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1 Introduction

Understanding the laws that describe the fundamental building blocks of the Uni-
verse has been a pursuit of physicist’s for many centuries. Simultaneously, terrestrial
experiments and astronomical observations have shown the enormity of the unknown.
Whilst daunting, these observational channels provide a unique opportunity to learn
about the world around us. Making use of this wealth of information requires one
to understand both the statistics and theoretical physics that underpins these ex-
periments. Only then can we anticipate where the next discovery will emerge and
concentrate our thoughts accordingly. This thesis is an attempt to contribute to the
huge ongoing effort to search for signs of new physics. In particular, we focus on how
to efficiently search for Dark Matter and neutrino interactions using underground
experiments.

The history of the Universe is described by the standard model of cosmology,
commonly known as ΛCDM . The name comes from the components that currently
dominate the energy density of the Universe, Λ for dark energy (DE) and CDM for
Cold Dark Matter. The particles that make up everything we see and interact with are
described by the Standard Model (SM) of particle physics which has been confirmed
with unprecedented accuracy [10]. The SM is a particular Quantum Field theory
that encodes all the fundamental particles that have been discovered to date. Finally,
Einstein’s General Relativity (GR) describes gravity, the force dictating structure
formation throughout the Universe whilst also being responsible for keeping our feet
glued to the surface of the Earth [11].

Despite the success of these theories in describing vast swathes of experimental
observations both on Earth and throughout the Cosmos, many observational puzzles
elude a complete theoretical explanation: The accelerated expansion of the Universe
[12, 13, 14], the matter-antimatter asymmetry [15], and Dark Matter (DM) [16] to
name just a few. Fortunately, we live in an age of extreme technological innovation
and unprecedented experimental precision. We are therefore gifted with the necessary
tools to explore these unanswered questions from an observational standpoint.

1



1. Introduction

Searches for Beyond the Standard Model (BSM) physics are primarily concerned
with the existence of new particles and understanding their interactions with the SM.
There are two primary ways in which these particles could have evaded detection.
They could either be too heavy to have been produced in particle collisions, such as
those taking place at the LHC. Alternatively, these new particles could have such
weak couplings to the SM that their interactions with experimental equipment go
unnoticed.

These searches proceed by performing experiments to confront particular theo-
ries, either making a detection or ruling out certain regions of the parameter space.
When excluding regions, the claim is that if a theoretical model were to have some
set of parameters then the experiment would have seen it already. How to clearly
define the regions which an experiment will rule out, or will remain alive, is subject
to much discussion. To find any BSM physics, one must have a careful understand-
ing of the background from the normal SM physics. In addition, making concrete
detection statements requires a detailed description of the probability that these SM
backgrounds will occur and how they will look. Systematic errors on backgrounds,
whether there are many or few background events, the subtleties of finite resolution
effects on signal predictions all play an important role. To accurately account for all
these affects is a computationally expensive and opaque1 procedure, which is therefore
limited to a set of well known theoretical models. The optimal method to forecast an
exclusion limit would have a simple interface for use by all physicists, be trustworthy
given that any one experiment could be in the Poissonian or Gaussian background
regime, and be able to account for errors in the sometimes uncertain background
components. Theorists and experimentalists alike would then be able to examine
the sensitivity of future experiments to their favourite model, allowing for a more
concrete discussion about which set experiments can probe the largest range of BSM
models. Unfortunately, connecting the physical understanding of backgrounds and
their associated statistical distributions can be difficult, especially for searches of rare
events.

BSM sensitivity forecasts are formulated around a model selection procedure. The
goal is to quantify the probability that a particular model provides a better description
of the experimental data than that of the SM. For experiments with many background
events and a small associated systematic error, there are analytic descriptions of the
test statistic used in the model selection [17]. These expressions can be used to great
effect in most BSM searches, allowing researchers to quantify the sensitivity of future
experimental setups. Unfortunately, these analytic descriptions break down when the
number of background events becomes small (we will refer to this as the Poissonian
regime), forcing one to charaterise the distribution of the test statistic using Monte
Carlo (MC) simulations. The computational expense of MC simulations prevents one

1To non-statisticians, such as myself.
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from evaluating the sensitivity of future experiments to wide classes of BSM models.
We address this issue by computing approximate analytic expressions for the test
statistic into the Poissonian regime [1, 6]. These methods allow for a more rigorous
and complete discussion of how to design experimental setups to constrain the widest
range of physical signatures, maximising the possibility of a discovery.

Of the many motivated BSM particle candidates, Dark Matter is potentially the
most striking. Evidence for missing mass throughout the Universe is extremely abun-
dant; from the Cosmic Microwave Background at the largest scales all the way to
galaxy rotation curves, particle DM is a necessary and simple explanation of these
phenomena. Despite the prevalent observations of DM’s gravitational effect on as-
trophysical objects, little is known about it’s particle nature. Currently, there is a
huge ongoing effort to observe a non-gravitational signature in astrophysical settings.
Simultaneously, terrestrial experiments seek to observe DM particle interactions with
the SM directly, for example see Refs. [18, 19, 20, 21, 22].

Direct Detection (DD) is one of the primary methods used to search for DM that
is both heavy and weakly interacting. The general tactic is to build an experiment
that, for the vast majority of time, does nothing at all but is sensitive enough to detect
particles flying in from outer space and interacting with the detector. Unfortunately,
there are a variety of naturally occurring backgrounds: cosmic rays interacting in the
atmosphere and natural radiation in materials to name just a few of the major cul-
prits. Miraculously, experimentalists have driven these backgrounds down by building
detectors in underground laboratories using ultra-pure materials. Today, experiments
such as XENON1T [18], LUX[23], and PandaX [20] have reached unprecedented sensi-
tivity to GeV scale Weakly Interacting Massive Particle (WIMP) DM. We will discuss
the the complementarity of different DD experiments and how they can be used to
identify the characteristics of particle DM using a non-relativisitc effective field theory
formalism.

The long-term future of DM DD is uncertain. Experiments will increase their
exposure whilst maintaining ultra-low backgrounds for at least another five years.
Unfortunately, this progress is difficult to sustain, with each successive development
increasing in cost. In addition, DD experiments using nuclear recoils with xenon (and
other similar mass nuclei) lack sensitivity to sub-GeV scale DM. Consequently, many
new variations upon the traditional DD methods have been proposed [24, 25, 26, 27].
To increase a DD experiments senstivity to GeV DM, the exposure of an experiment
must be increased. On the other hand, sensitivity to sub-GeV DM comes from a
reduction in the energy threshold of an experiment2.

We will discuss how ancient minerals from the Earths crust can be used to gain
competitive sensitivity to both sub-GeV and GeV scale WIMPs. The DM signature
in these minerals would be nano-scale damage tracks left by nuclear recoils from DM-

2The energy threshold is the lowest energy interaction to which an experiment is sensitive.
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1. Introduction

nuclei interactions. The age of the minerals, O(109) yr, provides extreme sensitivity
to GeV scale WIMPs. Additionally, the precision to which these tracks can be mea-
sured, O(1) nm, corresponds to an extremely low energy threshold, providing greater
sensitivity to sub-GeV DM than any proposed experimental setup to date.

1.1 Outline

Each section requires its own introduction but we begin with a couple of broad
overview chapters. In particular, Chapter 2 will focus on the primary theoretical
motivations and methods to search for new physics. The observational evidence and
theoretical constraints that represent the primary reasons to study particle DM will
also be discussed here. We then discuss some particle DM models and the standard
methods to search for them.

Chapter 3 will review some of the commonly used methods to calculate the sen-
sitivity of an experimental approach to new physics. To constrain the breadth of
this chapter we consider two primary questions asked by theoretical physicists and
experimentalists alike:

• Given a new physics model, what set of experiments will provide the maximum
probability that we will observe evidence of this model?

• Given a variety of theoretical models, what set of experiments will provide the
maximum sensitivity to the largest range of models?

The answers to these questions also serve as the introduction for Chapters 4 and 5. In
addition we hope this chapter will serve as a useful introduction to the statistics of new
physics searches where the methods used are often opaque and not well documented
for someone new to the field.

The rest of the thesis contains the main results. To begin with we focus on
novel statistical methods with applications to Dark Matter direct detection searches
in Chapters 4 and 5 respectively. In particular, we develop a suit of methods to
allow for correct upper limits to be set without resorting to computationally expen-
sive Monte-Carlo simulations. These methods are built around the Fisher information
matrix, using the geometrical information of the likelihood space for the efficient com-
putation of the likelihood ratio test statistic. They are of particular interest in new
physics searches since many of these experiments can vary between the Poissonian
and Gaussian statistical regimes. Our approach effectively and precisely interpolates
between these regimes with little computational overhead, allowing for the efficient
computation of sensitivities for large classes of new physics signals. In addition, we

4



1.1. Outline

liberate one from the restriction of resorting to benchmark scenarios when consider-
ing how well the parameters of a model from a future detection could be constrained.
For this we developed the euclideanised signal technique, an effective mapping of the
model parameters to a (typically) higher dimensional space that has the convenient
property that the likelihood distance between points in a parameter space is approx-
imated by the Euclidean distance in the higher dimensional space. Chapter 5 is the
first direct application of the above methods to future experimental setups, namely
DM direct detection experiments. We study the non-relativistic effective field theory
of dark matter direct detection, showing for the first time that even with multiple
detector materials it is unlikely that a future detection will allow for a simultaneous
constraint on the mass and interaction type.

We then turn to novel search strategies by looking for the affects of DM and neu-
trinos on ancient minerals buried deep in the Earth’s crust, presented in Chapters 6
and 7. These minerals, called paleo-detectors, act similarly to solid state direct detec-
tion methods; they record the recoils of nuclei from interactions between astrophysical
particles and the minerals constituent nuclei. The interactions leave nano-scale de-
fects in the otherwise crystalline structure of the mineral. These minerals, although
only small (O(1) mm3) compared to typical direct detection experiments (O(1) m3),
provide superior sensitivity to DM due to their extreme age; akin to running an
experiment for one billion years. We show that paleo-detectors gain almost two or-
ders of magnitude in sensitivity for GeV scale DM and many more for sub-GeV DM.
Additionally, we show that these sensitivity predictions are robust to unknown sys-
tematic uncertainties in the backgrounds and that, given a detection, they are able to
constrain the mass of the DM particle to much larger values than traditional direct
detection experiments.

Neutrinos are the most mysterious sector of the standard model. Although light
and extremely weakly interacting, their huge abundance can still cause visible affects
in direct detection experiments. Even worse, the mountains and layers of Earth un-
der which we build, and extract in the case of paleo-detectors, experiments are not
effective shields to these particles. For DM detection in paleo-detectors neutrinos
therefore represent a primary background. On the other hand, significant numbers
of neutrino tracks should be observed and can be studied to extract interesting as-
trophysical information. We demonstrate this by studying neutrino emission from
core-collapse supernovae (SN), explosions that occur at the end of a very massive
stars’ life, that have occurred in our own galaxy. We show that the time variation of
the galactic star formation history over the past one billion years can be constrained
using paleo-detectors. SN play an important role in galaxy formation and evolution.
Understanding the local SN rate will therefore provide key insights into the history
of our own Milky Way galaxy.

5



1. Introduction

6



2 Finding New Physics

The purpose of this chapter is to lay the foundations of the standard models of
particle physics and cosmology, whilst emphasising the two main ways in which BSM
physics can evade detection; being too heavy or too weakly coupled. We then turn
to the vast swathes of observational evidence for missing mass in the Universe and
its interpretation as particle DM, emphasising that long range modifications to GR
carries less motivation than certain classes of particle DM candidate. Finally, we
present a couple the most well studied DM particle candidates and review direct
detection methods since they are a main point of interest throughout this thesis. We
use natural units throughout with ~ ≡ c ≡ 1.

2.1 Particle Physics and Cosmology

2.1.1 Standard Model of Particle Physics

Poincaré invariance together with locality and unitarity constrain the space of pos-
sible SM particles and interactions. The Poincaré transformations encode the full
symmetries of special relativity; translations, rotations, and boosts. The local gauge
symmetry of the standard model is SU(3) ⊗ SU(2) ⊗ U(1). The standard model of
Particle Physics is made up of:

• spin-1/2 matter fields.
• spin-1 gauge fields to mediate the electroweak force.
• spin-1 gluon fields to mediate the strong force.
• A spin-0 Higgs boson to generate the masses of the particles through the Higgs

mechanism [28].

A schematic diagram of the SM and their relative interaction strengths can be found
in Fig. 2.1.
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Figure 2.1: Schematic diagram of the SM and potential avenues to search
for new physics. There are two primary ways in which particles can evade detection.
Either they are too heavy for production at the LHC or too weakly couple to the SM
to produce an effect. These scenarios are shown in grey and light blue respectively.
Credit goes to Ref. [29]

The various fields can be split in different ways; Bosons are integer spin particles,
whereas fermions have half-integer spin. The fundamental fermions can be further
split into quarks and leptons. Quarks are particles that interact through the weak,
electromagnetic, and strong forces. Leptons on the other hand do not take part in
the strong force. Within the SM there are six quarks, up and down types being the
most common in the Universe as they are the constituents of protons and neutrons.
There are three charged fundamental leptons, the most famous being the electron,
and three neutral ones. The neutral leptons are also the lightest massive particles in
the SM and are known as neutrinos.

Neutrinos are the least understood sector of the SM, with many properties still
unknown. Firstly, they appear with only left handed chirality, unlike the rest of the
SM. Secondly, they are the only particle whose absolute mass remains unknown. Cos-
mology constrains their combined masses to be sub-eV [30], much smaller than that
of the other SM particles1. Thirdly, a neutrinos flavour2 can also oscillate whilst

1The other standard model particles range from O(1) MeV for the electron to O(100) GeV for the
top-quark [10].

2The flavour of a neutrino is dictated by its associated charged lepton. They are called electron
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propagating in space. For example, excess electron neutrinos produced in some astro-
physical process can oscillate into other flavours such that we see equal ratios of each
flavour on Earth. Oscillations have been observed in solar, atmospheric, and reactor
neutrinos [31, 32, 33, 34]. Finally, whether they are their own anti-particle or not is
still unknown, although some experiments may probe this soon through the potential
observation of neutrinoless double beta decay [35, 36, 37].

The spin-1 particles mediate forces. At low energies there is the photon as the
mediator of electromagnetism, the W and Z bosons for the weak force, and eight
gluons that mediate the strong nuclear force. All particles have been confirmed with
dramatic precision at experiments such as the LHC, its predacessors, and various
table-top experiments [10]. In addition, the 19 free parameters of the SM have been
measured now to a high degree of accuracy3.

2.1.2 Standard Model of Cosmology

The cosmological principle states that the Universe is both homogeneous and isotropic
when viewed on large enough scales. Synonymously, the laws of nature are the same
for all observers in all directions throughout the Universe. This simple principle is
supported by observations of large scale structure (LSS). When smoothed over scales
of O(100) Mpc, the Universe appears to be approximately homogeneous [38, 39]. Sim-
ilarly, observations of LSS look the same in all directions on the sky, thus confirming
the isotropic nature of the Universe.

The geometry of the Universe is dictated by the cosmological principle. The
spatial geometries must be embedded into the four dimensional spacetime. The cos-
mological principle restricts these embeddings to be spatially flat, positively curved, or
negatively curved. The spacetime is described the Friedmann-Lemâıtre- Robertson-
Walker metric given in spherical polar coordinates by

ds2 = gµνdxµdxν = dt2 − a2(t)
[

dr2

1− kr2 + r2dΩ2

]
, (2.1)

where a(t) is the scale factor that encodes the cosmological expansion history and k

is the parameter encoding the curvature. Observationally, the curvature parameter is
constrained to be very close to zero, suggesting with live in a spatially flat Universe
[40]. This fact can be encoded into the dimensionless energy density quantities as
Ωr + Ωm + ΩΛ = 1.

Today, the energy desntiy is dominated by the cosmological constant Λ followed
closely by that of cold dark matter (CDM). In the past however, this was not the case.

neutrinos, muon neutrinos, and tau neutrinos.
3Note that this does not include the neutrino masses which are not well understood.
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The evolution of the Universe can be split into three distinct regimes: the radiation
dominated era, the matter dominated era, and the dark energy dominated era we are
in today. In cosmology, radiation generally refers to the energy density of photons
and neutrinos4, the most abundant and light particles. These regimes can be easily
understood by their relation to the scale factor:

Ωr ∝ a(t)−4, Ωm ∝ a(t)−3, ΩΛ ∝ a(t)0 . (2.2)

Since a(t) is defined to be one today and monotonically decreases into the past,
the three eras become clear due to the different rates at which their energy density
contributions are diluted.

ΛCDM contains six free parameters; two for the initial conditions of the Universe
encoding the primodial curvature perturbations, two encoding the DM and baryon
densities, and two associated with parameters of the cosmic microwave background
(CMB) [41].

2.1.3 searching for New Physics

There are two primary ways in which new particle physics could have evaded detection
from experiments so far, both shown in Fig. 2.1 as the grey and light blue boxes. The
first is that new particles could be too heavy to have been efficiently produced in a
collider such as the LHC. The second is that the couplings to the SM are so weak that
their effects are too small to measure. We briefly explain the logic behind searches
for heavy particles and potential paths to search for very weakly interacting particles.
DM searches will be the focus of this thesis. We therefore indicate the regions in
which typical DM searches occur, giving some of the main examples.

Energy Frontier

There are two primary ways to search for heavy particles. The first is referred to
as the energy frontier. The basic principle is that by colliding particles with high
enough energies it becomes possible that a new, unknown heavy particle will be pro-
duced during the collision. The second is an indirect approach, utilising astrophysical
observations of highly energetic environments.

At the Large Hadron Collider (LHC), protons are collided with a centre-of-mass
energy up to ∼ 13 TeV. The LHC can detect many of the SM particles produced in
the collision, allowing for a careful characterisation of the interaction that took place.
It can therefore find new physics by looking for deviations from the SM background
that it expects. One particular search pipeline looks for missing energy in the output

4In the early universe this is not true since many particles are relativistic and therefore contribute
to the radiation energy density.
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Figure 2.2: Schematic Feynman diagram for Higgs portal DM production
at the LHC. p indicates protons made up of quarks that can interact and produce
DM through a higgs portal coupling. The DM escapes the detector but its prescence
can be inferred from missing translational energy.

of a collision. For example, DM with a Higgs portal coupling can be produced via
the diagram in Fig. 2.2. Unlike the majority of the SM particles, DM will leave
the detector without any interaction. Using translational energy conservation, one
can equate the input energy of the proton collision to the measured output energy. If
there is an imbalance between these energies, we infer that particles must have escaped
the detector without interaction. By characterising the SM background of missing
energy, one can search for the existence of unknown particles. Similar signatures exist
for different DM models, some involving partial SM outputs in the form of jets [42].
Collider searches have the benefit of being a controlled setting where the input is
known, allowing for a careful charaterisation of the SM background. For a review of
DM searches at the LHC, see Ref. [43].

Although this approach has been extremely successful at finding the various par-
ticles of the SM (for example, see Ref. [44, 45, 46]), there is an obvious limitation
set by the collider’s scale. Any Particle with mass higher than the collisional energy
of the protons cannot be produced and will therefore remain a mystery with collider
search techniques.

Astrophysical probes can circumvent these constraints in two ways. If the new
heavy particle has a coupling to SM photons (not necessarily directly) and a high
enough astrophysical abundance we can search for the annihilation or decay products
of the particle. These methods have been used to great affect in the search for DM
annihilation products from dwarf galaxies by the Fermi Large Area Telescope [19].
The second method utilises the fact that ultra-high energy particles exist in nature
up to 1020 eV [47], much greater in energy than anything produced on Earth. By
modelling the possible astrophysical sources of these particles, we can search for ob-
served deviations to the energy spectrum of cosmic rays [48], potentially finding new
physics.
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2. Finding New Physics

Very Weakly Coupled and Light Particles

Particles could have also evaded detection by being too weakly coupled to the SM.
If so, even if the mass of the new particle was below the energy scale of the LHC, it
would be produced at such a small rate that it would be impossible to observe.

There are a few ways to search for such particles; on the intensity frontier, by using
low background experiments with large exposures, and by using indirect astrophysical
or cosmological probes.

The intensity frontier is essentially the process of increasing the rate at which
collisions occur in a collider or beam experiment. By observing larger numbers of
events, we can search for extremely rare physical processes or small deviations from
SM predictions. Low-background experiments with large volumes are one of the
primary techniques to search for DM5 but are also used to search for neutrinos. Super-
Kamiokande [49] and IceCube [50] are two of the largest neutrino detectors, both
utilising the very weak interactions of neutrinos with other particles to occasionally
produce high energy charged leptons which can emit Cherenkov radiation [51]. In
addition Super-Kamiokande can search for other rare processes such as proton decay
[52], providing information about grand unified theories and perhaps probing energy
scales well beyond that of colliders [53].

Astrophysical and cosmological probes utilise the high density environments that
exist throughout the Universe. For example, observations of stellar cooling rates can
provide constraints on additional light particles. These particles would be readily
produced in the core of the star and escape out to space without interaction, thus
providing an additional channel to remove energy [54]. Cosmological measurements
provide another probe of light relics, for example see Refs. [55, 56]. More recently,
observations of neutron stars have been proposed as an indirect way to observe the
effects of light fields with couplings to the electromagnetic sector. This is particularly
powerful when the these light fields make up all of the dark matter in the Universe,
often called axion DM [57, 58, 5]. Finally, the recent observation of gravitational
waves has provided a new view into light fields in the Universe. In particular, the
phenomena known as superraddiance [59] allows for the classical generation of a cloud
around a highly spinning black hole. This cloud can generate gravitational waves by
itself [60] but is also dense enough to cause distortions to the binary inspiral that can
be observed in current and next generation detectors [61].

2.2 Motivation for Particle Dark Matter

Dark Matter is perhaps the most well motivated BSM particle candidate. Here we
review the wide variety of observational evidence for missing mass throughout the

5We will return to this subject in more depth in § 2.4.
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Universe followed by a discussion on the theoretical boundaries of modifying gravity
on large scales imposed by locality and unitarity.

2.2.1 Observational Evidence for Missing Mass

Various forms of the missing mass problem have been used to postulate the existence
of new astronomical objects throughout history [62], in our galaxy and beyond. For
example, in 1846, the astronomer Urbain Le Verrier proposed the existence of a new
planet to explain peculiarities in the motion of Uranus [62]. This planet turned out to
be Neptune which was discovered the same day it was postulated in 1846. The very
same astronomer proposed the existence of another planet called Vulcan to explain
the precession of the perihelion of Mercury [63]. Unlike Uranus though, an expla-
nation of Mercury’s movements had to wait until Newtons laws of gravitation were
replaced with Einstein’s GR [64].

These proposals all rely on the principle that gravitational interactions are uni-
versal whereas some objects may not emit enough light for us to observe, or at all. It
is easy to find astrophysical objects which do not emit much light, brown dwarfs for
example. It is even possible to imagine objects that emit no light at all, things we call
black holes (BHs). Today we think that most spiral galaxies contain supermassive
BHs (> 106 M�) in their central region. We can precisely search for the gravitational
affect of these BHs by monitoring the motions of stars close to the BH surface. The
Event Horizon Telescope has recently been able to image the shadow created by the
total absorption of light from background sources [65], constituting the first direct
imaging evidence of BHs.

One of the most modern and compelling missing mass problems is that of DM.
Unlike other instances of missing mass, the evidence for DM does not stem from any
one observation. Rather, it is the accumulation of multiple probes pointing towards
a common origin that constitute the global evidence of DM dominating the matter
budget of the Universe. Here we discuss the main sources of evidence, proceeding
from the smallest scales (galaxies) to large scale structure and the Cosmic Microwave
Background (CMB)6.

Galaxies

Galaxies resemble the smallest scale evidence that there is significant mass not ac-
counted for in astrophysical objects. To infer the enclosed mass of a system we study
the motions of stars; objects that are easy to see due to their emission of light at a
variety of wavelengths. Since stars are gravitationally bound objects in a galaxy and

6We will include some historical perspective in each section although the sections do not proceed
in chronological order.
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approximately collisionless, they tend to follow circular orbits around the galactic cen-
tre [66]. We can predict the circular velocities of these stars by equating centripetal
and gravitational forces to give

vc =
√
GM(≤ r)

r
, (2.3)

where G is Newton’s gravitational constant and M(≤ r) is the mass enclosed by the
orbit. Observations of luminous matter within these galaxies suggest that mass is con-
centrated towards their central region [67, 68]. The enclosed mass should therefore
be constant at large radii, predicting that the circular velocity will fall as vc ∝ r−1/2.
Instead we observe that these velocities remain constant out to large radii [69], sug-
gesting M(≤ r) ∝ r. We therefore infer the existence of a dark halo which extends to
significantly larger radii than visible matter.

We cannot directly measure the circular velocities of stars, instead these can be
inferred from the spectra of galaxies. Vera Rubin [69] was the first to notice the
flattening of rotation curves in the 1970’s and 80’s. Albert Bosma found similar
results in 1985 [70], confirming Rubin’s original study. Since then, huge observational
campaigns have cemented galaxy rotation curves as the most famous evidence for DM
[71]. DM also exists locally in our own galaxy. We can constrain the local density
to be approximately ρ� ∼ 0.3 GeV cm−3 using stellar kinematicss, see Ref. [72] for a
review.

Galaxy Clusters

The next scale up is galaxy clusters; gravitationally bound structures formed from
hundreds to thousands of individual galaxies. Evidence on this scale has two indepen-
dent sources. The first comes from the velocities of the galaxies that make up these
clusters. Like stars in rotation curves, we can measure the overall motions of galaxies
within a cluster. This gives us a measure of the velocity dispersion, the statistical
spread of velocities from the mean. By applying the virial theorem7 we can infer the
total mass of the system [66] directly from these velocities. Separately, an estimate of
the mass of a cluster can be obtained by summing the masses of each galaxy and any
intracluster medium. For this we require a mass-to-light ratio to translate between
the observed luminosity and inferred mass [73]. For these mass measurements to
agree, an unrealistically large mass-to-light ratio is required. Again we must infer an
extended distribution of missing mass for observations to agree. Evidence of missing
mass in galaxy clusters came first from Fritz Zwicky in 1933 and represents some of
the first concrete evidence for DM [62].

In addition to these well separated and distinct galaxy clusters, we observe colli-
7Note that this applies to bound systems only.
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Figure 2.3: The collision of two galaxy clusters, called the Bullet Cluster .
The coloured regions show the X-ray emission and reconstructed mass distribution
in pink and blue respectively. Knowing that the pink intracluster gas dominates the
mass budget for baryonic matter we can see that the total mass is dominated by a
collisionless dark component. Image credit - [74, 75]

sions of galaxy clusters. The most famous, named the Bullet cluster [74, 75], is shown
in Fig. 2.3. The pink colour represents the X-rays emitted by hot gas known as intr-
acluster medium. By studying the optical emission from the component galaxies as
well as this X-ray emission one can conclude that this hot intracluster gas is the dom-
inant form of visible, or baryonic, matter in the system. Mass distributions can also
be probed directly by studying the gravitational distortion of light from background
sources by foreground masses. This technique is called weak lensing [76, 77] with the
result shown in blue in Fig. 2.3. The separation of the dominant baryonic mass (red)
and total mass (blue) shows that there must be some additional dark component that
is approximately collisionless, unlike the hot gas. For this reason the bullet cluster is
commonly cited as the best evidence for collisionless particle DM.
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Large Scale Structure

Structure formation in the Universe is a hierarchical procedure. Small clumps form
first which then gradually combine and grow to form ever larger objects. The timescale
for these procedures is crucial for the motivation of missing mass. If the only sources of
gravitational potentials were that of normal baryonic matter, clumping into galaxies
and galaxy clusters would proceed at a much slower rate than what is observed.
These comparisons are performed with respect to numerical N-body cosmological
simulations, which were made possible by advancements in computer technologies
throughout the early 20th century [78]. These simulations found that a Universe with
ten times more matter other than the observed baryonic matter matches well with
observations. By the end of 70’s this missing mass problem was collectively referred
to as DM, without limiting its interpretation to particle DM or any other solution
[79]. Throughout the rest of chapter 2 we use the term DM to refer to the missing
mass problem associated with all observations from this section.

In addition to providing evidence for large abundances of DM, we can learn more
about the required properties of this matter. As the dominant source of gravity
throughout the Universe, the particular sizes and number densities of the structures
we observe can be used to constrain DM. Crucially though, the simulations must be
reliable enough to compare directly with observations. It was therefore not until the
70’s and 80’s that simulations became a useful tool to constrain DM. The dominant,
and perhaps only, interaction for DM is gravity. Simulations are therefore insensitive
to its particular particle properties. Luckily they are highly sensitive to the initial
velocity distribution [80, 81]. For instance, the larger the average velocity of DM
particles, the greater the suppression of small structures. This is important since
DM cannot cool through radiative processes like baryonic matter. Assuming ΛCDM
cosmology, this then forces DM to be cold (or warm) such that structures on small
scales can form. Simulations are therefore the primary tool for ruling out SM neutrinos
as DM in the Universe [78]. More recently, small scale structure, as inferred from
lyman-α observations have placed further constraints on other BSM candidates [82,
83] and how warm they can be.

Cosmic Microwave Background

The CMB comes from light at the beginning of the Universe, approximately 300,000
years after the Big Bang. The Universe is observed to be expanding, therefore going
backwards in time reduces the volume of the Universe. The expansion of spacetime
causes the energy density of a system to decrease, also decreasing the temperature.
We can therefore view going back in time as an increasing temperature scale. In
particular, the temperature of the Univers is related to the scale factor as T ∝ a(t)−1.

After the Big Bang the Universe is a hot soup of fundamental particles. These
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particles gain their mass during the Electroweak phase transition and continue to
cool until the strong interaction becomes important, allowing baryons and mesons
to form. The formation of baryons and mesons in the early Universe is known as
the QCD phase transition. At around 1 keV, the Universe is filled primarily with
radiation, with sub-dominant baryonic and DM components. The baryonic matter
and radiation are tightly coupled through Thompson scattering (e− + γ → e− + γ),
whereas the DM only interacts gravitationally here i.e. it has already frozen out of
the system. The amount of neutral hydrogen is moderated by e− + p+ → H + γ as
well as the reverse process caused by high energy photons. As the Universe expands
and the temperature cools, there is not sufficient energy to disintegrate hydrogen and
it’s formation becomes energetically preferred. This process is called recombination.
In conjunction, the dramatic reduction in the abundance of free electrons causes
Thompson scattering to become inefficient, allowing photons to free stream. These
are the photons we observe today as the CMB8.

The success of DM in the CMB comes from studying its statistical anisotropies
over the sky. The average temperature of these photons is observed to be extremely
uniform, but deviations of 10−5K can be found. Gaussian anisotropies are charac-
terised completely by their angular power spectrum, a measure of the power at differ-
ent angular scales. The structure of these anisotropies is dependent on a number of
processes, the most important being baryonic acoustic oscillations (BAO). BAO are
caused by the time varying density perturbations of the tightly coupled baryon-photon
plasma9. This plasma collapses into the gravitational potential, established by the
DM, until enough radiation pressure is built up, causing a rebound and expansion of
the plasma. These structures can be decomposed into their spherical harmonic modes
which vary in time. The oscillations continue until recombination, at which point the
state of the system is frozen in. The structure of the angular power spectrum is
dictated by the oscillations scales that happened to be at their maxima or minima,
reflected as peaks and troughs in Fig. 2.4.

This is reflected in observations by slightly hotter and cooler CMB photons corre-
sponding to over and under dense regions respectively10. The angular power spectrum
reflects this structure with peaks and troughs at different angular scales. Crucially,
the ratio of the peaks heights are highly dependent on the abundance ratio of baryonic
matter to DM [85]. We therefore use the CMB to estimate the abundance of DM in
the Universe. Miraculously this turns out to be precisely the amount of DM required
to explain observations at smaller scales and later times. The standard cosmological
evolution used to predict the CMB anisotropies requires that DM behave like a pres-

8They are not emitted in at microwave energies but have been subject to gravitational redshift
throughout the expansion of the Universe.

9Remember that these are coupled through Thompson scattering.
10Note that this did not need to be the case since the photons in more dense regions need to climb

out of a larger potential well, losing energy in the process.
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Figure 2.4: Planck CMB observation (left) and angular power spectrum
(right). Left: 2018 observations of the Cosmic Microwave Background performed
by the Planck Satellite. The grey lines indicate the region masked by the galactic
plane. Right: Red points indicate the angular power spectrum as calculated from the
left image. The red line indicates the best fit model from ΛCDM cosmology and the
bottom panel indicates the residuals. Image credit goes to Ref. [30, 84]

sureless collisionless fluid that does not substantially interact with normal matter. By
itself the CMB therefore also represents a missing mass problem, but in combination
with all other observations provides very strong evidence for particle DM outside of
the SM.

2.2.2 Gravitational Lensing

All the evidence for missing mass can be accounted for by macroscopic compact objects
such as primordial BHs or Brown dwarfs, collectively known as Massive Compact
Halo Objects (MACHOs). If MACHOs are to make up all the missing mass, they
must be extremely abundant and not emit much radiation. Luckily, their abundance
makes them easily testable though gravitational microlensing, another form of light
distortion from background sources similar to weak lensing. Unlike weak lensing, the
effect is simply an observed luminosity amplification of the background source as the
lense transits the line of sight. Observing campaigns in the 90’s found that the rate at
which these microlensing events occur is too low to be consistent with DM [86, 87, 88].

Interestingly MACHOs have had a recent revival of interest following the discov-
ery of gravitational waves by the LIGO/VIRGO collaboration [89]. The first event,
GW150914, was consistent with the merger of two O(10) M� BHs, precisely in the
range of parameter space that would allow primordial BHs to account for all of the
DM [90] whilst evading all current constraints. Subsequent efforts have been made to
exclude this possibility [91, 92, 93]. Though many of these have caveats and assump-
tions, the general picture that these primordial BHs cannot be all of the DM in the
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Universe is slowly taking shape.

2.2.3 Modifications to Gravity

The laws of gravity are governed by Einstein’s theory of General Relativity (GR). In
many of the astrophysical and cosmological scenarios mentioned above it is possible
to add modifications to these laws that match the observations. Indeed it may seem
more tempting to attempt modifications to GR than introduce new particles. Here
I argue that modifications to gravity for the sole purpose of explaining DM should
carry less motivation than some classes of DM candidates. In particular these DM
particle candidates should be associated with known issues within particle physics,
such as the hierarchy or strong CP problem.

The structure of gravitational laws are tightly constrained by basic physical prin-
ciples such as locality and unitarity. In particular, the infrared (IR)11 behaviour of
any theory governed by a massless spin-2 particle (such as the graviton) is uniquely
determined to be GR [94, 95, 96, 97, 98]. There are several ways to see this, with a
variety of assumptions. We will sketch the simplest approach here (discussed in [94])
by imposing physical assumptions onto the degrees of freedom of a spin-2 massless
particle.

A massless spin-2 particle has two independent degrees of freedom (dof) associated
with its chirality [99]. We want to encode these two dof into the symmetric tensor
hµν , for which there are ten. This field will encode the dynamics of the graviton. To
reduce the dof to the required two, we first introduce linearized diffeomorphisms

hµν ∼ hµν + αµpν + ανpµ , (2.4)

where we also impose α · p = 0 and pµ is the four-momenta of the graviton. Equa-
tion 2.4 provides four constraints on hµν , reducing the dof to six. This must be further
reduced by introducing the manifestly Lorentz invariant constraint

pµhµν = 0 . (2.5)

Equation 2.5 reduces the dof by four, leaving two remaining. Next we want to find
a scalar quantity which is invariant under these transformations from which we can
build a Lagrangian. The invariant quantity turns out to be the Riemann tensor [94],

Rµναβ = 1
2
(
pµpαhνβ − pµpβhνα − pνpαhµβ + pνpβhµα

)
. (2.6)

11Here I will refer to long distance/low energy scales and infrared (IR), and small distances/high
energies as ultraviolet (UV)
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Finally we can make the invariant quantity known as the Ricci scalarR = ηνβηανRµναβ .
We can use this scalar as the most naive starting point for a Lagrangian formulation
of GR given by the Einstein-Hilbert action

S = 1
16π

∫
d4x
√
−gR , (2.7)

where g is the determinant of the metric. Equation 2.7 can be shown to produce
Einstein’s field equations when coupled to the matter sector. Any generalisations of
this will most likely be introducing new degrees of freedom in the form of a scalar
field [95, 96, 97, 100]. Note though that higher order derivative terms can appear but
should be suppressed by powers of the Planck mass and are therefore irrelevant for IR
interactions [101]. In fact, this is important since naively one could construct a scalar
by instead contracting two Reimann tensors which would give you four derivative
terms instead. The most common incarnation of the uniqueness of Einstein’s GR is
called Lovelock’s theorem [102], although there are now many ways to see this [94, 95].

Modifications to Newtons Laws have gained traction due to some suspicious nu-
merical coincidences and observed trends. The most famous of these is the connection
between the Hubble horizon and scale at which DM is required to explain galactic
rotation curves. These theories are often collectively called Modified Newtonian Dy-
namics (MOND) which are characterised by a modification to the Newtonian potential
ΦN at some acceleration scale a0,

a2

a0
= ∇ΦN , a0 ∼

1
6cH0, (2.8)

where c is the speed of light in a vacuum and H0 is the Hubble constant today. Addi-
tionally, the empirical trend between the observed mass/luminosity of a galaxy and its
asymptotic rotational velocity v4 = a0GMb (Mb is the baryonic mass of a galaxy) has
led to further speculation that there is an underlying law to relate these systems more
universally. This scaling law is known as the Baryonic Tully-Fisher relation [103]. It
should be noted that although particle DM candidates do not generically predict this
relation, modern simulations have found that it may be a natural consequence of
structure formation [104, 105]. These theories can be appealing since they explain
the dynamics without appealing to additional unobserved particles i.e. the observed
baryon abundance can explain entirely the dynamics of the system. Unfortunately,
these same successes have not been matched for larger scale cosmological observations
such as the CMB. Additionally, the most naive incarnations may violate Lovelock’s
theorem by modifying gravity in the IR.

One of the viable alternative theories of gravity that maintains the structure
of MOND on galactic scales is known as scalar-vector-tensor (TeVeS) gravity. By
adding at least a new degree of freedom in the form of a scalar field it is not bound by
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the normal constraints on gravitational interactions. These new degrees of freedom
though are adhoc, purely introduced to account for the effects of DM. Although
technically this is fine, the most well motivated particle DM candidates naturally
arise from solutions to fundamental particle physics issues. It is for this reason that
they deserve a more credible foothold in the space of theories. In addition, there is
no convincing theory of non-particle DM that can accurately model all peaks of the
CMB power spectrum shown in Fig. 2.4.

2.3 Particle Dark Matter Candidates

Little is known about the particle nature of DM. Here we review the necessary fea-
tures of a particle to become a DM candidate. We then discuss two broad classes
of candidates with natural motivations from other areas of particle physics that also
serve as viable DM candidates.

The most constraining observation of DM is its relic abundance in the early Uni-
verse. To satisfy current observations it should also:

• Be stable over cosmological timescales.

• Be almost electrically neutral.

• Interact only weakly with the SM.

• Have self interactions small enough to satisfy constraints from the Bullet cluster.

• Be non-relativistic at the point of decoupling from the SM in the early Universe.

• Have a viable production mechanism whilst preserving the observed structures
of the CMB.

For a theory to provide a good particle candidate it must therefore have a viable
production mechanism whilst preserving the observed structures of the CMB. There
are a wide variety of postulated DM particle models in the literature [106, 107, 108]
although their detailed descriptions are not important here.

A simple way to classify DM particle candidates is by their production mechanism:

• Thermal production (Freeze-out) [107, 109]

• Non-thermal production (Freeze-in) [110, 111].

• Misalignment Mechanism [112, 113, 114].

