suggested	by	a	reviewer	and	which	matched	
our	inclusion	criteria.	The	final	list	included	50	articles	(Supporting	
Information	Appendix	S1).

2.2 | Data extraction

From	 the	 50	 articles,	 we	 extracted	 publication	 details,	 biological	
data,	 information	 on	 LiDAR	 data	 and	 processing,	 and	 information	
about	 the	calculated	LiDAR‐derived	vegetation	metrics	 (see	work-
flow	in	Supporting	Information	Appendix	S2).	All	extracted	data	to-
gether	with	a	detailed	metadata	description	are	available	from	the	
Dryad	Digital	Repository	(https://doi.org/10.5061/dryad.tm28hb6).

For	 recording	publication	details,	we	extracted	 information	on	
first	author,	year,	 title,	 journal	and	the	study	 location	and	country.	
This	was	mainly	used	to	map	the	study	locations	and	to	assess	their	
geographical	distribution.

For	the	extraction	of	biological	data,	we	recorded	taxonomic	
information,	whether	 the	 study	 focused	on	 species	distributions	
or	 species	 richness,	 the	 bird	 observation	 method	 (point	 count,	
transects,	territory	mapping,	atlas	data	etc.),	the	habitat	type	and	
the	extent	of	the	study	area.	Taxonomic	information	was	obtained	
by	recording	the	bird	species	name	from	the	species	distribution	
and	 abundance	 studies,	 using	 the	 standardized	 taxonomy	 from	
the	checklist	of	the	birds	of	the	world	(del	Hoyo,	Collar,	Christie,	
Elliott,	&	Fishpool,	2014;	del	Hoyo	et	al.,	2016).	For	species	rich-
ness	studies,	species	names	were	not	recorded	because	they	are	
usually	not	provided,	but	we	recorded	order	or	family	information	
when	available.	Habitat	information	was	extracted	from	the	arti-
cles	and	recorded	using	the	standardized	terms	from	the	Habitat	
Classification	 Scheme	 version	 3.1	 of	 the	 IUCN	 red	 list	 (https://
www.iucnredlist.org/resources/habitat‐classification‐scheme).	
This	distinguished	major	habitat	types	such	as	forests	(defined	as	
continuous	stands	of	 trees),	savannas	 (ecosystems	dominated	by	
a	 grass	 ground	 cover	with	 an	overstorey	of	widely	 spaced	 trees	
and	shrubs),	shrublands	(scrub,	bushland	and	thickets),	grasslands	
(composed	 of	 grasses	 and	 broadleaved	 herbaceous	 plants),	wet-
lands	 (inland	 aquatic	 habitats)	 and	deserts	 (arid	 landscapes	with	

https://doi.org/10.5061/dryad.tm28hb6
https://www.iucnredlist.org/resources/habitat-classification-scheme
https://www.iucnredlist.org/resources/habitat-classification-scheme
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a	 sparse	 plant	 cover).	 For	 simplification,	 we	 use	 the	 term	 “agri-
culture”	 for	 the	 IUCN	habitat	 type	 “Artificial—Terrestrial”	 (which	
includes	arable	land,	pastureland,	plantations,	rural	gardens,	urban	
areas	and	subtropical/tropical	heavily	degraded	former	forest).	In	
cases	where	multiple	habitat	types	were	analysed	 in	a	study,	we	
recorded	all	habitat	types.	To	quantify	the	spatial	extent	of	each	
study,	we	recorded	the	area	size	(km2)	covered	by	the	LiDAR	mea-
surements	 if	mentioned	 in	 the	articles.	Moreover,	we	quantified	
the	spatial	resolution	(in	m)	of	the	raster	cell	or	the	radius	around	
the	focal	bird	observation	point	for	which	the	LiDAR	metrics	were	
calculated.	For	raster	data,	we	recorded	(a)	the	original	resolution	
of	the	LiDAR	metrics;	and	(b)	the	resolution	at	which	LiDAR	met-
rics	were	aggregated	when	linked	to	the	bird	data.

For	extracting	information	on	LiDAR	data	and	processing,	we	re-
corded	 several	 LiDAR	characteristics.	 First,	we	extracted	whether	
LiDAR	data	were	obtained	from	ALS	or	spaceborne	 laser	scanning	
(SLS),	and	at	which	flight	altitude	because	both	can	influence	LiDAR	
data	quality	 and	precision.	Second,	 the	echo	detection	mode	 (dis-
crete	or	full	waveform)	was	recorded	because	this	can	influence	how	
LiDAR‐derived	vegetation	metrics	are	calculated	(e.g.,	canopy	height	
is	calculated	with	waveform	data	as	the	highest	peak	above	a	certain	
threshold,	whereas	 it	 is	 calculated	 as	 the	mean	 height	 of	 first	 re-
turns	with	discrete	data).	Third,	we	recorded	the	LiDAR	point	density	
because	 it	 influences	 the	 calculation	 of	 LiDAR‐derived	 vegetation	
metrics.	With	 low	point	densities	 (e.g.,	1	point/m2),	 it	 is	 impossible	
to	 calculate	 vegetation	 complexity	 at	 a	metre	 resolution	whereas	
high	point	densities	(e.g.,	>20	point/m2)	allow	to	analyse	multi‐layer	
LiDAR	metrics	at	very	fine	(e.g.,	5	×	5m)	resolution.	Fourth,	we	ex-
tracted	footprint	size	which	describes	the	diameter	of	the	laser	pulse	
on	the	ground	(Figure	1a).	At	small	footprint	sizes	(e.g.,	<1	m	diame-
ter),	data	points	reflect	measurements	of	single	branches	or	parts	of	
trees	whereas	at	large	footprint	sizes	(e.g.,	10–25	m	diameter)	they	
represent	multiple	trees	or	even	parts	of	vegetation	stands.	Fifth,	we	
extracted	in	which	season	LiDAR	data	were	collected	(leaf‐on	or	leaf‐
off)	because	this	can	have	consequences	for	how	many	points	are	
received	from	 lower	vegetation	strata	 (e.g.,	 in	broadleaved	forest).	
Finally,	we	recorded	how	LiDAR	data	were	processed	before	calcu-
lating	the	metrics,	that	is	whether	studies	used	area‐based,	voxel‐	or	
object‐based	approaches	(Figure	1b).	As	a	special	case	of	rasterizing,	
we	also	recorded	whether	studies	calculated	metrics	for	raster	cells	
(pixels)	or	for	areas	around	a	focal	observation	point	because	many	
bird	studies	use	point	counts	rather	than	area‐based	sampling	meth-
ods	(such	as	line	transects	or	territory	mapping;	Bibby,	Burgess,	Hill,	
&	Mustoe,	2000).