Here, we discuss two of the most popular DM candidates, WIMPs and axion DM. For
each, we summarise its particle physics motivation and production mechanism.
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2.3.1 WIMPs

The hierarchy problem is one main arguments to expect new physics at the weak scale.
It deals primarily with the smallness of the observed Higgs mass, mh ∼ O(100) GeV,
compared to the Planck mass, Mpl. The Planck mass is set by the scale at which grav-
itational interactions and SM interactions become comparable, therefore requiring a
new physical description. The observed mass of the Higgs boson contains contribu-
tions from tree level diagrams plus quantum loop corrections,

m2
h = m2

h,0 +m2
h,1 + · · · ∼ m2

h,0 + λ

16π2 Λ2 + . . . , (2.9)

where Λ is the high energy cut-off of the effective theory, and λ is an O(1) dimension-
less coupling constant. Luckily, it is possible to remove the cut-off dependence with
an appropriate choice of regularization. The real essence of the problem is simply
the quadratic dependence of the Higgs mass to higher mass scales. Imagine instead
a theory with an additional heavy scalar field with mass M . Integrating this out of
the theory will produce a different correction to the Higgs mass given by,

m2
h ∼ m2

h,0 + λ

32π2

Λ2 +M2 ln
(

Λ2

M2

)+ . . . , (2.10)

where the M2 can no longer be removed by a choice in regularisation [115]. Higher
order loop corrections can make this sensitivity even worse. This sensitivity to high
scale physics suggests new physics at the weak scale, an extremely finely tuned the-
ory, or no new particles with masses above the elctroweak scale. Supersymmetric
WIMPs are of particular interest here as a basic extension to the SM that solves the
hierarchy problem. Supersymmetry was first proposed as the natural extension of the
Poincaré symmetry to the super Poincaré symmetry. With this comes a copy of the
SM which also contributes to the measurable Higgs mass but with the opposite sign
to that of the SM, therefore exactly cancelling the problematic quadratic divergence.
Simultaneously, most incarnations of supersymmetry provide a weak scale particle
that is stable with no charge. This particle is often referred to as the neutralino and
is the archetypal WIMP candidate.

WIMPs are, by definition, heavy particles that have tree-level interactions with
the weak gauge bosons W and Z but do not take part in the strong or electromagnetic
forces at leading order. If this type of particle exists, it is produced in the early
universe with a relic abundance consistent with the observed DM abundance. This
generic production mechanism is coined the WIMP miracle and is one of the primary
reasons WIMPs have received so much attention as a DM particle candidate.

We can use an illustrative example of thermal freeze out in the early Universe
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[116]. Let us assume that at high temperatures, DM is kept in thermal equilibrium
with the standard model through the interaction,

χ+ χ̄↔ SM + SM , (2.11)

where χ and χ̄ indicates the WIMP and its antiparticle12. Whilst thermal equilibrium
is maintained in an expanding universe, the comoving number density of DM, Nχ =
nχ/s

13, is described by the Boltzmann equation,

dNχ
dt = −s〈σv〉

[
N2
χ −

(
N eq
χ

)2
]
, (2.12)

where 〈σv〉 is the thermally averaged annihilation cross section and N eq
χ is the number

density of DM in thermal equilibrium. The entropy density s is given by

s = 2π2

45 g?S(T )T 3 , (2.13)

where g?S(T ) is the effective number of degrees of freedom in entropy. Equation 2.12
describes the effect of two process; the dilution of the number density during expan-
sion and the annihilation and production from both processes in Eq. 2.11. Thermal
freeze out is defined when the interaction in Eq. 2.11 becomes inefficient. In thermal
equilibrium at low temperatures, there would be an exponential suppression of the
number density of heavy DM particles since Eq. 2.11 would be much more efficient
from left to right. Thermal freeze out is when the annihilation rate also becomes
inefficient. This happens when the Universe expands and DM particles becomes in-
creasingly less likely to meet.

Assuming that the relic abundance of DM is much lower than at freeze out and
that freeze out occurs during the radiation era we can write the relic abundance as

N∞χ '
xf
λ
, (2.14)

where x = mχ/T and f indicates the quantity at freeze out. We have also defined

λ ≡ 2π2

45 g?S
m3
χ〈σv〉
Hx2 . (2.15)

Using the above result and assuming that the WIMP number density is conserved we

12Note that the WIMP can be its own anti-particle.
13nχ is the regular number density
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can write the relic density today as

ΩXh2 ∼ 0.1
(
xf
10

)(
10

g?
(
mχ

))1/2
10−8 GeV−2

〈σv〉
(2.16)

where g? is the effective number of relativistic degrees of freedom. From here we see
that a thermally averaged cross section close to the weak scale would produce the
observed DM abundance today. This is known as the WIMP miracle [116, 41].

2.3.2 Axions

The QCD lagrangian admits the CP-violating term

L = − g2
sθ

32π2GµνG̃
µν , (2.17)

where θ is the coupling term describing the CP-violating phase and Gµν is the gluon
field strength tensor (the tilde indicates its dual). This term should induce a neutron
electric dipole moment but current observations have shown this to be extremely
tightly constrained, |θ| < 10−10 [117, 118]. Since naively θ ∼ O(1), this is a fine
tuning problem. The solution, proposed by Pecci and Quinn, is to promote θ to a
field which can dynamically relax to the CP-conserving value below the symmetry
breaking scale fa [112]. The breaking of the Pecci-Quinn symmetry gives rise to
a Goldstone boson, called the QCD axion. It is generally thought to have generic
couplings to both gluons, quarks, and electromagnetism whilst its mass is connected
to the decay constant ma ∝ 1/fa.

Axions generally behave like non-relativistic matter and therefore are a primary
DM candidate. In theory they can be produced non-thermally, although the favoured
production scenario is known as the misalignment mechanism. Above the symmetry
breaking scale, all values of the axion field are allowed since it is not yet needed
to solve the strong CP problem. After the Pecci-Quinn symmetry breaking, the field
relaxes to its minimum and generates a relic density of axions. If inflation occurs after
the symmetry breaking then the Universe has one relic density given by [119, 107],

Ωa ∼ 0.4θi
(

fa
1012 GeV

)1.18
, (2.18)

where θi is the misalignment angle, a O(1) initial condition.
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2.4 Direct Detection of Dark Matter

The Direct Detection (DD) of Dark Matter is one of the three primary methods
currently employed to detect WIMP interactions. It was first proposed by Goodman
and Witten [120] and subsequently developed by Drukier, Freese and Spergel [121] .
The basic idea is to build a detector quiet and large enough to detect the very rare
DM interactions with the target material. By measuring these scattered particles
and their kinematics one can hopefully detect, and infer the properties of, DM. Here
we briefly review the theory of nuclear scattering for use in Chapters 5, 6, and 7.
We introduce the non-relativistic effective theory of DM interactions (as proposed
in [122, 123]) for use in Chapter 5 and emphasise the spin independent interaction
term which we explore further in Chapters 6 and 7. Finally, we briefly review the
experimental status of DD searches.

2.4.1 Dark Matter Scattering Theory

Heavy, O(1) GeV, DM is observationally determined to be non-relativistic within the
Galaxy [124]. We will therefore focus on non-relativisitc DM-nucleon elastic inter-
actions. For more detailed derivations see Refs. [125, 126, 127, 128, 122, 123]. Im-
portantly, we focus on DM-nucleus interactions rather than interactions between DM
and electrons, although in principle these can also be detected [129, 130]. Figure 2.5
shows an elastic interaction between a DM particle, χ, and nucleus, N . Most DD ex-
periments are cooled to very low temperatures, therefore we assume that the kinetic
energy of the nucleus is negligible. The initial and final energies of the system are
given by

Eini = p′2

2mχ
, Efin = p2

2mχ
+ q2

2mN
, (2.19)

where bold indicates the momentum vectors and m indicates the mass of the DM
particle or nucleus. By momentum conservation we find q = p′ − p, where q is often
referred to as the momentum transfer. Defining p̂′ · q̂ = cos θ and equating final and
initial energies we find,

q2

2µχN
= |p

′||q| cos θ
mχ

, (2.20)

where µχN = mχmN/(mχ +mN ) is the reduced mass of the DM-nucleus system. We
can now find the maximum energy transfer for a single recoil

Emax
R = |q|

2
max

2mN
=

2µ2
χNv

2

mN
, (2.21)
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Figure 2.5: Feynman diagram for Dark Matter Direct Detection. The vertex
depicts a generic elastic interaction between DM χ and a nucleus N . The different
forms of this interaction are explored in the text.

where v is the magnitude of the velocity of the incoming DM particle which is typically
taken to be v ∼ 3× 10−3 in the lab frame [124]. Plugging in typical numbers for the
DM and nuclear masses we find the maximum recoil energy is O(10− 100) keV.

For a given energy we can define the minimum velocity a DM particle must have
to induce that recoil:

vmin =
√
ERmN

2µ2
χN

. (2.22)

The maximum velocity of DM is given by the escape velocity of the galactic potential.
Together with the DM velocity distribution, f(v), (that encodes the kinematics of the
expected interactions) we can write the recoil spectra per unit target mass as

dR
dER

=
∑
i

ξiρDM

mi
Nmχ

∫ vmax

vmin

d3vf(v)v dσ
dER

, (2.23)

where ξ is the mass fraction of the nuclide i, ρDM is the DM density at the Earth’s
position in the galaxy, and dσ/dER is the DM-nucleus recoil rate.

There are two approaches to calculating dσ/dER; the first involves writing down
a microscopic DM particle theory that interacts with gluons or quarks which can
then be matched on to the corresponding operators involving nucleons from which
we can calculate the final recoil rate. The second method, and one we will adopt,
is to directly write down all the non-relativistic effective operators and there nuclear
responses.

26



2.4. Direct Detection of Dark Matter

The non-relativistic differential cross section can be written as

dσ
dER

= 1
32π

1
m2
χmNv2 |MχN |2 , (2.24)

where MχN is the matrix element that encodes the information of the interaction
type and the relevent nuclear physics. The general Lagrangian for interactions with
nucleons, N , takes the form

L =
∑
i

cNi Oi , (2.25)

where Oi represent the different non-relativistic operators and the coefficients ci are
functions of the relativistic theory. The operators themselves are built to be Galilean
and rotationally invariant, containing only the relevant degrees of freedom of the
system. For a DD experiment the relevant degrees of freedom are; the relative velocity
between the DM and nucleus ∼ v, the momentum exchange q, the spin of the DM
Sχ, and the spin of the nucleon SN . Averaging over spins, we can write the matrix
element as

|MχN |2 = m2
N

m2
N

16∑
i,j=1

∑
N ,N ′=p,n

cNi cN
′

j F N ,N
′

ij , (2.26)

where F N ,N
′

ij are the nuclear response functions that critically depend on the nuclear
structure of the target material. These factors were computed for some of the most
commonly used DD experimental materials in [123]. The scattering amplitude can be
written in this way purely because of the non-relativistic expansion in powers of the
momentum transfer and DM velocity. Additionally, the coefficients of Eq. 2.26 have
momentum dependence only through the scalar quantities v2 and q2.

The two most well known operators14 used in the DD community are O1 and O4
corresponding to the ‘spin-independent’ (SI) and ‘spin-dependent’ (SD) interactions
respectively. They are given by,

O1 = 1 , O4 = Sχ · SN . (2.27)

For the spin-independent case we can write the total recoil rate in its common form,

dR
dER

=
∑
i

ξiρDM

2mχµ2
χN

σSI

∫ vmax

vmin

d3vf(v)
v

A2
NF

2
helm(ER) , (2.28)

where Fhelm(ER) is the Helm form factor [131], AN is the atomic number of the
nucleus, and σSI is the spin independent cross-section15. We plot the recoil spectra

14These are the most commonly used since they are the lowest order in the non-relativistic expan-
sion.

15Note that this is the coupling to protons which is why we get an A2
N enhancement to the recoil

rate.
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for the first eleven operators in Fig. 2.6, excluding O2 for convenience of plotting and
its lack of obvious UV completion due to its v2 dependence. These spectra, possible
extensions to this formalism, and the velocity distribution of DM will be discussed
further in Chapter 5.

2.4.2 Experimental Status

Dark Matter scattering events are rare due to their extremely weak coupling to the
SM. To detect these events experiments must therefore be large and extremely quiet.
The primary background is from cosmic ray interactions. To remove this, experi-
ments are generally built in underground laboratories using the Earth as a shield.
Unfortunately, there are radioactive elements within the Earth itself, providing an
additional background. Experiments must therefore be shielded against these back-
ground sources and be able to detect multiple scatters, the latter being used to veto
SM events. Another primary source of nuclear recoils is natural radioactivity of the
target material. This must be reduced to exceptionally low levels and constantly
monitored [132, 133]. Finally, experiments often aim to distinguish between electro-
magnetic and nuclear recoils, since the latter is induced by DM interactions.

There are three primary ways to detect the DM-nucleus interaction. Firstly, the
emission and detection of scintillating photons from the de-excitation of the recoil-
ing atom. Secondly, electrons can be ionized from the atom which are then drifted
and subsequently detected. Finally, the small energy deposition from the interaction
can slightly warm the target material which can be detected, normally referred to as
phonon detection. We discuss one of the most successful detector types here, two-
phase liquid noble experiments, but refer the reader to Ref. [134, 135] for a more
complete review.

Two-phase liquid noble experiments have been the most successful experimental
design to gain sensitivity to O(1 − 100) GeV scale WIMP DM. The most prominent
examples are XENON1T [18], LUX [136], and PandaX-II [20] although future exper-
iments such as DarkSide-20k will have competitve sensitivity [137].

In these detectors, a nuclear recoil will produce a scintillation and ionization sig-
nal. In Time Projection Chambers the scintillation is directly measured by photon
multiplier tubes at the edge of the detector. Ionization electrons are drifted in an ap-
plied electric field and detected in the gas chambers at either end of the detector. By
summing these two signals, the recoil energy of the interaction can be reconstructed
whilst the timing of the two signals can be used to localise the event within the de-
tector. Localisation allows for easy vetoing of potentially spurious events close to the
detector wall.

Despite exceptional achievements in reducing backgrounds in Xenon experiments,
some still remain. The most prominent of the nuclear recoil backgrounds is that of ra-
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diogenic neutrons from the detector materials. In addition, there are coherent elastic
neutrino nucleus scatters mainly from solar neutrinos as well as cosmogenic neutrons
from secondary particles produced by muon showers outside the detector. For further
discussion of backgrounds see Ref. [18] and references therein.

As the name indicates, noble liquids are used in these detectors, the most popular
of which is Xenon. Xenon is used due to its sensitivity to both SI and SD interactions.
Sensitivity to SD interactions comes from the unpaired neutron in some of the Xenon
isotopes. Additionally, the mass of a Xenon nucleus is kinetically favourable forO(10−
100) GeV DM interactions as well as receiving a significant coherent enhancement due
to the large nucleon number. Figure 2.7 shows the sensitivity of current experiments to
the SI cross section (above) and SD cross section (below). Experiments will continue
to gain sensitivity to both of these interactions in the next generation of detectors
(currently under construction). We discuss an alternative approach, known as paleo-
detectors, in Chapters 6 and 7. Finally, the yellow shaded region of Fig. 2.7 shows
the neutrino floor ; the point at which neutrino interactions will become a primary
nuclear recoil background that cannot be removed. The neutrino floor has three
primary contributions from different neutrino sources: solar neutrinos, atmospheric
neutrinos, and the so called diffuse supernovae background (DSNB). These neutrinos
are of primary interest if they can be detected and characterised. This the topic of
Chapter. 7 and Ref. [4].
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Figure 2.6: Recoil spectra for 50 GeV DM particle. The different panels repre-
sent the eleven main operators of the NREFT. O2 is excluded O2 for ease of plotting
and unlikely UV completion.
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Figure 2.7: Dark Matter DD Limits on spin-independent (above) and spin-
dependent (below) cross sections. Limits taken from Ref. [138, 23, 139]
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3 Statistics

The purpose of this chapter is to lay the foundations of the statistics that will become
important throughout the thesis. In particular, we will focus on the procedures used
in Dark Matter searches (and throughout this thesis) such as setting exclusion limits,
projecting exclusion limits, and calculating the ability of experiments to discriminate
between models. Together with particle physicists, these methods are generally em-
ployed from a Frequentist perspective on statistics. Bayesian statistics, on the other
hand, dominates fields such as Cosmology. We therefore begin by introducing both,
but focus on the Frequentist approach, whilst making a connection to Bayesian statis-
tics towards the end. For a concise review of the methods used in collider physics see
Ref. [140].

3.1 Introduction

Without a deep understanding of statistics, complex experiments would struggle to
find evidence for new physics. Statistics is the mathematical formalism to connect
our physics models to experiments and data. Statistical procedures are the neces-
sary step to quantify the information gain from an experiment but also crucial in
planning experimental setups and procedures. Unfortunately statistical methods are
normally treated as an after thought, a necessary evil. This is an oversight, since data
processing and statistical procedures can be time consuming and difficult. Instead,
statistical methods should be incorporated into the framework of physics models,
therefore playing a central role for both theorists and experimentalists alike.

Physicists use mathematical models to describe the world around them. They
are predictive devices, most of the time taking some initial data which can then be
used to predict, for example, a systems time evolution. These models are the way
physicists are taught to view the world. We will focus on the logical structure of
the statistical procedures throughout, providing mathematical proofs when they are
concise or references for longer derivations. Finally, we will try to keep the language
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simple and accessible introducing all the technical terms used. For a review of sta-
tistical methods used in particle physics see Ref. [140]. Many of the methods used in
particle physics were developed in Ref. [17].

3.2 Technical Concepts

For a rigorous discussion we first need to clarify some important definitions. First of
all, our definition of probability is extremely important.

Within statistics, there are two primary camps; the Bayesians and the Frequen-
tists. Although their differences are usually phrased around the methods they use,
the primary difference is actually much deeper, stemming from the very definition of
probability. A Frequentist views nature as exact, with precise values for particular
quantities such as the masses of particles. The definition of probability is instead as-
signed to the notion of repeated trials. The typical example is flipping a coin, giving
two possible results; heads or tails. The Fequentist probability associated to getting
a tails P (tails) is defined by its relative occurrence in a large number of trials,

P (tails) = lim
nflips→∞

ntails

nflips
, (3.1)

where nflips is the number of times the coin is flipped and ntails is the number of times
tails occurred in nflips flips. Obviously we cannot actually perform infinite numbers of
flips of a coin, but it is the baseline philosophy of a Frequentist that this probability
will converge exactly to its true result. In practice, physicists try to replicate this
behaviour by doing many experiments, hopefully approaching the a point where the
relative frequency is a good approximation of the true frequency.

The Bayesian view differs in that probability is simply a quantification of an ob-
servers belief. There is no need to discuss the value of something in nature, instead we
simply quantify how well we can measure such a quantity. Importantly, the Bayesian
definition of probability requires us to use Bayes theorem [141],

P (A|B) = P (B|A)P (A)
P (B) (3.2)

where P (A|B) is the probability of A given B (vice versa for P (B|A)), P (A) is the
prior belief of A, and P (B) is normally referred to as the evidence. Note that P (A|B)
is often referred to as the posterior probability. The important difference here is the
use of the prior P (A), which requires us to define a subjective belief to the occurrence
of an event. Bayesian probability is closer to everyday reasoning since we generally
associate some degree of belief to an event occurring based off past experience. This
prior has lead to large disagreement between the communities since it can be subjec-

34



3.2. Technical Concepts

tive, not necessarily in keeping with scientific language of objectivity. In theory, when
large volumes of data are available, Frequentists and Bayesains will agree, though this
doesn’t often occur for rare event searches. It is important to note that Frequentists
don’t dispute Bayes’ theorem, rather they don’t believe that the necessary quantities
are available.

Finally we note that the physics community has displayed some interest in the
field known as objective Bayesianism, where one tries to define a prior that is indepen-
dent of the users belief. This allows Bayes theorem to extract the posterior probability
simply from the data. Unfortunately, there is still some disagreement amongst statis-
ticians about how to do this exactly so we will only refer to this towards the end of
the chapter. See Ref. [142] for a review.

Probabilities and Likelihoods

The basic definition of probability is anything that follows the Kolmogorov axioms,
as given in the box below. Note that these are included for completeness and not
necessary for the logical flow of the rest of the chapter.

The Kolomogorov axioms are defined on the space of events E with exclusive
events Ei. The three axioms are given below;
1. The probability of an event is a real non-negative number i.e. we can assign
a numerical value to the probability of an event occurring:

P (Ei) ∈ R, P (Ei) ≥ 0 ∀ Ei ∈ E . (3.3)

2. Upon a measurement, one the Ei’s will be selected with probability one.
Said more simply, when a measurement is performed the outcome needs to be
specified within the space of possible outcomes:∑

E

P (Ei) = 1 (3.4)

3. The probability of these exclusive events can be added

P (E1 orE2 or . . . ) = P (E1) + P (E2) + P (. . . ) (3.5)

Both the Frequentist and Bayesian definitions of probability follow these axioms
and we will adopt the Frequentist definition unless otherwise specified. For a review
of the different rules of probability that are a natural consequence of the Kolmogorov
axioms, see Ref. [141].

Consider an experiment making measurements of the continuous variable x. For
example, one might want to measure the time taken for a ball to hit the ground when
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dropped from a specific height. Multiple measurements will give different values of xi,
different times, which can be accommodated into a quantity known as the probability
density function (pdf) f(x) which has the important property,∫

f(x)dx = 1 . (3.6)

Pdf’s play an important role since most experimental outcomes will have variation due
to some randomness in the system. For example, if we want to measure the number
of photons coming from the sun, we perform a series of observations at different
times to create an ensemble of measurements. The pdf then reflects the probability
of getting the different measurements within this ensemble. In physics we normally
have a description for the likelihood that the data will occur given a set of physical
parameters θ = {θ1, θ2, . . . } which we can write as

f(x |θ) . (3.7)

Continuing on the example of measuring the Sun, these physical parameters might
contain parameters intrinsic to the Sun such as its temperature, radius, and chemical
composition as well as extrinsic parameters such as the position of Earth within
the solar system. These extrinsic parameters are sometimes referred to as nuisance
parameters.

Finally, let us define the likelihood function which gives the probability that you
will observe a given value of the continuous variable x as a function of the parameters
θ. It is numerically equivalent to the pdf but is a function of the parameters, not
the random variable. This is an important distinction as the likelihood does not
possess the property shown in Eq. 3.6. We want to generalise the likeilhood to be a
function of data sets with multiple measurements D = {x1, x2, . . . }. We will write
our likelihood as L(D |θ) but it is important to keep in mind that the dependence is
on the parameters1.

Test Statistics and Hypothesis Testing

A statistic is an object one constructs from the data to summarise the information
contained within it. The mean of a data set is the archetypal example of a statistic.
A Test Statistic (TS) is just the word used to describe a statistic constructed for
hypothesis testing. Hypothesis testing is just the act of comparing the null hypothesis
vs the alternative hypothesis. The main purpose of a test statistic is to differentiate
between these hypotheses. Hypothesis testing will take two relatively distinct forms
here,

1. The comparison of θ1 and θ2 within a parameter space to see which of the two
1Note also that the likelihood is often written as L(θ|D) to make the dependence more clear.
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is preferred or if they can be distinguished with a future experiment.

2. The comparison of a background only (null) hypothesis with the background +
signal (alternative) hypothesis. We therefore want to either quantify a discovery
of the alternative hypothesis or rule out a region of the signal parameter space
by placing an exclusion limit

We will discuss both of these situations below.

3.3 Maximum Likelihood Ratio

We want to construct an object which will maximise the difference between the null
and alternative hypothesis. The most commonly used TS is the maximum likelihood
ratio (MLR) defined by,

TS(θ | D) = −2 ln maxν L(θ,ν | D)
maxθ,ν L(θ,ν | D) , (3.8)

where ν = {ν1, ν2, . . . } are our nuisance parameters. The MLR owes its ubiquitous
use to the Neyman-Pearson lemma for simple hypothesis testing. The lemma shows
that for two models with no parameters, the MLR has the maximum power of dis-
crimination. For a graphical proof of the Neyman-Pearson lemma see Ref. [140].

The behaviour of the MLR as defined in Eq. 3.8 is such that its minima coin-
cides with the best fit values of θ. If the model were to fit the data exactly then
this is at exactly zero, although randomness in the data will make sure this cannot
happen. The behaviour of the MLR close to the minima will determine how to set
our confidence intervals and will be discussed below.

Here it is useful to introduce a more concrete example, in particular a counting
experiment. We imagine a simple signal consisting of a Gaussian bump and a smooth
power law background component. This kind of situation arises regularly in DM
searches such as searching for a gamma-ray bump for indirect detection, or looking
for a particle resonance at the LHC. We will use the variable E which could refer to
energy but could also be any other variable. Our signal (S) and background (B) are
defined number of counts per energy bin and given by

S ∝ N (E0 = 10, σ2 = 2) , B ∝ E−1 , (3.9)

where N (E0 = 10, σ2 = 2) refers to a Gaussian centered on E0 = 10 with vari-
ance σ2 = 2. The signal and background models can be seen in Fig. 3.1 where we
show the same normalisation for the background and two different normalisation’s
for signal in the left and right panels. The normalisations are our variables here;
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Figure 3.1: Signal and background Example. The signal is a Gaussian with fixed
width and position. The left panel has a signal normalisation of θS = 10 where as the
right has θS = 600. The background power law has a slope of -1 with a normalisation
of θB = 1000. The data (in the 30 log-spaced bins) is generated by sampling from a
Poisson distribution with expectation value as the sum of the signal and background.

θ = {θS , θB}, where θS and θB are the normalisation of the signal and background
respectively. We set these to be θS = 10, 600 for the small and large signal cases
and θB = 1000 throughout. Finally, we have N = 30 log spaced bins in energy
(E = {E1, E2, . . . , EN}) for which we have generated data. These are created by
drawing from a Poisson distribution with expectation value given by the combination
of the signal and background. Our data set is then made up of a number of events
in each bin i, D = {x1, x2, . . . , xN}. To make use of the MLR description we need to
define our likelihood. Since we are imagining a counting experiment our likelihood is
described by the product of Poisson distributions over all bins,

L(θ | D) =
N∏
i=1

e−S(Ei,θS)+B(Ei,θB) (S(Ei, θS) +B(Ei, θB))xi
xi!

(3.10)

For numerical simplicity we actually work with the log likelihood given by

lnL(θ | D) =
N∑
i=1
−S(Ei, θS) +B(Ei, θB) + (S(Ei, θS) +B(EiθB , ))xi , (3.11)

where we dropped the constant term that only depends on the data since it will not
be important for the calculation of the likelihood ratio. Imagine now that we are
given the data set D and we want to constrain the normalisation of the signal, our
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Figure 3.2: TS distribution for model in Fig. 3.1. Blue line shows the TS
value as a function of the signal normalisation θS . The orange band shows the 68%
confidence interval and the black cross shows the true value. In both we can see that
the randomness ensures the minima of the TS is not precisely at the true parameter
value.

test statistic then takes the form,

TS(θS | D) = −2 ln maxθB L(θS , θB | D)
maxθS ,θB L(θS , θB | D) . (3.12)

The minimum of the TS gives us the best fitting value θS for the data set D. The
distribution of the TS for both cases is shown in Fig. 3.2. Importantly we can now
see that, for a given data set, the minimum of the TS might not exactly match the
true value of the parameter (marked as black crosses in Fig. 3.2). To capture this
behaviour we need to define two new concepts, confidence intervals and coverage.

Confidence Intervals and Coverage

All data sets contain some element of randomness in them. For example, the num-
ber of photons arriving in a gamma ray telescope will sometimes be slightly larger,
sometimes slightly smaller, even for a steady state source. This is simply statistical
Poisson error and cannot be avoided. It is therefore inevitable that the minima of the
TS for any given data set will not precisely reflect the true value of the parameter.
Instead we need to define an interval of parameters over which we expect the true
parameter to exist within to a given confidence level, Z.

A confidence interval approximately represents the interval within which one
would be expect to find the true parameter with a confidence of Z. More precisely Z
represents the frequency, assuming repeated experiments, that the associated confi-
dence interval will contain the true value. Take the example above, the orange band
in Fig. 3.2 shows the 68% confidence interval. This means that if one was to form
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100 data sets, constructing a new interval for each, then 68 of them would contain
the true parameter. The interval is defined to be

{ θ̂ |TS(θ) < c } (3.13)

where c is a value set such that the confidence interval has the desired behaviour as
defined above and θ̂ is the best fit value of θ (the minima of the TS). Finally, the
probability that an interval will contain the true value is called the coverage probability
(coverage for short). If the confidence interval and coverage are the same then the
interval is said to be exactly covered. In some cases, exact coverage may not be
possible and the confidence interval is said to under or over cover. Under coverage
refers to the when the stated confidence level is higher than the true coverage. The
opposite scenario is when the confidence interval contains the true parameter more
than the stated confidence level, referred to as over coverage. If an interval over covers
it is said to be conservative.

Discovery Tests

Before we move on to looking at methods to construct confidence intervals, we briefly
mention the most common way to establish whether a discovery has been made or
not. In particle physics these questions are normally answered through a hypothesis
test where we have the null being a background only hypothesis vs the alternative
being background + signal. Assuming that we have a good model of the background,
we take data and quantify the probability that the observed data is compatible with
the null hypothesis. If the data set is extremely unlikely to have been produced by
the background alone, we would reject the null and accept the alternative. This prob-
ability is normally called the p-value and for a simple one-bin counting experiment is
quantified by the number of excess events over the background. The general definition
is given by,

p = Pr
(
TS(x) ≥ TS (xobs) |H0

)
, (3.14)

i.e. the probability that the test statistic TS(x) is more extreme than the observed
TS(xobs) under the null hypothesis.

Note that this is not a statement about the probability of the alternative being
correct. For this we would require Bayesian reasoning, not commonly used amongst
particle physicists. For the detection of gravitational waves they use Frequentist
statements to quantify the probability of a data set occurring in a background only
scenario combined with Bayesian statements about the likelihood of a signal being
of astrophysical origin. A discovery is only made if both tests provide evidence for a
gravitational wave. We won’t discuss this further here but refer to Ref. [143] for more
information.

We will now discuss three methods that utilise the MLR to construct confidence
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intervals. Importantly, we are now addressing the question of how to either set an
upper limit or construct a closed confidence interval, for a non-discovery or discovery
respectively.

3.3.1 Neyman construction

The Neyman construction is a method to develop confidence intervals with exact
coverage. Intervals constructed in this way are therefore ideal since they have precisely
the desired confidence level. In an ideal scenario, one would not decide to set a two
sided confidence interval or upper limit based of the data and would have a technique
that smoothly transitions between the two. Feldman and Cousins developed a method
to do this based around the Neyman construction [144], which we will briefly review
here. Imagine an experiment that counts numbers of events, n, with a background
and signal contribution b and s respectively. Constructing the confidence interval now
has three steps, shown in Fig. 3.3:

1. For each value of s one defines an acceptance region of allowed values of n as
described by P (n | s)

P
(
n ∈ [n1, n2] | s

)
= α , (3.15)

where α is the confidence level.

2. Construct a belt of acceptance regions of n as a function of s.

3. Upon measuring n0, the confidence interval is set by the intersecting values of
s along the belt at n0.

For more details on the exact construction of the acceptance region and how to per-
form computations in more complicated scenarios see Ref. [144].

3.3.2 Large Sample Limit

The large sample limit is generally defined by having a large number of background
events. In this scenario we are lucky that the distribution of the MLR is well described
by a chi-squared distribution χ2

d with degrees of freedom specified by the difference in
the number of free parameters between the numerator and denominator of the MLR
[145]. For example, Eq. 3.12 has one free parameter, θS , and is therefore described
by χ2

d=1. We could modify the TS to instead constrain the background and signal
normalisation’s simultaneously,

TS(θs, θb) = −2 ln L(θs, θb | D)
maxθs,θb L(θs, θb | D) ∼ χ

2
d=2 . (3.16)
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Figure 3.3: Neyman construction as developed by Feldman and Cousins. For
each value of the signal s one calculates an acceptence region from the distribution
P
(
n | s

)
(for details on computing the acceptence region see Ref. [144]. The acceptence

regions are shown in yellow. Next, construct a belt of acceptence regions, as shown
in red. Finally, the confidence interval, on s, upon measuring n0 is given by the
intersection of the vertical line through the belt, as shown in green.

Knowing the distribution of the TS drastically reduces the computational cost of
calculating confidence intervals. Instead of having to computationally map the TS
distribution through monte-carlo (MC) simulations, we can instead find threshold
values which define the boundary of the confidence interval. The only computation
is then to find the values of θ that correspond to these threshold values. Imagine we
want to compute a 90% CL interval, the threshold value is given by 2.706. This is
calculated from the inverse cumulative distribution function (known as the percentage
point function), PPF(d, α). For the example above we have PPF(1, 0.9) = 2.706, as
shown in Fig. 3.4.

If we did not make a discovery, we need to instead set an upper limit. Our TS
will no longer be symmetric as in Fig. 3.2 and Wilks theorem does not apply exactly.
Instead we need to modify our TS to,

TS(θs) =

−2 ln maxθB L(θS ,θB | D)
maxθS,θB L(θS ,θB | D) θs ≥ θ̂s ,

0 θs < θ̂s ,
(3.17)

where θ̂s is the best fit value. This also produces a change to the TS distribution
which now goes as,

TS ∼ 1
2δ(0) + 1

2χ
2
d=2 , (3.18)
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Figure 3.4: How Wilks theorem is used to calculate threshold values. Wilks
theorem shows that the TS is distribution like a chi-squared distribution. The cumu-
lative distribution function of the χ2

d distribution can be used to find the necessary
threshold values for confidence intervals. Here we show an example for χ2

d=1. The
inverse of the cumulative distribution function is called the percentage point function,
PPF(1, 0.9) = 2.706.

where d is specified in the same way as above. From here we simply need to solve
for the threshold value as we did before but with a modified cumulative distribution
function. The exclusion limit is then the value of θs at the threshold value, with all
values of θs above excluded.
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Proof of Wilks’ Theorem

Here we simply sketch the proof of Wilks’ theorem and refer to Ref. [146] for
details.
1. First we imagine that we observed only the maximum likelihood estimators
θ̂j (x1, . . . , xN ), allowing us to replace the likelihood of the observed data with
a new pdf as so.

P
(
x1, . . . , xN |θ1, . . . , θn

)
−→ P

(
θ̂1, . . . , θ̂n|θ1, . . . , θn

)
. (3.19)

2. If we have enough data to constrain all the parameters sufficiently well, we
can assume that the pdf is normally distributed

P
(
θ̂1, . . . , θ̂n|θ1, . . . , θn

)
∝ e−

1
2

∑
ij

(θ̂i−θi)Σ−1
ij (θ̂j−θj) , (3.20)

3. We can now generically apply the rotation and rescaling,

zk =
n∑

j,i=1
RkjUjiθi , (3.21)

such that
P
(
ẑ1, . . . , ẑn|z1, . . . , zn

)
∝ e−

1
2

∑n

i=1
(ẑi−zi)2

, (3.22)

where Rkj is a rotation matrix and Uji is used to rescalea.
4. We now examine the new MLR with the new variables,

− 2 ln
maxz′

k+1,...,z
′
n
P
(
ẑ1, . . . , ẑn|z1, . . . , zk, z

′
k+1, . . . , z

′
n

)
maxz′1,...,z′n P

(
ẑ1, . . . , ẑn|z′1, . . . , z′n

) =
k∑
i=1

(ẑi − zi)2
,

(3.23)
which is a chi-squared distribution with k degrees of freedom.

aIt is not necessary to know the exact form of there matrices for the proof here, only that
they can be applied.

3.3.3 Small Sample Limit

Now let us discuss the most problematic scenario, when the number of background
and signal events is low. Here, Wilks theorem breaks down since there is not enough
data to constrain the parameters well. Instead one must resort to MC realisations of
the TS to map its distribution; an extremely computationally intensive task. To set
an exclusion limit the process is as follows:
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1. Generate a data set from the model, assuming the background only hypothesis.

2. Find the minimum value of the TS for the alternative hypothesis, as specified in
Eq. 3.17. Each realisation of the data will give you a different minimum value.

3. Repeat as many times as is necessary to accurately produce a cumulative dis-
tribution function for finding threshold values.

4. Follow steps one and two as above but instead using the real data. Use the
threshold values calculated in step three to calculate the exclusion limit on the
model parameter.

Due to the computational overhead of this procedure, only a small subset of physics
models get tested rigorously. Alleviating this computational burden is the topic of
Chapter 4.

3.3.4 Forecasting

Throughout this section we have imagined that data has been taken and we want
to assess how well the data constrains physical models. Another common task is to
instead examine the ability of future experimental setups to constrain the parameter
space of different models. The methods used here are extremely similar to those
mentioned above with some small differences. For example, when setting an upper
limit, instead of using the experimental data to calculate the limit (as described above)
one would simulate many data sets for the background only hypothesis calculating
upper limits for each and then report the median as the expected exclusion limit.
This exact procedure and how to perform these calculations more efficiently will be
discussed in Chapter 4.

In addition to calculating the expected sensitivity of an experiment to new physics,
one might want to quantify its ability to constrain parameters given a detection. There
are two commonly used approaches here, both involve using benchmark scenarios.
Imagine we have a physics model and assume it has the true parameter θts, this is
known as a benchmark point. Using the description of the signal with this parameter
we can perform the same exercise as above but instead simulate data for the signal
+ background hypothesis. Once we have the distribution of the TS we can construct
the expected two sided confidence interval.

If we instead want to calculate whether two different parameters, θts1 and θts2, will
be distinguishable, we must calculate two sided confidence intervals for θts1. We can
then see if θts2 is within the interval for θts1, a measurement of their distinguishability.
More concretely, one would construct the TS for a hypothesis test between θts1 vs θts22.

2Note that for almost all cases of interest this is a symmetric to the inverted hypothesis θts2 vs
θts1.
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Figure 3.5: Maximum gap method. This method was developed by Yellin [147] to
be able to set limits even when an unknown background source produces data points.
By finding the maximum gap, xi, and assuming all the data is from a DM signal, one
can exclude parameters that are too large to have produced a gap this large.

Again this is a computationally intensive task, even for small numbers of benchmark
scenarios. For instance, if one wants to compare n benchmark points, the number of
computations is n ×N where N is the number of data samples required to map the
TS accurately i.e. the MC. In Chapter 4 we develop an efficient method to perform
this procedure, reducing the required computations to just n and essentially allowing
for benchmark free forecasts.

3.4 Maximum Gap Method

The maximum gap method was developed by Yellin [147] as a way to place an ex-
clusion limit without knowing the background model. This has played a particularly
important role in DD DM experiments when some unknown background component
contributes to a data set and cannot be subtracted.

Imagine we have N observed events in a data set, with energies E = {E1, . . . , EN}.
We can treat all these as observed signal events and calculate which parameters would
have been too large to have produced this signal. Imagine that we have a model to de-
scribe the signal, such as the ‘spin-independent’ scattering recoil spectrum described
in § 2.4, dN/dE. Between the energy threshold and maximum energy, there exists
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N+1 of gaps where no events were detected. We now want to calculate the maximum
gap size, xmax, where the gap size is defined as,

xi =
∫ Ei+1

Ei

dE dN
dE . (3.24)

See Fig. 3.5 for a diagram of the constructed maximum gap. We can now compute
the probability that the maximum gap is smaller than the observed one as,

P
(
xmax < x |µ

)
=

m∑
k=0

(kx− µ)ke−kx
k!

(
1 + k

µ− kx

)
, (3.25)

where µ is the expectation value of the total number of events and m is the greatest
integer ≤ µ/x. For a proof of this formula see Ref. [147]. To find the exclusion
limit, we set Eq. 3.25 to the desired confidence level and solve for µ. This can then
be converted to the relevant model parameter such as the spin independent proton
scatting cross section σSI.

Note that this method is conservative by construction. By considering all the
events as signal, the coverage will not match the stated confidence and the limit will
be weaker as a result. Although this is the lesser of two evils when it comes to over
or under coverage, it can leave parameter space alive when in fact it has been ruled
out. Additional experiments may therefore be required to probe the extra parameter
space.

The maximum gap method also has a generalisation to the optimum interval
method where one considers gaps with one or more events. This is in contrast to the
maximum gap method where we only considered gaps with zero events. See Ref. [147]
for more information on the optimum interval method.