For	 the	extraction	of	metric	 information,	we	 recorded	all	met-
ric	names	as	mentioned	 in	the	original	articles	 (e.g.,	canopy	height	
heterogeneity,	mean	 fractal	 dimension	 index,	 patch	 diversity,	 foli-
age	height	diversity	based	on	Simpson	index).	We	also	distinguished	
whether	 metrics	 were	 derived	 from	 discrete	 LiDAR	 or	 from	 full	
waveform	LiDAR.	We	further	extracted	the	effect	each	metric	had,	
that	is	the	relationship	(e.g.,	model	parameter	estimate,	correlation	
coefficient,	predictor	variable	importance)	between	the	metric	and	
the	species	distribution	or	richness	variable.

2.3 | Harmonization of metric names

All	metrics	used	 in	 the	 selected	articles	were	 compared	with	each	
other	 in	 terms	of	metric	names,	structural	elements	of	 the	vegeta-
tion	that	they	describe	(e.g.,	canopy,	understorey	or	total	vegetation),	
calculation	method	(e.g.,	mathematical	formula)	and	the	unit	in	which	
the	metric	 is	 measured	 (e.g.,	 metres,	 %,	 an	 index	 value).	We	 then	
harmonized	the	metric	names	by	grouping	them	if	they	had	a	similar	
meaning,	using	those	names	which	were	most	widely	used	or	which	
described	the	metric	in	terms	of	mathematical	approach	and	ecologi-
cal	meaning	of	the	metric.	This	resulted	in	a	list	of	harmonized	metrics	
(see	Supporting	Information	Appendix	S3)	in	which	the	metric	name,	
a	description,	the	calculation	method,	the	unit	and	the	articles	which	
used	this	metric	were	summarized.	We	only	included	LiDAR	metrics	
as	used	 in	 the	 selected	bird–habitat	 studies.	 It	was	not	our	 aim	 to	
review	all	methodological	and	technical	aspects	of	LiDAR	metric	cal-
culations	as	used	in	vegetation	and	forestry	studies	(see	e.g.,	Bergen	
et	al.,	2009;	Hyyppä	et	al.,	2008;	Koenig	&	Höfle,	2016).

2.4 | Categorization of metric names

To	facilitate	a	conceptual	and	ecological	comparison	and	interpreta-
tion	of	metric	names,	we	developed	a	categorization	scheme	based	
on	which	part	of	the	vegetation	was	described	(Figure	2a)	and	which	
structural	type	was	quantified	(Figure	2b).

For	the	vegetation	part,	we	distinguished	six	categories	 including	
total	vegetation,	single	tree,	three	different	single	 layers	 (i.e.,	canopy,	
understorey	or	other	layer)	and	multi‐layer	(Figure	2a).	Total vegetation 
refers	to	metrics	describing	the	whole	vegetation	without	distinguish-
ing	layers.	This	may	provide	ecological	information	on	the	vertical	and	
horizontal	distribution	of	 total	vegetative	biomass	with	 relevance	 for	
explaining	animal	species	richness.	Single‐tree	metrics	refer	to	structural	
metrics	of	single	trees,	which	may	be	specifically	relevant	for	animals	
that	live	or	nest	in	particular	trees	(e.g.,	cavity	nesters	such	as	wood-
peckers	or	deadwood	specialists).	Single	layers	(i.e.,	canopy,	understorey 
and other layer)	refer	to	calculations	which	focus	on	specific	vegetation	
strata	that	might	be	relevant	for	certain	species	(e.g.,	ground‐dwelling,	
understorey	or	canopy	birds).	Finally,	multi‐layer	refers	to	metrics	where	
vegetation	strata	were	distinguished	but	metrics	then	calculated	across	
different	strata.	This	may	allow	to	quantify	the	vertical	and	horizontal	
distribution	of	vegetative	biomass	in	more	detail	than	from	total	vege-
tation	or	single	layers,	for	example	as	initially	envisaged	for	quantifying	
foliage	height	diversity	(MacArthur	&	MacArthur,	1961).

For	 the	 structural	 type,	 we	 distinguished	 four	 categories	 in-
cluding	 height,	 cover,	 vertical	 variability	 and	 horizontal	 variability	
(Figure	2b).	For	instance,	metrics	describing	the	height	of	the	canopy	
(or	of	another	vegetation	layer)	were	categorized	into	the	height	cat-
egory	and	metrics	describing	the	density	of	the	vegetation	(e.g.,	un-
derstorey	cover)	were	categorized	into	the	cover	category.	Vertical	
variability	 included	 metrics	 describing	 the	 vertical	 distribution	 of	
vegetation	structure	(e.g.,	foliage	height	diversity).	Horizontal	vari-
ability	encompassed	metrics	describing	the	horizontal	distribution	of	
variation	in	vegetation	structure	(e.g.,	patchiness	of	vegetation).	All	
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four	structural	types	describe	different	aspects	of	the	3‐D	distribu-
tion	of	vegetative	biomass.

Based	on	 the	six	categories	of	 the	vegetation	part	and	 the	 four	
categories	of	the	structural	type,	a	total	of	24	metric	classes	were	the-
oretically	possible.	These	metric	classes	reflected	the	combination	of	
both	what	part	 of	 the	 vegetation	 and	what	 type	of	 structural	 type	
was	described.	The	24	metric	classes	within	the	six	vegetation	part	
categories	were	as	follows:	(a)	total	vegetation	cover,	total	vegetation	
height,	total	vegetation	horizontal	variability,	total	vegetation	vertical	
variability;	(b)	single‐tree	cover,	single‐tree	height,	single‐tree	horizon-
tal	variability,	single‐tree	vertical	variability;	(c)	canopy	cover,	canopy	
height,	canopy	horizontal	variability,	canopy	vertical	variability;	(d)	un-
derstorey	cover,	understorey	height,	understorey	horizontal	variabil-
ity,	understorey	vertical	variability;	 (e)	other	 layer	cover,	other	 layer	
height,	other	layer	horizontal	variability,	other	layer	vertical	variabil-
ity;	and	(f)	multi‐layer	cover,	multi‐layer	height,	multi‐layer	horizontal	
variability	and	multi‐layer	vertical	variability.	We	assigned	each	har-
monized	metric	name	to	one	of	these	metric	classes	(see	Supporting	
Information	Appendix	S3)	to	allow	an	overview	and	categorization	of	
the	currently	used	LiDAR‐derived	vegetation	metrics.