3.5 Connection to Bayesian Statistics

Finally, we make a connection to Bayesian methods. This is of particular interest for
discovery tests where the commonly used p-value criterion doesn’t necessarily give
the full picture. In the end, a physicist would like to know how likely a model is to be
true given the data set. A small p-value merely quantifies the probability of obtaining
a particular data set under the null hypothesis. Instead we can report the likelihood
of the null hypothesis to be true. For a one-bin Poisson process this is given by,

P
(
H0 |Nobs

)
=

P
(
Nobs |H0

)
P (H0)

P
(
Nobs |H0

)
P (H0) + P

(
Nobs |H1

)
P (H1)

, (3.26)
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where H0 represents the null hypothesis, H1 the alternative, and Nobs is the observed
number of events. From here we can calculate the minimum probability of the null
hypothesis over a wide class of priors P

(
H0 |Nobs

)
min which is a direct measure of

the probability of the null hypothesis. For a concrete example see Ref. [9].
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4
Fisher Forecasting Methods for

Astroparticle Physics

This chapter is based on work from Refs. [1, 6]

4.1 Introduction

Progress in astroparticle physics and dark matter (DM) searches is driven by the com-
parison of theoretical models with experimental data. During this process, estimating
the sensitivity of existing or future experiments for the detection of astrophysical or
new physics signals is a ubiquitous task, usually requiring the calculation of the ex-
pected exclusion and discovery limits. It is done both by phenomenologists who are
interested in observational prospects of their theoretical models, as well as experimen-
talists who are interested in optimizing experimental design. As such, efficient and
informative forecasting plays a central role in shaping the development of the field. It
is rather common in the (astro-)particle physics community that forecasting is done
in the framework of Frequentist statistics. Acceptance of the signal+background
hypothesis, H1, and rejection of the background-only hypothesis, H0, requires that
some test statistic (TS) exceeds a predefined threshold, which depends both on the
aspired significance level of the detection as well as the probability distribution func-
tion (PDF) of the TS under H0 [148, 143]. The Frequentist method (in contrast to
Bayesian techniques) has the advantage of known false positive rates for hypothesis
testing, and known coverage for upper limits. These features can be especially de-
sirable when prior knowledge about the (non-)realization of a theoretical models in
Nature is poor.

One of the most commonly used TSs (used for parameter regression, calculation
of confidence intervals, and the goodness-of-fit) is the chi-squared. Its application is
limited to binned data with errors that are approximately normal distributed, which
is often realized in the large-sample limit. Asymptotic formulae for its statistical prop-
erties are available [17]. In the small sample limit, and generally for more complicated
likelihood functions, the maximum likelihood ratio (MLR) [17] is a very common TS.
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4. Fisher Forecasting Methods for Astroparticle Physics

Again, in the large sample limit, asymptotic distributions are available [146, 149].
In the small-sample limit, however, its statistical properties have to be inferred from
Monte Carlo (MC) simulations.

When estimating experimental sensitivities, one general question that arises is
‘What is the maximum information that can be in principle extracted from a given
observation?’. Information gain here corresponds to the reduction of the uncertainty
associated to the model parameters of interest. The famous Cramér-Rao bound [e.g.
143] provides a general way to derive, for a given experimental setup, a lower bound
on the achievable variance of any unbiased model parameter estimator, which holds
for any statistical method employed to analyse the data. This bound corresponds
to an upper limit on the achievable information gain. The Cramér-Rao bound is
based on the Fisher information matrix, which quantifies how ‘sharply peaked’ the
likelihood function describing the observational data is around its maximum value.

Forecasting instrumental sensitivities with Fisher information is rather common,
e.g., in cosmology. It rests on the assumption that estimators which saturate the
Cramér-Rao bound are available, and that these estimators approximately follow a
multi-variate normal distribution. In the large-sample limit, this is indeed often (but
not always) the case. The important limitations of this approach were pointed out
many times [e.g., 150, 151], as well as proposals to extend the framework to account
for, e.g., non-Gaussian effects [152] (for a recent review see Ref. [153]).

The Fisher information matrix has an impressive range of attractive properties
that – if used wisely – can significantly ease the life of anybody interested in perform-
ing forecasting, from simple tasks to problems with many experiments, targets and a
high-dimensional parameter space. It can be quickly calculated, it is additive, allows
for efficient handling of nuisance parameters, and it is at the root of the powerful
concept of information geometry [e.g., 154] (and, as we will show in this work, infor-
mation flux). Fisher forecasting is largely unused in the astroparticle physics and DM
communities however there are some exceptions, e.g. [150, 155, 156, 157, 158, 154, 159].

In this paper, we present an overview of how Fisher information can be used in the
context of astroparticle physics and DM searches. Throughout this paper, we focus
our attention on Poisson likelihoods and additive component models, where the shape
(in for instance energy or positional space) of the model components are fixed and
the normalization coefficients are the only regression parameters. In addition, we will
study the impact of additional external constraints on the model parameters. Such
constraints can be used to account for various model or instrumental uncertainties.
Focusing on these scenarios allows for an in-depth discussion of the specific capabilities
and limitations of Fisher forecasting, while still covering many interesting use cases.

We introduce various (to the best of our knowledge) new prescriptions for the
efficient estimate of the expected exclusion and discovery limits that are valid in the
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small- and large-sample regimes based on the Fisher information matrix. We compare
the accuracy of these prescriptions with results from the MLR method, and for a few
simple cases with results from the full Neyman belt construction. We demonstrate how
to incorporate the effect of correlated background systematics. Lastly, we introduce
the new concept of Fisher information flux. It generalizes the commonly used signal-
to-noise ratio (SNR), while fully accounting for background and other uncertainties.
We illustrate the power of this new concept in a few simple examples.

Some of the techniques discussed in this paper are extensively used in other fields
of science. Part of the work is inspired by the discussion of information geometry in
Ref. [154], and by the notion of effective backgrounds in Refs. [160, 158]. We mention
explicitly when and why we deviate from notations introduced in these works if we
deem this to be necessary. Some of the methods discussed here have already been
applied by some of the present authors in Refs. [156, 157].

The paper is organized as follows: In § 4.2, we introduce and define the Fisher in-
formation matrix, additive component models, and equivalent signal and background
counts. In § 4.3, we present prescriptions to derive approximate expected exclusion
limits and discovery sensitivities from the Fisher information matrix, and study the
validity of the results with MC techniques. In § 4.4 we show in a few examples how
systematic background uncertainties can be incorporated in the sensitivity estimates.
In § 4.5 we introduce the notion of Fisher information flux, and various connected
concepts. In § 4.7 we finally conclude.

In Appendix 4.8.1 we discuss relevant properties of the Poisson likelihood function
and the associated Fisher information. In Appendix 4.8.2, we discuss conventional
methods for the calculation of the discovery reach and expected upper limits, that we
use for comparison with our techniques. Finally, in Appendix 4.8.3 we collect some
more technical derivations for results in the paper.

4.2 Fisher Information of the Poisson likelihood
function

4.2.1 The Fisher information matrix

For any sufficiently regular likelihood function L(D|θ), with n model parameters
θ ∈ Rn and data D, the Fisher information matrix is a n × n matrix that can be
defined as

Iij(θ) ≡
〈(

∂ lnL(D|θ)
∂θi

)(
∂ lnL(D|θ)

∂θj

)〉
D(θ)

= −
〈
∂2 lnL(D|θ)
∂θi∂θj

〉
D(θ)

, (4.1)
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where the average is taken over multiple realizations of a model with parameters θ.
The second equality holds given some weak regularity conditions [141]. The Fisher
information matrix quantifies the maximum precision at which the model parameters
can be inferred from the data.1 This follows from the Cramér-Rao bound (CRB) [161,
162], which states that for any set of unbiased estimators of the model parameters,
θ̂, the inverse of the Fisher information matrix provides a lower limit on its variance.
The CRB generalises to the multivariate case to give [148],

cov
[
θ̂i, θ̂j

]
≡ 〈(θ̂i − θi)(θ̂j − θj)〉D(θ) ≥ (I(θ̂)−1)ij . (4.2)

Estimators that saturate the bound exactly are called ‘minimum variance’. An es-
timator is called ‘asymptotically efficient’ when the bound is saturated in the large
sample limit. Note that this bound only holds for unbiased estimators, and becomes
stronger in the presence of a constant bias [148].

A widely used estimator is the maximum likelihood estimator (MLE). The MLE
is exact, meaning that although it is in general biased it becomes unbiased in the
large sample limit. Furthermore, the MLE is asymptotically efficient. Although the
Fisher information matrix as an estimate for the variance of MLEs becomes exact
only in the large-sample limit, we will see below that it remains a powerful tool in
the small-sample regime.

Searches for new physics in both astrophysics and DM detection experiments
are often, at their core, counting experiments. The number of events recorded in
a detector is described by the Poisson distribution. We assume here for simplicity
that events can be described by one variable, for example photon energy E (the
generalization to multiple variables is straightforward and will be used below). Then,
the Poisson log-likelihood can be written as (details can be found in Appendix 4.8.1)

lnLpois(D|θ) =
∫
dE

[
C(E) ln Φ(E|θ)− Φ(E|θ)

]
, (4.3)

where the integration is done over the energy range of interest, and we dropped terms
that do not depend on θ since they do not affect the rest of the discussion. Here,
Φ(E|θ) is the model counts spectrum (with units 1/E). Furthermore, we defined the
‘unbinned’ count spectrum

C(E) =
∑
k

δD(E − Ek) , (4.4)

where Ek is the energy of event k, and δD(E) is the Dirac delta function. C(E)

1Here, we refer to the maximum precision in terms of a Frequentist approach. In the Bayesian
case it is possible to gain further insight with the addition of informative priors and/or a hierarchical
model structure.
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can be interpreted as a counts histogram with zero bin size. It represents a specific
realization of a Poisson process with mean Φ(E|θ), and has the useful property that
〈C(E)〉D(θ) = Φ(E|θ).

We note that the above definition resembles a Poisson point process, defined here
on an interval on the real line that is given by the energy range of interest [163, 164]. In
this context, Φ(E|θ) would be referred to as ‘intensity measure’, but we will continue
to use here the expressions ‘model counts spectrum’ or, in some 2-dim examples below,
‘model counts map’.

It is straightforward to show that the Fisher information matrix of the above
Poisson likelihood is given by

Ipois
ij (θ) =

∫
dE

∂Φ(E|θ)
∂θi

1
Φ(E|θ)

∂Φ(E|θ)
∂θj

. (4.5)

This form is fully general and holds for any parametric dependence of Φ(E|θ). The
inverse of the Fisher information matrix (irrespective of whether it is derived from
Poisson or other likelihood functions) approximates the expected covariance matrix as
shown in Eq. 4.2. As mentioned above, this relation holds exactly in the large-sample
limit only.

For the diagonal elements of the inverse of the Fisher matrix, we will sometimes
use of the notation

σ2
i (θ) ≡ (I(θ)−1)ii . (4.6)

Furthermore, we note that in general the full Fisher matrix can have, beside the
Poisson part that we discussed above, parts that introduce additional constraints on
the model parameters (see § 4.4 below). In that case, we can write

Iij(θ) = Ipois
ij (θ) + Isyst

ij , (4.7)

where we assumed that the systematics term is (approximately) independent of the
model parameters.

4.2.2 The profiled Fisher information matrix

Typically, one is only interested in a few ‘parameters of interest’ (PoI), say θ1, . . . , θk,
while the remaining n−k model parameters are nuisance parameters that parametrize
background, instrumental or signal uncertainties. The canonical method to deal with
MLEs of nuisance parameters in a Frequentist approach is to maximise the likelihood
function L(D|θ) with respect to the parameters θk+1, . . . , θn, which gives rise to a
‘profile likelihood’ function that only depends on the k PoI. This method leaves one
with a description of the remaining parameter space whilst accounting for the effects
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of the n− k nuisance parameters.
To perform the analogous procedure for the Fisher information matrix, we write

Iij(θ) in block form,

I =
(
IA ITC
IC IB

)
, (4.8)

where IA is a k×k matrix that corresponds to the PoI, IB is a (n−k)×(n−k) matrix
that corresponds to the nuisance parameters, and IC is the mixing between both. We
then define the profiled Fisher information matrix, where the nuisance parameters are
removed in such a way that the (co-)variance of the PoIs remains unchanged. It is
given by2

ĨA = IA − ITC I−1
B IC . (4.9)

This expression is general and does not depend on the details of the problem.

4.2.3 Additive component models

To simplify the discussion we will, as mentioned above, assume that the model counts
spectrum Φ(E|θ) consists of a number of additive components with free normalization
θi but fixed shape Ψi(E),

Φ(E|θ) =
n∑
i=1

θiΨi(E) , (4.10)

where the sum is taken over the n model components. The model counts spectra can
be in many cases calculated as

Ψi(E) = E(E) Ii(E) , (4.11)

where E(E) denotes the exposure (usually effective area or volume times effective
observation time) as function of energy, and Ii(E) the differential flux of component
i. We furthermore will occasionally use the total flux I(θ|Ω) ≡

∑
i θiIi(Ω). The

number of expected counts per component is given by

λi(θi) ≡ θi
∫
dEΨi(E) . (4.12)

For the additive component model, the Fisher information matrix acquires the
simple form

Ipois
ij (θ) =

∫
dE

Ψi(E)Ψj(E)
Φ(E|θ) . (4.13)

2This result can be readily understood by acknowledging that the upper left k × k part of the
inverse of Eq. 4.8 is given by (IA − ITCI

−1
B IC)−1.

54



4.2. Fisher Information of the Poisson likelihood function

Note that the model parameters enter here only through the model predictions in the
denominator.

4.2.4 Equivalent number of signal and background events

In § 4.3 we will present methods for calculating approximate upper limits and dis-
covery reaches which rely on the definitions of the number of signal and background
counts. We refer to the method as the Equivalent Counts Method (ECM) since it is a
generalisation of the single binned case where it is clear that the number of signal and
background events provides information about (a) the expected significance of the
signal, (b) the signal-to-background ratio (SBR) and (c) the sample size and hence
the relevance of the discreteness or skewness of the Poisson distribution. The ECM
definitions capture the same information but for more general cases i.e. situations
with large numbers of bins or even the unbinned case as is presented here. In general,
not all signal events λi(θi) are statistically relevant, since some might overlap with
regions containing strong backgrounds, whilst other signal events might reside in re-
gions that are almost background free. A reasonable definition of equivalent signal
and background events should account for this effect.

We propose definitions here for the number of equivalent signal and background
counts that are defined solely in terms of the Fisher information matrix. They provide
information about the expected signal significance, the SBR and the effective sample
size in rather general situations. These definitions are used below for the calculation
of expected exclusion and discovery limits.

We define the equivalent signal, si(θ), and background, bi(θ), events for any
component i implicitly in terms of the SNR,

SNRi(θ) = s2
i (θ)

si(θ) + bi(θ) , (4.14)

and in terms of the SBR,
SBRi(θ) = si(θ)

bi(θ) . (4.15)

The SNR for model component i is given by the corresponding diagonal term of
the inverse of the Fisher information matrix, times the factor θ2

i , which we can write
as

SNRi(θ) ≡ θ2
i

σ2
i (θ) . (4.16)

If systematic (non-Poisson) contributions to the Iii(θ) as well as mixing with other
components are negligible, SNRi(θ) is essentially given by the corresponding diagonal
component of Eq. 4.13. As expected, this is simply the standard SNR of θiΨi(E)
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over a fixed background Φ(E|θ). The definition of the SBR in terms of the Fisher
information matrix is less obvious. We find that the following expression serves the
purpose,

SBRi(θ) ≡ σ2
i (θ)

σ2
i (θ0) − 1 . (4.17)

Here, we used the definition θ0 ≡ (θ1, . . . , θi−1, 0, θi+1, . . . , θn)T , i.e. it is θ with the
normalization of the signal component set to zero. This choice will be further justified
below.

From the definitions in Eqs. 4.16 and 4.17, the equivalent number of signal and
background events can be directly obtained using Eqs. 4.14 and 4.15. They are given
by

si(θ) = θ2
i

σ2
i (θ)− σ2

i (θ0) , (4.18)

and
bi(θ) = θ2

i σ
2
i (θ0)

(σ2
i (θ)− σ2

i (θ0))2 . (4.19)

Discussion. Although these definitions are relatively abstract, they have a number
of useful properties. These become particularly clear when mixing between the com-
ponents is negligible, i.e. σ2

i (θ) ' 1/Ipois
ii (θ). If component shapes are very similar,

such a situation can be enforced by introducing constraint terms for all non-signal
components, in the way that we will discuss below in § 4.4.1. If component mixing is
negligible, we find:

(i) If all Ψi(E) are constant, which corresponds to a single-bin scenario, the
number of equivalent signal events just equals the total number of signal events,
si(θ) = λi(θ), and the equivalent background events equals the sum of the events
from all other components, bi(θ) =

∑
j 6=i λj(θ).

(ii) In the large-signal limit, here defined as θiΨi(E)�
∑
j 6=i θjΨj(E), the num-

ber of equivalent signal events of component i equals the total number of events in
the signal component, si(θ) ' λi(θi). In other cases, the equivalent number of signal
events is in general smaller, si(θ) ≤ λi(θi).

(iii) The definition of the SBR for model component i in Eq. 4.17 becomes clearer
when writing it in terms of the additive components functions Ψi(E) and their sum
Φ(E). In the small-signal regime, θiΨi(E)�

∑
j 6=i θjΨj(E), this yields

SBRi(θ) '
(∫

dE
Ψi(E)2

Φ(E|θ0)

)−1 ∫
dE

Ψi(E)2

Φ(E|θ0)
θiΨi(E)
Φ(E|θ0) . (4.20)

Here, the ratio θiΨi(E)/Φ(E) can be interpreted as the SBR of component i as
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function of E, and Ψ2
i (E)/Φ(E) is proportional to the SNR as function of E. Thus,

Eq. 4.20 effectively averages the SBR over regions of E where the signal component
Ψi(E) is most significant w.r.t. the background Φ(E). In other words, regions in E

where the background Φ(E) is intense enough that the signal Ψi(E) is swamped do
not contribute to Eq. 4.20, even if the number of signal photons in that region is high.

(iv) On the other hand, in the large-signal limit (as defined above), the SBR of
component i becomes

SBRi(θ) '
(∫

dEΨi(E)
)−1 ∫

dEΨi(E) θiΨi(E)
Φ(E|θ0) . (4.21)

The weighting by the significance of the signal is now replaced by a weighting over
the signal strength.3

In the general case with mixing between the components, the above simple analytic
expressions do not hold anymore. If we concentrate on Fisher information matrices of
the from Eq. 4.7, where the non-Poisson part is independent of the model parameters,
one can however still show that SBRi(θ) ≥ 0, which implies the important property
that bi(θ) ≥ 0 and si(θ) ≥ 0 in all cases. We confirmed this numerically by calculating
SBRi for a large number of randomly generated models.

Illustration. Finally, we illustrate the definitions introduced in this subsection with
a simple example. Consider the following model

Φ(E) = θ1

(
α

1 + α
N1(E) + 1

1 + α
N3(E)

)
+ θ2e

−E , (4.22)

where α is a shape parameter of the signal component, N1(E) and N3(E) are normal
distributions with variance 0.5 that are centered on the indexed values, and we set
the signal normalization to θ1 = 1 and the background normalization to θ2 = 8.
Example spectra are shown in the upper panel of Fig. 4.1, for various values of α. We
neglect mixing between the components by assuming that the background is fixed via
external constraints.

In the lower panel of Fig. 4.1 we show the corresponding equivalent signal and
background counts of component i = 1, as well as the corresponding SBR s1/b1. For
α � 1, the signal is dominated by the high energy peak, which is in a region of low
background. Indeed, we find approximately b1 ' 0.33 and s1 ' 0.89. On the other

3Eq. 4.21 is underlying the definition of the ‘effective background’, beff = n2
s/TS, used in

Refs. [160, 158], if we identify ns = λi and TS = SNRi (see Eq. 4.16). We find that this defi-
nition can significantly underestimate the SBR in cases where most of the signal events are located
in regions where they are statistically not significant. This can happen for instance in low-energy
tails of a steeply falling astrophysical spectra. Our definitions based on Eq. 4.17 do not exhibit this
problem.
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Figure 4.1: Example signal and background (upper) and corresponding
equivalent signal and background (lower). Upper panel: Example spectra of
Eq. 4.22 for various values of α. Lower panel: Illustration of equivalent signal counts
s1, background counts b1, and SBR s1/b1 as function of the signal shape parameter
α.

hand, for α � 1, the signal is present at lower energies, where the background is
larger. Indeed, we find here b1 ' 2.2.

In the transition region, the equivalent number of signal events s1, which otherwise
remains close to one, drops somewhat. This is expected, since at α ∼ 1 half of the
signal is in a region of large backgrounds, whereas the other half is in a region with
low backgrounds. Since the low-background component dominates the signal-to-noise
ratio in that case, it is also mostly this component that contributes to the equivalent
signal number counts. The effect becomes more pronounced if the background below
E < 2 is further increased, or above E > 2 further reduced.
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4.3 Expected exclusion limits and discovery reach

In this section, we introduce prescriptions for deriving expected exclusion and dis-
covery limits from the Fisher information matrix. These prescriptions build on the
equivalent signal and background counts that we defined above. We refer to the cor-
responding prescriptions as the Equivalent Counts Method (ECM). For simplicity, we
take the model component of interest to be i = 1. We put particular emphasis on
the case of very small or a vanishing number of background events, and validate the
approach for a few examples using MC simulations. Caveats are discussed in the last
subsection.

4.3.1 Expected exclusion limits

Equivalent counts method. Projected approximate upper limits on the param-
eter θ1, assuming that the true value is θ1 = 0, can be derived from the Fisher
information matrix by solving the equation

s1(θU ) = Z(α) ·
√
s1(θU ) + b1(θU ) , (4.23)

for θU1 , while keeping the remaining n− 1 parameters fixed to their respective values.
Here, we defined θU = (θU1 , θ2, . . . , θn)T . Furthermore, si and bi refer to the equivalent
signal and background counts that we introduced above in § 4.2.4. Finally, Z(α) is
connected to the desired confidence level of the limit, 100(1− α)% CL, and α is the
significance level. It is derived from the inverse of the standard normal cumulative
distribution function, denoted FN , as

Z(α) = F−1
N (1− α) . (4.24)

In the case of, say, a 95% CL upper limits, we have α = 0.05 and hence Z = 1.64 [17].
It is convenient to rewrite Eq. 4.23 as

θU1 = Z(α) · σ1

(
θU
)
, (4.25)

which is in practice much easier to evaluate than Eq. 4.23.
In the background-limited regime, θU1 Ψ1(E) � Φ(E|θ), Eq. 4.25 implies that the

exclusion limit satisfies
θU1 ' Z(α) · σ1(θ) , (4.26)

where θ0 = (0, θ2, . . . , θn)T . This is exactly what is expected if Gaussian back-
ground noise with variance σ2

1 dominates. In the signal-limited regime, here defined
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Figure 4.2: Ratio between expected exclusion limits from the ECM and
the exact Neyman belt construction. We assume a single bin with vanishing
expected background, as function of the significance level of the limit α. See Eq. 4.27
and text for details.

as θU1 Ψ1(E)�
∑
i≥2 θiΨi(E), Eq. 4.25 implies on the other hand

λ1(θU1 ) ' Z(α)2 . (4.27)

The upper limit is here independent of the signal model spectrum, Ψ1(E). Eq. 4.27
should be compared with λ1 = ln 1/α, which is the proper upper limit on the mean
of a Poisson process when zero events are observed and the expected background is
negligibly small. We show in Fig. 4.2 that the fractional difference between Z2(α) and
ln(1/α) is indeed small for typical significance level values used to set upper limits in
the literature. Namely, for α = 10−3–10−1 the deviation is smaller than 38%.

We note that the general method to estimate expected upper limits in Eq. 4.23
works very well even in the presence of parameter mixing and background system-
atics as discussed in § 4.4, as long as the associated changes of the background flux
remain ‘sufficiently small’ (say, below a few tens of percent) in the signal region. A
quantitative discussion can be found in subsection 4.3.3 below.

Comparison with exact methods. The most general exact method for deriving
upper limits with the correct coverage, and actually any sort of confidence intervals,
is based on the Neyman Belt construction [165] (an instructive overview can be found
in Ref. [144]). In practice, often the more specific MLR method is used to construct
confidence intervals of any sort. In the small-sample limit, MC simulations are re-
quired to establish the statistics of the MLR and construct intervals with the desired
coverage (this is what we do here in all cases). Details about the construction of
confidence intervals using both methods can be found in Appendix 4.8.2.
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Figure 4.3: Five example models that we use to test the EC method against
the full MLR method. The signal component refers to Ψ1(E), the background
component to Ψ2(E). We also indicate whether background components are treated
as fixed or free in the analysis. Model 5 has six background components, Ψ2−7(E),
instead of one.
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As specific examples, we consider the signal and background functions shown in
Fig. 4.3. Model 1 is a simple single-bin example, whereas model 2 is a basic two-bin
example with a strong difference in the expected background counts in both bins. In
both cases, we assume that the background normalization is known and fixed. Model
3 provides an example in the small-sample regime, and model 4 in the large-sample
regime. The background normalization is here assumed to be determined by a fit to
the data and hence free. Model 5 is a scenario with multiple background components
that are to some degree (but not completely) degenerate with the signal.
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Figure 4.4: Expected exclusion limits for the five models in Fig. 4.3, de-
rived using the ECM, Eq. 4.25, compared to the median limit from the
full coverage-corrected MLR method. For comparison, we also show the 68%
containment regions of the MLR limits. These regions contain, for multiple realiza-
tions of background-only data, 68% of the corresponding upper limits.

In Fig. 4.4, we show the expected 95% CL exclusion limits that we obtain from
our EC method, Eq. 4.25, for the five example models. We compare these limits with
the median limits obtained from the MLR method. In three of the five cases (model
1, 4 & 5) the agreement is remarkably good. To emphasize this, we also indicate
the extent of the 68% containment band of the MLR limits, which contains 68% of
the upper limits when multiple realizations of the data are considered. They are
significantly wider than the difference between the limits from the EC and the MLR
methods.

It is instructive to discuss the single-bin model 1 in more detail. In Fig. 4.5, we
show the projected 95% CL upper limits as derived from (1) the EC method, (2)
the MLR method and (3) the full Neyman belt construction. The upper limits are
shown as a function of the number of equivalent background counts. In the large-
sample limit, all methods give consistent results. In the limit of vanishing background
counts, the EC method yields slightly stronger projected limits than the Neyman belt
construction (consistent with Fig. 4.2 and the above discussion). In the intermediate
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Figure 4.5: Various projected upper limits for model 1 from Fig. 4.3, as a
function of the total equivalent background counts b1. Limits from the EC
method (red solid line). The median limit based on a full coverage-corrected MLR
method (green dots). The median limit from the Neyman Belt construction (blue
dotted line).

regime, the Neyman belt construction shows a step-like structure, which is related to
the discreteness of the Poisson likelihood. This is not visible in the EC results, but
is a small effect almost everywhere. The MLR method yields results consistent with
the Neyman belt construction. Deviations are due to MC noise.

Finally, for models 2 and 3, we observe relevant differences between the methods.
The EC limits are here weaker (‘more conservative’) than the limits from the MLR
method by up to ∼ 40%. We found that this is a rather general behaviour in the
Poisson regime, which we observed for a large range of non-trivial scenarios. However,
as discussed above, these large deviations are not observed in the single-bin case model
1.

To shed further light on the difference between the single-bin and multi-bin sce-
narios in the Poisson regime, we show in Fig. 4.6 for model 2 the expected exclusion
limits derived from the EC and the MLR methods, as function of the normalization
of the background component, θ2. Three regimes can be clearly discriminated. For
θ2 � 10−5, the number of expected background counts over the entire range of x is
negligible. This case is equivalent to a simple single-bin scenario, where the EC and
MLR methods agree well (see also Fig. 4.5 for model 1). On the other hand, for values
of θ2 � 102, we enter the Gaussian regime where the number of background counts
is large over the entire range of x. Again, EC and MLR results agree well.

However, in the intermediate range, θ2 ∼ 10−3–10−1, we find a plateau where
the MLR and EC methods yield different results. In the plateau region, the number
of background events is large at 2 < x < 10, but negligible at 0 < x < 2. This
effectively reduces the number of statistically relevant signal events by a factor of
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Figure 4.6: Projected upper limits for model 2 from Fig. 4.3, using the EC
method and the coverage-corrected MLR method. See text for a detailed
discussion.

five, and should consequently weaken the expected exclusion limits by the same factor
w.r.t. the θ2 � 10−5 case. This happens indeed for the limits derived using the EC
method, but not for the limits from the MLR method. We trace this behaviour back
to the fact that in the plateau region, the events from 2 < x < 10 introduce a noise
in the otherwise Poissonian likelihood from 0 < x < 2. This effectively removes the
discreetness of the Poisson distribution. As a consequence, the MLR limits in the
plateau region can cover exactly, while the MLR limits in the θ2 � 10−5 actually
over-cover.

Scenarios like model 3 have a low- and a high-background regime, and hence
behave similar to model 2 in the plateau region, leading to discrepancies between the
MLR and the EC results (see Fig. 4.4). We never found the effect to exceed 40%.

4.3.2 Expected discovery reach

Equivalent counts method. The discovery limit for θ1, i.e. the value of θ1 that
leads in 50% of the cases to a rejection of the θ1 = 0 hypothesis with a significance
level α, can be approximately obtained by numerically solving the following equation
for θD1 :

(
s1(θD) + b1(θD)

)
ln
(
s1(θD) + b1(θD)

b1(θD)

)
− s1(θD) = Z(α)2

2 . (4.28)

Here, we use the notation θD = (θD1 , θ2, . . . , θn)T , and s1 and b1 refer to the equivalent
signal and background counts discussed at the end of § 4.2.4. Heuristically, Eq. 4.28
is motivated by the analytic structure of profile likelihood ratios, see for instance
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4.3. Expected exclusion limits and discovery reach

discussion in Ref. [17]. However, its main motivation comes from the fact that it
leads to approximately correct results both in the signal- and background- limited
regimes.

It is useful to consider limiting cases. In the background-limited case, b1(θD) �
s1(θD), Eq. 4.28 implies that

θD1 ' Z(α) · σ1(θ) , (4.29)

with θ0 = (0, θ2, . . . , θn)T . This is exactly what we expect for Gaussian background
noise with variance σ2

1 . On the other hand, in the signal-limited case, b1(θD) �
s1(θD), one can show that the solution to Eq. 4.28 satisfies the following equation
(details can be found in Appendix 4.8.3):

b1(θD)s1(θD)

Γ
(
s1(θD) + 1

) = α ·

√
Z2(α)
s1(θD)

. (4.30)

Here, Γ(·) is the gamma function. This equation is very similar to the exact expression
derived from the Poisson distribution using Asimov data [17] in the low-background
limit. To see this, note that, given some background b1 � 1 and zero signal, the
probability to detect λ or more photons is approximately (b1)λ/Γ(λ + 1). If λ were
the discovery reach corresponding to significance level α, this expression should equal
α. The difference between this exact and the above approximate expressions is hence
the square-root on the right-hand side of Eq. 4.30. In practice, this turns out to be a
small effect, as we will see below.

Comparison with exact methods. In Fig. 4.7 we compare the expected dis-
covery limits derived using the EC method, Eq. 4.28, with the ones from the full
MLR method, for the five example models in Fig. 4.3 (details can be found in Ap-
pendix 4.8.2). We find that for all cases the EC results remain very close to the MLR
results. Deviations are usually much less than 1σ, and largest for model 3 where the
equivalent background is lowest. This good agreement is quite remarkable, given that
some of the models are deeply in the Poisson regime.

To further investigate the limitations of our EC method in the low-background
regime, we compare in Fig. 4.8 for model 1 the 3σ and 5σ expected discovery lim-
its derived from the EC and the MLR methods. The approximate discovery limits
closely resemble the exact results down to equivalent backgrounds of one. For smaller
equivalent backgrounds, the discreteness of the Poisson distribution starts to dom-
inate the MLR method, which is not seen in the EC results. However, depending
on the significance level, the agreement remains reasonably good even down to and
below b1 ∼ 10−3. We note that, in very extreme cases, the EC method could lead to
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Figure 4.7: Expected discovery limits derived from the EC method, Eq. 4.28,
compared wit full MLR results, for the five models in Fig. 4.3. Groups of
three symbols show from bottom to top 2σ, 3σ and 4σ discovery limits (meaning
that 50% of the measurements would lead to a detection with at least the indicated
significance). Both methods yield consistent results, see detailed discussion in the
text.
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Figure 4.8: Comparison of 3σ (bottom) and 5σ (top) expected discovery
limits based on the EC method, Eq. 4.28, and on the MLR method. The
discreteness of the Poisson distribution becomes apparent for b1 . 1, where the pure
EC methods over-predicts the sensitivity by the indicated amount. See text for a
detailed discussion.

expected discovery limits that are much smaller than one. This can be prevented by
the additional ad hoc requirement that the equivalent number of signal counts, s1(θ),
should be at least one.
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4.3.3 Limitations of the Fisher approach

There are two important situations where the prescriptions for deriving expected
exclusion limits, Eq. 4.25, and expected discovery limits, Eq. 4.28, will break down
and give potentially wrong results.4 Here we address both in detail.

Skewness of Poisson likelihood. The Fisher information matrix as defined in
Eq. 4.1 encodes complete knowledge about the likelihood function, provided that the
likelihood behaves like a multivariate normal distribution. This is equivalent to requir-
ing that higher order derivatives in the expansion of the log-likelihood are negligible.
Often, higher derivative terms will only cause deformations to Gaussian contours, but
in the extreme case in which parameters are infinitely degenerate, the Fisher formal-
ism will provide not only quantitatively but also qualitatively wrong results [150].
Non-Gaussianity is a common challenge in cosmology [166], but also relevant for the
simple additive component model with the Poisson likelihood considered here.

As we saw above, using our EC method, one can obtain reasonable expected
exclusion and discovery limits even in the deep Poisson regime, despite the fact that
the likelihood functions are clearly non-Gaussian in that case. This is partially due
to some lucky numerical coincides that happen to make our proposed prescriptions
reasonably accurate. However, these mechanisms only apply to the signal-component
of interest. The likelihood functions corresponding to the background (any non-
signal) components should obey the usual Gaussianity constraints to ensure that the
EC method can be applied.

In Appendix 4.8.1, we study the behaviour of the Poisson likelihood function up
to third order in the model parameters. Assuming that no strong degeneracies exist
between parameters, one can derive a simple condition on the equivalent number of
background events that should hold for all background components. It reads

bi &
4t

9f2 , (4.31)

where bi is the number of equivalent background counts of component i, t the value
of ∆(2 lnL) at the boundary of the confidence region of interest, and f the tolerable
fractional uncertainty of t at that boundary. If, for instance, we want to have 2σ
intervals (for one dimension this corresponds to t = 4) with a fractional significance
error of less than 20% (this corresponds to f ' 40%, since t depends quadratically on
the significance in standard deviations), this implies that the equivalent background
for the components i should exceed bi & 11. In cases where parameter degeneracies
might play a role, we recommend to use the full expressions provided in Appendix 4.8.1

4This is the case for the additive component models considered in the present work. For more
general Poisson problems, e.g. with shape uncertainties, the number of potential problems is larger.
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instead.

Parameter degeneracies. Using the Fisher formalism implicitly assumes that
model parameters are unbound and only constrained by the likelihood function. This
means that there is nothing that prevents some of the parameters θi to become nega-
tive. Consider, as a simple example, a signal, Ψi(E), that is exactly degenerate with
a background component k 6= i, Ψk(E) ∝ Ψi(E). In that case, the Poisson part of the
Fisher information matrix becomes singular, and the error of the signal component,
σi, diverges. An arbitrarily large signal i can be compensated by an equally large
negative background component k. Since this behaviour is usually unphysical (unless
for instance absorption effects are part of the model), it must be prevented when
performing Fisher forecasting.

A sufficient condition to exclude the problems with negative components reads

s · σk(θ) < θk for all k 6= i , (4.32)

where s is the significance of interest in standard deviations. If errors are sufficiently
small, the parameter θk will not cross zero. As will be discussed below in section 4.4,
if the projected data alone is not sufficient to break the degeneracy between different
background components or the background and the signal, it is possible (and neces-
sary) to include additional constraints on parameters such that Eq. 4.32 is fulfilled.
If this is not possible, the EC method cannot be directly applied.

4.4 Modeling of instrumental and background sys-
tematics

We give here a few instructive examples of how to model background uncertainties
within the Fisher information framework.

4.4.1 Basic parameter systematics

In many cases of practical importance, additional information about nuisance pa-
rameters is available, which must be included in the sensitivity projections to obtain
realistic results. Within a Bayesian approach, these additional constraints would be
included as priors on the nuisance parameters. Within the Frequentist treatment,
which we focus on here, a common approach is to include additional parameter con-
straints as effective likelihoods, as described in the following. These additional con-
straints can, for instance, come from ‘sideband measurements’ in signal-free regions
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of the data space.
If we assume that the constraints on parameter θi are Gaussian, with standard

deviation ξi, the associated combined likelihood function can be written as

L(D|θ) = L(D|θ)pois ×
∏
i

N (θAi |µ = θi, σ
2 = ξ2

i ) . (4.33)

Here, N refers to the PDF of a normal distribution with variance ξ2
i and Asimov value

θAi . It accounts for potential sideband measurements and similar external constraints.
In this spirit, θAi is taken to equal the mean value, θAi = θi, when the average 〈·〉D(θ)
is applied in Eq. 4.1.

The resulting total Fisher information matrix can be split in a Poisson and a
systematics part, Iij = Ipois

ij + Isyst
ij , where the latter is here diagonal and given by

Isyst
ij = δij

1
ξ2
i

. (4.34)

The generalization to correlated systematic errors reads Isyst
ij = (Σ−1

syst)ij . We will
show in a few examples how this is used in practice.

4.4.2 Example 1: Background systematics degenerate with
the signal

We start with a simple example where we assume that some component of the back-
ground systematic is perfectly degenerate with the signal. More specifically, we
consider a three-component model, where Ψ1(E) is the signal, Ψ2(E) the nominal
background, and the component Ψ3(E) = Ψ1(E) accounts for small positive or neg-
ative perturbations of this background. Note that this implies that Ipois

1i = Ipois
3i for

i = 1, 2, 3, which means that the Poisson part of the Fisher matrix is singular. We set
the background normalization to θ2 = 1, and the mean background perturbation to
zero, θ3 = 0. For the systematics part of the Fisher matrix, Eq. 4.34, we assume that
the background perturbation θ3 is externally constrained with a variance of ξ2

3 > 0,
and the background normalization θ2 and the signal normalization are unconstrained,
ξ2
1 , ξ

2
2 →∞.
In that case, one can show, by calculating the profiled Fisher information for

component i = 1, that the variance of the signal component is given by (details can
be found in Appendix 4.8.4)

σ2
1(θ) = (σpois

1 )2(θ) + ξ2
3 . (4.35)

This means that, as one might have expected, statistical and systematic errors are
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Figure 4.9: Effect of background systematics on upper limits. Upper panel:
Example of a fixed power law background with one instrumental lines at E = 10.
We show an example of a signal line with identical width to the instrumental lines
(here at E = 15). Lower panel: We calculate expected exclusion limit using the EC
method, as a function of the signal position. The limits becomes more constraining
at higher energies, due to the increased SBR. However, there is loss of constraining
power when the signal is degenerate with the instrumental line, depending on the
uncertainty of the instrumental line, ξ3.

added in quadrature. We remark that constraints on the signal parameter have the
opposite effect, σ−2

1 (θ) = (σpois
1 )−2(θ) + ξ−2

1 , and decrease the overall variance.
To illustrate Eq. 4.35, we consider expected exclusion limits on line-like signals

on top of a power-law background plus an ‘instrumental line’. We treat the power-law
background as fixed, and assume that the instrumental line has identical width to
the signal line. However, the normalization of the instrumental line is constrained
by ξ3 = 1.0 . The fluxes of the background and signal components are illustrated in
the upper panel of Fig. 4.9. Specifically we consider a Gaussian located at E = 10,
with width σ2

E = 0.2. The power law has a slope of 1.4 and normalisation of three,
θ2 = 3.0. The normalisation of the instrumental line is kept fixed with θ3 = 1.0.
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The projected limits are shown in the lower panel of Fig. 4.9. When the signal
becomes degenerate the with instrumental lines, the projected limits weaken, accord-
ing to Eq. 4.35. We also recover the expected behaviour that when the normalization
of the instrumental line is unconstrained (see § 4.3.3) , the projected limit calculated
by the Fisher information at the position of the instrumental line diverges.

4.4.3 Example 2: Background systematics described by cor-
relation function

A more general approach towards the modeling of background systematics is to write
the total flux as

Φ(E) = θ1Ψ1(E) + (1 + δ(E))Ψ2(E) , (4.36)

where again Ψ1 denotes the signal, Ψ2 the nominal background (we fix θ2 = 1 through-
out), and δ(E) parameterizes small deviations from the background model. In general,
systematic uncertainties in the background will be correlated as a function of energy,
and one can define the covariance function

〈δ(E)δ(E′)〉 = Σδ(E,E′) , (4.37)

and we assume 〈δ(E)〉 = 0. More specifically, δ(E) can be thought of as Gaussian
random field with mean zero, whose behaviour is completely determined by the covari-
ance function. It incorporates information both about the variance and correlation of
the systematic.