2.5 | Relationship of metrics with species 
distribution and species richness

We	used	the	extracted	information	on	model	parameter	estimates,	
regression	coefficients	and	predictor	variable	importance	to	quantify	

the	effect	of	LiDAR‐derived	vegetation	metrics	on	species	distribu-
tions	and	species	richness.	Because	the	methods	in	the	selected	ar-
ticles	were	very	heterogeneous	and	did	not	consistently	report	the	
basic	data	needed	for	a	meta‐analysis	(i.e.,	enabling	calculation	and	
analysis	of	effect	sizes;	Gerstner	et	al.,	2017),	we	simplified	the	in-
formation	to	whether	the	LiDAR	metric	showed	an	“effect”	or	“no	
effect”	 on	 the	 bird	 response	 variable.	 A	 positive,	 negative	 or	 un-
known	direction	of	the	bird–habitat	relationship	was	classified	as	an	
“effect.”	A	positive	and	negative	direction	reflected	the	sign	of	pa-
rameter	estimates	from	the	species	distribution	and	species	richness	
models,	whereas	 an	unknown	direction	 reflected	 that	 information	
on	the	direction	of	the	bird–habitat	relationship	was	missing	in	a	spe-
cific	 article.	We	distinguished	 studies	 of	 species	 distribution	 from	
those	of	species	richness	to	test	whether	“effect”	versus	“no	effect”	
depended	on	the	bird	response	variable.	Our	quantification	provides	
a	coarse	estimate	of	the	effectiveness	of	currently	used	LiDAR‐de-
rived	vegetation	metrics.

3  | RESULTS

3.1 | Overview of articles

The	50	selected	articles	spanned	the	years	2006–2017	(Supporting	
Information	 Appendix	 S1).	 A	 total	 of	 17	 articles	 represented	 spe-
cies	 richness	 studies,	 32	 articles	 species	 distribution	 studies,	 and	
one	article	contained	both	species	richness	and	species	distribution	

F I G U R E  2   	Conceptual	categorization	of	LiDAR‐derived	vegetation	metrics	to	facilitate	ecological	comparisons.	The	categorization	
scheme	is	based	on	(a)	vegetation	part	(total	vegetation,	single	tree,	single	layers	such	as	canopy	and	understorey,	and	multi‐layer),	and	(b)	
structural	type	(cover,	height,	horizontal	variability	and	vertical	variability).	All	LiDAR‐derived	vegetation	metrics	available	from	the	literature	
review	were	grouped	into	this	categorization	scheme	(see	overview	in	Table	1).	A	full	list	of	all	metrics	and	their	relation	to	vegetation	part	
and	structural	type	is	provided	in	Supporting	Information	Appendix	S3

(a)

Total vegetation Single tree Single layer Multiple layers

Cover
(e.g. canopy cover, 
penetration ratios)

Height
(e.g. median canopy height, 
mean understorey height)

Horizontal variability
(e.g. SD of canopy cover, 

patch diversity)

Vertical variability
(e.g. foliage height diversity, 

vertical density ratio)

(b)

Canopy

Understorey
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analyses.	The	majority	of	studies	used	bird	distributional	information	
from	point	counts	(n	=	22),	whereas	atlas	data	(n	=	5),	territory	map-
ping	(n	=	6),	opportunistic	observations	(n	=	5),	bird	tracking	(n	=	4),	
nest	locations	(n	=	4),	transects	(n	=	4)	and	range	maps	(n	=	1)	were	
less	often	used.	 In	those	articles	focusing	on	species	distributions,	
a	total	of	62	different	bird	species	were	studied	with	a	total	of	76	
SDMs	(i.e.,	some	species	were	studied	in	multiple	articles,	Supporting	
Information	 Appendix	 S4).	 The	 majority	 of	 SDM	 applications	 fo-
cused	 on	 passerine	 birds	 (order	 Passeriformes,	n	=	54	 SDM	 appli-
cations,	71%).	The	second	and	 third	most	commonly	studied	birds	
were	 the	 woodpeckers	 (family	 Picidae	 in	 order	 Piciformes,	 n	=	8,	
11%)	and	the	pheasants	and	partridges	(family	Phasianidae	in	order	
Galliformes,	n	=	8,	11%),	respectively.	Other	bird	orders	such	as	par-
rots	 (Psittaciformes),	 owls	 (Strigiformes),	 pigeons	 (Columbiformes)	
and	falcons	(Falconiformes)	were	less	represented	(≤3%).

Most	 studies	 were	 located	 in	 North	 America	 (n	=	26)	 and	
Europe	 (n	=	19)	 (Figure	 3a).	 The	 continents	 Asia	 (n	=	2),	 South	
America	 (n	=	1)	 and	 the	 Pacific	 region	 (n	=	1)	 were	 less	 repre-
sented,	 and	 no	 studies	 from	Africa	 and	Oceania	were	 detected	
with	the	keywords	of	our	systematic	literature	search	(Figure	3a).	
Most	 studies	 (n	=	41)	 focused	 on	 a	 single	 habitat	 type	whereas	
studies	 using	multiple	 habitat	 types	 (n	=	9)	 predominantly	 stud-
ied	a	combination	of	forest	with	one	or	more	other	habitat	types	
(8	 out	 of	 9	 studies).	 Hence,	 almost	 all	 studies	 (n	=	48)	 included	
forest	 as	 a	 habitat	 type	 whereas	 grassland	 (n	=	9),	 shrubland	
(n	=	6),	agriculture	(n	=	3)	and	desert	(n	=	2)	were	less	represented	
(Figure	3b).	Some	habitat	types	(e.g.,	savannas,	wetlands)	were	not	
represented.	These	results	confirmed	the	expectation	that	most	
studies	have	been	conducted	 in	 forest	habitats	of	 the	Northern	
Hemisphere	temperate	zone.