For any practical calculations, one needs to discretize the field δ(E). One simple
way of doing that is to write δ(E) as a step function,

δ(E) =
N∑
i=1

ξiχ∆Ei(E) , (4.38)

with the selector function

χ∆Ei =
{

1 if E ∈ ∆Ei
0 if E /∈ ∆Ei

, (4.39)

where the (very small) energy bins ∆Ei cover the entire energy range of interest,
and Ei will denote the corresponding mean of each energy bin. Furthermore, ξi are
constrained by a multivariate normal distribution, with a covariance matrix defined by
Σδ(Ei, Ej). The free parameters in the present example are then θ = (θ1, ξ1, . . . , ξN ).

One can now show that the resulting profiled Fisher information for the signal
(assuming a sufficiently fine binning which captures all relevant structure of Ψ1(E)),
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is given by (details can be found in Appendix 4.8.4)

Ĩ11 =
∑
ij

Ψ1

Ψ2
(Ei)D−1

ij

Ψ1

Ψ2
(Ej) , (4.40)

where we defined the combined covariance matrix

Dij ≡
δijΦ(Ei)

∆Ei[Ψ2(Ei)]2
+ Σδ(Ei, Ej) , (4.41)

which includes both the effects of Poisson noise and background systematics. This
expression becomes more simple in the regime where Ψ1 � Ψ2 since then Φ(E) =
Ψ2(E). In the limit of no systematics, Σδ → 0, we recover the standard expression
for the Fisher information of the signal component, Eq. 4.13. On the other hand, in
the large sample limit, where Ψ2 becomes large and hence the first term in Eq. 4.41
small, only the covariance matrix Σδ matters and determines the limiting accuracy at
which Ψ1 can be measured. Note that results are independent of the bin size as long
as it is sufficiently small to fully resolve the discriminating aspects of the different
model components.

This approach of estimating the effect of background uncertainties on expected
experimental sensitivities has been already used by some of the present authors in
Ref. [157]. We will provide another example below in § 4.5, in context of the Fisher
information flux.

4.5 Strategy optimization

Experimental design, or the planning of astronomical observational campaigns, often
make use of the SNR of some signals of interest (for the simple additive component
models, Eq. 4.10 that we discussed above, this corresponds to ∝ Ψi(E)/

√
Φ(E)). One

of the goals is to maximize the exposure of energy and/or spatial regions that provide
the largest SNR for some component i, which then leads to the tightest constraints
on the model parameter θi.

We will show here that the above SNR is the simplest realization of the Fisher
information flux, which we newly introduce here. However, the latter is much more
general and can also naturally account for the non-local and saturation effects of
background and instrumental systematics. We will illustrate this in an example that
makes use of the treatment of correlated background systematics that we discussed
in the previous section.
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4.5.1 Fisher information flux

In this subsection we will look at the model spectrum Φ as function of the sky coordi-
nate, Φ(Ω|θ), such that Ii(Ω) is the intensity of the signal or background component,5
and E(Ω) is the exposure of the instrument towards Ω, see Eq. 4.11.

With this, we can define the differential Fisher information flux that corresponds
to parameter pair (i, j) as functional derivative w.r.t. the exposure at position Ω. It
is given by

dFij
dΩ (θ, E) ≡ δIij(θ, E)

δE(Ω) , (4.42)

where we made explicit that the Fisher information is in general a function of the
exposure map E(Ω). If we consider the Poisson part of the Fisher information alone,
we find

δIpois
ij (θ, E)
δE(Ω) = 1

θiθj

Ii(Ω)Ij(Ω)
I(Ω|θ) . (4.43)

The diagonal part of the Fisher information flux corresponds here to the SNR of
component i, and the non-diagonal parts provide information about the degeneracy
of the components pairs (i, j).

We emphasize that the right-hand side of Eq. 4.43 does not depend on the expo-
sure anymore, and is hence constant during the course of the measurement. Similarly,
external constraints like in Eq. 4.34 do not depend on the exposure. In these cases,
the full Fisher information flux in Eq. 4.42 would equal the Fisher information flux
of the Poisson likelihood, Eq. 4.43. This simple situation changes drastically when
considering the effective information flux for a subset of the model parameters, as we
will see in the next subsection.

The information gain about the parameter pair (i, j) that is obtained by increasing
the exposure towards direction Ω by the infinitesimal amount δE(Ω) is given by

δIij(θ, E) =
∫
dΩ δE(Ω)dFij

dΩ (θ, E) . (4.44)

As a simple application, let us assume that the change in exposure per time is given
by

dE(Ω)
dt

= Aeff
dTobs(Ω)

dt
, (4.45)

where we factored out the effective area, Aeff , and Tobs(Ω) is the accumulated ob-
servation time in direction Ω. Then, the information gain per unit time is given

5To keep the notation simple, we ignore here the effects of the instrument point-spread function
or energy dispersion. They can be added straightforwardly.
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by
dIij(θ, E)

dt
= Aeff

∫
dΩ dTobs(Ω)

dt

dFij
dΩ (θ, E) . (4.46)

Integrating this over time would again give the total information obtained in the
observation. Note that these equations remain valid also for the effective information
flux that we discuss in the next subsection.

4.5.2 Effective information flux

In order to quantify information gain about PoIs in the presence of background and
other uncertainties, the above concept of Fisher information flux needs to be extended
to the profiled Fisher information that we introduced in Eq. 4.9. This can be done
straightforwardly by applying the functional derivative with respect to E(Ω), Eq. 4.42,
to the profiled Fisher information.

The full expression for the effective information flux for the PoI (θ1, . . . , θk) reads

dF̃A
dΩ = dFA

dΩ − dFTC
dΩ I−1

B IC + ITC I−1
B

dFB
dΩ I−1

B IC − I
T
C I−1

B

dFC
dΩ , (4.47)

where as above A refers to the k × k part of the Fisher information matrix that
corresponds to the PoI, B refers to the (n − k) × (n − k) part for the nuisance
parameters, and C to the mixing between nuisance parameters and the PoI. This
expression appears lengthy, but straightforward to evaluate analytically or numerically
if the Fisher information matrix and Fisher information flux are already known.

The effective information flux has a number of surprising and useful properties.
First, it is in general not constant in time (in contrast to the plain information flux
in Eq. 4.42). In the examples considered here, this is due to saturation effects, which
are related to the observation reaching the systematic limited regime. Second, it is
non-local, in the sense that it (for instance) depends on the past (non-)observation
of sidebands that could help to characterize the backgrounds in the signal region.
Technically, the non-locality is due to the fact that the full Fisher information matrix
appears in Eq. 4.47, which includes integrals of the signal and background intensities
over Ω. We will illustrate these two aspects in the following final example.

Saturation effects. We demonstrate the saturation effects of the effective infor-
mation flux with a non-trivial example from § 4.4.3. There, we discussed how to treat
correlated background systematics around a fixed background in the Fisher formalism,
see Eq. 4.36.

For definiteness, we consider a signal component that consists of two Gaussian
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peaks,

I1(E) = 0.05×N (E|µ = 2, σ2 = 0.01) +N (E|µ = 6, σ2 = 4) , (4.48)

one of which is narrow and the other wide. The background is taken to be flat, I2(E) =
1. The corresponding model count spectra Ψ1,2(E) are obtained by multiplication
with the exposure E(E), as in Eq. 4.11. Lastly, we define the covariance function of
the background deviations as,

Σδ(E,E′) = 0.01×N (E|µ = E′, σ2 = 1) + 0.01×N (E|µ = E′, σ2 = 2) . (4.49)

For simplicity, we focus on the case θ1 = 1. A sum of two Gaussians was chosen to
demonstrate the techniques ability to account for multiple correlation lengths.

The profiled Fisher information for the signal component Ψ1(E) is given by
Eq. 4.40 above. The corresponding effective differential information flux at energy
Ek can be obtained by differentiating this expression w.r.t. exposure in energy bin
∆Ek (remember that we have bins in energy for practical purposes). The resulting
effective information flux of the signal reads

dF̃11

dE
(Ek) =

∑
ij

I1
I2

(Ei)D−1
ik

I(Ek)
∆E2

kE(Ek)2I2
2 (Ek)D

−1
kj

I1
I2

(Ej) . (4.50)

Here, Dij refers to the combined covariance matrix defined in Eq. 4.41.
It is instructive to consider two limiting cases. If background uncertainties are

negligible w.r.t. Poisson noise, the first term in the right-hand side of Eq. 4.41 domi-
nates, and we obtain the pure Poisson information flux

dF̃11

dE
= I1(E)2

I(E) . (4.51)

On the other hand, for a sufficiently large exposure, the second term in the right-
hand side of Eq. 4.41 can dominate, and Dij becomes constant in time. In that case,
the effective information flux scales like ∝ E−2, leading to a finite total measured
information even for very large integration times.6

In Fig. 4.10 we show the effective information flux from Eq. 4.50, for different
values of the past observation time Tobs (remember that E(E) = AeffTobs, and we

6This argument does not hold if the vector xi ≡ I1/I2(Ei) has components with zero eigenvalues
w.r.t. the matrix Mij ≡ Σδ(Ei, Ej). Components with zero eigenvalues correspond to characteristics
of the signal that are completely uncorrelated with the modeled background uncertainties, and give
rise to non-zero contributions to the effective information flux even after very large integration
times. This often undesired behaviour can be removed by adding a small diagonal contribution to
the background uncertainty M , which also improves the numerical stability of the matrix inversions.
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Figure 4.10: Example of the saturation effects of the effective information
flux. We show here the effective information flux for a signal with narrow and a
broad spectral component, on top of a background with correlated uncertainties,
after different observation times Tobs. See Eq. 4.50 and text for further details.

set Aeff = 1). For small observation times, the flux essentially corresponds to the
pure Poisson contribution in Eq. 4.51. However, for larger observation times, the
information flux from the broad peak around E = 6 becomes increasingly suppressed.
This is due to the fact that this broad feature is significantly degenerate with the
modeled background uncertainties. On the other hand, the flux from the narrow signal
component around E = 2, which has a width that is smaller than the correlation scale
of the modeled background systematics, remains practically constant.
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Figure 4.11: The cumulative information flux at two reference energies. The
corresponding scenario is shown in Fig. 4.10, but integrated over the observation time,
as function of the total observation time Tobs.

To further illustrate the saturation effects when measuring over a long time, we
show in Fig. 4.11 the cumulative information obtained by integrating the effective
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information flux from Eq. 4.50 at the peaks of the two features, E = 2 and E = 6.
It is clear that at T = 102 the information obtained from observing the broad peak
becomes saturated, while the sharper peak continues to provide information.

Non-locality. We demonstrate the non-locality of the effective information flux
with a simple two-component example. With non-locality, we mean that the infor-
mation flux at E depends in general on the past observation history of E′ 6= E. This
makes sense, since usually a comparable exposure of different observational regions is
required to break degeneracies between various model components.
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Figure 4.12: Example for the non-locality of the effective information flux.
We show the effective information flux for a narrow signal on top an exponential
background with free normalization. After an initial observation of the sidebands for
Toff = 1, observations are assumed to only take place in the narrow range E = 4.5–
5.5, and we show the effective information flux after different signal observation times
Ton. See text for details.

In our simple two-component example, the signal flux, I1(E), is given by a normal
distribution, centered at E = 5, with a width of σ = 0.2. The background flux is
given by I2(E) = 5 exp(−(E − 5)). We assume that after an initial observation
of the sidebands with Toff = 1, observations only take place in the narrow range
E = 4.5–5.5. We show the resulting effective information flux in Fig. 4.12. At
early observation times Ton = 10, the information flux is completely dominated by
observations of the signal region, since due to the initial sideband observations the
background in the signal region is already reasonably constrained. However, with
growing observation time, the non-observations of the sidebands, becomes increasingly
problematic. Consequently, the information flux of the sidebands grows continuously.
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4.6 Euclideanised Signals

The model discrimination power of an experiment is often quoted as the significance
level z (in terms of standard deviations) at which two benchmark signals S1 and S2
can be distinguished. Here, z can be estimated from the expected profile log-likelihood
ratio,

TS = −2 ln Lp(DA(S2)|S1)
Lp(DA(S2)|S2) , (4.52)

where DA denotes again Asimov data. Using the Fisher approximation, this TS value
can be approximated by

TS '
∑
ij

∆SiD−1
ij ∆Sj , (4.53)

where ∆S ≡ S1 − S2 is the signal difference, and the total (statistic plus systematic)
covariance matrix is given by

Dij ≡ Kij + δij
S2,i +Bi

Ei
, (4.54)

where Bi is the ith background component and Ei is the exposure. The interpretation
of the TS value in units of standard deviations is context dependent. We will give here
one very typical example. Suppose S1 and S2 are part of a parametric signal model,
S1 = S(θ1) and S2 = S(θ2), and that θ has k relevant components. Furthermore,
suppose now that θ1 are the parameters of the simple null hypothesis that we want to
test, and the composite alternative hypothesis that we want to discriminate against
is that θ can aquire any value. The above TS value corresponds then approximately
to the median TS value that we would measure in repeated experiments if the true
model parameters were θ2 (we use as data the Asimov data set corresponding to θ2,
in which case the maximum-likelihood estimator of θ in the alternative hypothesis
would be simply θ2). Since the alternative and null hypothesis are nested, and differ
in their degrees of freedom by k, we can assume that the TS value is approximately χ2

k

distributed, with k degrees of freedom [146, 17]. The corresponding threshold value
for a (1− α)CL contour is then given by

Y 2
k (α) = F−1

χ2
k

(1− α) . (4.55)

For instance, in the case of two parameters, k = 2, the 68.7% CL or 95.3% CL contours
correspond to Y 2

k=2 = 2.32 and Y 2
k=2 = 6.12 respectively.

Calculating the pair-wise TS-values for N different signals would require N2 ma-
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trix inversions, which is prohibitive if the number of points is large (say, N ∼ 106,
which is not a large number in the context of global scans). The entire point of the
‘Euclideanized signals’ is to enable the rapid calculation of the expected TS value in
Eq. 4.53 for a very large number of signal combinations (e.g., ∼ 1016 in the case of a
Bayesian scan with 100 million points). This would be possible if the most efficient
clustering algorithms, which can handle billions of points, can be used. These, how-
ever, happen to work in Euclidean space. The goal is hence to map signals S onto
vectors x such that the TS value is approximately given by the L2-norm in Euclidean
space, TS ' ‖x1 − x2‖2.

We start by approximating the TS-value in Eq. 4.56 by using the Fisher informa-
tion matrix evaluated at the mean signal S̄ = 1

2 (S1 + S2),

TS ' ∆STD−1
S̄ ∆S , (4.56)

where ∆S ≡ S1 − S2 denotes the signal difference, and DS̄ corresponds to Eq. 4.54
with Si → S̄i. If we define now the vector

x′i ≡
∑
j

(D−1/2)ijSjEj , (4.57)

it is straightfoward to show that it satisfies

TS ' ‖x′1 − x′2‖2 if DS1 ≈ DS2 . (4.58)

However, in the case where the shot noise of the signal has a significant impact on the
total background uncertainties, the above relationship will break down. This becomes
actually a large effect in the strong-signal limit. In fact, to second order in ∆S2

i , we
find that

‖x′1 − x′2‖2 ≈
1
4
∑
i

∆S2
i

S̄i
if S̄i � Bi + EiKii . (4.59)

Hence, we would in this limit underestimate the discrimination power of an instrument
systematically by a factor of two. In order to avoid this problem, we multiply x′ with
some fudge factor that equals one for negligible signals, and equals two when the signal
dominates. We will show below that this proceedure leads to satisfactory results. The
above discussion motivates the definition of the ‘Euclideanized signal’,

xi ≡

∑
j

(D−1/2)ijSjEj

(1 + R · Si
R · Si +Bi +KiiEi

)
, (4.60)

where we take the weight R = 0.1, which we found to lead to the best results. It has
the proprety that the TS-value corresponding to two signals can now be written as
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Euclidean distance between their euclideanized signal vectors, as shown in Eq. 4.56.
The mapping depends on the specific noise level of the background as well as the

specified background uncertainties. It is defined in the appendix, Eq. 4.60. Here, we
just list a few limiting cases. In the background-limited regime where systematics are
neglected, we have xi ' Si ·

√
Ei/Bi. In the systematics limited regime, the expression

looks like xi =
∑
j(K−1/2)ijSj . In both cases, the signal enters just linearly, since it

does not contribute to the background noise. This is however different in the signal
limited regime, which requires some extra care. In this limit, we obtain xi ' 2

√
EiSi,

where the 2 is a fudge factor that compensates for the fact that only the square-root
of the signal appears. However, one can show that the latter implies to lowest order
in ∆Si/

√
S̄i that TS ≈

∑
i ∆S2

i /S̄i, with S̄ ≡ 1
2 (S1 + S2).

In order to test the accuracy of the above proceedure, we randomly generated a
large number of models with nb = 10, using randomized signals S and randomized
covariance matrices K. Without loss of generality, the background and the exposure
are kept flat. In Fig. 4.14, we compare the TS values obtained from the profile log-
likelihood ratio in Eq. 4.53 with the one obtained from the euclideanized signals, for
varying degrees of exposure and magnitude of the covariance matrix.

4.6.1 Validation of approximation methods

First, we motivate heuristically the analytical form of the fudge factor that we used
in Eq. 4.60. To this end, we consider the approximate relation

χ2
G ≡

(s1 − s2)2

b+ s̄
≈ χ2

E ≡ (x1 − x2)2 , (4.61)

where we defined the mean signal s̄ ≡ 1
2 (s1 + s2), and the Euclideanized signal

xi = si√
si + b

·
(

1 + R · si
R · si + b

)
(4.62)

As above, we set the rescaling parameter R = 0.1, for which we find the best perfor-
mance.

The degree to which the approximation in Eq. 4.61 is shown in Fig. 4.13, as func-
tion of the signals s1 and s2. Only the region that corresponds to a signal difference
of < 5σ is shown. In this region, the approximation provides a relative agreement
to within 16%. The approximation works somewhat worse if the difference between
the signals becomes larger, which is however not of much relevance for the intendet
applications of our method.

In order to validate the Euclideanized signal method, and to estimate the ex-

80



4.6. Euclideanised Signals

−3 −2 −1 0 1 2 3
log10(s1/b)

−3

−2

−1

0

1

2

3

lo
g 1

0(
s 2
/b
)

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

√
χ2 G

/χ
2 E
−
1

Figure 4.13: Ratio between
√
χ2
G and

√
χ2
E in Eq. 4.61, as function of s1/b and

s2/b. The unmasked area corresponds to χ2
G < 25, which excludes signal differences

larger than ∼ 5σ. Within the unmasked region, the differences between
√
χ2
G and√

χ2
E are smaller than 16%.

pected approximation errors, we consider a large number of random models. For
the purpose of illustration, we kept the models simple. They consists of 3 bins (we
find similar results also for a much larger number of bins), with a background set to
BT = (1, 1, 1), a signal set to S = θR, where R is a vector of random numbers in the
range [0, 1], and K = k2LT · L where L is a random 3× 3 matrix with entries in the
range [−1, 1]. We assume a flat exposure given by E. We consider three benchmark
scenarios. First, a signal limited case, with E = 10−2, k = 0, θ = 103.5. Second, a
systematics limited case, with E = 106, k = 1, θ = 1. Third, a background limited
case that is still close to the Poissonian regime, with E = 102, k = 0, θ = 1.

In Fig. 4.14 we compare the TS-value derived via the profile log-likelihood, Eq. 4.52,
with the TS-value derived from the Euclideanized signal method, Eq. 4.58. We find
that the deviations are largest in the signal-limited case, and up to ±20% on

√
TS.

In the systematics limited regime, the deviations are (as expected) much smaller.
Interestingly, in the background limited case, we find for the given benchmark point
that there is a ∼ 10% bias towards smaller TS-values. This bias disappears if we
either increase the exposure (and hence the problem becomes more Gaussian), or if
we decrease the exposure and the problem becomes signal dominated. We conclude
that the Euclideanized signal method provides fast estimates for

√
TS that are correct

to within 20%.
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Figure 4.14: Comparison between exact
√

TS value derived from the log
profile-likelihood, and the approximate

√
TS value derived from the Eu-

clideanized signal method. The different colors correspond to the signal, the
systematics and the (Poisson) background limited regimes (see text for details). As
indicated by the dashed lines, the devitations are not larger than 20% for all random
models.

4.7 Conclusions

We introduced new methods and concepts for efficient and informative forecasting in
astroparticle physics and DM searches, based on the powerful Fisher matrix formalism
and unbinned Poisson likelihoods. The Fisher information matrix, Eq. 4.1, is a way
of quantifying the maximum information that an observation carries about a set of
model parameters. It is at the core of many more advanced statistical methods, and
heavily used in other branches of science.

We introduced compact expressions for the approximate derivation of expected
exclusion and discovery limits, Eqs. 4.25 and 4.28 (equivalent counts method). The
equivalent counts method is based on new definitions for the equivalent number of
signal and background events, Eqs. 4.18 and 4.19. These are solely based on the Fisher
information matrix. The equivalent counts method leads to surprisingly accurate
results, even deeply in the Poisson regime, as we showed by comparison with the
exact Neyman belt construction and maximum likelihood ratio techniques. In this
work, we focused on additive component models and Poisson processes, and neglected
the effects of shape uncertainties.

We furthermore showed in two examples how systematic uncertainties can be ef-
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ficiently accounted for within the Fisher formalism. In the first example, we assumed
that a component of the background is completely degenerate with the shape of the
signal, Eq. 4.35. In the second example, we modeled background uncertainties using
the idea of Gaussian random fields with arbitrary correlation functions. The resulting
expressions, Eq. 4.40, can be efficiently solved numerically by matrix inversion, with-
out profiling or marginalizing over the potentially thousands of nuisance parameters.

Finally, we introduced the new concept of information flux, which we obtained
from the Fisher information matrix by applying a functional derivative w.r.t. the
instrument exposure, Eq. 4.42. For unbinned Poisson likelihoods, it is equivalent
to the commonly used signal-to-noise ratio. However, when including the effect of
nuisance parameters, the resulting effective information flux accounts automatically
for the non-local properties and saturation effects of background and instrumental
uncertainties. We illustrated these effects in two examples in Figs. 4.10 and 4.12.

Our motivation for this work was to provide a both solid and efficient statistical
framework for the systematic study of optimal search strategies for a large range of
dark matter models in indirect and other searches which will be the subject of future
publications. We furthermore plan to expand the discussion towards models with
shape uncertainties, model discrimination and Fisher information geometry.

In summary, we showed how to make the powerful Fisher matrix formalism useful
for typical problems in astroparticle physics and DM searches. The equivalent counts
method for calculating expected exclusion and discovery limits is applicable in a large
range of diverse situations, ranging from direct DM searches to the detectability of
extended gamma-ray sources. The effective Fisher information flux is a flexible tool
for search strategy optimization, and we expect it to be particularly interesting when
confronted with a large number of potential targets, like in indirect searches for DM
or a large number of analysis channels in particle colliders. In this work, we just
scratched the surface of what can be done with the Fisher formalism, and expect
fruitful further theoretical developments of the formalism in the future.

4.8 Appendix

4.8.1 Poisson likelihood properties

We discuss here the general Poisson likelihood function that we use in the main part
of the paper, its higher-order derivatives, expectation values and skewness.
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Generalized Poisson likelihood

We concentrate in this section on univariate data (the generalization to the multivari-
ate case is straightforward). A typical example are photon energy spectra, measured
over some fixed energy range, E− . . . E+. The data is then fully described by an
unordered list of the energies of the N measured photons,

D ≡ {E1, E2, . . . , EN} . (4.63)

The corresponding PDF is

P (D|θ) = e−µ(θ)

N !

N∏
i=1

Φ(Ei|θ) , (4.64)

where Φ(E|θ) is the model counts spectrum of the photons, and the expected total
number of events can be calculated as

µ(θ) ≡
∫ E+

E−
dE Φ(E|θ) . (4.65)

The PDF in Eq. 4.64 is correctly normalized to one, which can be checked integrating
over photon energies and summing over N .

The unbinned count map C(E), introduced in Eq. 4.4, carries exactly the same
information as the unordered photon list D. It turns out to be useful to rewrite the
Poisson likelihood as function of the unbinned count map C(E). A formal expression
that is completely equivalent to Eq. 4.64 is

P (C|θ) = exp
(∫

dE [C ln Φ− Φ]− Γ(N + 1)
)
, (4.66)

where we used the gamma function instead of the factorial, N ! = Γ(N + 1), and the
total number of measured events is given by

N ≡
∫ E+

E−
dE C(E) . (4.67)

The key advantage is here that the domain on which P (C|θ) is defined can be imme-
diately extended to arbitrary functions C(E), which can be continuous and/or feature
non-integer total measured events numbers. This will become useful below.

The likelihood function corresponding to the Poisson process is given by

L(C|θ) ≡ A(C)P (C|θ) , (4.68)
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where A(C) is an arbitrary positive function of the data that does not affect the
discussion. The logarithm of Eq. 4.68, together with the choice A(C) = exp(−Γ(N +
1)), leads Eq. 4.3 in the main text.

Expectation values and ‘Asimov data’

Writing the Poisson log-likelihood in the form of Eq. 4.3 has the advantage that it is
a linear function of the counts map C. This means that averages over projected data
are trivial. Remember that the unbinned count map averaged over many realizations
of model θ just equals the expected count map, 〈C〉D(θ) = Φ(θ). Hence, for linear
functions of C, averaging over data is equivalent to substituting the unbinned counts
map by the ‘Asimov’ data set [17], C → Φ(θ).

Maximizing lnL with respect to θ requires that ∂ lnL/∂θk = 0, which is equiva-
lent to ∫ E+

E−
dE

(
C(E) Ψk(E)

Φ(E|θ) −Ψk(E)
)

= 0 , (4.69)

for all components k. We adopted here the additive component model defined in
Eq. 4.10. Replacing C by Asimov data for model θ yields zero, as expected.

For the additive component model, averages over higher order derivatives of the
log-likelihood take a simple form. The n-th order derivative (for n ≥ 2) reads〈

∂n(− lnL)
∂θk1 . . . ∂θkn

〉
D(θ)

= (−1)n(n− 1)!
∫ E+

E−
dE

Ψk1(E) . . .Ψkn(E)
Φn−1(E|θ) . (4.70)

For n = 2, we recover Eq. 4.13 in the main text. The expression for n = 3 is important
for the discussion of the non-Gaussianity effects in the next subsection.

The Gaussian regime

We start by Taylor expanding the log-likelihood around the model parameter θ,

lnL = const+
∑
i

∆θi
∂ lnL
∂θi

+ 1
2!
∑
ij

∆θi∆θj
∂2 lnL
∂θi∂θj

+ 1
3!
∑
ijk

∆θi∆θj∆θk
∂3 lnL

∂θi∂θj∂θk
+. . . ,

(4.71)
where ∆θ is the deviation from the expansion point. If we average the lnL now
over model realizations D(θ), and assume Poisson likelihoods, this expansion can be
written as

〈− lnL(θ + ∆θ)〉D(θ) = const + 1
2
∑
ij

∆θi∆θj

Iij + 2
3
∑
k

∆θk
∂Iij
∂θk

+ . . . . (4.72)
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Note that the additional factor two in front of ∂Iij/∂θk comes from the fact that the
derivative is here also affecting the parameters of the Asimov data. The precise factor
depends on the actual likelihood function and its dependence on the data.

In order to understand the impact of higher-order terms in Eq. 4.72, it is conve-
nient to think about how they affect the significance at the boundaries of confidence
intervals. Naively, the boundary of a confidence interval that extends to a threshold
value t in a certain direction would correspond to the ellipsoid constructed by values
of ∆θi that satisfy the equation ∑

ij

∆θi∆θjIij = t . (4.73)

When taking into account third-order terms from Eq. 4.72, the actually realized
threshold value at point ∆θi on the ellipsoid changes by

∆t = 2
3
∑
ijk

∆θi∆θj∆θk
∂Iij
∂θk

. (4.74)

If ∆t� t at all points of the ellipsoid, higher-order (more precisely third order) terms
can be indeed ignored and do not affect the result.

In practice, it is usually sufficient to concentrate on the principal axes of the
ellipsoid, which correspond to the eigenvectors of Iij . For simplicity, we will here
further assume that there are no strong degeneracies between the components. In
that case, the principal axes approximately align with the individual parameters θi.
We can then, for every direction i, require that

∆t
t

= 2
3

∆θi
Iii

∂Iii
∂θi

< f , (4.75)

which means that the fractional change in the threshold value t should be smaller
than f . For the Poisson likelihood that we assumed already above in Eq. 4.72, we
can use ∆θi(Iii)−1∂Iii/∂θi = ∆θi

√
Iii/
√
bi =

√
t/bi, where we used the definition of

the equivalent background in Eq. 4.19. This implies the condition

bi >
4t

9f2 , (4.76)

which is identical to Eq. 4.31 in the main text and further discussed there.
We emphasize that this is a quite naive estimate, and does not take into account

the possible effects of parameter degeneracies, deviations of the log-likelihood ratio
from a chi-square distribution, etc. But it gives a useful heuristics for when the
Fisher formalism is safe to use, and when it should be used with care. As we have
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seen in § 4.3, if the appropriate prescriptions are used, reasonable results for expected
exclusion and discovery limits on one signal component of interest can be obtained
even for vanishing equivalent backgrounds, as long as the other components are well
constrained and behaved.

4.8.2 Expected exclusion and discovery limits

We describe here very briefly some of the exact methods that are used to calculate
expected exclusion and discovery limits. These are in the main text compared against
the results from our EC method.

Neyman belt construction

For details about the Neyman belt construction, we refer to Ref. [144]. We repeat
here just the technical result. A conventional one-sided upper limit on the number of
expected signal events, s, given k observed events and b expected background events,
is given by the sU that satisfies the equation∑

k′≤k

P (k′|sU + b) = α , (4.77)

where α is the significance level of the limit, and P (c|µ) the PDF of the Poisson
distribution with c observed and µ expected counts. Since the connection between
k and sU is monotonic, the median expected exclusion limit can be obtained by
considering, for a given expected background b, the median expected count number
k. Since k can only acquire discrete values, this introduces jumps in the projected
upper limits as function of b, which are clearly visible in Fig. 4.5.

The minimum number of events k that leads to a signal detection with a signifi-
cance level of (at least) α, above an expected background of b events, is given by the
smallest k that satisfies the inequality∑

k′≥k

P (k′|b) ≤ α , (4.78)

which we call here kth. The expected discovery limit of the signal for the given
sensitivity level is now given by the smallest s that corresponds to a median count of
kth.

87



4. Fisher Forecasting Methods for Astroparticle Physics

Maximum likelihood ratio method

For general likelihood functions with n free parameters, we can define the MLR test
statistic (see Ref. [17] for details)

TSD(θ1) = −2 ln
maxθ′2,...,θ′n≥0 L(D|θ1, θ

′
2, . . . , θ

′
n)

maxθ′1,...,θ′n≥0 L(D|θ′1, . . . , θ′n) . (4.79)

We fix here only one parameter, θ1, and maximize w.r.t. the remaining ones. We
define the modified test statistic

qD(θ1) =
{

TSD(θ1) if θ1 > θ̂1(D)
0 otherwise , (4.80)

where θ̂1 ≥ 0 is the maximum likelihood estimator given data D. For a given data
set, an one-sided confidence interval that corresponds to the desired upper limits is
given by

C = {θ1 ≥ 0 | qD(θ1) ≤ t(θ1)} , (4.81)

where the threshold t(θ1) is in general a function of θ1 and depends on the aspired
significance level α. The threshold must be set such that C has correct coverage
properties. This means that C should cover the true value of θ1 in 1−α of the cases.
In the large-sample limit, asymptotic formulae for the statistical distribution of qD(θ1)
are available [17]. However, in the small-sample regime, MC simulations are required
to derive appropriate threshold values for t(θ1). Note that C can be the empty set in
some cases, which corresponds to downward fluctuations of the background. Although
there are numerous ways to deal with this situations [167, 144], this is not problematic
for the purposes of the present work. Note that, due to the discreteness of Poisson
processes, t(θ1) is in general not a continuous function of θ1 or the other background
parameters.

In the main text, we usually show median limits obtained from a large set of data
realizations with θ1 = 0, using a t(θ1) that is derived from MC simulations.

Expected discovery limits are derived in a similar way. We first find the threshold
value tth that corresponds to a test of the hypothesis θ1 = 0 with the significance
level of α,

P (TSD(θ1 = 0) ≥ tth|θ1 = 0) ≤ α . (4.82)

The discovery limit is then given by the smallest value of θ1 that leads to a detection
in at least 50% of the cases, namely we search for the θD1 that satisfies

P (TSD(θ1 = 0) ≥ tth|θ1 = θD1 ) ≥ 0.5 . (4.83)
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Note that tth and hence θD1 are not necessarily smooth functions of the background
parameters θ2, . . . , θn, if the discreteness of the Poisson likelihood plays a role.

4.8.3 Technical calculations

We present here some more details about derivations of equations related to discovery
limits as well as the treatment of background systematics, used in the main part of
the paper.

Expected discovery limits

Given b � 1 expected background events, one can derive an approximate discovery
limit for the number of required signal events s and statistical significance α, by
solving

P (s+ b|b) = e−bbs+b

Γ(s+ b+ 1) = α , (4.84)

for s. Here, P (s + b|b) is the continuum version of the Poisson probability mass
function, with s+ b observed events while b are expected.

We compare this expression with Eq. 4.28 (we use the symbols s and b for sim-
plicity). In the limit b� s it can be written as

s ln
(
s

b

)
− s = Z2

2 . (4.85)

Now, one can consider the first two terms of the expansion of α in 1/Z,

ln 1
α
' Z2

2 + 1
2 ln 2πZ2 , (4.86)

which can be substituted into the right-hand side of Eq. 4.85. The large-s approxi-
mation to the log of the gamma function, Stirling’s formula, reads (we use b� s)

ln Γ(s+ 1) ≈ s ln s− s+ 1
2 ln 2πs , (4.87)

which can be substituted in the left-hand side of Eq. 4.85. One can then rearrange
the terms such that they read

bs

Γ(s+ 1) = α ·
√
Z2

s
. (4.88)

This has exactly the form shown in Eq. 4.30 (remember that λi ' si in the low-
background limit).
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4.8.4 Examples with systematic errors

We will show here in some detail how to arrive at the results in Eqs. 4.35 and 4.40.
In the example leading to Eq. 4.35, we have a three component system with a

signal, a background, and some third component which parametrizes variations in the
background that are completely degenerate with the signal. The full Fisher matrix of
the system is given by

I =

 I
pois
11 Ipois

12 Ipois
11

Ipois
12 Ipois

22 Ipois
12

Ipois
11 Ipois

12 Ipois
11 + 1

ξ2
3

 , (4.89)

where we already used the various symmetry properties of the Fisher information
matrix elements as well as the fact that Ψ1 = Ψ3. We are interested in the profiled
1 × 1 Fisher matrix where the parameter of interest is the signal parameter θ1, and
we have removed θ2 and θ3. This profiled Fisher matrix is given by

Ĩ = Ipois
11 −

(
Ipois

12
Ipois

11

)T (
Ipois

22 Ipois
12

Ipois
12 Ipois

11 + 1
ξ2
3

)−1(
Ipois

12
Ipois

11

)
. (4.90)

It is straightforward to invert the 2 × 2 matrix analytically, and one can show that
the inverse of the profiled Fisher matrix can be written in the simple form

1
Ĩ

= ξ2
3 + 1
Ipois

11 − (Ipois
22 )−1(Ipois

12 )2
. (4.91)

If we now identify σ2
1(θ) = Ĩ−1, and (σpois

1 )2(θ) = (Ipois
11 − (Ipois

22 )−1(Ipois
12 )2)−1, we

arrive at Eq. 4.35. Note that the latter is just the profiled Fisher information that we
would have obtained in absence of the third component, or equivalently in the limit
ξ3 →∞.

The derivation of Eq. 4.40 follows a similar pattern, but is technically slightly
more involved. Again, we are interested in the profiled 1 × 1 Fisher information for
the signal component. It is here useful to associate the index i = 0 with the signal
component, and the indices i = 1, . . . , N with the discrete energies from Eq. 4.38.
If we think about the underlying full Fisher matrix of the system in the block form
shown in Eq. 4.8, then the components A (associated with i = 0), B and C are given
by

A =
N∑
i=1

∆Ei
Ψ1(Ei)2

Φ(Ei)
, (4.92)

90



4.8. Appendix

where we discretized the integral,

Ci = ∆Ei
Ψ1(Ei)Ψ2(Ei)

Φ(Ei)
= ∆EiΨ1(Ei) , (4.93)

where i = 1, . . . , N and we used in the second step that Φ(E) = Ψ2(E), and

B = δij∆EiΦ(Ei) + Σ−1
δ , (4.94)

where we included the inverse of the covariance matrix for ξi. Then, the profiled
Fisher information can be written as

Ĩ11 =
N∑
i=1

∆Ei
Ψ1(Ei)2

Φ(Ei)
−

N∑
i,j=1

∆Ei∆EjΨ1(Ei)Ψ1(Ej)
[
diag(∆EiΨ2(Ei)) + Σ−1

δ

]−1

ij

=
N∑
i=1

∆Ei
Ψ1(Ei)2

Φ(Ei)
−

N∑
i,j=1

√
∆Ei∆Ej

Φ(Ei)Φ(Ej)
Ψ1(Ei)Ψ1(Ej)

[
Σ′δ

1 + Σ′δ

]
ij

=
N∑

i,j=1

√
∆Ei∆Ej

Φ(Ei)Φ(Ej)
Ψ1(Ei)Ψ1(Ej)

[
1

1 + Σ′δ

]
ij

.

(4.95)

Here, we used the definitions (Σδ)ij = Σδ(Ei, Ej) and

(Σ′δ)ij =
√

∆Ei∆EjΦ(Ei)Φ(Ej) Σδ(Ei, Ej) . (4.96)

In the first step, we rearrange some factors of ∆Ei and Φ1(Ei), and use the general
matrix relation (1+M−1)−1 = M/(1+M). In the second step, we include the matrix
identity in the form δij = [(1 + Σ′δ)/(1 + Σ′δ)]ij in the first summation which helps
to further collapse the whole expression. The last line is after some more rewriting
equivalent to Eq. 4.40.
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5
Benchmark-free Forecasting for

Direct Searches

This chapter is based on work from Ref. [2]

5.1 Introduction

Searching for the elusive Dark Matter (DM) particle has been the preoccupation of
physicists for many years [168, 169]. Over the past decade, two-phase scintillator
direct detection experiments [170, 171] have found much success with the LUX [136],
XENON [172] and PANDA-X [20] collaborations providing the most stringent con-
straints on DM particles in the GeV−TeV mass range to date. Such experiments will
continue to improve in sensitivity for many years to come. In the case of a detection,
it should be possible to study the astro- and particle-physics properties of DM using
a variety of detectors and detection methods (see [173, 174, 175, 176, 177] and many
others), but the precise parameter regions in which these properties can actually be
measured is hard to quantify.

Exploring the prospects for discriminating between different DM-nucleon interac-
tions usually relies on comparing a number of benchmark models [178, 179, 180, 181,
182, 183, 184]. However, the pair-wise comparison of different benchmark points in
the model parameter space (DM couplings or masses) is time-consuming, does not
scale well with the number of benchmark points, and is in particular problematic
in high-dimensional parameter spaces. In direct detection, such a high-dimensional
parameter space appears in the framework of non-relativistic effective field theory
(NREFT) [122, 123, 185, 186, 187], in which the space of DM-nucleon interactions
may have more than 30 dimensions [188, 189, 190]. With current techniques, it is
hence difficult to study model degeneracies and the degeneracy-breaking power of
future instruments in a reliable and exhaustive way. For such tasks, dedicated tech-
niques are required.

In this Letter, we introduce a new framework for studying the signal discrimination
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power of future detectors in a fundamentally benchmark-free way. The key questions
we aim to address are: How many observationally distinct signals does a given model
predict for a set of future experiments? How many of these signals are compatible
with specific subsets of the signal model? In which regions of parameter space is
signal discrimination and parameter reconstruction possible?

We first summarize the basics of the non-relativistic effective field theory approach
to direct deteciton, as well as the basics of our approach. We then discuss the dark
matter models and experiments we consider in the current work. Finally, we show
our results and conclude with a short discussion about possible future directions and
applications1.