F I G U R E  3   	Geographical,	biological	and	Light	Detection	and	Ranging	(LiDAR)	characteristics	from	50	articles	included	in	the	review.	(a)	
Geographical	coverage	illustrated	by	the	number	of	studies	per	location	(n	=	49	studies,	with	one	global	study	not	shown	in	the	map);	(b)	
number	of	times	a	habitat	type	was	studied	(n	=	68	habitat	types	mentioned	in	50	studies,	with	9	studies	reporting	multiple	habitat	types);	
(c)	frequency	distribution	of	spatial	extents	(i.e.,	area	sizes	in	km2)	available	from	42	studies;	(d)	frequency	distribution	of	spatial	resolution	
(either	raster	resolution	or	point	count	radius	for	which	LiDAR	metrics	were	calculated	and	linked	to	the	bird	observation	data,	n	=	69);	(e)	
frequency	distribution	of	LiDAR	point	densities	available	from	42	studies;	and	(f)	the	approach	(area‐based,	voxel‐based	and	object‐based)	
used	for	processing	LiDAR	data	(n	=	50	studies)

(a) Geographical coverage 
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Information	on	spatial	extent	and	spatial	resolution	was	avail-
able	 from	 43	 (86%)	 and	 50	 (100%)	 studies,	 respectively.	 Spatial	
extent	 ranged	 from	 local	 (0.1	km2)	 to	 regional	 (330,000	km2),	
with	one	 study	 (using	 spaceborne	LiDAR)	even	being	 conducted	
at	 a	 global	 extent	 (Roll,	 Geffen,	 &	 Yom‐Tov,	 2015).	 For	 studies	
presenting	 data	 on	 spatial	 extent,	 the	median	 area	 size	 covered	
was	53	km2	(Figure	3c).	Thus,	most	studies	(n	=	26,	60%)	covered	
areas	<100	km2,	supporting	the	expectation	that	studies	are	pre-
dominantly	 conducted	at	 local	or	 landscape	 scales.	 Spatial	 reso-
lution	also	varied	widely	from	0.25	to	9,600	m	(Figure	3).	Half	of	
the	studies	 (n	=	25,	50%)	calculated	LiDAR	metrics	with	a	 radius	
around	focal	bird	observation	points	(e.g.,	opportunistic	observa-
tions,	point	counts,	territory	mapping,	bird	tracking	or	nest	 loca-
tion	data),	whereas	the	other	half	of	the	studies	(n	=	25,	50%)	used	
raster	cells	(e.g.,	for	atlas	data,	gridded	range	maps,	bird	tracking,	
nest	locations,	transect	counts,	point	counts,	territory	mapping	or	
opportunistic	 observations).	 At	 least	 8	 studies	 (16%)	 first	 calcu-
lated	LiDAR	metrics	at	a	 fine	 spatial	 resolution	 (e.g.,	0.5,	1,	3	or	
20	m	grid	cell	size)	and	then	aggregated	(i.e.,	averaged)	the	metrics	
at	a	coarser	 resolution	 (e.g.,	50,	80,	100	or	even	1,000	m)	when	
linking	them	to	the	bird	data.

A	total	of	48	studies	used	LiDAR	data	only	from	ALS,	one	study	
used	SLS	data	at	a	global	scale	(Roll	et	al.,	2015),	and	one	both	ALS	
and	SLS	data	at	a	landscape	scale	(Vierling,	Vierling,	Adam,	&	Hudak,	
2013).	Reported	flight	altitudes	for	obtaining	the	ALS	data	were	in	
the	range	of	365–7,000	m	(median	=	1,550	m,	n	=	25	studies).	A	total	
of	46	studies	(94%)	used	the	discrete	return	signals	from	ALS	to	cal-
culate	LiDAR‐derived	vegetation	metrics,	whereas	only	five	studies	
(including	the	two	SLS	studies)	used	full	waveform	measurements.	
Information	on	LiDAR	point	density	was	available	 from	42	studies	
and	ranged	from	0.1	to	48	points/m2	with	a	median	of	1.5	points/m2 
(Figure	3d).	Hence,	the	majority	of	studies	(79%)	calculated	LiDAR‐
derived	vegetation	metrics	from	low	point	densities	(<10	points/m2).	
Recorded	 footprint	 sizes	 were	 generally	 small,	 that	 is	 ≤80	cm	 (all	
data	from	ALS	studies,	n	=	19).	The	number	of	studies	using	leaf‐on	
LiDAR	data	(n	=	31)	was	larger	than	those	using	leaf‐off	(n	=	19),	with	
a	 few	studies	 (n	=	5)	having	data	available	 from	both	seasons.	The	
area‐based	 approach	 dominated,	 with	 all	 50	 studies	 applying	 this	
way	of	processing	the	LiDAR	data	(Figure	3e).	However,	one	study	
additionally	applied	a	voxel‐based	approach	(Sasaki,	Imanishi,	Fukui,	
&	Morimoto,	2016)	and	one	other	study	additionally	used	an	object‐
based	approach	to	delineate	single	trees	(Swatantran	et	al.,	2012).

3.2 | LiDAR metrics

After	harmonizing	the	128	identified	metric	names	from	the	50	se-
lected	 articles,	 a	 total	 of	 77	 unique	metrics	 remained	 (see	 details	
in	 Supporting	 Information	Appendix	 S3).	 This	 suggests	 that	 about	
40%	of	the	currently	used	metric	names	are	redundant.	Among	the	
set	 of	 77	 unique	metrics,	many	 different	 calculation	methods	 be-
came	evident	even	for	metrics	within	the	same	vegetation	part	(see	
Supporting	Information	Appendix	S3	for	a	full	overview	of	all	metric	
calculations).	 For	 instance,	metrics	 of	 canopy	height	were	derived	

in	the	reviewed	studies	from	the	mean	height	of	a	canopy	surface	
model,	from	the	mean	height	of	the	returns	in	the	95	percentile	or	
from	 the	 maximum	 return	 in	 a	 grid	 cell.	 Canopy	 vertical	 variabil-
ity	 was	 sometimes	 calculated	 from	 the	 coefficient	 of	 variation	 of	
canopy	height	 values,	 but	 also	 from	 standard	deviation,	 skewness	
or	 kurtosis	of	 height.	 Similarly,	 our	 review	 revealed	many	ways	 to	
calculate	multi‐layer	cover	metrics,	for	example	with	density	percen-
tiles	(where	the	percentage	of	returns	in	fixed	layers	is	calculated)	or	
height	percentiles	(where	the	heights	at	which	a	certain	percentage	
of	returns	is	recorded	are	calculated).

The	 77	 metrics	 fall	 into	 18	 of	 the	 24	 possible	 metric	 classes	
(Table	 1).	Most	 of	 the	metrics	 were	 related	 to	 the	metric	 classes	
canopy	height,	 canopy	 vertical	 variability	 or	multi‐layer	 horizontal	
variability	 (eight	metrics	per	class),	 followed	by	multi‐layer	vertical	
variability	(seven	metrics),	canopy	cover,	total	vegetation	cover	and	
total	 vegetation	 vertical	 variability	 (each	 six	 metrics),	 and	 canopy	
horizontal	variability	and	total	vegetation	horizontal	variability	(both	
five	metrics).	The	other	classes	included	≤4	metrics.

Quantifying	 the	current	use	of	 the	18	metric	 classes	 indicated	
that	a	few	metric	classes	are	very	popular	 (Figure	4).	For	 instance,	
canopy	metrics	were	most	 often	 used,	 especially	 those	 related	 to	
canopy	height	 (93	times),	canopy	vertical	variability	 (63	times)	and	
canopy	 cover	 (34	 times).	 In	 contrast,	 metric	 classes	 such	 as	 sin-
gle‐tree	 cover,	 single‐tree	 height,	 understorey	 cover,	 understorey	
height,	other	layer	height	and	other	layer	horizontal	variability	were	
rarely	used	(Figure	4).	Studies	on	species	distributions	and	species	
richness	generally	showed	similar	patterns	in	metric	use,	with	a	few	
exceptions	(Figure	4).	For	instance,	metrics	of	total	vegetation	cover	
were	proportionally	more	often	used	in	studies	of	species	richness	
than	in	studies	of	species	distributions	(Figure	4).

For	most	metric	classes,	 the	LiDAR‐derived	vegetation	metrics	
showed	more	often	an	 “effect”	 than	 “no	effect”	 (Figure	4).	For	 in-
stance,	metrics	within	 the	most	widely	used	canopy	height	metric	
class	often	showed	a	relationship	with	species	distributions	or	spe-
cies	 richness	 (n	=	54,	58%).	Canopy	vertical	variability	 (the	second	
most	widely	used	metric	class)	was	less	effective	than	other	metric	
classes	and	showed	less	often	a	relationship	(n	=	28,	44%).	Overall,	
canopy	metrics	were	most	widely	used,	and	those	related	to	canopy	
height	and	canopy	cover	also	tend	to	effectively	explain	species	dis-
tributions	and	species	richness	(Figure	4).	It	is	important	to	note	that	
the	effectiveness	and	direction	of	 the	relationship	 (i.e.,	positive	or	
negative	effect)	of	a	particular	metric	will	depend	on	the	ecology	of	
the	specific	species.

4  | DISCUSSION

Our	review	provides	a	detailed	overview	and	quantification	of	the	
current	 use	 of	 LiDAR‐derived	 vegetation	metrics	 in	 avian	 species	
distribution	and	species	 richness	 research.	The	categorization	 into	
24	 metric	 classes—defined	 by	 vegetation	 part	 (total	 vegetation,	
single	trees,	canopy,	understorey,	and	other	single	layers	as	well	as	
multi‐layer)	and	structural	type	(cover,	height,	horizontal	variability	
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and	 vertical	 variability)—provides	 a	 general	 conceptual	 framework	
for	ecological	comparisons	of	LiDAR	metrics.	While	LiDAR	canopy	
metrics	of	forests	are	currently	most	widely	used	(Figure	4),	espe-
cially	at	local	and	landscape	scales	(Figure	3),	there	is	great	potential	
for	future	studies	to	extend	this	to	other	vegetation	layers	(e.g.,	un-
derstorey,	multi‐layer),	other	habitat	types	(e.g.,	non‐forest	ecosys-
tems),	other	 taxa	 than	birds	 (e.g.,	 invertebrates,	other	vertebrates)	
and	broader	spatial	extents	(e.g.,	>100	km2).

The	 focus	 of	 our	 review	was	 on	 bird	 species	 distribution	 and	
diversity	 studies	 which	 linked	 LiDAR	 metrics	 to	 the	 occurrence,	
abundance	and	species	richness	of	birds	as	measured	from	opportu-
nistic	observations,	point	counts,	transects,	territory	mapping,	bird	
tracking,	atlas	data,	range	maps	or	nest	location	data.	These	kind	of	
distribution	data	are	widely	investigated	when	using	LiDAR	in	stud-
ies	with	focus	on	animal	ecology	(Davies	&	Asner,	2014).	For	other	
aspects	 of	 bird	 ecology	 (e.g.,	 breeding	 success,	 acoustic	 diversity,	
beta	diversity),	some	available	studies	suggest	potential	similarities	
to	our	findings.	For	instance,	LiDAR‐retrieved	canopy	height	allows	
to	 predict	 the	 breeding	 success	 (measured	 as	 body	mass	 of	 nest-
lings	 in	occupied	nestboxes)	 of	Great	Tits	 and	Blue	Tits	 in	 broad-
leaved	woodlands	in	the	UK	(Hill	et	al.,	2014;	Hinsley,	Hill,	Gaveau,	&	
Bellamy,	2002).	Acoustic	diversity	(quantified	with	a	diversity	index	
based	 on	 acoustic	 frequency	 bands	 derived	 from	 soundscape	 re-
cordings)	in	a	Neotropical	rain	forest	in	Costa	Rica	is	well	explained	

by	 canopy	 height	 and	 multi‐layer	 vertical	 variability	 (Pekin,	 Jung,	
Villanueva‐Rivera,	Pijanowski,	&	Ahumada,	2012).	Beta	diversity	(i.e.,	
turnover	and	nestedness)	of	birds	across	Switzerland	can	be	partly	
explained	by	variation	 in	LiDAR‐derived	canopy	height	 (Zellweger,	
Roth,	Bugmann,	&	Bollmann,	2017).	The	current	use	of	LiDAR	met-
rics	seems	to	be	largely	consistent	across	different	bird	data	sources	
(Figure	4),	probably	because	canopy	metrics	can	be	reliably	retrieved	
and	also	act	as	a	potential	surrogate	for	3‐D	habitat	structure	below	
the	canopy,	at	 least	 in	mature	and	old	woodlands	and	forests.	The	
success	and	effectiveness	of	LiDAR	metrics	to	explain	bird	ecology	
may	depend	not	only	on	the	quality	of	the	LiDAR	data,	but	also	on	
the	quality	of	the	ecological	data,	including	sampling	biases	or	inac-
curacies	 in	geo‐referencing	 (Beck,	Böller,	Erhardt,	&	Schwanghart,	
2014).	Moreover,	the	effect	of	LiDAR	metrics	on	bird	distributions	
might	also	depend	on	whether	below‐canopy	vegetation	metrics	re-
flect	microclimatic	conditions,	for	example	in	montane	forest	envi-
ronments	(Frey,	Hadley,	&	Betts,	2016).	Finally,	the	spatial	resolution	
at	which	ecological	data	are	linked	to	the	LiDAR	data	(e.g.,	length	of	
radii	or	grid	cell	size	around	bird	observation	points)	could	also	influ-
ence	 the	predictive	performance	of	LiDAR	metrics.	These	aspects	
should	be	investigated	in	more	detail	in	future	studies.