5.2 Information Geometry

Consider a New-Physics modelM with some d-dim model parameter space, ~θ ∈ ΩM ∈
Rd, and a combination of future experiments X that are described by some likelihood
function LX(D|~θ), where D is data. We expect that two model parameter points
~θ, ~θ′ can be discriminated by experiments X if the parameter point ~θ′ is inconsistent
with Asimov data [17] D = D̄(~θ). More concretely, distinctiveness requires that the
log-likelihood ratio

TS(~θ′)D̄(~θ) ≡ −2 ln L(D̄(~θ)|~θ′)
max
~θ′′
L(D̄(~θ)|~θ′′)

' ‖~x(~θ)− ~x(~θ′)‖2 , (5.1)

exceeds a threshold value rα(M)2. The threshold value depends on the chosen sta-
tistical significance, which we set here to α = 0.045 (2σ), as well as the sampling
distribution of TS(~θ′). In the large-sample limit and under certain regularity con-
ditions, the sampling distribution follows a χ2

k distribution with k = d degrees of
freedom [145, 17].

The last part of Eq. 5.1 is an approximation based on the ‘euclideanized signal’
method [6], an embedding ~θ 7→ ~x(~θ) ∈ Rn into some, usually higher-dimensional,
space with unit Fisher information matrix (n usually equals the total number of data
bins). This approximation maps statistical distinctiveness onto euclidean distances,
and works to within 20% if the number of counts is order one, see [6] for a discussion
and caveats. Confidence regions in the model parameter space correspond then to
hyperspheres of radius rα(M) in the euclideanized signal space.

Often one is interested in sub-models S that are nested inside model M, and
1Code associated with the paper available at https://github.com/tedwards2412/benchmark_

free_forecasting/.
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Figure 5.1: Limit on the SI cross-section vs. DM mass, assuming operator
O1, for a XENONnT detector. Contours show 68% confidence contours in d = 2
dimensions. The radius of these contours in the Euclidean space is therefore rα(M) =
1.52. The number of discriminable signals in the blue+blue/orange region of the
middle panel of Fig. 5.2 can be approximated by counting the number of closed green
contours.

which are obtained by restricting M to a d′-dim subregion ΩS ⊂ ΩM. A parameter
point ~θ of M leads to a signal that is distinct from any signal in submodel S if

− 2 ln
max~θ′∈ΩS L(D̄(~θ)|~θ′)

max~θ′ L(D̄(~θ)|~θ′)
' min

~θ′∈ΩS
‖~x(~θ)− ~x(~θ′)‖2 , (5.2)

exceeds a certain threshold value rα(S,M)2. Here ‘distinct’ means that the composite
null hypothesis S can be rejected for data D̄(~θ). The sampling distribution of Eq. 5.2
follows in general a χ2

k=d−d′ distribution. In the euclideanized signal space ~x, parts of
model M cannot be discriminated from model S that lie within a ‘shell’ of thickness
rα(S,M) around the signal manifold of S.

Finally, nuisance parameters can be accounted for by replacing the likelihood
function in Eq. 5.1 with a profile likelihood, L(D|~θ) = max~η L(D|~θ, ~η)Lη(~η), where
the last factor can incorporate additional constraints on the nuisance parameters from
data external to X.
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5.3 Distinct signals

To quantify the signal discrimination power of a set of future experiments X in the
context of model M we may define the figure of merit

ναM,X(ΩM) ' Total number of signals from modelM
discriminable by experiments X.

More specifically, ναM,X equals the maximum number of points that can populate
the parameter space of M while remaining mutually distinct according to Eq. 5.1.
Any such set of points provides a complete sample of the phenomenological features
of model M. Loosely speaking, the points correspond to a set of non-overlapping
confidence contours as shown in Fig. 5.1. Furthermore, when considering a sub-model
S nested in M, we can define

ναM,X(ΩS) =
Number of signals from model M dis-
criminable by experiments X, and con-
sistent with model S.

(5.3)

With these definitions, the phenomenological distinctiveness of various regions in the
parameter space of model M can be visualized using standard Venn diagrams [191].
The technical definition for the measure ναM,X(·), which is used in the subsequent
examples, is given in Appendix A of the supplementary material.

5.4 DM-nucleon interactions

While direct detection is typically analysed in terms of the standard spin-dependent
(SD) and spin-independent (SI) interactions [192], the range of possible signals is
much broader. The framework of non-relativistic effective field theory (NREFT)
[122, 123, 185, 186, 187] aims to classify possible elastic DM-nucleon interactions and
thus possible signals in DM-nucleus scattering experiments. NREFT is realised as a
power series in the DM-nucleus relative velocity ~v and the nuclear recoil momentum ~q,
valid for non-relativistic, short-range interactions. The resulting operators (labelled
O1, O3, O4, ...) give rise to a range of novel energy spectra [193, 179, 181, 184],
directional signals [194, 195] and annual modulation signatures [196, 197]. We focus
here on the three operators O1, O4 and O11 because they allow us to explore a diverse
range of signals with only a small number of operators2. Operator O1 = 1χ1N couples
to nucleon number while the operator O4 = ~Sχ · ~SN couples to nuclear spin, allowing
us to explore the complementarity between nuclei of different size and spin [200].

2We neglect the effects of operator mixing [198, 199] which require us to specify the structure of
the dark sector.
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Figure 5.2: Signal-discrimination power of combinations of direct detection
experiments, summarized in infometric Venn diagrams. Central/Right panel:
The full area corresponds to the number of distinct detectable signals within the al-
ternative hypothesis HA, unfolded as function of number of XENONnT signal events.
The subsets indicate the fraction of signals consistent with various null hypothesesH0.
Overlapping subsets correspond to signals consistent with multiple null hypotheses
simultaneously. The numbers correspond to νM,X(ΩM) in each region. In the right
panel, the overlapping (blue+orange) region corresponds to the model parameters
between the purple-dot-dashed and orange contours in Fig. 5.3. The non-overlapping
(blue-only) O1 region corresponds to parameters between the purple-dashed and blue
contours in Fig. 5.3. Left panel: Standard Venn diagram summed over number of
signal events.

Operator O11 = i~q · ~Sχ/mN may arise as the leading-order interaction in certain
scalar-mediated models [187]. Similar to O1, it also couples to nucleon number and
receives a coherent enhancement to the rate, but has a characteristic peaked recoil
spectrum owing to an extra dσ/dER ∝ ER scaling of the cross section [181]. This
allows us to explore how well different recoil spectra can be discriminated in future
experiments.

Unfortunately, NREFT cannot encompass all possible signals. In particular, in
its original formulation [123] it cannot describe interactions through light mediators.
In this case, the typical momentum transfer is larger than the mediator mass and an
expansion in q is no longer appropriate3. The scenario in which this mediator is the
Standard Model photon has been studied extensively [202, 126, 203]. Here, we consider
millicharged DM [204] which has long-ranged, coherently-enhanced interactions with
nuclei, with a differential cross section scaling as E−2

R [205, 126, 125]. Alternatively,
DM may have non-zero electric and magnetic moments [206, 207], particularly if
it takes the form of a composite state, such as a Dark Baryon [208, 209]. In the
context of model discrimination, most interesting for us will be the magnetic dipole,
(µχ/2)χσµνχFµν , which leads to both long-range and short-range contributions to
the rate, arising from charge-dipole and dipole-dipole interactions respectively [210,
211, 203].

3Note, however, that because the DM is still non-relativistic, the effects of light mediators can be
incorporated into the NREFT by including the appropriate propagator [126, 201].
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Figure 5.3: Discriminability of DM interactions. To the left/below each broken
line, it is not possible to discriminate an O1-signal (with the indicated cross-section
and DM mass) from the corresponding best-fit O4, O11 or magnetic dipole signal.
Above/right of each broken line, such a discrimination is possible with at least 2σ
significance. Solid lines display 90% CL limits for XENON1T-2017 and XENONnT.
All lines include DM halo uncertainties.

The five DM-nucleon interaction models we have outlined above encompass a
range of phenomenologically-driven as well as more theoretically-motivated models,
leading to a wide range of direct detection signals. We calculate the signal spectra
in each case using the publicly-available code WIMpy [212], implementing expressions
from [186] and [126]4. The required nuclear response functions are taken from the
mathematica package provided in [186], supplemented by those calculated in [213].
We assume iso-spin conserving (cp = cn) NREFT interactions and that the particle
producing a signature makes up 100% of the local DM density (which we fix to
ρχ = 0.3 GeV cm−3 [72, 214]). We incorporate standard Gaussian halo uncertainties
from [214]; details can be found in Appendix B of the supplementary material.

5.5 Direct dark matter searches

We implement two toy detectors, designed to resemble the expected advancement in
direct DM searches over the upcoming 5-10 years.

4Note that the operator normalisations in [126] and [186] differ.
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Figure 5.4: Discriminability of the DM mass. To the right of each broken line,
the DM mass is unbounded from above (at 2σ). Lines for other operators are mapped
onto σSI by converting to an effective cross section and rescaled to match O1 at high
masses. For O1, we also show constraints for the Xenon-only case and when halo
uncertainties are neglected. Solid lines display 90% CL limits for XENON1T-2017
and XENONnT.

We implement a Xenon detector in light of the stringent constraints on O(10) GeV
DM set by XENON1T [172], with numerous Xenon-based experiments on the horizon
[215, 216, 217, 218]. We model this detector on the future XENONnT [217] exper-
iment. In addition we implement a detector containing a target material with no
nuclear spin, namely Argon, modeling this detector on Darkside20k [137]. In this
way we maximize discriminability of spin-dependent operators5. Our detector imple-
mentations and background assumptions are briefly described in Appendix B of the
supplementary material.

5.6 Results

In Fig. 5.1, we show the expected 68% CL reconstruction regions for a set of mutually
distinct parameter points, for our XENONnT -like detector. The confidence regions
are constructed by querying spheres with radius rα(M) = 1.52 in the euclideanized

5Liquid noble detectors typically do not have sensitivity to DM particles lighter than a few GeV,
so we restrict our attention to mχ > 10 GeV in the current work.
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signal space. The number of these regions corresponds approximately to the figure of
merit in Eq. 5.3.

In the central panel of Fig. 5.2, we illustrate the power of XENONnT to discrim-
inate between operators in the 3-dimensional model space M of mass, O1, and O11.
With increasing numbers of events, the number of discriminable signals increases,
though the majority of signals are compatible with both O1 and O11. In the right
panel of Fig. 5.2, we include also information from DarkSide20k. The addition of
an Argon detector not only increases the number of discriminable signals (from 133
to 291) but also enlarges the region of parameter space where O1 and O11 can be
discriminated from each other. The left panel of Fig. 5.2 corresponds to the same
scenario as the right panel, instead summed over the number of XENONnT signal
events. 160 signal events approximately corresponds the expected number of events in
XENON-nT if the true model were at the current sensitivity. We note that the Venn
diagrams we have introduced here significantly increase in complexity when compar-
ing a large number of models at once. However, we emphasize that the number of
discriminable regions, Eq. 5.3, is completely general and remains a useful measure for
assessing model discriminability.

Figure 5.3 shows the regions of the parameter space of spin-independent (O1) DM
in which discrimination from O4, O11 and magnetic dipole DM would be possible.
For O4 (spin-dependent), 2σ discrimination is possible at high DM mass even down
to small cross sections, when both Xenon and Argon experiments are used. The
spin-zero Argon nucleus has no spin-dependent coupling, so we can discriminate well
as long as the Argon detector has sensitivity (mχ > O(20 GeV), below which most
recoils are below the 32 keV threshold).

For O11, discrimination is possible at high mass because of the different spectral
shapes of O1 and O11, though cross sections around ∼ 10−46 cm2 are required to
obtain enough events to map out the spectra precisely. At low mass, the peak in
the O11 spectrum falls below the threshold of the experiments; for both O1 and O11
the exponentially falling tail of the DM velocity distribution dominates the spectral
shape [219], making discrimination impossible.

For Magnetic Dipole interactions, discrimination is also possible at high mass,
given enough signal events. We note a ‘kink’ in the boundary for Magnetic Dipole
interactions around mχ ∼ 20 GeV. For large DM masses, the short-range spin-
dependent dipole-dipole contribution begins to dominate [203]. In this case, dis-
crimination prospects are good with the inclusion of the spin-zero Argon detector.

For the mock detectors we consider, SI interactions cannot be distinguished from
Millicharged DM, which is not shown in Fig. 5.3. The recoil spectrum for Millicharged
DM is similar to O1, but has an extra E−2

R suppression. This more rapidly falling
recoil spectrum can be mimicked by an SI interaction with smaller DM mass. As
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demonstrated in Refs. [181, 201], low-threshold semi-conductor experiments are re-
quired to distinguish between the two interactions.

Finally, Fig. 5.4 shows, for various operators, the regions of parameter space
where a closed contour for the DM mass would be possible at the 2σ level. At
large DM masses, the kinematics of the interaction mean that the recoil spectrum
becomes independent of the DM mass, meaning that to the right of the curves in
Fig. 5.4, it is not possible to obtain an upper limit on mχ [220, 221]. For O1 we show
the regions for Xenon-only, as well as for Xenon and Argon combined without halo
uncertainties to demonstrate the improvement in mass reconstruction when including
a second detector. When the two detectors are combined halo uncertainties make
little difference to the mass discrimination, as changes in the velocity distribution
affect the spectra in the two detectors differently [173]. Operator O4 contains the
largest region in which the mass cannot be constrained due to the lack of signal in
Argon.

Even in the most optimistic case of cross sections just below the current bounds,
it is not possible to pin down the DM mass for mχ & 100 GeV. Previous works
have demonstrated, typically using a small number of benchmarks [221, 222, 181],
that DM mass reconstruction worsens for large masses; here, we have mapped out
precisely where this mass reconstruction fails as a function of mass and cross section.

5.7 Discussion

The methods introduced in this paper allow us to efficiently characterize and visualize
the phenomenological distinctiveness of direct DM signal models in infometric Venn
diagrams, as shown in Fig. 5.2. Furthermore, these methods allow for an efficient
exploration of the phenomenology of complex models, and hence allow us to make
‘benchmark-free’ statements like those shown in Figs. 5.3 and 5.4. In Fig. 5.3 we see
that ruling out non-standard interactions is harder for light DM, while in Fig. 5.4 we
see that we cannot pin down the DM mass for masses larger than ∼ 100 GeV This
leaves only a small region of parameter space – for mχ ∈ [20, 100] GeV and cross
sections a factor of a few below current bounds – in which the DM mass and inter-
action can both be constrained at the 2σ level with near-future Xenon and Argon
detectors. Such general statements would not have been possible without an efficient
exploration of the Dark Matter parameter space, made feasible with the tools pre-
sented here. Third generation experiments such as DARWIN [216] will have a far
greater sensitivity. More events would dramatically improve our ability to constrain
different models, particularly for models at the current XENON1T bound.

This work paves the way for a more complete exploration of the direct detection
parameter space and a deeper understanding of the complementarity between detec-
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tors. Future work should explore the possibility to discriminate between a wider range
of interactions, beyond the subset of five we include here. In addition, the techniques
we present may be used to optimize detector properties (target material, thresholds,
etc.) in order to understand how operator discrimination can be improved at low DM
mass.

Our ‘benchmark-free’ method rests on the ’euclideanised signal’ introduced in
[6], and works for any Poisson (and hence Gaussian) likelihood function, as long as
background uncertainties are sufficiently Gaussian. Euclideanised signals therefore
provide a useful forecasting tool for a wide range of New-Physics signals, including
those in cosmology, indirect DM detection, and collider searches. As we have shown,
using direct detection alone may not allow us to completely constrain the DM prop-
erties. Combining complementary information from other search strategies, coupled
with new techniques for efficient forecasting, will provide essential guidance in the
future of Dark Matter detection.

5.8 Appendix

5.8.1 Technical details

First, we generate a large number of points in the parameter space of modelM, ~θi ∈
ΩM (typically of the order 105). The details of the distribution of the points do not
matter in the limit of a large number of parameter points. Each point is projected onto
the corresponding euclideanized signal, ~xi = ~x(~θi). This projection depends on the
details of the detector. If multiple experiments are used, the corresponding vectors are
concatenated. Euclideanized signals are generated using swordfish [6] (see paper for
technical details). This process essentially provides a sample of the model parameter
space M embedded in the (usually higher dimensional) euclideanized signal space.
In addition, the mapping between these spaces is known ifM is sufficiently sampled.
This sample of parameter points and corresponding euclideanized signals are the basis
for the various estimation techniques used in this work.

Confidence contours. Given the sample of projected points, ~xi, it is now straight-
forward to generate expected contours around any parameter ~θ0 ∈ ΩM in the model
parameter space. Such regions are for instance shown in Fig. 5.1. To this end, we
first calculate the projected signal ~x0 = ~x(~θ0). Then, using standard nearest neigh-
bor finder algorithms [223], we identify the set of points ~θi that are within a radius
rα(M) of point ~θ0. Here, rα(M) depends on the dimensionality of the parameter
space ΩM as well as the significance level of interest, rα(M) =

√
χ2
k=d,ISF(1− α)

where χ2
k=d,ISF is the inverse survival function of the Chi-squared distribution with
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k = d degrees of freedom. For the 3-dim models that we consider in this paper, and a
significance level of α = 0.045, we have for instance rα(M) = 2.84. Now, the points
in the model parameter space ΩM that belong to the confidence region can be sim-
ply identified by back-projecting the nearest neighbors in euclideanized signal space
(obviously this back-projecting just requires a look-up in the original list of model
parameters). In this way, the generation of confidence regions around arbitrary signal
points is efficiently achieved.

Number of distinct signals. For Fig. 5.2 we are interested in the (maximum)
number of points that can populate the model parameter space ΩM such that the
model points can be discriminated in the sense of Eq. 5.1. This is equivalent to finding
the maximum number of points in the euclideanized signal space that can populate
the embedding of ΩM such that their mutual distance is at least rα(M). We derive
an estimate for this number with the following procedure: For each projected sample
point ~xi, we calculate the number of nearest neighbors Ni within a distance rα(M)/2.
This can be rather efficiently done using standard clustering algorithms. Now, we
assign a weight to point ~xi, which is simply given by wi = 1/Ni. It hence corresponds
to the ‘fractional contribution’ of a single parameter point to a confidence region. The
number of distinguishable signals is given by the sum

ναM,X(ΩM) = cff
∑
i

wi . (5.4)

Here, cff is a filling factor correction related to the packing density of hyperspheres
in a d-dim parameter space. For the 3-dim models in which we are often interested,
this number is given by cff = 0.74 [224]. We find that this prescription provides an
efficient and reliable way to estimate the number of distinct signals of a model. The
main requirement in the calculation is that each of the potential confidence regions
contains a sufficiently large (typically at least ten) number of samples. Adding more
points to the original list would then not affect the result anymore. We tested the
stability of our results by doubling the number of sampled points in various examples
from the text. The results remained unchanged in the limit of ten points per distinct
region.

Distinct signals compatible with H0. We are interested in the fraction of the
distinct signal points that are consistent with a null hypothesis that is defined as a
lower dimensional subspace of the full model parameter space, ΩS ∈ ΩM. Here, we
call a point in ΩM ‘consistent’ with ΩS if the composite null hypothesis ΩS cannot
be excluded against the alternative hypothesis ΩM. To estimate this number, we first
generate a large number of points in ΩS . We then collect all points from the original
sample of ΩM whose minimum distance to any of the points from ΩS is smaller than
the threshold values rα(M,S). Here, the threshold is derived from a χ2

k distribution
with k degrees of freedom, where k is the difference in the dimensionality of ΩM and
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ΩS (for the examples in the paper, we usually have k = 1, and hence rα(M,S) = 2).
The number of distinct signals that are compatible with the null hypothesis ΩS is
then simply obtained by restricting the sum in Eq. 5.4 to the points within the shell
around ΩS .

Parameter ranges and nuisance parameters. Finally, the contours in Fig. 5.3 and
Fig. 5.4 are generated by identifying all points that are consistent with the indicated
null hypotheses, as described in the previous paragraph. However, in these figures we
also take into account the effects of DM halo uncertainties, as described in the main
text (this is not easily possible when calculating the number of dimensions). To this
end, we generate for each point ~xi ∈ ΩM several euclideanized signals corresponding
to various randomly selected DM halo configurations. Again, the specific distribution
of these points does not matter as long as the number is large enough to sufficiently
cover the various halo configurations. In order to incorporate external constraints
on the DM halo parameters, we add an additional contribution to the euclideanized
distance calculation, which is just given by (ηi− η̄)2/σ2

η, where η̄ and σ2
η are the mean

and variance of the nuisance parameter, and ηi is the value of the nuisance parameter
for a specific point i. The contribution to the ~x(~θ) is a simple concatenation of
(ηi − η̄)/ση with the Euclideanised signal.

For a large number of sampled points this approach exactly matches a profile
log-likelihood analysis. We check this limit is saturated by increasing the number of
sampled points until our results do not noticeably change.

5.8.2 Dark matter signal modeling

Halo Uncertainties. We incorporate halo uncertainties [214] by assuming Gaussian
likelihood distributions for three parameters of the Maxwellian velocity distribution
of DM: the Sun’s speed ve = (242 ± 10) km/s [225], the local circular speed vc =
(220±18) km/s [226], and the Galactic escape speed vesc = (533±54) km/s [227]. We
assume that these uncertainties are uncorrelated [228], though in general correlations
coming from the modeling of the Milky Way halo can be included [229, 230]. We
sample from these distributions as nuisance parameters in our signal calculation and
include an additional penalization term to the euclideanized signal in Eq. 5.1.

The Maxwellian velocity distirbution comes from the framework of the Standard
Halo Model (SHM) [214, 231]. A steady state collection of collionsionless particles
can be modelled through the Boltzmann equation, from which their phase space
distribution can be calculated. In the Earth’s rest frame this is given by,

f(v) = 1
(2πσ2

v)3/2
Nesc

exp
(
− (v + ve)2

2σ2
v

)
Θ
(
vesc − |v + ve|

)
, (5.5)
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where

Nesc = erf
(
vesc√
2σv

)
−
√

2
π

vesc

σv
exp

(
−v

2
esc

2σ2
v

)
. (5.6)

Here, we defined σv = vc/
√

2, ve is the Earth’s velocity, and Θ is the heavyside step
function. By integrating over all directions, the final speed distribution is given by

f(v) = v√
2πσvveNesc


0 if v > vesc + ve ,

exp[− (v−ve)2

2σ2
v

]− exp[− (v+ve)2

2σ2
v

] if v < vesc − ve ,

exp[− (v−ve)2

2σ2
v

]− exp[−v
2
esc

2σ2
v

] otherwise.
(5.7)

This satisfies the constraint
∫
f(v)dv = 1. The speed distribution can be seen in

Fig. 5.5, where each panel shows how the different errors effect the distribution. The
thick blue line in each panel shows the best fit value.

Detector specifications. We implement a simplified XENON1T for which we adopt
an S1-only analysis, full details of which are given in Sec. IIIB of [6]. For the recoil
spectrum dR/dS1, we use 19 bins linearly spaced between 3 and 70 PE (corresponding
to nuclear recoil energies ER ∈ [5, 40] keV). The number of bins was chosen for
computational efficiency with no noticeable loss in accuracy. We have checked that
including a 20% energy resolution [232] and increasing the number of bins should have
no substantial effect on our results. Background distributions as a function of S1 are
described in Fig. 3 of [172] for which we assume 1% uncertainty on all components
separately. We also sum over different Xenon isotopes, weighting by their naturally-
occurring mass fractions [233].

For our future Xenon detector we scale up the observation time of XENON1T-
2017 by a factor of 100, assuming that background rates stay constant. This exposure
roughly corresponds to that expected for the full run of the XENONnT experiment
[217], so we will refer to this future detector as XENONnT.

DarkSide20k: We directly use the recoil energy spectrum dR/dER as our signal,
assuming that the only relevant isotope is Argon-40. We follow the specifications
of the Darkside50 detector [234], with the nuclear recoil efficiency taken from Fig. 6
in [234]. The background is assumed to be flat across the entire energy range with
an expected 0.1 events (with 10% uncertainty) over 1422 kg days of observation. We
assume 19 linearly spaced bins between 32 and 200 keV.

For our future detector, we assume an exposure of 7.3×106 kg days, corresponding
to a 1-year exposure with a 20-tonne detector. We assume that the background
will remain at 0.1 events in the total exposure. This detector configuration roughly
resembles DarkSide20k [137].
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Figure 5.5: Standard Halo Model Velocity Distribution of DM. The three
panels show the uncertainty on the different parameters of the SHM (as indicated
within the panel). The blue dashed line represents the central value for each param-
eter. For each panel the other two parameters are kept at their central values. These
variations show the possible distortions to the SHM accounted for in the modelling
uncertainties, as explained in the text.
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6
Dark Matter Discovery

Potential of Paleo-Detectors

This chapter is based on work from Ref. [3]

6.1 Introduction

Direct detection experiments search for Weakly Interacting Massive Particle (WIMP)
Dark Matter (DM) by looking for rare, low-energy nuclear recoils induced by the scat-
tering of DM particles off a target’s nuclei [235, 170, 171, 236]. As yet, no conclusive
evidence for DM has been reported by direct detection experiments. The leading up-
per limits on DM–nucleus interactions for WIMPs with masses greater than ∼ 10 GeV
stem from ton-scale liquid noble gas experiments [136, 20, 237, 18, 238]. Meanwhile,
cryogenic bolometric detectors have started to probe DM–nucleus interactions for
lighter DM candidates [239, 240, 241, 242, 243]. The noteworthy exception is DAMA,
which has been reporting evidence [244, 245, 246] for an annually modulated sig-
nal [171, 247] compatible with WIMP DM [248, 249, 250, 251, 252, 253, 254, 255, 256]
for more than a decade, although this claim is in tension with upper limits from other
direct detection experiments [252, 257, 258, 259, 260].

Progress in the search for DM heavier than ∼ 10 GeV relies on maximizing the
exposure (the product of target mass and integration time) of the experiment. Instead,
to probe ever lighter DM, experiments must achieve sensitivity to lower and lower
nuclear recoil energies. In addition, both mass regimes require exquisite control of
a variety of possible background sources, from cosmic rays to intrinsic radioactivity.
A number of experiments with lower energy thresholds, larger exposures or, ideally,
both will continue the search for lighter and more weakly-interacting DM in the next
5–10 years [261, 262, 216, 217, 137, 218].

Recently, Refs. [263, 264] proposed paleo-detectors for the direct detection of DM1.

1For brevity, we use the term ‘Dark Matter’ (DM) in this work, but will be considering specifically
WIMP DM throughout.
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In paleo-detectors, one would examine ancient minerals extracted from O(10) km
below the surface of the Earth for traces of DM interactions with atomic nuclei. In
lieu of the multi-ton target masses used in conventional direct detection experiments,
paleo-detectors take advantage of the fact that DM may have been interacting with
the target material for as long as ∼ 1 Gyr. In certain minerals, including those long
used as Solid State Track Detectors (SSTDs) [265, 266, 267, 268], DM-induced nuclear
recoils would give rise to 1 − 500 nm long damage tracks. In many materials, such
damage tracks would be preserved over timescales much longer than 1 Gyr. Paleo-
detectors could thus obtain much larger exposures than conventional detectors even
if only a small amount of target material can be investigated. For example, reading
out 100 g of material which has been recording DM-induced events for 1 Gyr provides
an exposure which could only be matched in the laboratory by observing 104 tons
of target mass for 10 yr. Further, the relatively small target masses required for
paleo-detectors can be obtained from depths much greater than those of underground
laboratories in which conventional direct detection experiments are usually operated,
providing an unprecedented level of shielding from cosmic rays.

In conventional direct detection experiments, nuclear recoils are detected by scin-
tillation, ionization, and phonon signals in the detector [134]. In paleo-detectors, the
observational signature would be nano-scale defects in the minerals. These may be ob-
served through a variety of read-out methods such as X-ray microscopy [269, 270, 271]
or ion-beam microscopy [272]. Mineral-based searches, initially for monopoles and
then for DM, have been proposed and performed before [273, 274, 275, 276, 277, 278,
279, 280]. However, modern high-resolution imaging techniques [281, 282, 283, 284,
285, 286, 287] as well as the availability of rocks from deeper underground may sig-
nificantly improve the prospects for DM detection. In particular, measurements of
nanometre-length tracks could provide sensitivity to recoil energies as low as 100 eV.
A more detailed study of backgrounds, target minerals and read-out methods for
paleo-detectors was recently presented in Ref. [264].

In this work, we explore the prospects for excluding or discovering DM with
paleo-detectors. In Refs. [263, 264], a simple cut-and-count analysis with a sliding
signal window in track length was employed to estimate the sensitivity of paleo-
detectors. Here, we adopt more sophisticated statistical techniques, making use of
information contained in the spectral shape of the track length distributions. Using
realistic distributions for backgrounds induced by neutrinos [288] and radioactivity
(developed in Refs. [263, 264]), this approach allows us to explore the impact of
different systematic background uncertainties on projected sensitivities. Further, we
examine how well the DM properties (mass and cross section) could be reconstructed
by paleo-detectors in the case of a discovery.

As in Refs. [263, 264] we consider two fiducial read-out scenarios. The first as-
sumes a high track-length resolution but a relatively small exposure (referred to as

108



6.1. Introduction

high resolution in the following). The second assumes worse track-length resolution,
which should in principle allow more material to be analyzed, facilitating a larger
exposure (referred to as high exposure). The high resolution configuration is particu-
larly well suited to probing DM with masses below ∼ 10 GeV while the high exposure
configuration is geared more towards heavier DM.

A wide range of minerals are well suited to be paleo-detectors. As described in the
discussion of mineral optimization in Ref. [264], minerals can be broadly divided into
classes suitable for different applications of paleo-detectors, based on their chemical
composition. We consider 4 different minerals in this work, chosen to represent paleo-
detectors suitable for probing spin-independent DM–nucleus interactions:

• halite - NaCl,

• olivine - Mg1.6Fe 2+
0.4 (SiO4),

• sinjarite - CaCl2·2 (H2O),

• nchwaningite - Mn 2+
2 SiO3(OH)2·(H2O).

These particular target materials are also selected for their low levels of natural ra-
dioactive contamination, helping to suppress radioactivity-induced backgrounds. Av-
erage uranium concentrations in the Earth’s crust are a few parts per million (ppm)
by weight, which would lead to unacceptably high levels of background due to ra-
dioactivity. Minerals formed in ultra-basic rock deposits, stemming from the Earth’s
mantle, are much more radiopure. Examples of such minerals investigated here are
olivine and nchwaningite, for which we assume uranium concentrations of 0.1 parts per
billion. Even less contaminated by radioactive elements may be minerals in marine
evaporite deposits formed at the bottom of evaporating oceans. We assume uranium
concentrations of 0.01 parts per billion for such minerals and use halite and sinjarite
as examples. Halite and olivine are very common minerals. In contrast, sinjarite and
nchwaningite are less abundant but contain hydrogen. Although hydrogen makes up
only a small fraction of these minerals by mass, its presence plays an important role
in reducing neutron-induced backgrounds, as we discuss later.

We note that Refs. [263, 264] studied both halite and olivine, allowing a straight-
forward comparison with our results. Nchwaningite was also used in [264] and our re-
sults are comparable to nickelbischofite [NiCl2·6 (H2O)], used in [263], due to its similar
chemical composition. Sinjarite gives similar results to epsomite [Mg(SO4)·7 (H2O)]
used in [263, 264].

The rest of this paper is organized as follows. In Sec. 6.2, we discuss paleo-
detectors in more detail, including the calculation of signal spectra, track lengths,
and the most relevant background sources. In Sec. 6.3, we present the projected
upper limits and discovery reach for the minerals listed above. In Sec. 6.4, we use
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benchmark-free techniques to determine contours in the (DM mass)–(cross section)
plane which could be reconstructed with paleo-detectors in the hypothetical case of
a future discovery. We discuss a number of challenges for paleo-detectors in Sec. 6.5.
Our conclusions are presented in Sec. 6.6.

Code for performing all calculations presented in this paper is publicly available
here [289].

6.2 Theory

6.2.1 Signal from WIMP Scattering

For elastic scattering of DM with mass mχ off nuclei with mass mN , the differential
recoil rate as a function of recoil energy ER per unit target mass is given by [192]:

dR
dER

= ρχ
mNmχ

∫ ∞
vmin

vf(v) dσ
dER

d3v . (6.1)

The integral is over DM velocities v, with v = |v| and vmin =
√
mNER/2µ2

χN . We
assume standard spin-independent (SI) interactions, with equal couplings to protons
and neutrons. In this case, the differential cross section can be re-written in terms of
the DM–nucleon cross section at zero momentum transfer σSI

n as:

dσ
dER

= σSI
n

mN

2µ2
χpv

2A
2F 2(ER) . (6.2)

Here, µχN ≡ mχmN/(mχ+mN ) is the reduced mass of the DM–nucleus system (and
similarly for the DM-proton reduced mass µχp). The factor of A2 corresponds to the
coherent enhancement for a nucleus composed of A nucleons. The internal structure
of the nucleus is encoded in the form factor F 2(ER), for which we assume the Helm
parametrization [290, 219, 291]. The differential recoil rate then takes the standard
form:

dR
dER

= ρχσ
SI
n

2mχµ2
χp

A2F 2(ER)
∫ ∞
vmin

f(v)
v

d3v . (6.3)

For the DM distribution, we assume the Standard Halo Model (SHM), fixing a
benchmark value for the local density of ρχ = 0.3 GeV cm−3 [231, 214] in order to
compare directly with other direct detection experiments. However, we note that
observational estimates of ρχ vary substantially [72]. In the SHM, the DM velocity
distribution f(v) follows a truncated Maxwell-Boltzmann distribution, for which we
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fix values for the Sun’s speed v� = 248 km/s [225], the local circular speed vc =
235 km/s [226], and the Galactic escape speed vesc = 550 km/s [227]. We do not
consider here uncertainties on the speed distribution [214] or more recently suggested
refinements to the SHM [292].

Recoil spectra for DM and neutrino scattering are calculated using the publicly
available WIMpy code [212].

6.2.2 Paleo-Detector Rates

The rate of tracks produced with length xT per unit target mass is given by:

dR
dxT

=
nuclei∑
i

ξi
dRi
dER

(
dER
dxT

)
i

, (6.4)

where the index i runs over the different target nuclei which make up the mineral.
The rate of nuclear recoils (with initial energy ER) per unit mass is given by dRi/dER
and we weight by the mass fraction ξi of each nucleus i. The track length as a function
of initial recoil energy is calculated as:

xT (ER) =
∫ ER

0

∣∣∣∣ dE
dxT

∣∣∣∣−1
dE . (6.5)

The stopping power dE/dxT as a function of energy must be calculated for each of the
recoiling nuclei in a given target material. We use the publicly available SRIM package
(Stopping and Range of Ions in Matter) [293, 294] to tabulate the stopping power,
although analytic estimates are also possible [295, 264]. A more detailed discussion
of the calculation of track lengths can be found in Ref. [264].

In this paper we assume that recoiling hydrogen nuclei and α-particles do not
produce tracks which can be reconstructed. Whether such low-Z tracks are observable
will depend on the target material and read-out method and is a question which must
be determined empirically. A discussion of this issue as well as a comparison of results
with and without low-Z tracks can be found in Ref. [264].

The resolution at which track lengths can be measured depends on the read-out
technique used. For a true track length of x′, we assume that the measured track
length x is Gaussian distributed2 with track length resolution σxT :

P (x|x′) = 1√
2πσ2

xT

exp
(
− (x− x′)2

2σ2
xT

)
. (6.6)

2This assumption will depend on the imaging technique used and in practice it may be necessary
to quantify the probability distribution of the measured track length experimentally.
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The number of tracks with lengths in the range [xa, xb] is then:

N(xa, xb) = ε

∫ ∞
0

W (xT ;xa, xb)
dR
dxT

(xT ) dxT , (6.7)

where ε is the exposure, given by the product of the age of the mineral and the total
mass of the sample analyzed. The window function W captures resolution effects and
is given by:

W (xT ;xa, xb) = 1
2

erf
(
xT − xa√

2σxT

)
− erf

(
xT − xb√

2σxT

) . (6.8)

We assume that the smallest measurable track length is σxT /2 and consider tracks
as long as 1000 nm. As we will see in Sec. 6.2.5, DM-induced recoils do not typically
induce tracks longer than this.

We will consider two scenarios for the analysis of paleo-detectors, as in Ref. [264]:

• High resolution - we assume a track length resolution of σxT = 1 nm, which
may be achievable with helium ion beam microscopy [272] (using a focused
ion beam [296, 285] and/or pulsed lasers [297, 298, 299] to remove layers of
material which have already been imaged). In this case, we assume an exposure
of ε = 0.01 kg Myr, which would correspond to a few O(1 mm3) mineral samples,
each with an age of 1 Gyr.

• High exposure - we assume a track length resolution of σxT = 15 nm. Small
angle X-ray scattering has been demonstrated to achieve such spatial resultions
in three dimensions [286, 287, 271]. However, such resolutions have not yet
been demonstrated when imaging damage tracks arising from nuclear recoils.
Here we assume an exposure of ε = 100 kg Myr, corresponding to the analysis
of larger samples of O(10 cm3).

This is not an exhaustive list of possible scenarios, see Ref. [264] for a discussion of a
variety of read-out techniques.

We note that a number of techniques (both stratigraphic and radiometric) are used
for dating rock samples [300]. Perhaps most relevant for O(Gyr)-aged rocks is fission
track dating, which should allow an age estimate which is accurate to∼ 10% [301, 302],
though we will neglect dating uncertainties in our analysis.

Given the target materials we analyze, we note that DM candidates with mχ .
500 MeV do not give rise to a significant number of recoil tracks longer than ∼ 1 nm,
the best track length resolution assumed in our analysis. Thus, we only consider DM
with mχ & 500 MeV, though it may be possible to probe lower mass DM with either
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better track length resolution or with target materials which allow for longer tracks.

6.2.3 Backgrounds

Here, we summarize the most problematic backgrounds for DM searches with ancient
minerals. While follow-up studies and direct calibration will likely lead to refined
background modeling, we expect the estimates presented here to be representative.
A more detailed discussion can be found in Ref. [264].

We note that cosmogenic backgrounds should be negligible for materials obtained
from a depth below ∼ 5 km, meaning that the dominant backgrounds will be neutrino
interactions and intrinsic radioactive backgrounds in the target materials themselves.

Neutrinos — Being weakly interacting particles, neutrinos represent an irreducible
background to (non-directional) DM searches [303, 304, 305, 306]. Neutrinos with
MeV-energies can produce keV-scale nuclear recoils, thereby mimicking DM signa-
tures. We calculate the neutrino-nucleus scattering rate following Ref. [306] (and ref-
erences therein). In our analysis, we include solar, atmospheric and diffuse supernova
background (DSNB) neutrino fluxes, with spectra and normalizations as compiled in
Ref. [288]. Uncertainties on the present day neutrino fluxes vary substantially, from
O(1 %) for 8B and hep neutrinos [307] to as much as 50 % for DSNB neutrinos [308].
Paleo-detectors probe neutrino fluxes over the past O(1) Gyr, which may differ from
the current values. We therefore conservatively assume a Gaussian systematic un-
certainty of 100 % on the normalization of each neutrino component independently3,
including each of the components from different nuclear processes in the Sun.

Backgrounds from α-decays — One possible background is from the ‘uranium
series’ of uranium-238, a decay chain which proceeds via a series of α and β decays.
With each α-decay in the series, the child nucleus recoils against the α particle with
O(10− 100) keV energy. The half-life of 238U is T1/2 ∼ 4.5× 109 yr, while the subse-
quent decays occur much more quickly (T1/2 . 2.5× 105 yr). Thus, the vast majority
of 238U nuclei which decay will have completed the entire decay chain over the age of
the mineral (see Ref. [264] for a more in-depth discussion). Even if the α tracks are
not observable, the numerous decays in the chain will lead to a characteristic pattern
of tracks. We assume that all such track arrangements can be rejected as background.
However, we note that in a 10 mg sample of sinjarite there would be O(107) completed
decay chains and further work is required to estimate whether such large rejection
factors will be achievable in a real experiment.

3In principle, this allows negative normalization for the background, but in practice the data is
constraining enough to exclude this situation. The result is that the normalizations of the neutrino
fluxes are effectively free.
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A more problematic background comes from uranium-238 nuclei which have only
undergone a single α decay (238U → 234Th + α). In this case, the thorium-234 child
has a characteristic recoil energy of 72 keV and (assuming that the α track is not seen)
is indistinguishable from a DM-induced recoil. The number of such 1α-thorium tracks
depends on the relative half-lives of the 238U and 234U decays [(234U→ 230Th +α) is
the second α-decay in the uranium-238 decay chain] and is roughly

nTh ≈ 109 kg−1

(
C238

0.01 ppb

)
, (6.9)

where C238 is the uranium-238 concentration (by weight).
It should be possible to estimate the normalization of radioactive backgrounds to

a high precision, for example by measuring the number of full 238U decay chains in the
sample. We therefore assume a 1 % systematic uncertainty on the normalization of
the 1α-thorium background, though as we will see in Sec. 6.3, the projected sensitivity
of paleo-detectors is limited more by uncertainties in background shapes.