The	revealed	geographical	bias	in	current	bird‐LiDAR	studies	to-
wards	temperate	forests	of	North	America	and	Europe	is	consistent	
with	an	earlier	review	(Davies	&	Asner,	2014)	and	partly	caused	by	

F I G U R E  4   	Dominant	use	and	
effectiveness	of	classes	of	Light	Detection	
and	Ranging	(LiDAR)‐derived	vegetation	
metrics	as	currently	employed	in	studies	
of	(a)	avian	species	distributions,	and	(b)	
avian	species	richness.	The	metric	classes	
are	arranged	by	vegetation	part	(total	
vegetation,	single	tree,	single	layers	such	
as	canopy,	understorey	or	other	layer,	and	
multi‐layer)	and	within	that	by	structural	
type	(cover,	height,	horizontal	variability	
and	vertical	variability).	Compare	Table	
1	and	Supporting	Information	Appendix	
S3	for	metrics	within	metric	classes.	
Frequency	indicates	how	often	LiDAR‐
derived	vegetation	metrics	within	a	class	
showed	a	relationship	(“effect,”	dark	grey)	
or	no	relationship	(“no	effect,”	light	grey).	
See	Supporting	Information	Appendix	
S1	for	the	50	reviewed	articles,	and	the	
method	section	for	how	information	on	
relationships	was	extracted	from	the	
articles

(b) Species richness
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the	 commercial	 interest	 in	 developing	 LiDAR	metrics	 for	 forestry	
applications	 (Maltamo	 et	 al.,	 2014).	 In	 a	 seminal	 paper	 (based	 on	
field	measurements	rather	than	LiDAR),	MacArthur	and	MacArthur	
(1961)	 already	 showed	 that	 the	 vertical	 distribution	 of	 biomass	 in	
North	American	forests	can	be	a	good	predictor	of	bird	species	rich-
ness.	More	recent	studies	using	LiDAR	have,	 for	 instance,	demon-
strated	 that	 forest	 stand	 height	 and	 density	 of	 large	 conifers	 can	
explain	the	habitat	suitability	of	the	spotted	owl	 in	North	America	
(Ackers	et	al.,	2015),	that	heterogeneity	in	forest	canopy	height	and	
vertical	structure	predicts	the	occupancy	of	the	ground‐living	hazel	
grouse	 in	Central	Europe	 (Bae,	Reineking,	Ewald,	&	Mueller,	2014;	
Zellweger,	Morsdorf,	Purves,	Braunisch,	&	Bollmann,	2014),	and	that	
canopy	height,	total	vegetation	cover	and	below‐canopy	vegetation	
heterogeneity	are	 important	determinants	of	bird	species	richness	
in	European	and	North	American	forests	(Coops	et	al.,	2016;	Goetz,	
Steinberg,	 Dubayah,	 &	 Blair,	 2007;	 Zellweger	 et	 al.,	 2016).	 Socio‐
economic	 factors	most	 likely	 explain	 the	 strong	 geographical	 bias	
towards	 North	 America	 and	 Europe	 (Kissling	 et	 al.,	 2018;	Meyer,	
Kreft,	Guralnick,	&	Jetz,	2015).	Such	biases	towards	wealthy	coun-
tries	and	temperate	forest	ecosystems	are	widespread	in	ecological	
studies	 (Martin,	Blossey,	&	Ellis,	2012)	and	can	 limit	the	scalability	
and	applicability	of	ecological	theory.	We	therefore	recommend	to	
conduct	 more	 animal–habitat	 studies	 with	 LiDAR‐derived	 vegeta-
tion	metrics	 in	 tropical	 forests	 (Davies,	Ancrenaz,	Oram,	&	Asner,	
2017;	Singh,	Tokola,	Hou,	&	Notarnicola,	2017;	Wallis	et	al.,	2016),	
savannas	 (Loarie,	 Tambling,	 &	 Asner,	 2013),	 wetlands	 and	 aquatic	
reedbeds	(Corti	Meneses,	Baier,	Geist,	&	Schneider,	2017;	Zlinszky,	
Mücke,	 Lehner,	 Briese,	 &	 Pfeifer,	 2012),	 riparian	 habitats	 (Seavy,	
Viers,	Wood,	Eavy,	&	Iers,	2009),	or	in	low‐stature	terrestrial	habi-
tats	such	as	grasslands,	tundra,	shrublands	or	agricultural	areas	(e.g.,	
Svendsen,	Sell,	Bøcher,	&	Svenning,	2015;	Boelman	et	al.,	2016).

Most	bird–habitat	studies	using	LiDAR‐derived	vegetation	met-
rics	have	been	conducted	at	small	spatial	extents	(<100	km2)	using	
area‐based	approaches	(e.g.,	rasterization	with	grid	cells),	and	with	
ALS	 data	 that	 have	 low	 point	 densities	 (<10	points/m2)	 and	 small	
footprint	 sizes	 (<1	m	 diameter).	 This	 mostly	 reflects	 the	 current	
availability	of	LiDAR	data	and	the	challenges	related	to	an	effective	
processing	and	data	management	of	the	massive	amounts	of	point	
cloud	data	(Kissling	et	al.,	2017;	van	Oosterom	et	al.,	2015;	Pfeifer,	
Mandlburger,	Otepka,	&	Karel,	2014;	Vo,	Laefer,	&	Bertolotto,	2016).	
While	 there	 is	a	 rapid	growth	 in	 the	availability	and	quality	of	na-
tional	ALS	data	(e.g.,	an	increasing	open	access	to	country‐wide	ALS	
data	in	Europe),	only	few	studies	have	so	far	made	use	of	such	large‐
extent	LiDAR	datasets	in	bird–habitat	studies.	Examples	include	bird	
diversity	studies	at	sites	across	entire	Switzerland	(Zellweger	et	al.,	
2016,	2017)	or	the	Canadian	province	of	Alberta	(Coops	et	al.,	2016).	
To	date,	LiDAR	bird–habitat	studies	with	a	global	extent	have	been	
rare	because	 the	only	near‐global	 SLS	data	 currently	 available	 are	
from	 the	NASA	 full	waveform	Geoscience	Laser	Altimeter	System	
(GLAS).	This	laser	scanner	has	a	footprint	of	ca.	70	m	in	diameter	(the	
size	of	a	small	stand	of	trees)	and	has	been	used	to	estimate	forest	
canopy	height	at	1	km2	resolution	(Simard,	Pinto,	Fisher,	&	Baccini,	
2011).	 These	 forest	 canopy	 height	 data	 have	 subsequently	 been	

used	to	analyse	global	bird	species	richness	at	96	×	96	km	resolution	
(Roll	et	al.,	2015).	A	promising	avenue	for	future	research	is	the	new	
Global	Ecosystem	Dynamics	Investigation	(GEDI)	LiDAR	installed	in	
2018	by	NASA	on	the	International	Space	Station	(ISS;	Stavros	et	al.,	
2017).	This	will	further	advance	our	ability	to	monitor	3‐D	ecosys-
tem	structure	by	measuring	canopy	heights	and	foliar	vertical	pro-
files	with	footprints	of	25	m	globally	(between	51.6°	N	and	51.6°	S).

Most	 reviewed	 studies	 used	 high‐resolution	 ALS	 data	 (i.e.,	
footprint	sizes	<1	m	diameter),	but	point	densities	were	compara-
bly	low	(<10	points/m2)	and	the	flight	season	(leaf‐on	vs.	leaf‐off)	
varied	 among	 studies.	 Both	 point	 density	 and	 flight	 characteris-
tics	 can	affect	 the	calculation	of	 LiDAR‐derived	vegetation	met-
rics,	for	example	for	the	quantification	of	forest	understories	(Hill	
&	Broughton,	2009)	or	 in	 single‐tree	detection	 (Koenig	&	Höfle,	
2016).	Some	metrics	 (e.g.,	 those	 related	 to	canopy	height)	might	
be	 little	 affected	 by	 varying	 point	 densities	 and	 flight	 seasons	
and	could	be	relatively	robust	when	calculated	for	datasets	with	
different	 LiDAR	 measurement	 configurations	 or	 with	 varying	
spatial	 resolutions.	 In	 contrast,	 multi‐layer	 metrics	 (e.g.,	 foliage	
height	diversity	and	penetration	ratios	between	fixed	heights)	or	
single‐layer	 metrics	 below	 the	 canopy	 (e.g.,	 understorey	 cover)	
might	be	particular	sensitive	to	variation	in	LiDAR	characteristics	
because	 they	 will	 be	 affected	 by	 how	 many	 LiDAR	 returns	 are	
available	 from	 the	 subcanopy	 layers.	 High	 point	 density	 LiDAR	
data	 (>10	points/m2)	 are	 then	 needed	 to	 meaningfully	 calculate	
those	metrics	(Holbrook,	Vierling,	Vierling,	Hudak,	&	Adam,	2015;	
Koenig	&	Höfle,	2016;	Müller,	Moning,	Bässler,	Heurich,	&	Brandl,	
2009;	Müller,	Stadler,	&	Brandl,	2010;	Vierling	et	al.,	2013).	High	
point	density	data	will	also	allow	to	calculate	unique	metrics.	For	
instance,	a	study	in	Japan	with	high	point	densities	(e.g.,	48	points/
m2)	allowed	to	voxelize	the	LiDAR	point	cloud	into	1	×	1	×	1	m	vox-
els,	 and	 the	 derived	 voxel‐based	metrics	were	 especially	 robust	
predictors	for	the	habitat	use	of	forest	birds	(Sasaki	et	al.,	2016).	
Other	examples	with	high	point	density	data	 (e.g.,	27	points/m2)	
demonstrate	 that	 LiDAR‐derived	 vegetation	metrics	 can	 be	 cal-
culated	for	grasslands	where	it	is	particularly	difficult	to	differen-
tiate	the	ground	level	from	the	dense	vegetation	near	the	ground	
(Boelman	et	 al.,	 2016).	A	 systematic	 analysis	of	how	 the	various	
LiDAR‐derived	vegetation	metrics	are	affected	by	different	LiDAR	
measurement	 configurations	 (e.g.,	 point	density,	 leaf‐on	vs.	 leaf‐
off)	should	be	conducted	in	the	future	to	better	assess	the	robust-
ness	of	 each	metric	 for	 up‐scaling	 and	 analyses	 across	 different	
LiDAR	datasets.

All	 studies	 used	 an	 area‐based	 approach	 for	 processing	 the	
LiDAR	data,	either	by	 rasterizing	point	cloud	 information	 into	grid	
cells	or	by	calculating	LiDAR‐derived	vegetation	metrics	with	a	ra-
dius	around	focal	bird	observation	points.	The	rasterization	of	LiDAR	
point	clouds	 is	computationally	efficient	 in	terms	of	data	handling,	
but	 leads	 to	 information	 loss	 regarding	 the	 fine‐scale	 structure	of	
the	3‐D	point	cloud	because	grid	cells	merge	the	information	of	vari-
ous	objects.	Using	an	object‐based	approach	would	instead	have	the	
advantage	to	classify	groups	of	points	(e.g.,	based	on	direct	neigh-
bourhood	information	from	the	point	cloud	around	each	focal	point)	
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into	objects	such	as	structurally	similar	reedbeds,	hedges	within	ag-
ricultural	 landscapes,	or	single	trees	and	patches	of	dominant	tree	
species	within	a	forest	(Kissling	et	al.,	2017).	While	object‐based	ap-
proaches	are	steadily	increasing	in	geography	(Blaschke	et	al.,	2014)	
and	examples	of	object‐based	vegetation	analysis	with	LiDAR	data	
exist	 for	urban	vegetation	mapping	 (Höfle	et	al.,	2012)	and	single‐
tree	 detection	within	 forests	 (Koch	 et	 al.,	 2014),	 the	 bird–habitat	
studies	 reviewed	here	 rarely	used	an	object‐based	approach.	One	
exception	was	 a	 study	 on	migratory	 songbirds	 in	 a	 US	 deciduous	
forest	 that	 employed	 a	 canopy	 height	model	 and	 an	 object‐based	
approach	to	obtain	crown	radii	and	height	of	single	trees	which	then	
allowed	 to	calculate	stem	densities	per	hectare	 (Swatantran	et	al.,	
2012).	We	envisage	that	the	further	development	of	an	object‐based	
methodology	 will	 provide	 exciting	 new	ways	 to	 quantify	 the	 3‐D	
vegetation	structure	and	habitat	use	of	animals.