Neutron-Induced Backgrounds — Fast neutrons produced in or around the
target minerals will scatter elastically with nuclei. Such neutrons have a mean free
path of a few centimetres and typically give rise to 10−100 nuclear recoil events with
energies comparable to those caused by DM. This large number of neutron-induced
tracks is therefore difficult to reject as background.

Fast neutrons may be produced in the spontaneous fission (SF) of 238U. This
accounts for roughly 1 in every 2 × 106 decays of 238U, producing ∼ 2 fast neutrons
with MeV energies per SF decay. Neutrons may also be produced in (α, n) reac-
tions, in which nuclei absorb an incident α particles and emit fast neutrons. The
neutron-induced recoil spectra are estimated using the SOURCES-4A code [309], in-
cluding both SF and (α, n) contributions, as described in Ref. [264]. As in the case
of 1α-thorium backgrounds, the normalization of the neutron-induced background
scales with uranium-238 contamination. For minerals found in ultra-basic rocks (nch-
waningite and olivine), we assume a uranium-238 contamination of C238 = 0.1 ppb
by weight, while for those found in marine evaporites (halite and sinjarite) we assume
C238 = 0.01 ppb.

We assume a 1 % systematic uncertainty on the normalization of the neutron-
induced backgrounds. We discuss the sensitivity of our results to the assumed back-
ground uncertainty and explore more extended shape systematics in Sec. 6.3.
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6.2.4 Analysis Theory

To estimate projected upper limits and discovery reaches for paleo-detectors, we use
the statistical techniques developed in Ref. [1]. These extend traditional Fisher fore-
casting methods to the Poisson regime, which allows one to approximate the median
result obtained via a Monte-Carlo simulation with minimal computational overhead.
We briefly summarize the technique below.

Traditional Fisher forecasting methods are sufficient to accurately calculate ex-
pected exclusion limits as well as the discovery reach when in the Gaussian regime.
Typically, in direct detection experiments, however, the small number of signal and
background events means that the number of expected counts is not well described
by a Gaussian distribution. To remain accurate in this Poissonian regime, we adopt
the equivalent counts method, as developed in Ref. [1]. The basic procedure for the
equivalent counts method is to define a mapping between the expected background
counts, their associated uncertainty, and the expected signal such that the full profile
log-likelihood is approximated by the Poisson log-likelihood ratio. This mapping is
given by,

−2 ln Lp(DA(S0)|S0)
Lp(DA(S0)|S) ' −2 ln P (beq|beq)

P (beq|seq + beq) , (6.10)

where DA(S0) is the Asimov data set [17] given no expected signal events and S is the
expected number of signal events. P (a|a′) represents the Poisson probability mass
function, i.e., the probability of a events given a′ expected events. The equivalent sig-
nal and background events are denoted by seq and beq, respectively. They are defined
such that the log-likelihood ratio of a simple one-bin Poisson process approximates
the full log-likelihood ratio. We found expressions for seq and beq in terms of the
Fisher matrix of the full problem, which are given in Eq. (6) and Eq. (7) of Ref. [1].
The procedure leads – per definition – to exact results in the limits where the full
problem is a one-bin Poisson process or Gaussian, and approximates very well Monte
Carlo results in the intermediate range.

The discovery reach and exclusion limit can then, trivially, be calculated by solving

− 2 ln P (seq + beq|beq)
P (seq + beq|seq + beq) = Z2 , (6.11)

and
seq = Z

√
seq + beq , (6.12)

respectively, and mapping this back on to the signal parameters of the full model.
The significance level α determines the critical value Z, which is derived from the
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inverse of the standard normal cumulative distribution, denoted FN , as

Z(α) ≡ F−1
N (1− α) . (6.13)

For example, Z(0.05) = 1.64 represents a 95% confidence level. Reference [6] showed
that for most cases the equivalent counts method is accurate to the percent level. In
some exceptional cases the derived upper limit exhibits a maximum deviation of 40%
from a fully coverage corrected Monte Carlo calculation, for more detailed discussion
see Ref. [6]. These deviations are most relevant when two distinct regions of the
spectrum are present; one in which the signal dominates and the background is in the
Poissonian regime, and the other in which the background dominates over the signal.
In almost all our cases we expect a significant background so this is unlikely to be a
problem.

The information flux [1] provides an intuitive illustration of which region of sig-
nal space provide most information about the DM-induced signal. It is a generalized
signal-to-noise ratio which allows for the inclusion of extended systematics and covari-
ances. Technically, the information flux is obtained by taking functional derivatives of
the Fisher information matrix with respect to the exposure at different track lengths.
It can be thought of as the rate at which the error bar on the parameter of interest will
be reduced from an infinitesimal increase in exposure (for a particular track length).
We stress that the information flux is used for illustration only and does not enter
directly into the calculation of projected upper limits or the discovery reach.

The statistical techniques outlined above are implemented in the software package
swordfish4 [6]. This package provides a straightforward interface, allowing the user
to input signal and background spectra, and efficiently computes the projected ex-
clusion limits and discovery reach. Although the forecasting techniques developed in
Ref. [1] are applicable to unbinned data, the implementation in swordfish requires,
for practical reasons, that the data be binned. We use 70 log-spaced bins through-
out this work, with the range defined by the resolution as σxT /2 . xT . 1000 nm.
The number of bins was chosen by incrementally increasing the bin width until the
projected constraints on the cross section begin to weaken. This way we use the
minimum number of bins required to resolve all features in the track length spectra.
We do this both to minimize computation time and to ensure that the systematics
study in Sec. 6.3 is conservative (using a small number of bins enhances the impact of
bin-to-bin variations in the backgrounds). The same number of bins is used in both
the high resolution and high exposure cases to allow for an easier comparison between
the two read-out methods.

4https://github.com/cweniger/swordfish
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6.2.5 Track Length Spectra
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Figure 6.1: Track-length spectra and information flux for three different
WIMP masses. Each panel shows the spectrum of track lengths xT expected for
a different mineral target. WIMP signals are shown as solid lines, while background
distributions are shown as dotted and dashed lines. We fix the signal normalization
to σSI

n = 10−45 cm2. The information flux, shown above each set of spectra, is a
generalized signal-to-noise ratio discussed in more detail in Sec. 6.2.4. The information
flux has been calculated for the high-resolution case, with a track-length resolution
of σxT = 1 nm.

We now present the distribution of track lengths expected for DM signals as well
as the backgrounds already described in this section. These are shown in Fig. 6.1,
with each panel showing a different mineral. We fix the DM–nucleon cross section
to σSI

n = 10−45 cm2 and show the DM signal spectra for three different DM masses,
mχ = 5, 50 and 500 GeV, as solid lines. We see that at short track lengths, xT .
10 nm, where signals of lighter WIMPs would appear, the dominant background often
comes from solar neutrinos. At longer track lengths, where the signal from heavier
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DM typically peaks, the dominant backgrounds are radioactive: mono-energetic 1α-
thorium recoils and neutron-induced recoils.

In the upper part of each panel, we also plot the information flux, as described in
Sec. 6.2.4. The most pronounced feature is a sharp drop for track lengths correspond-
ing to 1α-thorium recoils. Little information about a DM signal can be gained by
studying tracks of this length, as signal events are here degenerate with 1α-thorium
tracks. The various peaks in the information flux indicate the track lengths that
provide the most constraining power for the DM signal. These maxima appear either
when the signal is large, corresponding to a large signal-to-background ratio, or when
one of the backgrounds is prominent. In the latter case, track lengths corresponding
to peaks in the information flux allow us to constrain the normalization of a particu-
lar background component. This in turn leads to improved constraints on the signal.
In between these peaked regions, the information flux is typically suppressed. Note
that the detailed shape of the information flux depends significantly on the specific
assumptions that are made about the correlation of background systematics.

We discuss the track length spectra, information fluxes and their impact on paleo-
detector sensitivity in more detail in the next section.

6.3 Projected Sensitivity

Here we present the results of the sensitivity analysis. First we discuss a simple
benchmark case in which we consider systematic errors only on the normalization of
the individual background components. We also use this scenario for the mass recon-
struction projections in Sec. 6.4. In addition, we also consider bin-to-bin systematics
in order to assess the impact of shape uncertainties of the background spectra on the
projected sensitivity.

6.3.1 Background Normalization Systematics

The backgrounds described in Sec. 6.2 all have an associated uncertainty which must
be accounted for within the analysis framework. For our background normalization
systematics scenario we assume that the shapes of the signal and backgrounds are
fixed with only a systematic uncertainty on the normalization of each background
component. The systematic uncertainties we assign to the normalization of different
backgrounds are detailed in Sec. 6.2.3. We ignore covariances between the signal and
background and between individual backgrounds components. With careful calibra-
tion, we may be able to understand the shape of the background to a high degree of
precision. In practice, it should be straightforward to produce target samples with
high levels of radioactivity-induced tracks in the laboratory, though such an approach
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is more challenging for the neutrino-induced backgrounds.
Uncertainties in the normalization of the backgrounds can be mitigated when a

good ‘control region’ is available, where the signal is sub-dominant and the overall
background rate can be well-constrained. This is typically the case for the broad
distribution of neutron-induced recoils; even for heavy WIMPs, the signal drops off
well below 1000 nm, providing a good control region at large track lengths. Instead,
neutrino-induced backgrounds may mimic the DM signal for certain DM masses. If
this is the case, no control region is available and limits are severely weakened.

We show in Fig. 6.2 the projected sensitivity for the four minerals we consider in
this work. The top two panels show the projected 90% confidence exclusion limits
while the bottom two panels show the projected 5σ discovery reach [310], which
we define as the line above which the paleo-detector setups we consider would have
at least 50 % chance of achieving a 5σ discovery of DM. In gray, we show current
bounds from conventional direct detection experiments, coming predominantly from
XENON1T [18] and SuperCDMS [240] in this mass and cross section range.

In the left panels, we show the high resolution case, with σxT = 1 nm and an
exposure of ε = 0.01 kg Myr. The ‘bump’ in the limits at mχ ∼ 7 GeV is due to
the WIMP signal spectrum near this mass being mimicked by the spectra of 8B
and hep neutrinos. This ‘Solar neutrino floor’ has been studied in detail in, for
example, Refs. [306, 311, 288]. The loss in sensitivity is even more pronounced in
our case, owing to the larger systematic uncertainty we have assigned to the Solar
neutrino flux. In addition, moving away from mχ ∼ 7 GeV, the spectra are no longer
degenerate, meaning that control regions are rapidly regained and sensitivity restored.
In contrast to conventional direct detection experiments, paleo-detectors have large
enough exposures to directly constrain the normalization of the 8B/hep Solar neutrino
fluxes.

Even accounting for these low energy background neutrinos, in the left panels,
the limits at low mass are substantially stronger than limits from any conventional
detector. This is due to the ability of modern imaging techniques to measure small
track lengths. Tracks of 1 nm in length typically correspond to recoil energies around
100 eV, giving a threshold comparable to the CRESST-2017 Surface Run [241], albeit
with a much larger exposure. Thus, for DM lighter than ∼ 10 GeV, paleo-detectors
may probe DM–nucleon cross sections much smaller than the projected sensitivity of
conventional direct detection experiments.

For larger DM masses, the sensitivity is severely limited by neutron-induced back-
grounds. Nchwaningite and sinjarite contain hydrogen, which is an efficient moderator
of fast neutrons. Thus, the rate of neutron-induced backgrounds is much smaller than
in olivine and halite, which do not contain hydrogen. In addition, for halite and sin-
jarite we assume an intrinsic contamination of C238 = 0.01 ppb, whereas for olivine
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Figure 6.2: Projected paleo-detector sensitivity using a spectral analysis.
Top: Projected 90% Upper Limits. Bottom: 5σ Discovery Reach. In the left col-
umn, we assume σxT = 1 nm; ε = 0.01 kg Myr (high resolution case). In the right
column, we assume σxT = 15 nm; ε = 100 kg Myr (high exposure case). We assume a
100 % systematic uncertainty on the normalization of each individual neutrino com-
ponent, as well as a 1 % systematic uncertainty on the normalization of both the
neutron background and the 1α-thorium background. Gray regions show the param-
eter space currently excluded by conventional direct detection experiments [243, 18].
In the upper panels, we also show the projected limits from nchwaningite using a
sliding window analysis (dotted purple), as reported recently in Ref. [264].

and nchwaningite we assume C238 = 0.1 ppb. For nchwaningite and sinjarite, the
minerals containing hydrogen, cross sections as low as 10−46 cm2 could be probed
for a DM mass of 50 GeV, assuming an exposure of 0.01 kg Myr, as shown in the left
panels. At higher masses, the projected sensitivity of paleo-detectors is comparable
to current XENON1T bounds.

In the right panels of Fig. 6.2, we show the projected sensitivity for the lower
resolution case, with σxT = 15 nm and a larger exposure of ε = 100 kg Myr. For DM
heavier than 100 GeV, it is possible to probe DM–nucleon cross sections a factor of
30 and 100 smaller than current XENON1T bounds using nchwaningite and sinjarite,
respectively. For DM lighter than 10 GeV, the sensitivity is marginally weaker than in
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the high resolution case; at low DM mass, the signal spectrum peaks towards shorter
track lengths and is thus challenging to resolve with worse resolution.

We note that the projected limits are comparatively weak between 20 and 100
GeV. This is because the peak due to 1α-thorium recoils (vertical dashed lines in
Fig. 6.1), typically coincides with the peak in the signal spectra in this mass range5.
We see in the upper panels of Fig. 6.1 that the broad peak in the information flux
for the 50 GeV case typically occurs at the same position as the ‘dip’ caused by the
1α-thorium background.

We now compare our results with those obtained using a simpler ‘sliding window’
analysis in Refs. [263, 264], where a cut-and-count analysis is performed over a window
chosen to optimize the signal-to-noise ratio. In the top two panels of Fig. 6.2, we show
the limit obtained in Ref. [264] for nchwaningite.

In the high resolution case (left panels of Fig. 6.2), we find that the ‘sliding
window’ analysis is only marginally less sensitive at the highest masses. Near mχ ∼
50 GeV, the full spectral analysis is more sensitive by a factor of a few due to better
rejection of the sharply peaked 1α-thorium background. Going to lower masses, the
‘bump’ corresponding to the 8B/hep Solar neutrinos becomes more pronounced in a
full spectral analysis. For lighter DM, the neutrino- and DM-induced spectra become
distinguishable again. The spectral analysis can effectively reduce the error on the
normalization of the neutrino-induced background by using information from track
lengths where neutrino-induced events dominate. For example, at masses of 1 GeV
this allows the projected sensitivity from the spectral analysis to improve nearly an
order of magnitude with respect to that found in the ‘sliding window’ analysis.

In the high exposure case (right panels of Fig. 6.2), the spectral analysis gains
roughly an order of magnitude in sensitivity with respect to the ’sliding window’ anal-
ysis for DM heavier than ∼ 100 GeV. The lower resolution makes it more difficult to
exploit subtle differences in the shape of the signal and background spectra. How-
ever, at the longest track lengths considered, the tracks induced by neutrons always
dominate over those induced by DM, cf. Fig. 6.1. Because of the larger exposure,
this ‘control region’ has sufficient statistics to tightly constrain the normalization of
the neutron-induced background. Thus, the sensitivity to higher mass WIMPs is
improved with respect to the ‘sliding window’ analysis.

5For mχ ∼ 50 GeV, the typical recoil energy for nuclei in the minerals we consider is ∼ 20 keV,
much smaller than the 72 keV 1α-thorium recoil. However, the stopping power for lighter nuclei such
as Ca, Cl and Na is smaller, leading to similar track lengths.
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Figure 6.3: Maximum signal-to-background ratio at the 90 % confidence
limit. Both lines show the maximum signal-to-background ratio (over all track
lengths) for sinjarite with σSI

n set to the projected 90 % confidence exclusion limit
at each mass. The orange (dashed) line shows the high-resolution case. Here we see
the signal-to-background is relatively constant around 10−30 %. The blue (solid) line
shows the high-exposure case. At low masses the maximum signal-to-background is
roughly 10 % whereas at high masses this is reduced to 0.4− 0.5 %. This is reflected
by the increased sensitivity of the limit to bin-to-bin background shape uncertainties,
as shown in Fig. 6.4.

6.3.2 Background Shape Systematics

As discussed in the previous section, our sensitivity to DM at high masses is typically
limited by neutron-induced backgrounds. Conversely, neutrinos are the dominant
background for low DM mass. As we show in Fig. 6.3, the maximum signal-to-
background ratio (as a function of track length) for the high exposure case is typically
much smaller than 10 %. This means that the strength of the limits depends in
principle on a %-level understanding of the shape of the background distributions. For
the high resolution case the maximum signal-to-background is typically closer to 30 %.
Therefore, the projected sensitivity should be more robust to shape uncertainties in
that case.

In order to explore how the sensitivity of paleo-detectors is affected by such back-
ground shape uncertainties, we assign a Gaussian systematic error to the normaliza-
tion of each bin of each background component. Our analysis therefore allows the
backgrounds in individual bins to fluctuate independently. Because we no longer as-
sign systematic uncertainties to the overall normalization of the backgrounds, in some
situations (e.g. when the bin-to-bin uncertainty is chosen to be smaller than the nor-
malization uncertainty in Sec. 6.3.1) the projected limit with shape uncertainties may
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be stronger than in the normalization systematics case. In such situations, we set the
projected limit equal to the normalization systematics case.

In Fig. 6.4, we plot the limits obtained with various bin-to-bin background sys-
tematics for a sinjarite paleo-detector. For comparison, we also show the sensitivity
obtained in the background normalization systematics case described in the previous
sub-section. These results are mostly illustrative since the actual level of shape uncer-
tainties is hard to anticipate a priori. However, they indicate the level of uncertainty
that can be tolerated in practice.

As expected, allowing some variation in the shape of the backgrounds degrades
the sensitivity of paleo-detectors. In the upper panel of Fig. 6.4 we show the high
resolution case. The limit is unaffected by bin-to-bin systematics until they are in-
creased to 50 %. The more relevant uncertainty is therefore the overall normalization
of the background components.

The high exposure case is shown in the lower panel of Fig. 6.4. We find a much
greater dependence on the background shape systematics. For 10 % bin-to-bin sys-
tematic uncertainties, the sensitivity is degraded by an order of magnitude compared
to the background normalization systematics case for DM heavier than ∼ 40 GeV.
Another factor of ∼ 5 is lost when increasing the bin-to-bin systematics from 10 % to
50 %.

The high resolution case is more robust to background shape systematics primar-
ily because of its larger signal-to-background ratio, as shown in Fig. 6.3. In addition,
spectral features in the high resolution case are more pronounced, allowing for easier
distinction between signal and background even when there are significant uncertain-
ties in the background shapes.

For comparison with our projections, we also show in Fig. 6.4 the projected
90 % confidence exclusion limits from LUX-Zeplin [218] and SuperCDMS SNOLAB
(Ge) [262] (planned for data-taking from 2020 onwards), with respective exposures of
1.5×104 kg yr and 44 kg yr. For DM masses below 10 GeV, the high resolution case can
improve upon future SuperCDMS SNOLAB constraints by up to one and a half or-
ders of magnitude. For the case of 50 % bin-to-bin shape systematics, sinjarite would
still be an order of magnitude more sensitive than SuperCDMS SNOLAB projections
at 2 GeV. The high exposure case can achieve the same sensitivity as LUX-Zeplin to
higher mass DM only if the background shape uncertainties are kept at the 1 % level.

6.4 Constraining the Dark Matter Mass

In this section, we investigate to what extent the properties of a DM candidate, in
particular its mass, could be constrained in the hypothetical case of a DM discovery.
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Figure 6.4: Projected 90 % confidence limits for sinjarite including back-
ground shape systematics. Top and bottom panels show the high resolution and
high exposure cases, respectively. Blue line: Background normalization systemat-
ics case with systematic normalization uncertainties for each background component.
The normalization systematic on neutrinos here is set to 100 % whereas for the ra-
dioactive backgrounds we assume 1 % normalization error. Red, Orange, and green
lines: Background shape systematics case where we allow the normalization of each
background component in each of the 70 log-spaced track-length bins to fluctuate
independently. The red, green, and orange lines show results for 50 %, 10 %, and 1 %
systematic uncertainty per bin, respectively. Note that where the bin-to-bin system-
atics produce a limit stronger than that of the normalization systematics case, we
set the projected limit assuming normalization systematics. In the top panel the 1%
(orange dotted) and 10 % (green dashed) bin-to-bin systematic lines are therefore not
distinguishable from the normalization systematics case (blue solid). Shaded regions
show projected limits from LUX-Zeplin [218] and SuperCDMS SNOLAB (Ge) [262].

124



6.4. Constraining the Dark Matter Mass

Thus, we switch from projecting limits, as in Sec. 6.3, to parameter reconstruction. A
priori there is no reason for the DM to appear in any particular region of the parameter
space. Instead of employing benchmark scenarios as often done in the literature [312,
313, 173, 314], we perform a benchmark-free study using the Euclideanized signal
method [6, 2].

The Euclideanized signal method maps points in the model parameter space –
here, (mχ, σSI

n ) – onto points in a ‘Euclideanized signal’ space, taking into account
systematic uncertainties, covariances and nuisance parameters. Likelihood ratios
between points in the model space are mapped to Euclidean distances in the ‘Eu-
clideanized signal’ space. Comparing the Euclidean distances between large numbers
of points is computationally fast (using clustering algorithms), allowing us to effi-
ciently map out the reconstruction prospects over a wide range of the parameter
space. Full details of the Euclideanized signal method can be found in Refs. [6, 2] and
a summary is given in App. 6.7.1.

For regions where a future signal would provide a closed constraint on the DM
mass, we calculate the accuracy to which this is possible by defining the fractional
uncertainty as

∆mχ

mχ
= |mχ,max −mχ,min|

mχ
. (6.14)

Here, mχ,max andmχ,min are the maximum and minimum edges of the two-dimensional
2σ confidence contour around a point with a given (mχ, σ

SI
n ). Note that these con-

tours are typically quite asymmetric, usually extending much further towards masses
larger than the true mass than towards masses smaller. Thus, a fractional uncertainty
∆mχ/mχ & 1 does not necessarily imply that no information about the DM mass can
be obtained. Rather, ∆mχ/mχ & 1 typically implies that ∆mχ/mχ ∼ mχ,max/mχ,
while usually mχ,min is not much smaller than mχ.

In Fig. 6.5, we show the ability of a sinjarite paleo-detector to constrain the DM
mass from a future signal. The color scale shows contours in ∆mχ/mχ; in the following
we refer to the colored regions as those where the mass can be reconstructed. The
gray regions indicate points in the parameter space where the 2σ confidence contours
are not closed, i.e. the reconstructed mass would be unbounded from above. Thus,
we refer to the gray regions as portions of parameter space where the mass cannot be
reconstructed. In Fig. 6.5, we quantify how well the mass could be reconstructed for
DM–nucleon cross sections between the projected 90 % confidence exclusion limits, cf.
Sec. 6.3.1, and cross sections a factor 100 larger than this (the region bounded by the
two black curves). Note that some of this region is already ruled out by XENON1T,
cf. Fig. 6.2.

Direct detection experiments suffer from an almost exact degeneracy between
the mass and cross section at large DM masses [221]. The degeneracy occurs when
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Figure 6.5: Constraints on the mass of a DM particle from a future signal.
Gray shaded regions correspond to parameter points where the DM mass is uncon-
strained from above at the 2σ-level. The colored contours indicate the fractional
uncertainty on the DM mass obtained by constraining a future signal, as defined in
Eq. (6.14). Top and bottom panels show the high resolution and high exposure cases,
respectively. The lower black lines in both panels correspond to the projected 90 %
confidence limit in Fig. 6.2. We consider regions between these lower lines and a factor
of 100 larger, indicated by the upper black lines. Note that some of these regions are
already excluded by current experiments (see shaded regions in Fig. 6.2).

mχ & mN . This is because, for a given nuclear recoil energy, vmin depends only on the
reduced mass of the DM–nucleus system. For mχ � mN , the reduced mass becomes
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6.4. Constraining the Dark Matter Mass

independent of the DM mass.
For traditional direct detection experiments, the ability to reconstruct the mass of

a hypothetical DM particle has been studied extensively, see e.g. [220, 221, 315, 2, 314].
These studies found that a Xenon experiment would only be able to constrain the DM
mass up to ∼ 200 GeV. For paleo-detectors, we instead find that mass reconstruction
is possible for DM masses as large as ∼ 1 TeV.

We show results for the high-resolution configuration in the upper panel of Fig. 6.5.
In the case of DM–nucleon cross sections just below the current limits, we find that the
largest DM mass for which the mass could be reconstructed is ∼ 250 GeV. In the high
exposure configuration (Fig. 6.5, lower panel) the DM mass could be reconstructed for
masses as high as ∼ 1 TeV if the DM–nucleon cross section is just below current limits.
For cross sections further below current limits, we see that in the high resolution case
the colored region extends to slightly larger masses than in the high exposure case.

For a DM candidate with mass below ∼ 10 GeV, the mass could be reconstructed
for all cross sections in reach of a sinjarite paleo-detector in either the high resolution
or high exposure configuration. Although the precision of the mass reconstruction
depreciates with decreasing DM–nucleon cross section, there are large regions of pa-
rameter space which are currently unconstrained and where the DM mass could be
reconstructed reasonably well by paleo-detectors in case of a discovery.

The potential for paleo-detectors to tightly constraint the mass of a DM candidate
stems in part from their large exposure. For example, in the high resolution case, a
6 GeV DM candidate with cross section at the 90 % confidence exclusion limit would
give rise to ∼ 105 signal events. Such large numbers of events would allow us to accu-
rately map out the track length spectrum. For DM masses of ∼ 1 TeV, paleo-detectors
would only measure O(103) events at the exclusion limit, making the reconstruction
of the associated track length spectrum more challenging. This should be contrasted
with exposures possible in conventional direct detection experiments, where at their
exclusion limits only O(1-10) events would be detected. Such a low number of sig-
nal events would not provide enough information to resolve minute differences in the
recoil spectra required for mass reconstruction.

Further, paleo-detectors could probe track lengths over three orders of magnitude,
which corresponds to sensitivity spanning a large range of recoil energies. In particu-
lar, a 1000 nm track corresponds roughly to a ∼ 1 MeV nuclear recoil whereas a 1 nm
track equates to a ∼ 100 eV recoil6. The high energy part of the recoil spectra has
a significant dependence on the DM mass [173, 314]. Unlike the traditional energy
window of direct detection experiments, we exploit this information by observing a
wide variety of track lengths.

6This can obviously depend significantly on the recoiling nucleus and target material.
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6. Dark Matter Discovery Potential of Paleo-Detectors

Finally, the target materials we consider here contain a variety of constituent
nuclei with different masses. Sinjarite contains nuclei with masses from 1 GeV (H)
to 37 GeV (Ca). Since the observed signal is a weighted sum over the contributions
from the respective target nuclei, the resulting track length spectrum is richer in
features than the simple slope dependence one finds for a single target nucleus. As
these features can be exploited efficiently with a spectral analysis, paleo-detectors are
particularly well suited for DM mass reconstruction.

We note that we have not considered any uncertainties in the DM velocity dis-
tribution in this analysis. For example, the longest tracks (which we leverage to
constrain very heavy DM) are produced by the fastest moving DM particles, close to
the Galactic escape velocity. The length of these longest tracks is therefore dependent
on uncertainties in the escape velocity. More generally, allowing for variations in the
DM distribution will widen the constraints on the DM mass. A number of techniques
have been developed to incorporate velocity distribution uncertainties in direct detec-
tion (see for example Refs. [229, 316, 312, 317, 318, 319, 320]) but we leave this more
detailed analysis to future work. We note however that previous studies have shown
that using multiple experiments with different target nuclei greatly reduces the im-
pact of these uncertainties [173, 2]. We expect the same to be true for paleo-detectors
since the minerals investigated in this work contain a variety of target nuclei.

6.5 Challenges

Throughout this work we have shown that the sensitivity of paleo-detectors may well
exceed that of current direct detection experiments. In Sec. 6.3.1, we projected the
sensitivity assuming systematic errors on the overall normalization of the different
background components only. For the neutrino-induced backgrounds, we assumed
100 % systematics, while we assumed 1 % systematics for backgrounds induced by
radioactivity. In order to check the robustness of our results, we increased the nor-
malization systematics on the neutron-induced backgrounds to 5 % and found that the
sensitivities are unaffected. In the following, we discuss some of the other potential
issues moving forward.

In our background normalization systematics case we assumed no covariance be-
tween the normalization of the background components. This assumption should hold
for many background components, for example we expect no covariance between the
spectra induced by solar neutrinos and diffuse supernova neutrinos. For the radiogenic
backgrounds there may exist some covariance since they have a common origin.

For the background shape systematics case, we assume no bin-to-bin covariances.
This may be an optimistic or pessimistic assumption depending on the covariances
one might expect. The most troublesome scenario would be a bin-to-bin covariance
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that makes signal-like variations in the background more likely. Due to the lack of
theoretical guidance, we have chosen not to explore bin-to-bin covariances. Instead
we attempt to maximize the error introduced by bin-to-bin systematics by using the
minimum number of bins required to resolve all features in the spectra. We leave
careful study of covariances to future analyses.

One of the primary assumptions throughout our analysis is that we can reject
damage features in the minerals that are not tracks arising from nuclear recoils. Fur-
ther, we do not consider the background produced by a series of linked α-recoil tracks
in the uranium-238 decay chain. The assumption is that the characteristic track
pattern is easily recognizable and therefore rejected with 100% efficiency. In reality
there will be > O(107) tracks within a sample, many of which will exhibit these char-
acteristic track patterns. We therefore require an automated tagging and rejection
system. Since the characteristic track pattern is quite distinct from a normal track, it
is possible that this system can be very efficient. However, this is yet to be validated
for a large data set, a task we leave to future work.

The data produced by scanning significant amounts of material at high precision
could present an issue by itself. Naively, scanning 1mm3 of material at 1nm preci-
sion will produce 106 terabytes of data. It is a monumental task to analyze such a
large data set. Luckily, much of the mineral will contain no track information at all,
therefore a suitable compression format can be adopted to make the analysis more
tracktable. Analysis of the data will require automated track-recognition, an ideal
application of machine learning algorithms. We will also address this in future pub-
lications.

Naively, one would expect paleo-detectors to be able to exploit directional in-
formation from the orientation of the recoil tracks. However, the target minerals we
consider here are O(1 Gyr)-old, which is comparable to the period of the Sun’s revolu-
tion around the Galactic center. Also, geological processes occur on timescales shorter
than O(1 Gyr), further complicating the expected directionality of the DM-induced
signal. Reference [279] attempted to quantify the directional dependence of the DM-
induced tracks within ancient minerals, showing that there is a preferred direction.
Unfortunately for an O(1 Gyr) mineral the effect in ancient mica was calculated to
be only O(1%). Because it is unlikely that we will be able to resolve the head/tail
orientation of tracks at the nm scale, the induced anisotropy would need to be much
larger than O(1%) in order to be statistically observable [321].

Finally, the translation of the range of the nucleus xT to the reconstructed track
length after read-out is a source of uncertainty. Quantifying such an uncertainty
requires detailed studies for different combinations of minerals and read-out meth-
ods [264]. However, in the case of a claimed detection, we would be able to confirm
a signal using minerals with different constituent nuclei and ages, allowing one to
mitigate some of these systematic issues.
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6. Dark Matter Discovery Potential of Paleo-Detectors

6.6 Conclusions

In this work, we have explored the prospects for probing Weakly Interacting Massive
Particle (WIMP) Dark Matter (DM) with paleo-detectors. In particular, we have
extended previous studies by performing a full spectral analysis, including information
about the expected distributions of track lengths left in the minerals by a DM signal
as well as by neutrino-induced and radiogenic backgrounds. We further explored
how systematic uncertainties on the normalization and shape of backgrounds impact
projected limits. Finally, we have studied how well the DM mass could be measured
in case of a future discovery.

We considered 4 minerals in this work: halite [NaCl], olivine [Mg1.6Fe 2+
0.4 (SiO4)],

sinjarite [CaCl2·2 (H2O)] and nchwaningite [Mn 2+
2 SiO3(OH)2·(H2O)]. Sinjarite is the

most sensitive out of the minerals examined here due to the assumed low levels of
radioactive contamination and efficient neutron moderation by hydrogen (Ref. [264]
came to a similar conclusion for the mineral epsomite [Mg(SO4)·7 (H2O)]).

For moderate track length resolutions, σxT = 15 nm, we find that the full spectral
analysis extends the projected paleo-detector sensitivity to DM–nucleon cross sections
roughly an order of magnitude smaller than the sliding window analysis of Refs. [263,
264]. This improvement is driven by the fact that a full spectral analysis automatically
entails the use of optimal ‘control regions’, where the signal is sub-dominant, helping
to pin down the normalization and shape of the backgrounds.

We find that by analyzing anO(10 cm3) sample of sinjarite using small angle X-ray
scattering, it could be possible to probe DM–nucleon cross sections roughly a factor of
100 smaller than current direct detection experiments for DM heavier than ∼ 100 GeV.
Including systematic uncertainties in background shapes at the 10 %-level, projected
limits remain a factor of 7 − 8 more stringent than current XENON1T bounds [18].
The sensitivity depreciates further if systematics larger than 10 % are assumed for the
shapes of backgrounds.

Analyzing smaller samples of O(1 mm3) at nm-resolution (e.g. using helium ion
beam spectroscopy), we find that paleo-detectors may be able to probe DM–nucleon
scattering cross sections many orders of magnitude below current limits, for 500 MeV .
mχ . 10 GeV. Probing O(nm) track lengths corresponds to an O(100 eV) energy
threshold, exploring significant regions of the recoil spectra from low-mass WIMPs.
With high-resolution read-out methods, the limits would be robust to systematic
uncertainties in the background shapes as large as ∼ 50 %.

In addition, we have investigated the prospects for paleo-detectors to constrain
the DM parameters in the case of a future signal. As an example, we calculate the
regions in which the mass and cross section become degenerate for a sinjarite paleo-
detector. We find that below mχ . 15 GeV, it would be possible to reconstruct the
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mass of the DM particle with a relative error of less than 10 % if the cross section is
large enough for a 5σ discovery. For mχ & 15 GeV the signal becomes increasingly
insensitive to changes in mχ, making the mass harder to constrain. In spite of this,
paleo-detectors should be able to obtain both a lower and an upper limit on the DM
mass for mχ . 1 TeV if the cross section is just below current limits. In contrast,
conventional direct detection experiments could provide only a lower bound on the
DM mass if the true mass is larger than ∼ 200 GeV [2].

Paleo-detectors could also be used to investigate a number of interesting questions
beyond searches for DM. For example, in the absence of a DM signal, the analysis
outlined here would straightforwardly allow us to measure neutrino-induced events.
It could therefore be possible to use mineral samples of different ages as a unique
probe of the neutrino history of our galaxy. This will potentially allow us to study
both historical neutrino processes in the Sun and the signal from supernovae.

Paleo-detectors represent an excellent opportunity to probe large areas of the
WIMP DM parameter space in the near future. The next steps involve assessing the
practical challenges of reaching the required exposures to achieve these sensitivities,
as well as more detailed modeling of backgrounds. We leave both of these tasks to
future work. However, we note that WIMP-nucleon cross sections much smaller than
projected in this work may be probed by paleo-detectors if either novel ideas to con-
trol the backgrounds emerge (akin to progress made in conventional direct detection
experiments in recent decades) or if target materials with significantly lower levels
of radioactivity are available. With uranium concentrations of . 10−15, radioactive
backgrounds would no longer dominate at high DM masses. In such a case, paleo
detectors could perhaps probe WIMP-nucleon cross sections all the way down to the
diffuse supernova and atmospheric neutrino floor.

6.7 Appendix

6.7.1 Euclideanized Signals

Whether an experiment is a priori able to constrain a parameter of interest involves
calculating the expected statistical distinctness between two signals, given a set of
backgrounds and their associated uncertainties [9]. Points in the model parameter
space are described by a d-dimensional vector θ = (θ1, θ2, . . . , θd). Two model pa-
rameter points θ(1), θ(2) can be considered as experimentally distinguishable if the
parameter point θ(2) is inconsistent (at a given significance level) with the Asimov
data D = D̄(θ(1)). For our application we have a two dimensional model where
θ(i) = {m(i)

χ , (σSI
n )(i)}. In order to establish experimental distinguishability, we use
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the maximum-likelihood ratio as a test statistic (TS) [146, 17],

TS(θ(2),θ(1)) ≡ −2 ln maxηL(D̄(θ(1))|θ(2),η)
maxηL(D̄(θ(1))|θ(1),η)

, (6.15)

where L(D|θ,η) is the likelihood function for data D. It can depend on some nuisance
parameters η that are profiled out when calculating TS. For model parameter points
with sufficiently similar signals, the value of TS is approximately symmetric under
θ(1) ↔ θ(2). Hence, we can write

TS(θ(2),θ(1)) ≈ (θ(1) − θ(2))TI(θ(1) − θ(2)) , (6.16)

where

Iij = −
〈
∂2 logL(D|θ(1))

∂θi∂θj

〉
D(θ(1))

, (6.17)

is the Fisher information matrix at θ(1). The derivatives here describe the curvature
in the direction of a particular parameter. The Fisher information matrix defines a
metric on the space of model parameters, making it accessible to the tools of differ-
ential geometry.

The Euclideanized signal method is an approximate isometric embedding of a
d-dimensional model parameter space (with geometry from the Fisher information
metric) into n-dimensional Euclidean space: θ 7→ x(θ) with x ∈M ⊂ Rn and θ ∈ Rd.
This embedding allows one to estimate differences in the log-likelihood ratio by the
Euclidean distance,

TS(θ(2),θ(1)) ' ‖(x(θ(1))− x(θ(2))‖2 . (6.18)

Machine learning tools (in particular clustering algorithms, which usually assume
Euclidean space) can then be used to efficiently explore the signal phenomenology of
different models, and to systematically compare entire model classes, see Ref. [223].
For details on the Euclideanized signal transformation and its accuracy see Ref. [6].
The accuracy of the method (relative to the TS value) is at the < 20% level, and
details can be found in Ref. [2].

We can now estimate the ability of an experiment to constrain the mass in the
following way:

• Grid scan the parameter space, calculating signals for each point θ(i). Here, it
is essential that all distinguishable model parameter points are covered down to
a specific significance level (this should correspond to approximately 10 points
per 1σ region).
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• Euclideanize the signals using swordfish to produce associated vectors xi. Note
that the transformation is able to account for arbitrary Gaussian background
uncertainties and correlations, see Refs. [2, 6] for more details.

• For each parameter point θ(i) we calculate its associated nearest neighbours
within a predefined significance. Here we use 2σ which corresponds to a radius
of
√

2 in one dimension. The number of dimensions reflects the difference in di-
mensionality between the two-parameter model with {mχ, σ

SI
n } and the model

living on the high mass boundary where mχ is fixed. If this set of nearest neigh-
bours contains a parameter point on the high mass boundary7 the constraint
on the mass around θ(i) is unbounded from above.

7Here we define the high mass boundary as 10 TeV.
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7
Paleo-Detectors for Galactic

Supernova Neutrinos

This chapter is based on work from Ref. [4]

7.1 Introduction

Supernovae (SNe) play an important role in cosmology and astrophysics. For exam-
ple, SN feedback is thought to be an important ingredient for understanding galaxy
formation [322]. While many extragalactic SNe have been observed [323, 324, 325,
326, 327, 328, 329], allowing for a rather precise determination of the cosmic SN rate
[330, 331, 332], only a handful of SNe have been observed in the local group [333, 334].
To date, no direct measurement of the SN rate in the Milky Way exists; estimates in
the literature suggest a rate of a few SNe per century [335, 336, 337, 338, 339, 340].

In this paper, we explore the potential of paleo-detectors to measure the core
collapse (CC) SN rate in our galaxy. Paleo-detectors have recently been studied as
a method for the direct detection of dark matter [263, 341, 3]. In certain minerals,
e.g. those long used as solid state track detectors, recoiling nuclei leave damage tracks
[265, 266, 267, 268]. Once created, such tracks are preserved over geological time
scales. In paleo-detectors, one would search for damage tracks in minerals as old as
∼ 1 Gyr using modern nano-technology such as helium-ion beam or X-ray microscopy
[263, 341]; see also [342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354,
355, 277, 275, 356, 279] for related earlier ideas that use ancient minerals to probe
rare events.

Besides probing dark matter, paleo-detectors would also detect neutrinos via nu-
clear recoils induced by coherent neutrino-nucleus scattering. Thus, paleo-detectors
could, for the first time, provide a direct measurement of the galactic CC SN rate
over the past ∼ 1 Gyr.

SNe are broadly divided into thermonuclear (SNIa) and CC SNe. Only the latter
ones are expected to produce a significant flux in neutrinos. The progenitors of CC

135



7. Paleo-Detectors for Galactic Supernova Neutrinos

SNe are massive stars (heavier than∼ 8M�). Such stars are short-lived, with lifetimes
. 50 Myr, see e.g. [357, 358]. Thus, on the time scales relevant for paleo-detectors
(order 100 Myr and longer), the CC SN rate closely traces the star formation rate,
see e.g. [359, 360, 330, 331]. Considerable uncertainties exist in the estimates of the
local star formation rate, see e.g. [361, 362, 363, 364, 365] for recent work. A direct
measurement of the galactic CC SN rate would thus provide valuable information for
understanding our galaxy.

While paleo-detectors would only provide a coarse-grained time resolution, we
demonstrate that some time-dependent information of the galactic CC SNe rate can
still be obtained. We consider two distinct cases: (i) we study how well a smooth
time evolution of the CC SN rate could be constrained by paleo detectors, and (ii) we
investigate if paleo-detectors could be used to find evidence for a starburst period in
the Milky Way within the last ∼ 1 Gyr. Both of these cases would provide information
about the star formation history of the Milky Way. SN explosions in close proximity
to Earth have also been hypothesized to give rise to mass extinction events, see e.g.
[366, 367, 368, 369, 370, 371, 372, 373, 374]. We demonstrate that paleo-detectors
could probe a single close-by CC SN explosion if it occurred during the exposure time.

The remainder of this paper is organized as follows. In Section 7.2, we discuss
the track length spectrum produced in paleo-detectors from galactic CC SN neutri-
nos. In Section 7.3, we briefly review the relevant sources of backgrounds; a more
detailed discussion can be found in [341]. The best read-out technique for the damage
tracks induced by galactic CC SN neutrinos appears to be small angle X-ray scatter-
ing tomography, which we discuss in Section 7.4. Our projections for the sensitivity
of paleo-detectors to galactic CC SNe as well as the time-evolution of the CC SN
rate are discussed in Section 7.5. In Section 7.6 we summarize and discuss. Appen-
dices 7.7.1 and 7.7.2 contain additional details about uranium-238 concentrations in
typical target materials and the statistical techniques used in this work, respectively.
All relevant code can be found online at DOI:10.5281/zenodo.3066206.

7.2 Galactic Core Collapse Supernova Signal

CC SNe are amongst the brightest astrophysical sources of neutrinos. In fact, SN 1987A
(which occurred in the Large Magellanic Cloud) is the only astrophysical object, be-
sides the Sun [and the recently-claimed flaring blazar TXS 0506+056 [375]], to be
directly observed in neutrinos. Despite the important role neutrinos play in SN ex-
plosions [376, 377, 378], the precise shape and normalization of the emitted neutrino
spectra are poorly understood. The only experimental knowledge stems from the
emission of SN 1987A: the 20 events observed by Kamiokande-II [379], 8 events by
IMB [380], 5 events by LSD [381], and 5 events by the Baksan Neutrino Observatory
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7.2. Galactic Core Collapse Supernova Signal

ν Etot
ν [erg] 〈Eν〉

[MeV] α

νe 6× 1052 13.3 3.0
νē 4.3× 1052 14.6 3.3
νx 2× 1052 15 3

Table 7.1: Parameters of the neutrino spectra, Eq. 7.1, for electron neutrinos, anti-
electron neutrinos, and νx ≡ {νµ, νµ̄, ντ , ντ̄} used in our numerical calculations [386].

[382]. Alternatively, neutrino spectra can be predicted from simulations, which are
usually well-fitted by a pinched Fermi-Dirac distribution [383](

dn
dE

)
νi

= Etot
ν

(1 + α)1+α

Γ(1 + α)
Eα

〈Eν〉2+α e

[
−(1+α) E

〈Eν〉

]
, (7.1)

where Etot
ν is the energy radiated in the neutrino species νi, 〈Eν〉 is the average

neutrino energy (approximately given by the core-temperature of the SN), and α is
the spectral shape parameter. However, sizable differences remain between parameter
values inferred from simulations, see for example [383, 384, 385, 386]. Here, we use
the values suggested by [386], listed in Table 7.1.

The dominant source of neutrino-induced nuclear recoils are (flavor-blind) neutral
current interactions. Thus, the relevant neutrino flux is the sum over all neutrino
flavors,

dn
dEν

=
(

dn
dE

)
νe

+
(

dn
dE

)
νē

+ 4
(

dn
dE

)
νx

, (7.2)

where νx ≡ {νµ, νµ̄, ντ , ντ̄}. Since neutral current interactions are flavor blind, we do
not need to account for flavor oscillations. These are a major source of uncertainty
when calculating the neutrino fluxes from SNe, due to the sizable matter effects in
the SN environment.

The time-averaged neutrino spectrum from Galactic CC SNe at Earth is obtained
by integrating over the probability density f(RE) describing the likelihood for a CC
SN to occur at a distance RE from Earth,(

dφ
dEν

)gal
= Ṅgal

CC
dn

dEν

∫ ∞
0

dRE
f(RE)
4πRE2 , (7.3)

where Ṅgal
CC is the galactic CC SN rate.1 To obtain f(RE), we follow [340] and assume

1In principle, the integral over RE should be truncated at some distance corresponding to the
size of our galaxy. Here, we instead use a probability density f(RE) which takes into account only
CC SNe within the galactic disk of the Milky Way.
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7. Paleo-Detectors for Galactic Supernova Neutrinos

that CC SNe occur predominantly in the stellar disk. In galactocentric cylindric
coordinates, the spatial distribution of CC SNe, ρ, can then be modeled by a double
exponential

ρ ∝ e−R/Rde−|z|/H , (7.4)

where R is the galactocentric radius, z is the height above the galactic mid-plane,
and we set the disk parameters to Rd = 2.9 kpc and H = 95 pc [340]. From Eq. 7.3,
we obtain the probability density as a function of the distance from Earth f(RE) by
performing a coordinate transformation to the position of the Sun with galactocentric
radius R� = 8.7 kpc and height above the disc H� = 24 pc. Note that the position
of the Sun with respect to the galactic center will change over the timescales that
paleo-detectors were exposed to neutrinos from galactic CC SNe, O(1) Gyr2. The
solar system is thought to follow an approximately circular orbit around the galactic
center, oscillating about the galactic disk by ∆z� ∼ 100 pc and oscillating in the
galactic plane by ∆R� ∼ 300 pc, see e.g. [387, 388]. Modifying the distance of the
solar system to the galactic center by such an amount would change the neutrino flux
from CC SNe at Earth by ∆φ . 10 %, an error much smaller than the uncertainty on
the galactic CC SN rate. In the following, we neglect corrections to the neutrino flux
from the changing position of the solar system.

In Figure 7.1 we show the neutrino spectrum from galactic CC SNe together with
the neutrino spectrum expected from distant CC SNe throughout the Universe, the
so-called Diffuse SN Background (DSNB). We follow [308] for the calculation of the
DSNB flux, using the parameterization from [331] for the cosmic CC SN rate, see also
[330]. Assuming a galactic CC SN rate of Ṅgal

CC = 2.3× 10−2 yr−1 [338], we find that
the time-averaged neutrino flux from galactic CC SN at Earth peaks at dφ/dEν ∼
102 cm−2 s−1 MeV−1 with Eν ∼ 10 MeV. Note that the flux is approximately 100 times
that of the DSNB flux. Further, the DSNB spectrum is shifted to lower energies by
approximately a factor of two. This shift is due to the peak cosmic CC SN rate
occurring at a redshift of z ∼ 1 [331]. Note that estimates of the CC SN rate inferred
from the cosmic star formation rate yield somewhat larger redshifts of z ∼ 2 at which
the star formation rate (and hence the CC SN rate) peaks, see e.g. [330]. The DSNB
neutrino spectrum obtained from such parameterizations of the CC SN rate would
be shifted to even smaller energies than the DSNB spectrum shown in Figure 7.1.
However, as we will see in Section 7.3, such uncertainties on the DSNB neutrino
flux are not important for this work as the dominant background for the signal from
galactic CC SNe stems from radiogenic neutrons.

The observable in paleo-detectors is damage tracks caused by nuclear recoils.
Neutrinos with energies Eν . O(100) MeV give rise to nuclear recoils predominantly
via coherent neutral current interactions.3 The differential recoil spectrum per unit

2The orbital period of the Sun around the galactic center is T� ∼ 250 Myr.
3Additional contributions arise from quasi-elastic charged-current interactions. However, the
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Figure 7.1: Neutrino flux at Earth from galactic and extra-galactic CC
SNe. Neutrino flux dφ/dEν (solid red) from galactic CC SNe at Earth as a function
of neutrino energy Eν . Here, we assumed a galactic CC SN rate of Ṅgal

CC = 2.3 ×
10−2 yr−1 [338], a spatial distribution of CC SN as given in Eq. 7.4, the neutrino
spectrum per CC SN from Eqs. 7.1, 7.2 with the parameters from Tab. 7.1, and
averaged the neutrino flux over time-scales much longer than the inverse galactic
CC SN rate (Ṅgal

CC)−1 ∼ 40 yr. For comparison, the black dashed line shows the
neutrino flux from distant CC SNe throughout the Universe, the so-called Diffuse SN
Background (DSNB). See [308] for the calculation of the DSNB spectrum; we use the
parameterization of the cosmic CC SN rate from [331].

target mass for target nuclei T is given by [306, 288](
dR

dER

)
T

= 1
mT

∫
Emin
ν

dEν
dσ

dER
dφ

dEν
, (7.5)

where ER is the nuclear recoil energy, mT is the mass of T , dσ/dEν is the differential
neutral current interaction cross section, and Emin

ν =
√
mTER/2 is the minimum

neutrino energy required to induce a nuclear recoil with energy ER. The differential
cross section is

dσ
dER

(ER, Eν) = G2
F

4π Q
2
WmT

(
1− mTER

2E2
ν

)
F 2(ER) , (7.6)

contributions to the recoil spectrum induced by CC SN neutrinos are suppressed at small neutrino
energies by the lack of coherent enhancement, and at large neutrino energies by the quickly falling
neutrino flux. The more energetic nuclear recoils which may be induced by high energy neutrinos
furthermore lead to longer damage tracks than the nuclear recoils induced by CC SN neutrinos.
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Figure 7.2: Track length spectra in halite (NaCl; left) and epsomite
[Mg(SO4) ·7(H2O); right]. In each panel, the blue solid line shows the spectrum
from galactic CC SNe, assuming a rate of Ṅgal

CC = 2.3×10−2 yr−1. The dashed orange
line indicates the background spectrum induced by coherent scattering of neutrinos
from the Sun, the atmosphere, and the DSNB flux, and the dotted green line shows
the background spectrum induced by neutrons from spontaneous fission and (α, n)
processes in the target material. The vertical gray dash-dotted lines indicates the
track length of the ER = 72 keV 234Th nuclei from (238U → α + 234Th) decays. See
Section 7.3 for a discussion of the background spectra. For both target minerals,
we assumed uranium-238 concentrations of C238 = 0.01 ppb by weight. Note that
although the signal rate is smaller than the background rate for all track lengths, this
does not imply that the signal cannot be measured, see Section 7.5.

with the Fermi coupling constant GF , the nuclear form factor F (ER), and

QW ≡ (AT − ZT )−
(

1− 4 sin2 θW

)
ZT , (7.7)

where θW is the weak mixing angle and AT (ZT ) the number of nucleons (protons) in
T . In our numerical calculations, we use the Helm nuclear form factor [290, 219, 291]

F (ER) = 3sin(qrn)− qrn cos(qrn)
(qrn)3 e(qs)2/2 , (7.8)

where q =
√

2mTER is the momentum transfer and the effective nuclear radius is
r2
n ≈ c2 + 7

3π
2a2 − 5s2 with a ≈ 0.52 fm, c ≈

(
1.23A1/3

T − 0.6
)

fm and s ≈ 0.9 fm.
Note that more refined calculations of the form factors are available, although only
for a few isotopes, see e.g. [389, 390, 391, 392].

The recoil spectrum, Eq. 7.5, is converted into a track length spectrum by sum-
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ming the stopping power dER/dxT over all target nuclei T in a material

dR

dx
=
∑
T

ξT
dER
dxT

(
dR

dER

)
T

. (7.9)

Here, x (xT ) is the track length (of T ), ξT is the mass fraction of T in the target
material, and the track length for a recoiling nucleus with energy ER is

xT (ER) =
∫ ER

0
dE

∣∣∣∣ dE
dxT

∣∣∣∣−1
. (7.10)

In our numerical calculations, we use the SRIM code [393, 394] to calculate the stop-
ping power in composite materials. A more detailed discussion of the calculation of
the stopping power (in particular, a description of a semi-analytic calculation of the
stopping power and comparison with SRIM results) can be found in [341].

In Figure 7.2 we show the track length spectrum from galactic CC SNe together
with background spectra for two minerals, halite (NaCl) and epsomite [Mg(SO4) ·
7(H2O)].

7.3 Backgrounds

A number of sources can give rise to backgrounds in the target sample. The back-
ground sources are the same as for dark matter searches with paleo-detectors; see
[341] for a detailed discussion. Here, we give only a brief review of the most relevant
background sources. Importantly, all the relevant backgrounds stem from nuclear
recoils. Natural defects in minerals are either single-site or span across the entire
(mono-)crystalline volume and thus do not resemble the damage tracks induced by
neutrinos scattering off the nuclei in the target.

7.3.1 Cosmic Ray induced backgrounds

Cosmic rays can lead to both nuclear recoils and direct damage tracks in materials,
potentially producing background events. However, cosmic ray induced backgrounds
can be mitigated by using target materials obtained from deep below the surface of
the Earth. The dominant cosmogenic background source will then be neutrons arising
from cosmic ray muons interacting with nuclei in the vicinity of the target. Following
[395] we estimate the neutron flux to be φn = O(100) cm−2 Gyr−1 for an overburden
of ∼ 5 km rock. At a depth of ∼ 6 km, the flux is instead φn = O(10) cm−2 Gyr−1 and
for an overburden of ∼ 7 km we estimate φn = O(0.1) cm−2 Gyr−1. We envisage that
target samples for paleo-detectors will have masses of order 100 g, corresponding to
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7. Paleo-Detectors for Galactic Supernova Neutrinos

geometric cross sections of ∼ 10 cm2. Thus, for minerals obtained from depths larger
than ∼ 6 km, backgrounds due to cosmic ray induced neutrons will be negligible.4

7.3.2 Radioactive decays

The natural minerals used for paleo-detectors will be contaminated by trace amounts
of radioactive elements which in turn give rise to background events. Thus, it is crucial
to use materials containing as little radioactive contamination as possible. Minerals
formed close to the surface of the Earth from the crust’s material have prohibitively
large uranium-238 and thorium-232 concentrations. Minerals formed in Ultra-Basic
Rock (UBR) deposits and Marine Evaporites (MEs) are much cleaner. UBRs and
MEs are comprised of material from the Earth’s mantle and form at the bottom of
evaporating bodies of water respectively. Here, we assume benchmark uranium-238
concentrations of 0.1 parts per billion (ppb) in weight for UBRs and 0.01 ppb for MEs.
See Appendix 7.7.1 for further discussion.

The most relevant radioactive contaminant in UBR and ME minerals is uranium-
238. The half-life of uranium-238 is 4.5 Gyr, while the accumulated half-life of all
subsequent decays in the uranium-238 decay chain, until it reaches the stable lead-206,
is ∼ 0.3 Myr. Thus, almost all uranium-238 nuclei which undergo the first decay after
the target mineral was formed will complete the decay chain. Due to the kinematics,
the most problematic decays are α-decays. β- and γ-decays lead to the emission of
fast electrons, photons, and neutrinos which do not themselves give rise to observable
damage tracks in minerals. The associated recoils of the daughter nuclei from the
decays are also too soft to produce observable tracks. α-decays on the other hand
give rise to 10−100 keV recoils of the daughter nuclei and an α-particle with energy of
order a few MeV. Here, we assume that the damage track from the α-particle itself is
not directly observable, though see [341] and references therein for a discussion. Thus,
the remaining signatures from α-decays are the 10 − 100 keV recoils of the daughter
nuclei which give rise to damage tracks similar to those induced by scattering of CC SN
neutrinos off the target nuclei. However, the typical decays of uranium-238 lead to a
complete decay chain, which contains eight α-decays. This will lead to eight spatially
connected tracks from the various daughter nuclei in the chain. Such signatures are
straightforward to distinguish from the isolated damage tracks induced by neutrinos,
and we will assume that all such track patterns can be rejected.

However, the second α-decay in the uranium-238 decay chain (234U→ 230Th+α)
has a half-life of 0.25 Myr. This will lead to a non-negligible population of events
which have undergone a single α-decay only. For minerals with ages long compared

4Note that for depths larger than ∼ 6 km, in addition to neutrons from cosmogenic muons, neutron
production from atmospheric neutrons interacting with nuclei in the vicinity of the target must be
taken into account as well, see e.g. [396].
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7.3. Backgrounds

to the half-life of uranium-234 and short compared to the half-life of uranium-238,
the number of such single-α events per unit target mass is well approximated by

n1α ≈ 109 kg−1
(

C238

0.01 ppb

)
, (7.11)

where C238 is the uranium-238 concentration per weight in the target sample. The
energy of the 234Th daughter nucleus from 238U→ 234Th+α decays is 72 keV, leading
to a population of events with the corresponding (target-dependent) track length
indicated by the dash-dotted vertical gray lines in Figure 7.2. The characteristic
track length of such events allows for straightforward modeling of this background,
leading to negligible effects on the sensitivity to CC SN neutrinos, as we will see
below.

7.3.3 Neutron induced backgrounds

The two dominant sources of fast neutrons (in target minerals obtained from depths
where cosmic ray induced neutrons are negligible) are spontaneous fission of heavy
radioactive elements such as uranium-2385 and neutrons produced by (α, n)-reactions
of α-particles from radioactive decays with the nuclei in the target sample. Depend-
ing on the precise chemical composition of the target sample, either neutrons from
spontaneous fission or from (α, n)-reactions dominate; we use the SOURCES-4A [397]
code to obtain the neutron spectrum from both sources, including α-particles from
the entire uranium-238 decay chain. Note that the (α, n) cross sections differ sub-
stantially between different elements and isotopes; thus, it is difficult to make general
statements. However, light nuclei such as lithium or beryllium display particularly
large (α, n) cross sections, making minerals containing sizable mass fractions of these
elements not well suited for paleo-detectors due to the resulting large neutron fluxes.

Neutrons lose their energy predominantly via elastic scattering off nuclei, giving
rise to nuclear recoils that are indistinguishable from those induced by neutrinos.
Because of the mismatch between the neutron mass and those of most nuclei, neutrons
lose only a small fraction of their energy in a single scattering event. For example, a
∼ 2 MeV neutron would give rise to ∼ 200 nuclear recoils with ER & 1 keV in a target
material comprised of mT ∼ 100 GeV nuclei. This background is highly suppressed
in target materials containing hydrogen: since neutrons and hydrogen nuclei (i.e.
protons) have approximately the same mass, neutrons lose a large fraction of their
energy in a single collision with a hydrogen nucleus. Together with the relatively large
elastic scattering cross section between a neutron and hydrogen, this makes hydrogen

5Note that the tracks from the fission fragments themselves are easily distinguished from neutrino-
induced tracks. This is because fission fragments have energies of order 100 MeV, leading to much
longer tracks than the . 100 keV recoils induced by neutrinos from CC SNe.
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an efficient moderator of fast neutrons, even if hydrogen makes up only a relatively
small mass fraction of the target mineral. For each target mineral, we compute the
nuclear recoil spectrum from the neutron spectra using a Monte Carlo simulation
with neutron-nucleus cross sections as tabulated in the JANIS4.0 database [398].6
The corresponding track length spectrum is indicated by the dotted green lines in
Figure 7.2.

7.3.4 Neutrino induced backgrounds

Neutrinos from sources other than galactic CC SNe induce nuclear recoils via the
same scattering processes as neutrinos from galactic CC SNe. We take the neutrino
flux dφν/dEν for solar and atmospheric neutrinos from [288]. Extragalactic CC SNe
throughout the Universe also give rise to a neutrino flux at Earth; we follow the
same prescription as [308], with the parameterization of the cosmic CC SNe rate from
[331] to calculate this so-called Diffuse SN Neutrino Background (DSNB), shown in
Figure 7.1. There are three separate source regimes. Firstly, neutrinos with energies
Eν . 20 MeV are dominantly produced by solar emission. Secondly, neutrinos with
20 MeV . Eν . 30 MeV are primarily from the DSNB. Finally, atmospheric neutrinos
produce the dominant flux for larger energies, Eν & 30 MeV. The corresponding nu-
clear recoil and track length spectrum, shown by the dashed orange lines in Figure 7.2,
is computed in the same way as for neutrinos from galactic CC SNe. Note that al-
though we will investigate the sensitivity of paleo-detectors to potential variations of
the galactic CC SN rate over geological time scales, we keep the background neutrino
fluxes fixed at the values which are measured today in our background modeling.
Instead, we account for potential variations in the background neutrino fluxes by as-
suming a large systematic uncertainty on the normalization of the neutrino-induced
backgrounds.

7.3.5 Background uncertainties

The relevant background quantity is not only the total number of events, but the
uncertainty on the number of background events in the signal region. While the sta-
tistical uncertainty is simply given by the square root of the number of background
events in the signal region, we need to make assumptions about the systematic un-
certainty for each background component. Here, we use the same values for each
background component as in [263, 341, 3].

Radiogenic backgrounds, including neutrons induced by radioactivity, are well
understood and straightforward to calibrate in the laboratory. For example, by plac-

6We use values from TENDL-2017 [399, 400, 401, 402] for the neutron-nucleus cross sections.
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ing radioactive sources in the vicinity of a test sample or by studying samples with
relatively large concentrations of uranium-238, one can obtain samples with enhanced
radiogenic backgrounds. Furthermore, the normalization of radiogenic backgrounds
is determined by the concentration of heavy radioactive elements in the vicinity of the
target sample and the age of the target sample only. Thus, we assume that radiogenic
backgrounds can be well understood and assume a 1 % relative systematic uncertainty
on the corresponding normalizations.

Neutrino induced backgrounds on the other hand are much harder to characterize;
their normalization depends on the flux of neutrinos through the target sample. Al-
though the present day neutrino fluxes are relatively well understood, paleo-detectors
would measure neutrino-induced backgrounds integrated over geological timescales,
. 1 Gyr. In this time the flux of atmospheric neutrinos may change substantially.
Furthermore, creating target samples in the laboratory with enhanced backgrounds
from neutrinos is challenging since this would require a strong neutrino source with
a spectrum matching the neutrino spectrum from the Sun, the atmosphere, and CC
SNe. Thus, we assume a large systematic uncertainty of 100 % on the normalization
of neutrino-induced backgrounds.

7.4 Track Reconstruction

We refer the reader to [341] and references therein for a detailed discussion of damage
tracks from nuclear recoils and possible read-out methods. As in [341] we will assume
that the entire range of a recoiling nucleus will give rise to an observable damage
track. Our studies with SRIM indicate that this is a reasonable assumption for the
target materials and recoil energies considered here. The effect of possible corrections
to this assumption cannot yet be answered quantitatively7; detailed experimental
studies are required for each combination of target material and read-out method,
which are beyond the scope of this work.

Further, we assume that low-Z nuclei, in particular α-particles (He ions) and
protons (H ions) do not give rise to observable damage tracks. For further discussion,
see [341].

From the track length spectra in Figure 7.2 we can see that the signal-to-noise
ratio for CC SN neutrino induced events is largest for track lengths of O(100) nm.
An optimal read-out method requires the resolution to which track lengths can be
measured, σx, to be � O(100) nm. This in turn allows for an accurate measurement
of the associated recoil energies. Unfortunately, the feasible size of target samples
decreases with increasing spatial resolution. We will assume the use of Small Angle X-

7To the best of our knowledge, reliable estimates exist only for the particular case of reconstructing
tracks in muscovite mica after cleaving and chemical etching [275].

145



7. Paleo-Detectors for Galactic Supernova Neutrinos

ray scattering (SAXs) tomography at synchrotron facilities as our benchmark read-out
scenario. SAXs allows for the three-dimensional read-out of bulk samples with spatial
resolution of σx ∼ 15 nm [287] and minimal sample preparation [271]. Note that as yet,
damage tracks from ions have not been demonstrated to be reconstructible in three-
dimensional SAXs tomography; however, damage tracks have been demonstrated to
be observable with SAXs (without prior chemical etching) along the direction of the
tracks [286]. While we are proposing a challenging application of SAXs, we estimate
that it should be feasible to image O(100) g of target material at synchrotron facilities,
with spatial resolutions of σx = 15 nm. We note, as in [3], that this will present a
significant data storage and analysis challenge. Naively, scanning at this level of
precision will provide ∼ 107 terabytes of data for a O(100) g sample. These issues are
beyond the scope of this work and will be addressed in future publications.

7.5 Results

In this section, we present the projected sensitivity of paleo-detectors to neutrinos
from galactic CC SNe. A key parameter which determines the sensitivity of paleo-
detectors is the mineral age. Throughout this work, we use the term ‘mineral age’ for
the age of the oldest nuclear recoil tracks which persist in the mineral. This should
loosely correspond to the time since the formation of the mineral, though we note that
on very long time-scales (& 1 Gyr for many minerals) tracks will eventually disappear.

We begin by investigating the minimum time-averaged galactic CC SN rate to
which paleo-detectors would be sensitive, both as function of the concentration of
uranium-238 in the target sample and as a function of mineral age. We then in-
vestigate the ability of paleo-detectors to decipher the history of galactic CC SNe
if one were to study a series of target minerals with ages 100 Myr ≤ tage ≤ 1 Gyr
and ∆tage = 100 Myr. In each individual sample one would deduce the CC SN rate
(within experimental uncertainties) integrated over 0 . t . tage. Using a series of
samples with different tage then allows to reconstruct the time dependence of the CC
SN rate. In particular, we investigate the extent to which paleo-detectors could be
used to measure the time-dependence of the galactic CC SNe rate. Finally we study
the sensitivity of paleo-detectors to both a single near-by CC SN and a localized
(in space and time) enhancement of the CC SN rate (as would be expected from a
starburst event in the Milky Way or the local group).

Throughout, we use a spectral analysis similar to the procedure used in [3] for
dark matter sensitivity forecasts. The analysis is performed using the swordfish
python package [1, 6]8. The main difference to the dark matter analysis is that now
the signal arises from damage tracks induced by neutrinos from galactic CC SNe. To

8github.com/cweniger/swordfish
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Figure 7.3: Smallest galactic core collapse supernova rate which could be
detected in paleo-detectors as a function of the uranium-238 concentration
in the target sample (left) and time the mineral has been recording damage
tracks (right). Here, we assume that M = 100 g of target material can be read out
with a spatial resolution of σx = 15 nm. The different colored lines are for different
target materials as indicated in the legend. For epsomite, we show in addition to
the results from the spectral analysis also the sensitivity projections obtained in the
sliding-window Cut-and-Count (C&C) analysis. The horizontal dashed gray lines
indicate estimates for the galactic core collapse supernova rate, Ṅgal

CC = 2.3×10−2 yr−1

[403] and Ṅgal
CC = 3.2 × 10−2 yr−1 [340]. In the left panel we assume that the target

sample has been recording damage tracks for tage = 1 Gyr. In the right panel, we
assume a uranium-238 concentration of C238 = 0.01 ppb in weight for the halite
(NaCl) and epsomite [Mg(SO4) ·7(H2O)], which are examples of marine evaporites.
For olivine [Mg1.6Fe2+

0.4(SiO4)] and nchwaningite [Mn2+
2 SiO3(OH)2 ·(H2O)], minerals

found in ultra basic rocks, we assume C238 = 0.1 ppb.

cross check, we also perform a sliding-window cut-and-count analysis analogous to
the procedure used in [263, 341]. While the cut-and-count analysis is transparent and
intuitive, the spectral analysis is more sensitive. The latter allows for the charac-
terization of the backgrounds in control regions, leading to an effective reduction in
uncertainties of the background in the signal region. Furthermore, swordfish allows
one to straightforwardly explore projected confidence regions for reconstructed signal
parameters. For all analyses, we consider systematic uncertainties on the normaliza-
tion of each background component only. See Section 7.3.5 for a discussion of our
assumptions and Appendix 7.7.2 for further details of our statistical methodology.

Throughout this section, we will assume that a mass M = 100 g of target material
can be read out with a spatial resolution of σx = 15 nm (see discussion in Section 7.4).
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7.5.1 Galactic CC SN rate

In Figure 7.3, we show the minimum galactic CC SN rate which could be observed
in paleo-detectors9 both as a function of the uranium-238 concentration in the target
sample (left panel) and the mineral age (right panel). We consider four minerals,
halite [NaCl], epsomite [Mg(SO4) ·7(H2O)], nchwaningite [Mn2+

2 SiO3(OH)2 ·(H2O)],
and olivine [Mg1.6Fe2+

0.4(SiO4)]. Out of these four, epsomite is most promising. This is
due to its chemical composition. First, epsomite contains hydrogen, which effectively
suppresses the neutron induced backgrounds as described in Section 7.3. Further,
epsomite does not contain any elements with large (α, n) cross sections and is a ME
for which we expect low concentrations of uranium-238, C238 ∼ 0.01 ppb. Finally,
epsomite’s particular chemical composition emphasizes the difference between the
signal and background spectra: for target nuclei lighter than ∼ 10 GeV, i.e. lighter
than C, the spectrum from supernova induced neutrinos becomes increasingly similar
to the background induced by solar neutrinos. For target elements heavier than
∼ 30 GeV, i.e. heavier than Si, both the signal and background track length spectra
become increasingly compressed to shorter lengths. The finite spatial resolution of any
given read out method makes it more difficult to distinguish signal from background
for such compressed track spectra. In epsomite, the majority of nuclei lie between C
and Si in mass, allowing a better separation of signal and background tracks. Thus,
we will focus on epsomite as a target mineral for paleo-detectors in the remainder of
this paper.

From the left panel of Figure 7.3 we find that reading out M = 100 g of epsomite
which has been exposed to neutrinos from CC SNe for tage = 1 Gyr should allow
for a measurement of the average galactic CC SN rate. Current estimates for the
galactic CC SNe rate suggest Ṅgal

CC ∼ 2× 10−2 yr−1 and, as discussed in Section 7.3,
we expect samples of ME minerals (e.g. epsomite) with uranium-238 concentrations
of C238 = 0.01 ppb to be readily available in nature.

The right panel of Figure 7.3, where we fix the uranium-238 concentration of
epsomite to C238 = 0.01 ppb, indicates that measuring the galactic CC SN rate with
an M = 100 g epsomite paleo-detector requires target samples which have recorded
damage tracks for at least tage ∼ 0.35 – 0.8 Gyr (depending on the true rate). Note
however that if only younger target samples were available, the sensitivity could be
recovered by reading out a somewhat larger target sample. This is because the sen-
sitivity depends on the exposure ε = M × tage; the numbers of signal events and
the most relevant background events (i.e. recoils induced by other neutrinos and
radiogenic neutrons) scale linearly with ε.

In the left panel of Fig. 7.3, we also show, for comparison, the sensitivity forecast

9Technically defined as the threshold for a 3σ detection, as in [6].
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from the sliding-window cut-and-count analysis for epsomite. It should first be noted
that the sensitivities are not directly comparable: for the sliding-window cut-and-
count analysis, the signal is considered to be within reach when the Signal-to-Noise
Ratio (SNR) (the ratio of the number of signal events and the quadratic sum of the
systematic and statistical errors of all background components in the signal region)
satisfies SNR > 3. For the spectral analysis, the signal is considered to be within
reach if 50% of experiments would return a 3σ preference for the signal+background
hypothesis over background-only [404]. The significance is evaluated from the Poisson
likelihood ratio [6, 1, 3].

We note that for uranium-238 concentrations C238 & 10−2 ppb, the smallest de-
tectable galactic CC SN rate Ṅgal

CC scales as Ṅgal
CC ∝

√
C238 for the spectral analysis,

while for the sliding-window cut-and-count analysis the scaling is Ṅgal
CC ∝ C238. The

scaling of the sensitivity in the cut-and-count analysis can be understood from the
fact that for C238 & O(0.01) ppb, the sensitivity is limited by the systematic error
on the number of background events induced by radiogenic neutrons in the signal
region. For the spectral analysis, the error on the number of background events can
be reduced by making use of control regions at longer track lengths. The error on
the number of background events in the signal region then scales as

√
C238, since

it is given by the statistical error on the number of background events in the con-
trol regions. For C238 < O(0.01) ppb, the number of events in the control regions
becomes too small to allow such an approach. Simultaneously, the number of back-
ground events in the signal region becomes smaller, finally causing both analyses to
be limited by the statistical error on the number of background events in the signal
region. The remaining differences in the sensitivity are due to the different definitions
of sensitivity as discussed above.

Before moving on to estimates of how well the time dependence of the galactic
CC SN rate could be constrained by paleo-detectors, it is interesting to ask how
precisely the time-averaged CC SN rate could be determined. As before, we consider
a benchmark scenario of a 100 g epsomite paleo-detector which could be read out with
spatial resolution of σx = 15 nm, e.g. by SAXs. We assume that the target mineral
has been recording events for 1 Gyr and that the true average galactic CC SN rate
is Ṅgal

CC = 3 × 10−2 yr−1. For a uranium-238 concentration of C238 = 0.01 ppb, the
reconstructed rate could be constrained, at 1σ, to Ṅgal

CC = (3.0±0.7)×10−2 yr−1. For
uranium-238 concentrations of C238 = 10−3 ppb, the reconstructed rate could instead
be constrained to Ṅgal

CC = (3.0±0.3)×10−2 yr−1. Thus, with sufficiently low uranium-
238 concentrations it may be possible to constrain the time-averaged galactic CC SN
rate to within 10%, allowing for a discrimination between different estimates in the
literature [403, 340].
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Figure 7.4: Ability of paleo-detectors to distinguish between different time
varying galactic SFRs. Left: Benchmark scenarios for the time-dependence of the
galactic Star Formation Rate (SFR) rate ψ(t?)/ψ(t? = 0), as a function of look-back
time, t?, considered in Section 7.5.2. The CC SN rate Ṅgal

CC is thought to be directly
proportional to the SFR, Ṅgal

CC = kCCψ, and we use kCC = 0.0068M−1
� [330]. The blue

solid line shows the time-evolution of the galactic SFR of the Milky Way as estimated
from Gaia data by [365], and the dashed orange line the time evolution of the cosmic
SFR as estimated by [330]. Right: Assuming different uranium-238 concentrations
C238 = {10−3, 0.01, 0.1, 1} ppb, we show the discrimination significance with which
a time-constant galactic CC SN rate could be rejected if the true galactic CC SN
rate evolves with look-back time as the corresponding benchmark scenario shown
in the left panel. For both cases, we entertain an experimental scenario where 10
epsomite samples with M = 100 g each, which have been recording events for different
times tage = {0.1, 0.2, 0.3, . . . , 1.0}Gyr, are read out with track length resolution of
σx = 15 nm.
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7.5.2 Time dependence of the CC SN rate

In the previous subsection we investigated the smallest detectable time-constant CC
SN rate. Here and in the following subsection, we instead investigate how paleo-
detectors can be used to understand the time-evolution of the galactic CC SN rate.

We entertain two benchmark scenarios for the time-dependence of the galactic CC
SN rate: (i) a rate increasing with look-back time according to the best-fit evolution of
the galactic Star Formation Rate (SFR) obtained by [365] from Gaia data, and (ii) a
rate increasing with look-back time proportional to the cosmic SFR as parameterized
by [330], cf. the left panel of Figure 7.4. Note that scenario (i) is based on informa-
tion from the Milky Way, while scenario (ii) is not (it relies purely on cosmological
information).

To quantify the significance at which such scenarios could be distinguished us-
ing paleo-detectors, we consider an experimental scenario using 10 epsomite sam-
ples weighing M = 100 g each, which have been recording events for different times
tage = {0.1, 0.2, 0.3, . . . , 1.0}Gyr. We assume that each target sample is read out
with track length resolution of σx = 15 nm. We then simulate expected signal (and
background) events in each sample [for scenarios (i) and (ii)] and calculate the best
fit value and error bars for the reconstructed time-integrated CC SN rate in each
target sample. Assuming the error bars for the reconstructed rates are described by
a Gaussian distribution, we then attempt to fit a time-constant galactic CC SN rate
to the mock data, and quantify the statistical significance with which the hypothesis
of a constant CC SN rate would be rejected.

In the right panel of Figure 7.4, we show the statistical significance with which a
constant CC SN rate would be rejected in both scenarios as a function of the uranium-
238 concentration in the target sample C238 = {10−3, 0.01, 0.1, 1} ppb. For scenario
(ii), where we assume that the galactic CC SN rate increases with look-back time
as the cosmic SFR, we see that it is difficult to distinguish such a time evolution
from a constant CC SN rate even if the uranium-238 concentration in the target
samples is C238 = 10−3 ppb. This is because the cosmic SFR evolves quite slowly in
time. For a look-back time of 1 Gyr, the cosmic SFR is only increased by a factor of
ψ(t = 1 Gyr)/ψ(t = 0) ≈ 1.2, using the estimate of the cosmic SFR from [330]. In
scenario (i) on the other hand, where the galactic CC SN rate evolves like the estimate
for the galactic SFR from [365], we find that the hypothesis of a constant galactic
CC SN rate could be rejected at more than 3σ if the uranium-238 concentration
in the target samples is C238 . 5 × 10−3 ppb. This is because the estimate for the
galactic SFR from Gaia data by [365] indicates a much faster increase of the SFR
with look-back time than the cosmic SFR, ψ(t = 1 Gyr)/ψ(t = 0) ∼ 3.
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7.5.3 Constraining burst-like CC SNe
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Figure 7.5: Ability of paleo-detectors to distinguish a burst like event of neu-
trinos from a constant background. Left: Smallest number of CC SN eventsN? in
a burst-like event at a distance ofD? = 10 kpc, N10 kpc

? , which could be discovered with
paleo-detectors as a function of the look-back time of the burst-like event t?. The dif-
ferent colored lines are for different uranium-238 concentrations, C238, as indicated by
the labels. Throughout, we assume that 10 samples ofM = 100 g epsomite each, which
have been recording recoil events for different times tage = {0.1, 0.2, 0.3, . . . , 1.0}Gyr,
can be read out with track length resolution of σx = 15 nm. The smallest number of
detectable CC SN in a burst like event at any given distance D? can be directly ob-
tained by N? ≥ N10 kpc

?

(
10 kpc/D?

)2. Similarly, the largest distance at which a single
close-by CC SN could be discovered can be obtained byD? ≤ 10 kpc/

√
N10 kpc
? . Right:

The colored region indicates the range of N10 kpc
? within reach of paleo-detectors, cf.

the left panel, in the plane of the number of CC SNe in the burst-like event, N?, and
the distance of Earth to the burst-like region, D?. The vertical gray band indicates
typical values of N? which could occur in a starburst, assuming a duration of the
starburst of 10 Myr and an average star formation rate of ψ = 0.1 ÷ 103M� yr−1.
The horizontal dashed lines indicate distances to NGC 2603 (a nebula containing the
dense open cluster HD 97950), the Galactic Center (GC), and the Large Magellanic
Cloud (LMC), respectively.

After investigating the sensitivity of paleo-detectors to a smooth time evolution of
the galactic CC SN rate, we now switch to asking if paleo-detectors could be sensitive
to time- and space-localized enhancements in the local CC SN rate. The simplest
example of such a burst-like event would be a single near-by CC SN. While such a
single near-by CC SN would truly be localized in space and time, an enhancement
to the CC SN rate (in a particular region of Milky Way or the local group) for
a duration of time significantly smaller than the anticipated timing resolution of
∆t = 100 Myr would effectively also be a localized event. A starburst event, as
described in [405, 406, 407, 408], in which the star formation rate (and hence the
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SN rate) can exceed the average star formation rate of the Milky Way by a factor of
∼ 103 for a period of ∆tstarburst . 10 Myr, is an example of an effectively localized
event which could also be probed by paleo-detectors.