Our	 harmonization	 of	 LiDAR‐derived	 vegetation	 metrics	 re-
vealed	that	many	different	metric	names	exist	for	the	same	metric	
calculation	method.	For	instance,	foliage	height	diversity,	understo-
rey	 height	 diversity	 and	 Shannon	 diversity	 index	 are	 three	 names	
that	have	been	used	for	the	same	metric	(Bae	et	al.,	2014;	Vierling	
et	 al.,	 2013;	 Zellweger	 et	 al.,	 2016).	 Even	 more	 confusing	 is	 that	
similar	names	are	applied	to	metrics	that	differ	in	the	way	they	are	
calculated.	The	most	obvious	example	is	canopy	height	which	is	cal-
culated	 in	myriad	ways	 (see	Supporting	 Information	Appendix	S3),	
including	 the	maximum	 return	 in	 a	 grid	 cell,	 the	mean	of	 the	 first	
returns	or	the	height	of	the	95th	percentile	of	returns	(Ackers	et	al.,	
2015;	Coops	 et	 al.,	 2016;	 Smart	 et	 al.,	 2012).	Most	 of	 these	met-
rics	might	be	strongly	correlated,	but	their	sensitivity	to	outliers	and	
point	cloud	density	might	differ	(e.g.,	maximum	vs.	95th	percentile	
canopy	height).	The	77	unique	metric	names	were	grouped	into	24	
theoretically	possible	metric	classes	defined	by	vegetation	part	and	
structural	type.	This	categorization	might	help	in	future	studies	for	
the	selection,	prioritization	and	ecological	 interpretation	of	LiDAR	
metrics.	However,	choosing	the	right	metrics	is	not	always	easy	and	
might	depend	on	a	priori	ecological	knowledge	of	animal	habitat	use.	
In	cases	where	such	knowledge	is	lacking,	it	is	also	possible	to	con-
dense	the	variability	 in	LiDAR	point	clouds	by	generating	principal	
components	 as	predictors	 and	using	 them	 in	exploratory	 analyses	
with	animal	species	distribution	data	to	generate	hypotheses	about	
animal	habitat	and	space	use	(Ciuti	et	al.,	2018).

Our	categorization	of	LiDAR	metrics	allowed	a	comparison	of	the	
current	use	and	relative	effectiveness	of	these	metrics.	This	analysis	
supported	our	initial	hypothesis	that	canopy	metrics	(related	to	can-
opy	height,	canopy	cover	and	canopy	vertical	variability)	are	most	
widely	used	(Davies	&	Asner,	2014),	although	we	show	that	they	may	
not	always	be	a	good	predictor	of	individual	species	distributions	or	
species	richness	(Figure	4).	One	reason	for	their	widespread	use	is	
that	canopy	metrics	(e.g.,	canopy	height)	can	be	well	retrieved	even	
with	low	point	densities	(Ruiz,	Hermosilla,	Mauro,	&	Godino,	2014)	
or	from	large	footprint	SLS	data	with	global	coverage	(Lefsky,	2010;	
Simard	et	al.,	2011)	and	that	they	may	act	as	a	surrogate	for	3‐D	hab-
itat	structure	below	the	canopy.	LiDAR	metrics	from	below‐canopy	
layers	are	more	challenging	to	derive	and	require	LiDAR	point	clouds	

with	high	point	densities.	For	 instance,	single‐tree	segmentation	 is	
often	carried	out	by	detecting	the	local	height	maxima	from	raster‐
based	canopy	height	models	which	might	easily	miss	trees	below	the	
dominant	canopy	(Koch	et	al.,	2014).	Single‐tree	delineation	is	also	
computationally	demanding	and	requires	high	point	densities	(Höfle	
et	al.,	2012),	and	is	often	only	applied	to	particular	forest	stands	(Koch	
et	al.,	2014)	or	in	urban	environments	where	individual	trees	are	spa-
tially	well	separated	(Koma,	Koenig,	&	Höfle,	2016).	Understorey	and	
multi‐layer	 LiDAR	metrics	 are	 also	 less	widely	 used	because	most	
ALS	data	have	 low	point	densities	 and	are	 limited	 in	 capturing	 in-
formation	 below	 the	 canopy.	Nevertheless,	 below‐canopy	metrics	
in	 forest	have	high	potential	 for	understanding	and	predicting	 the	
distribution	 and	 habitat	 use	 of	 birds	 (Cody,	 1985;	 Dunlavy,	 1935;	
MacArthur	&	MacArthur,	1961)	and	potentially	of	many	other	taxa,	
and	hence	should	be	of	increasing	focus	in	the	future.

5  | CONCLUSION

Our	review	shows	that	LiDAR	metrics	play	an	important	role	for	un-
derstanding	animal	habitat	and	space	use.	The	 increasing	availability	
of	open	access	ALS	LiDAR	datasets	and	the	forthcoming	spaceborne	
LiDAR	data	from	the	GEDI	(Stavros	et	al.,	2017),	coupled	with	ever	in-
creasing	point	densities,	improved	software	tools	and	new	data	shar-
ing	web	 services	 (e.g.,	 Kissling	 et	 al.,	 2017;	 Pfeifer	 et	 al.,	 2014;	 van	
Oosterom	 et	 al.,	 2015)	 will	 provide	 exciting	 new	 opportunities	 for	
quantifying	 and	 predicting	 animal	 species	 distributions	 and	 species	
richness	across	large	spatial	extents	and	with	fine	resolutions	(e.g.,	10–
100	m	grid	cell	size).	Our	categorization	scheme	may	facilitate	future	
studies	in	the	selection	of	metrics	that	represent	structural	aspects	of	
the	vegetation	which	are	complementary,	and	in	the	prioritization	and	
ecological	interpretation	of	LiDAR	metrics.	Major	challenges	for	large‐
scale	LiDAR	applications	emerge	from	combining	ALS	datasets	across	
space	(e.g.,	from	different	countries)	and	time	(e.g.,	from	different	flight	
campaigns)	 because	 point	 densities,	 footprints	 and	 other	 technical,	
methodological	 and	 data	 quality	 characteristics	 (e.g.,	 flight	 heights,	
season,	laser	return	intensities,	sensor	angle,	full	waveform	vs.	discrete	
points)	differ	among	LiDAR	datasets,	which	may	subsequently	 influ-
ence	the	calculation	of	LiDAR	metrics.	Moreover,	the	development	of	
voxel‐based	and	object‐based	approaches	will	allow	novel	ecological	
applications	(e.g.,	via	better	quantification	of	subcanopy	metrics	and	
multi‐layer	 vertical	 variability),	 but	 require	 high	 point	 density	 infor-
mation	and	efficient	 software	 for	data	handling	and	processing.	We	
further	 encourage	 animal–habitat	 studies	 with	 LiDAR	 in	 non‐forest	
habitats,	 including	 savannas,	 wetlands,	 agricultural	 landscapes	 and	
other	open	habitats.	Together,	these	advancements	will	allow	unprec-
edented	insights	into	species–habitat	relationships,	not	only	for	birds	
but	also	for	other	taxa.
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