We parameterize such burst-like events by three parameters, {N?, D?, t?}. N? is
the number of CC SNe in the burst-like event, D? is the distance to the burst region
from Earth, and t? is the look-back time to the burst event. For a single close-by CC
SN, N? = 1. For a starburst event, N? is given by the average star formation rate ψ
during the length of the starburst ∆tstarburst and the number of stars which explode
as CC SNe per unit mass, kCC. For kCC = 0.0068M−1

� [330], a typical duration of
a starburst of ∆tstarburst = 10 Myr, and SFRs of 0.1 . ψ/(M� yr−1) . 103 [see e.g.
[405]], we find N? = kCCψ∆tstarburst ∼ 104 ÷ 108. For reference, the number of CC
SNe expected over the entire Milky Way within 1 Gyr is 2.3×107, assuming a constant
rate of Ṅgal

CC = 2.3× 10−2 yr−1.
To estimate the sensitivity of paleo-detectors to burst events, we follow a sim-

ilar approach as in the previous subsection. We again assume that 10 samples
of M = 100 g epsomite detectors have been recording events for different times
tage = {0.1, 0.2, 0.3, . . . , 1.0}Gyr and can be read out with track length resolution
of σx = 15 nm. We simulate mock data, assuming a time- and space-localized injec-
tion of additional neutrinos from CC SNe in a burst-like event on top of a constant
galactic CC SN rate. Assuming Gaussian errors on the reconstructed CC SN rate
in each target sample, we then attempt to fit the null-hypothesis of a time-constant
galactic CC SN rate to the mock data and quantify the statistical significance with
which this null-hypothesis is disfavored. The number of additional signal events from
the burst-like event is proportional to N?/D

2
?. We show results for the minimum

value of N?/D2
? required for a 3σ rejection of the null hypothesis as a function of the

look-back time to the burst-like event t? and the uranium-238 concentration in the
target samples C238.

For clarity of discussion we parameterize burst-like events with the three param-
eters {N?, D?, t?}, although our analysis is only sensitive to the combination N?/D

2
?

as a function of t?. Hence, our benchmark scenarios of a starburst event or a single
close-by CC SN are degenerate, although we discuss the results for both cases sepa-
rately. We leave the exploration of discriminating such signals for future work. One
possibility would be to study the anisotropy of damage track directions. The tracks
from an individual close-by CC SN would all arise within O(10) s, the duration of
the SN neutrino burst. On such time-scales, the target mineral would be virtually
stationary in space and hence the signal tracks would have a preferred direction. For
a starburst event, the signal events are expected to be generated over a time scale
of a few tens of Myr, on which the rotation of the Earth, its orbit around the Sun,
and the solar system’s movement through the galaxy would wash out the directional
preference of the tracks. Note that the directional preference would also allow for
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additional background suppression when searching for signatures from an individual
SN, potentially leading to increased sensitivity.

In the left panel of Figure 7.5, we show the minimum number of CC SNe in a burst
like event at D? = 10 kpc10, N10 kpc

? , for which the null-hypothesis of a time-constant
galactic CC SN rate would be disfavored by at least 3σ. We show these results
for various assumptions on the uranium-238 concentration in the target samples,
C238 = {10−3, 0.01, 0.1, 1} ppb. Trivially, we find that the smaller the uranium-238
concentration and hence the number of background events induced by radiogenic
neutrons, the smaller N10 kpc

? for which the null-hypothesis of a constant CC SN rate
could be rejected. Further, we find that the smaller the look-back time to the burst-
like event, t?, the smaller the number of N10 kpc

? required to reject the null hypothesis.
This is because the same number of signal events induced by the burst-like event would
be present in all target samples with tage < t?, while the number of tracks from the
time-constant galactic CC SN rate and from radiogenic neutrons, the most relevant
background source, increases linearly with tage.

In the right panel of Figure 7.5, we show our results in the N?–D? plane. The
colored band indicates different values of N10 kpc

? , the edges of the band approximately
correspond to the range of values for N10 kpc

? that would allow for the rejection of a
time-constant galactic CC SN rate for the different assumptions on t? and C238, as
shown in the left panel of Figure 7.5. To interpret these results, we indicate a range of
values for the number of CC SNe, N?, in typical starburst events as well as the distance
to various regions within the local group where starbursts are likely to occur. We find
that for a range of possible starburst parameters, such a burst-like event would be
detectable in paleo-detectors if it occurred at a distance corresponding to NGC 6303
(a nebula containing the open cluster HD 97950) or the galactic center. Detection of
a starburst-event in the Large Magellanic Cloud (LMC), on the other hand, would
require a starburst with a SFR a factor of a few higher than the typical range.

From Figure 7.5 we can also read off the minimal distance D? for which an in-
dividual close-by CC SN could be detected with paleo-detectors. Depending on the
uranium-238 concentrations in the target samples and the look-back time to the close-
by CC SN, the null-hypothesis of a constant galactic CC SN rate could be rejected if
the distance to the CC SN was smaller than D? . 1÷10 pc. For a spatial distribution
of the galactic CC SNe as discussed in Section 7.2 and an average CC SN rate of Ṅgal

CC,
the probability that a CC SN has occurred within a distance D? . 10 pc from Earth
within 100 Myr is only ∼ 5 %. However, despite the rather small statistical chance of
such an event, close-by SNe are of particular interest since they may be related to mass
extinction events, see [366, 369, 370, 371, 372, 373]. Although the time-resolution of
paleo-detectors is rather coarse-grained, valuable information about possible close-by

10Here we use 10 kpc as a simple illustration rather than a distance of physical significance.
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CC SNe may still be gained.
Furthermore, measurements of 60Fe (and other isotopes produced in CC SNe)

in sediments from the Earth and the Moon [367, 368, 409, 410, 411, 412, 413, 374]
as well as the effects of such isotopes on the cosmic ray spectra [414, 415, 416, 417]
suggest the explosion of at least one CC SN within D? . 100 pc from Earth t? ∼
2÷3 Myr ago. These claims could be tested with paleo-detectors by studying samples
of minerals with tage . 10 Myr, much younger than what we discussed above. Since
in paleo-detectors the signal would arise from the CC SN neutrinos, paleo-detectors
would allow for a more direct characterization of these nearby SNe than measurements
relying on 60Fe and similar elements (slowly) propagating in cosmic rays.

7.6 Discussion

Paleo-detectors are a proposed experimental technique where one would search for the
traces of nuclear recoils recorded in ancient minerals. In minerals that can be used
as solid-state track detectors, ions traveling through the crystal lattice give rise to
damage tracks which, once created, persist for geological time scales. With modern
read-out technology it should be feasible to reconstruct such damage tracks with
track length resolutions of order 1÷ 10 nm. Ions giving rise to such short tracks have
kinetic energies ER ∼ 1 keV. Combined with the retention of damage tracks over long
times, paleo-detectors would represent a method to probe nuclear recoils down to
energy thresholds of order keV whilst obtaining exposures as large as ε ∼ 100 g Gyr =
105 t yr with current read-out technology. [263, 341, 3] explored the potential of paleo-
detectors for the direct detection of dark matter. Here, we studied how paleo-detectors
can be used to understand galactic Core Collapse (CC) Supernovae (SNe) through
the nuclear recoils induced via coherent scattering of neutrinos from CC SNe.

In Section 7.3 we discussed the most relevant background sources when search-
ing for recoils induced by neutrinos from galactic CC SNe. At small track lengths
(corresponding to less energetic nuclear recoils), the dominant background is solar
neutrinos. At larger track lengths (i.e. more energetic nuclear recoils) the main back-
ground comes from nuclear recoils induced by fast neutrons from the radioactive
processes of the trace amounts of uranium-238 and other heavy radioactive elements.
Both of these will be present in target materials for paleo-detectors. Note that cos-
mogenic backgrounds, including neutrons induced by cosmogenic muons interacting
in the vicinity of the target materials, can be mitigated by using target samples ob-
tained from depths larger that ∼ 6 km rock overburden, e.g. from the cores of deep
boreholes. Unless the concentration of uranium-238 in the target material is less
than C238 . 10−14 in weight, the sensitivity of paleo-detectors to neutrinos from
galactic CC SNe will be limited by radiogenic neutrons. As discussed in detail in
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Appendix 7.7.1, we expect to be able to find target samples with uranium-238 con-
centrations of C238 ∼ O(10−11) = O(0.01) ppb.

For these concentrations of heavy radioactive elements, we showed in Section 7.5
that one could measure the time-averaged galactic CC SNe rate using paleo-detectors
if the true rate is within the range of current estimates of 2÷ 3 CC SNe per century
in the Milky Way. We also investigated how paleo-detectors could be used to un-
derstand the time-evolution of the galactic CC SNe rate. To this end, we considered
an experimental scenario where one would use 10 target samples which have been
recording nuclear recoil tracks for different times tage = {0.1, 0.2, 0.3, . . . , 1}Gyr. If
the galactic CC SNe rate was a factor of ∼ 3 higher 1 Gyr ago than today, as indi-
cated by Gaia data [365], paleo-detectors would allow one to reject the hypothesis of
a time-constant galactic CC SN rate to high statistical significance. If, on the other
hand, the galactic CC SN rate increases with look-back time similarly to the cosmic
star formation rate (corresponding to a galactic CC SN rate a factor ∼ 1.2 higher
1 Gyr ago than today) the data obtainable through this experimental scenario would
not suffice to distinguish such a time evolution from a time-constant galactic CC SN
rate.

Finally, we investigated how paleo-detectors could be used to learn about an
enhancement of the local CC SN rate on time scales short compared to the time
resolution of paleo-detectors, which is of order 100 Myr. Such a burst-like enhancement
of the CC SN rate could arise from a single close-by CC SN, or from a period of
significantly enhanced star formation activity in some region of the local group, i.e.
a starburst period. For the latter, we have demonstrated that paleo-detectors could
detect a sizable starburst period in the galactic center or a region of our galaxy of
comparable distance, e.g. the nebula NGC 3603, if it occurred less than ∼ 1 Gyr ago.
Paleo-detectors could also be sensitive to a starburst in the Large Magellanic Cloud,
but only in the case of an exceptionally strong starburst with star formation rates
ψ & 104M� yr−1 sustained for ∆tstarburst ∼ 10 Myr.11 Similarly, a close-by individual
CC SN during the last ∼ 1 Gyr could leave a detectable signature in paleo-detectors
if it occurred at a distance of . 10 pc from Earth. In the analysis carried out here, we
only considered the number of nuclear recoils induced by neutrinos from CC SNe. In
such an analysis, enhancements in the signal rate from a starburst period or a single
close-by SN would be indistinguishable; see Section 7.5.3 for a discussion of how this
degeneracy could be broken using the directionality of the signal tracks.

In conclusion, this paper demonstrates that paleo-detectors are a promising exper-
imental technique to obtain information about the rate of galactic CC SNe. The long
timescales tage . O(1) Gyr over which paleo-detectors could have recorded nuclear
recoils induced by neutrinos from CC SNe would furthermore offer the unique ability

11Note though that Large Magellanic Cloud is not large enough to sustain such an exceptionally
strong starburst, which would require & 1011 M� of baryonic mass.
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for a direct determination of the history of the galactic CC SN rate over geological
time-scales. Because the star formation rate is thought to be directly proportional to
the CC SN rate, this would allow for a measurement of the star formation history of
our galaxy, providing important information for the understanding of the Milky Way.

7.7 Appendix

7.7.1 Uranium-238 Concentrations

The concentration of uranium-238, C238, in target samples plays an important role in
paleo-detectors because radioactive processes are one of the most relevant sources of
backgrounds. As discussed in Section 7.3, see also [341], nuclear recoils induced by ra-
diogenic neutrons are of particular relevance. Fast neutrons produced by spontaneous
fission and (α, n) reactions lose their energy predominantly via elastic scattering off
nuclei within the target material. The mean free path of fast neutrons in typical min-
erals is O(1) cm. Furthermore, fast neutrons undergo ∼ 10÷ 103 elastic interactions
before losing enough of their energy to no longer give rise to nuclear recoils similar to
those induced by neutrinos from CC SNe or dark matter.

Because of the range of the neutrons, the relevant uranium-238 concentration is
not necessarily in the target volume itself, but rather the average uranium-238 concen-
tration in an O(m3) volume around the target sample. Modeling of radiogenic neutron
backgrounds in an inhomogeneous environment would require knowledge of the geom-
etry and composition of the rock surrounding the target samples. In our background
modeling, we assume an infinitely-sized mineral of constant chemical composition.
Note that inhomogeneities may lead to either higher or lower neutron-induced back-
grounds in the target material. For example, the neutron-induced background in a
relatively uranium-rich target sample not comprising hydrogen could be lower by or-
ders of magnitude compared to the background calculated using the infinite mineral
approximation, if such an O(cm3) target sample was located in a surrounding O(m3)
volume of material where the uranium concentration is lower and hydrogen is present.

Further, we would like to note that the theoretical estimation of uranium concen-
trations in natural minerals is notoriously difficult. This is because the concentration
depends not only on the average uranium concentration of the material in which the
mineral forms, but also on the details of how uranium in incorporated into particular
minerals during the formation process. For example, many minerals are rather robust
to the introduction of heavy radioactive elements into the crystal lattice and thus
chemically expel uranium (and similar heavy elements) during their growth. How-
ever, the effect of such purification cannot be quantified in general, see e.g. [418]
for a discussion. In the remainder of this section, we will motivate our choices of
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benchmark values for the uranium-238 concentrations in possible target materials for
paleo-detectors. Ultimately, experimental efforts are required to determine the range
of uranium concentrations in the most relevant target materials; we are currently
coordinating such an effort. Note that once obtained, concentrations of radioactive
trace elements in target samples of interest can be measured reliably to levels as
low as ∼ 10−15 in weight, e.g. using inductively coupled plasma mass spectroscopy
[419, 420].

A rather comprehensive discussion of the concentration of uranium-238 and other
heavy radioactive contaminants in natural minerals can be found in [418]. Typical
concentrations of uranium-238 in minerals formed from material in the Earth’s crust
are of the order of parts per million (ppm) in weight, which would lead to prohibitively
large numbers of radiogenic background events in paleo-detectors. However, much
lower uranium concentrations are found in minerals which compose Ultra Basic Rocks
(UBRs)12 and Marine Evaporites (MEs)13. This is because UBRs form from material
in the Earth’s mantle and MEs from salt deposits at the bottom of evaporated bodies
of water. Both the Earth’s mantle and its seas have uranium-238 concentrations a few
orders of magnitude below the material in the Earth’s crust and therefore minerals
in UBRs and MEs are much better suited as paleo-detectors.

[418] quote values for uranium concentrations in UBRs of 1 ÷ 30 ppb (parts per
billion) and uranium concentrations of . 100 ppb in MEs. However, the aim of [418]
was not to find the most radiopure rocks; in particular for MEs the quoted values
represent upper limits of uranium-238 concentrations. While the ranges of uranium-
238 concentrations given in the literature are typically representative of the most
likely values for a given UBR or ME, [418] note that variations of up to an order
of magnitude outside of such ranges are common. While experimental efforts are
under way to better characterize the distributions of uranium-238 concentrations in
representative target materials for paleo-detectors, in particular for the case of MEs
with C238 .ppb, our benchmark values represent roughly an order of magnitude
downward variation from the most likely ranges given in the literature.

Ultra Basic Rocks

More detailed discussions of UBRs with C238 . O(1) ppb can be found, for example, in
[421]. They reported uranium-238 concentrations of O(0.1) ppb uniformly distributed
in (clino)pyroxenes, minerals which, along with olivine, constitute most of UBRs.
Note however that these concentrations can vary upward by a factor of ∼ 100 from

12Olivine [Mg1.6Fe2+
0.4(SiO4)] is very common in UBRs. We also show results for nchwaningite

[Mn2+
2 SiO3(OH)2 ·(H2O)] in this work, a less common mineral found in UBRs which contains hy-

drogen.
13Halite (NaCl) is one of the most common MEs. We also present results for epsomite [Mg(SO4)·

7(H2O)] in this work, a less common example of MEs.
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rock to rock, with the upper end of the range of C238 consistent with the values
reported in [418]. [422] found a similar range for the uranium-238 concentration in
UBRs, with some minerals having concentrations as low as O(0.1) ppb. Further, [422]
suggest that the large variation of uranium-238 concentration in UBRs stems from
different amounts of more uraniferous materials introduced after the original rock had
formed. Both [421] and [422] also suggest (but do not conclusively prove) that such
alterations are more prevalent in oceanic UBRs than in continental UBRs.

Marine Evaporites

For MEs there is considerably less published data available. In particular, many
of the available data sets only provide upper limits on the uranium concentrations
since the true level of uranium-238 in MEs is often below the sensitivity threshold
of a given measurement technique. Some of the smallest uranium-238 concentrations
in MEs have been reported by [423]. They reported uranium-238 concentrations
of O(0.1) ppb in halite, however, their samples exhibited characteristics suggesting
significant impurities. A more recent review of trace elements in MEs is given by [424].
They report uranium-238 concentrations ranging form O(0.1) ppb to O(10) ppb. Such
large variations in uranium-238 concentrations from sample to sample are difficult to
explain from first principles.

However, for MEs one can at least estimate the uranium-238 concentration and
demonstrate that this is consistent with the observed range. Additionally, one can
therefore estimate the lowest uranium-238 concentrations one may expect to find. Let
us consider halite as a typical example of a ME and assume it forms in a body of
water large enough such that the environment surrounding the water has a negligible
effect on the average uranium-238 concentration (e.g. sufficiently deep ocean water).
The uniformly distributed uranium concentration in a halite deposit formed under
such conditions can be estimated as

CME
238 ∼ C

H2O
238 × S

−1
H2O × αNaCl , (7.12)

where CH2O
238 is the uranium-238 concentration and SH2O the salinity of the original

water, and αNaCl is the ratio of the uranium concentration in the halite deposit to
that of the residue left over from the original water. While our simple approximation
does not necessarily hold for MEs formed in shallower bodies of water in which the
deposition environment can significantly impact the uranium-238 concentration, we
note that the ranges of CME

238 values measured in such environments are similar. For
typical values of seawater today, CH2O

238 = 3 ppb [418] and SH2O = 35 g kg−1, and
assuming that uranium from the water enriches the mineral phase of the evaporite
and the leftover water residue equally, αNaCl = 1, we find CME

238 ≈ 90 ppb, which is
roughly consistent with the upper limit given in [418].
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However, much lower uranium concentrations can be accommodated in our es-
timate. The uranium-238 concentration in seawater does vary and values as low as
CH2O

238 = 0.3 ppb have been reported [418]. While the typical uranium-238 concentra-
tions of sea water are not expected to have varied much over the relevant geological
times scales, the salinity of seawater is generally assumed to have been significantly
higher in the past than it is today, see e.g. [425]. Assuming a factor of two increase
in the salinity for ancient oceans relative to today, we find CME

238 ∼ 4 ppb× αNaCl. As
discussed e.g. in [426], typical values of αNaCl are considerably smaller than αNaCl = 1
because uranium can be maintained as a stable complex anion in the water residue
without being precipitated. [426] report values of αNaCl = 0.006 and αNaCl = 0.011
for different samples. Taking such effects into account, one may expect the lower
range of typical uranium-238 concentrations in MEs to be CME

238 = O(0.01) ppb, which
we assume as the benchmark value for our background modeling.

7.7.2 Statistical Techniques

Here we discuss additional details of the spectral analysis used for sensitivity projec-
tions. All analyses were performed using swordfish (github.com/cweniger/swordfish),
an analysis tool developed in [6, 1]. swordfish automatically uses the spectral dif-
ferences between the signal and background models to calculate accurate sensitivity
projections, regardless of the statistical regime (Gaussian or Poissonian). This is
made possible through the equivalent counts method, introduced in Section 2.4 of [6].
In Section 7.5.1 we calculate the minimum rate required to be detectable at 3σ sig-
nificance. We define this rate to be the discovery threshold, as discussed in [1, 404].
In particular, this is given by the value of the rate that leads (in 50% of the cases) to
a rejection of the no-signal hypothesis at 3σ. The exact definition is given in Eq. (8)
of [1].

In Section 7.5.2 we discuss the ability of paleo-detectors to decipher the time
evolution of the galactic CC SN rate. Here we present the procedure used to calculate
the model selection statements in more detail. Note that we proceed similarly for the
time varying signal and burst search. Importantly, the ten mineral ages we consider
can be treated as independent data sets since no two minerals will record tracks
induced by the same neutrino. We first simulate the expected rates, Roi , from a time
varying signal in each age bin i. This expectation is specific to the model under
consideration. We then calculate the expected errors on the reconstructed values, σ2

i ,
and fit a time-constant rate by minimizing the chi-squared difference,

χ2 =
∑
i

(
Rci −Roi

)2
σ2
i

, (7.13)
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where Rci is the time-constant rate which is varied to best fit Roi . We then calculate
the statistical distinctness between the signals given by Roi and Rci . For this we make
use of Euclideanised signals xi(R), a technique developed in [6, 3]. The Euclideanized
signal method is an approximate isometric embedding of a d-dimensional model pa-
rameter space (with geometry from the Fisher information metric) into n-dimensional
Euclidean space here given by : R 7→ x(R) with x ∈ M ⊂ Rn and R ∈ Rd. The
full definition is given in Eq. (A18) of [1]. This embedding allows one to estimate
differences in the log-likelihood ratio by the Euclidean distance (in units of σ) as,

d =
√∑

i

|xi(Roi )− xi(Rci )|2 , (7.14)

as shown in Figure 7.4. Here, d quantifies the degree to which a time-constant rate
would be disfavored by a data-set consistent with the time-varying rates we consid-
ered. A similar procedure is used in the burst search but instead we compute the
minimum enhancement to Roi required to give d > 3, as shown in Figure 7.5.
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8 Conclusion

Searching for signs of new physics is a difficult task. Luckily, we live in an age of ex-
treme technological innovation that enables unprecedented experimental capabilities.
This thesis is an attempt to contribute to the huge ongoing effort to learn more about
the Universe.

We began by developing the necessary statistical techniques to perform rigorous
forecasting estimates without sacrificing computational efficiency. For this we bor-
rowed techniques from the field of information geometry, utilising the structure of
likelihood spaces to form more efficiently assess how sensitive a detector will be to
signs of new physics. Due to the general applicability of these techniques, they will
have far reaching consequences for the community. In particular, they will allow for
a more general rigorous discussion on experimental design and optimal running pro-
cedures.

Initially, we focused on how to efficiently compute upper limits and the discovery
reach for experiments that may, a priori, be in the Gaussian of Poissonian regime.
Traditionally, the lack of an analytic description of the test statistic in the Poisson
regime has proven to be numerically taxing. We alleviate this problem by developing
the equivalent signals technique; a method for calculating (to a high degree of accu-
racy) the exclusion limits and discovery reach of any counting experiment, regardless
of the statistical regime. We showed the validity of the method by analysing a set of
background and signal models that are common in astro-particle physics.

We then turned our attention to forecasting the discriminating power of future
experiments. Again, computational overhead has prevented any rigorous analyses of
model discrimination for many models. Moreover, within any given model one is gen-
erally required to consider a set of limited benchmark parameter points. For example,
if one wants to consider the degree to which N points can be discriminated even in
Gaussian regime this would require N2 matrix inversions. If one considers instead
a Poissonian scenario, the situation becomes worse due to the lack of any analytic
description of threshold values on the test statistic. To reduce the computational over-
head to just N matrix inversions we developed the Euclideanised signals technique;
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a mapping of the signals, backgrounds, and their associated errors onto a new vector
called the Euclideanised signal. Importantly, the test statistic between two points in
the parameter space is now approximated by the Euclidean distance between two of
the Euclideanised signals. We can therefore utilise clustering algorithms to compute
the distance between all points under consideration with little computational over-
head. In particular, the efficiency gains allow for a benchmark-free analysis of the
parameter space.

We then turned to the direct detection of dark matter. Here we demonstrated the
general applicability of our methods, whilst introducing a novel way to characterise the
degeneracy breaking ability of future experiments through infometric venn diagrams.
We used these to show, for the first time, that if future direct detection experiments
find dark matter, they are very unlikely to simultaneously constrain its mass and
interaction type. For this we studied the non-relativistic effective theory (NREFT) of
dark matter direct detection. This NREFT characterizes all possible elastic contact
interactions for direct detection. We showed that for high mass dark matter, the recoil
spectra of these interactions become distinct whereas there is no dependence the dark
matter mass. For low mass dark matter, the opposite is true. We are therefore left
with only a small range of parameters for which it will be possible to disentangle
the mass and interaction type. The methods developed here are general, and can be
applied to any general counting experiment.

Next we turned to the use of ancient minerals as experimental probes of new
physics. These minerals are called paleo-detectors and can be used to search for both
dark matter by looking for the small deposits of energy from particle interactions.
Unlike direct detection, we see the accumulation of one billion years of these events.
We showed that despite a significant background from natural radioactivity, it is still
possible to find the tracks left by dark matter. Moreover, paleo-detectors would rep-
resent the most sensitive dark matter detectors to date. In addition, we showed that
their forecast sensitivity is robust to systematic uncertainty in the backgrounds. Fi-
nally, we demonstrated that paleo-detectors could constrain the mass of a dark matter
particle to much larger masses than a conventional direct detection experiments.

Paleo-detectors are also sensitive neutrinos, the most mysterious sector of the
standard model. The neutrinos emitted during stellar explosions, known as super-
novae (SNe), are of particular interest. Not only are the processes governing these SN
explosions not well understood, the SN themselves play a fundamental role in galaxy
evolution and may even be responsible for mass extinction events here on Earth. We
showed that paleo-detectors could detect the cumulative emission of neutrinos from
SN explosions within our galaxy. In addition, we showed that they are sensitive to
particular SN histories providing a potential tracer of star formation in our galaxy.
Finally, we also showed that paleo-detectors could provide evidence that a SN oc-
curred near to the Earth in the past one billion years.
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Our analyses of paleo-detectors sensitivity represents a primary example of appli-
cability of the statistical methods we developed in Chapter 4. In particular, our use
of swordfish (the python analysis package associated with the statistical methods)
drastically reduced the complexity of our analyses. In addition, the Euclideanised
signals technique allowed us to make concrete statements about the ability of these
detectors to constrain the dark matter’s mass and the degree to which they could
discriminate different star formation histories.

8.1 Outlook

Future searches for DM will take a variety of forms, utilising experimental and the-
oretical progress. In particular, the advent multi-messenger astrophysics will play a
pivotal role in searches for BSM physics. Gravitational waves (GWs) and their EM
counterparts provide a deep observational window into the most violent environments
in the Universe. The possible effects of DM on these signals are still poorly under-
stood, although some progress has been made [427, 428, 429, 430]. A comprehensive
study of the effects of DM models (and other motivated BSM candidates) on these
multi-messenger signals may provide a new pathway to discover the particle nature
of DM.

WIMPs have been the dominant DM paradigm for several decades due to there
simple production mechanism in the early universe and generic compatibility with
theories of supersymmetry (SUSY). With no detections made to date and lack of
clear future progress on the energy frontier from future colliders, this dominance is
beginning to wane. Although the motivations of WIMP DM remain true, theorists
are looking for new methods to find non-WIMP candidates. Growing in popularity
is axion DM, with a particular focus on the QCD axion. Whilst generic BSM parti-
cles can be studied, the most well motivated examples of DM candidates come from
solutions to (initially) unassociated particle physics problems. Theorists should seek
to find solutions to particle physics issues that provide generic DM candidates, whilst
experimentalists should develop methods to find them. The reign of the WIMP may
be over, but the path ahead is wide open.
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the Bubble Trouble?âUpon Reconstructing the Origin of the Local Bubble and
Loop I via Radioisotopic Signatures on Earth, Galaxies 6 (2018) 26,
[1802.09275].

[414] M. Kachelrieß, A. Neronov and D. V. Semikoz, Signatures of a two million
year old supernova in the spectra of cosmic ray protons, antiprotons and
positrons, Phys. Rev. Lett. 115 (2015) 181103, [1504.06472].

[415] W. R. Binns et al., Observation of the 60Fe nucleosynthesis-clock isotope in
galactic cosmic rays, Science 352 (2016) 677–680.

[416] D. Breitschwerdt, J. Feige, M. M. Schulreich, M. A. D. Avillez, C. Dettbarn
and B. Fuchs, The locations of recent supernovae near the Sun from modelling
60Fe transport, Nature 532 (Apr, 2016) 73–76.

[417] A. D. Erlykin, S. K. Machavariani and A. W. Wolfendale, The Local Bubble in
the interstellar medium and the origin of the low energy cosmic rays, Adv.
Space Res. 59 (2017) 748–750, [1610.07014].

[418] J. A. S. Adams, J. K. Osmond and J. J. W. Rogers, The geochemistry of
thorium and uranium, Phys. Chem. Earth 3 (1959) 298–348.

[419] P. P. Povinec, New ultra-sensitive radioanalytical technologies for new science,
J Radioanal Nucl Chem 316 (2018) 893–931.

[420] P. P. Povinec et al., Ultra-sensitive radioanalytical technologies for underground
physics experiments, J. Radioanal. Nucl. Chem. 318 (2018) 677–684.

198

http://dx.doi.org/10.1103/PhysRevLett.88.081101
http://arxiv.org/abs/astro-ph/0201018
http://dx.doi.org/10.1073/pnas.1601040113
http://dx.doi.org/10.1073/pnas.1601040113
http://arxiv.org/abs/1710.09573
http://dx.doi.org/10.1103/PhysRevLett.116.151104
http://dx.doi.org/10.1103/PhysRevLett.116.151104
http://dx.doi.org/10.1038/nature17196
http://dx.doi.org/10.3390/galaxies6010026
http://arxiv.org/abs/1802.09275
http://dx.doi.org/10.1103/PhysRevLett.115.181103
http://arxiv.org/abs/1504.06472
http://dx.doi.org/10.1126/science.aad6004
http://dx.doi.org/10.1038/nature17424
http://dx.doi.org/10.1016/j.asr.2016.10.017
http://dx.doi.org/10.1016/j.asr.2016.10.017
http://arxiv.org/abs/1610.07014
http://dx.doi.org/10.1016/0079-1946(59)90008-4
http://dx.doi.org/10.1007/s10967-018-5787-3
http://dx.doi.org/10.1007/s10967-018-6105-9


Bibliography

[421] K. C. Condie, C. S. Kuo, R. M. Walker and V. R. Murthy, Uranium
Distribution in Separated Clinopyroxenes from Four Eclogites, Science 165
(1969) 57–59.

[422] M. Seitz and S. Hart, Uranium and boron distributions in some oceanic
ultramafic rocks, Earth and Planetary Science Letters 21 (1973) 97 – 107.

[423] S. Thomson and G. Wardle, Coloured natural rocksalts: a study of their helium
contents, colours and impurities, Geochimica et Cosmochimica Acta 5 (1954)
169 – 184.

[424] W. E. Dean, Section 5 trace and minor elements in evaporites, in Marine
Evaporites. SEPM Society for Sedimentary Geology, 1987. DOI.

[425] W. Sanford, M. Doughten, T. Coplen, A. Hunt and T. Bullen, Evidence for
high salinity of Early Cretaceous sea water from the Chesapeake Bay crater,
Nature 503 (2013) 252–256.

[426] M. Yui, Y. Kikawada, T. Oi, T. Honda and T. Nozaki, Abundance of Uranium
and Thorium in Rock Salts, Radioisotopes 47 (1998) 488–492.

[427] K. Eda, Y. Itoh, S. Kuroyanagi and J. Silk, Gravitational waves as a probe of
dark matter minispikes, Phys. Rev. D91 (2015) 044045, [1408.3534].

[428] K. Eda, Y. Itoh, S. Kuroyanagi and J. Silk, New Probe of Dark-Matter
Properties: Gravitational Waves from an Intermediate-Mass Black Hole
Embedded in a Dark-Matter Minispike, Phys. Rev. Lett. 110 (2013) 221101,
[1301.5971].

[429] E. Barausse, V. Cardoso and P. Pani, Environmental Effects for
Gravitational-wave Astrophysics, J. Phys. Conf. Ser. 610 (2015) 012044,
[1404.7140].

[430] E. Barausse, V. Cardoso and P. Pani, Can environmental effects spoil precision
gravitational-wave astrophysics?, Phys. Rev. D89 (2014) 104059, [1404.7149].

199

http://dx.doi.org/10.1126/science.165.3888.57
http://dx.doi.org/10.1126/science.165.3888.57
http://dx.doi.org/10.1016/0012-821X(73)90230-6
http://dx.doi.org/10.1016/0016-7037(54)90031-9
http://dx.doi.org/10.1016/0016-7037(54)90031-9
http://dx.doi.org/10.2110/scn.78.01.0086
http://dx.doi.org/10.1038/nature12714
http://dx.doi.org/10.3769/radioisotopes.47.488
http://dx.doi.org/10.1103/PhysRevD.91.044045
http://arxiv.org/abs/1408.3534
http://dx.doi.org/10.1103/PhysRevLett.110.221101
http://arxiv.org/abs/1301.5971
http://dx.doi.org/10.1088/1742-6596/610/1/012044
http://arxiv.org/abs/1404.7140
http://dx.doi.org/10.1103/PhysRevD.89.104059
http://arxiv.org/abs/1404.7149


Bibliography

200



Samenvatting

Het werk van een natuurkundige bestaat in het algemeen uit twee aspecten: een
poging wagen om een signaal van een nieuw fenomeen te vinden, of het proberen de
lange lijst van onbeantwoorde fenomenen uit te leggen. Dit proefschrift zit op de grens
van de twee en neemt ideeën van de ene kant en past ze toe op de andere kant, hopend
op succes om iets nieuws te begrijpen, of het vinden van oplossingen op lang bestaande
mysteries. Gedurende ons dagelijks leven hebben we interactie met dingen van waaruit
onze wereld uit bestaat. Deze dingen, de atomen die onze lichamen en alles uit het
universum samenstellen, is materie. Vreemd genoeg, hebben de observaties van hoe
het universum beweegt en ontwikkelt, geleid tot het geloven dat er veel meer dingen
zijn die we niet kunnen zien, donkere materie. Er is gewoon niet genoeg zichtbare
massa om de graviteit uit te leggen die we zien werken op sterren, sterrenstelsels, and
nog verder. Deze donkere materie is sinds decenia een mysterie voor natuurkundige.
Velen denken dat het een nieuw type deeltje is, met normale materie als bouwstenen,
hoewel dit nooit bewezen is. Helaas is het zoeken naar donkere materie extreem
moeilijk vanwege zijn aard. Het feit dat we het nog niet hebben gezien betekent dat
het zo zelden met normale materie interactie ondergaat, dat het geen effect heeft op
aarde. In feite, door het volgen van de bewegingen van sterren die dichtbij aarde zijn,
kunnen we de hoeveelheid donkere materie dichtbij ons voorspellen. Het blijkt dat er
zo veel donkere materie is dat er bijna 10,000 deeltjes elke seconde door je lichaam
gaan! Gelukkig kunnen we deze overvloed gebruiken om donkere materie hier op aarde
te studeren. Door detectors diep onder de grond te bouwen, is het mogelijk om kleine
energie sporen te traceren die donkere materie zouden kunnen hebben vrijgelaten,
gedurende een van deze zeldzame gebeurtenis. Het interpreteren van data afkomstig
van een van deze experimenten is een moeilijke taak. Aangezien het aantal keren dat
er interactie zal plaats vinden zo laag is, zouden we bij geluk enkel een of meerdere
interacties zien. Als we een ontdekking willen claimen en kunnen zeggen dat we
werkelijk donkere materie hebben gezien, is het noodzakelijk dat we absoluut zeker
zijn dat deze gebeurtenissen zijn veroorzaakt door donkere materie. Hoofdstuk 4
gaat precies over dit onderwerp. Hoe kunnen we zeker zijn dat een detector gevoelig
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genoeg is om het bewijs te leveren dat we nodig hebben? We ontwikkelden de nodige
technieken om deze vragen op een efficiënte manier te beantwoorden. In hoofdstuk 5
zijn we verder gegaan dan dat, we berekenden niet alleen of toekomstige experimenten
donkere materie kan detecteren maar ook of ze gevoelig genoeg zijn om te leren over
zijn aard, en dus om zijn geheimen te onthullen. Helaas zullen we met toekomstige
experimentele opstellingen waarschijnlijk niets leren over alles wat we over donkere
materie kunnen weten en zouden daarom meer toekomstige experimentele testen nodig
zijn. We zijn vervolgens in hoofdstuk 6 naar een nieuwe manier gekeerd om deze
energiestorting te detecteren; het gebruiken van oude stenen onder the oppervlakte
van de aarde. Door het zoeken naar afwijkingen in de steen structuur, kunnen we
zoeken naar historische bewijzen van donkere materie die de aarde passeren. We
toonden aan dat deze paleo-detectors de meest gevoelige donkere materie detectors
tot op heden zijn, en ze liggen enkel onder onze voeten.

Tenslotte zijn we in Hoofdstuk 7 omgedraaid naar een andere set van mysterieuze
deeltjes, bekend als neutrinos. Deze fundamentele deeltjes worden nog niet goed be-
grepen maar ze spelen een grote rol in veel astrofysische omgevingen. De explosies
die aan het einde van een sterren leven gebeuren, genaamd supernovae, zouden er
compleet anders uitzien als er geen neutrinos waren. Net als donkere materie, zijn ze
overal om ons heen, en bewegen ze schadeloos door aarde. We lieten zien dat paleo-
detectoren neutrinos kan detecteren afkomstig van deze supernovae explosies in ons
eigen sterren-stelsel. Als een supernova dichtbij genoeg van de aarde is afgegaan, zou
de straling afkomstig van de explosie onze atmosfeer ernstig kunnen beschadigen, en
potentieel massa-extinctie kunnen veroorzaken. We lieten zien dat paleo-detectoren
bewijs kan verzamelen voor een van deze gebeurtenissen, dat het bewijs kan verstrek-
ken over hoe het leven ontwikkelde op aarde.

Vertaald door Ariane Dekker.
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Summary

A physicists job generally takes two forms: attempting to find signs of a new phe-
nomena, or trying to explain the long list of existing unexplained phenomena. This
thesis sits at the boundary, taking ideas from one side and applying them to the
other, hoping to succeed in understanding something new, or finding solutions to
long standing mysteries.

Throughout our daily lives we interact with the stuff that makes up the world
around us. This stuff, the atoms that make up our bodies and everything throughout
the Universe, is called matter. Strangely, measurements of how the Universe moves
and evolves have led physicists to believe that there is a lot of extra stuff that we
cannot see, dark matter. There just isn’t enough visible matter to explain amount of
gravity we see acting on stars, galaxies, and beyond.

This dark matter has been a mystery to physicists for decades. Many think its
a new type of particle, the building blocks normal matter, although this has never
been proven. Unfortunately, searching for dark matter is extremely difficult by its
very nature. The fact that we haven’t seen it already means that it must interact
with normal matter so rarely that it has no effect on the Earth. In fact, by tracking
the motions of stars close to Earth we can predict the amount of dark matter close
by. It turns out that there is so much dark matter that almost 10,000 particles pass
through your body every second! Luckily we can use this abundance to search for
dark matter here on Earth. By building detectors deep underground its possible to
look for the tiny traces of energy that dark matter might release when one of these
rare events occurs.

To interpret the data from one of these experiments is a arduous task. Since the
number of times these interactions will happen is so low, just by chance we might see
only one but we could also see more. If we want to make a discovery and claim we
truly have seen dark matter, its imperative that we are absolutely certain that these
events are caused by dark matter. Chapter 4 is about exactly this topic. How can
we be sure that a detector will be sensitive enough to find the evidence we need? We
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developed the necessary techniques to answer these questions in an efficient way. In
Chapter 5 we went further, calculating whether future experiments will be able to
not only detect the dark matter but learn about its nature, thus revealing its secrets.
Unfortunately, future experimental setups will be unlikely to learn all there is to know
about dark matter therefore further experimental tests may be required.

We then turned, in Chapter 6, to a new way to detect these minute energy de-
posits; using ancient rocks from below the surface of the Earth. By searching for
abnormalities in the rocks structure, we can search for the historic evidence of dark
matter passing through the Earth. We showed that these paleo-detectors could be the
most sensitive dark matter detectors to date, and they lie just under our feet.

Finally in Chapter 7 we turned to another set of mysterious particles, known as
neutrinos. These fundamental particles are not well understood but known to play
huge roles in many astrophysical settings. The explosions that happen at the end
of a stars life, called supernovae, would look completely different if it were not for
neutrinos. Like dark matter, they are all around us, harmlessly zooming through the
Earth. We showed that paleo-detectors could find the neutrinos from these superno-
vae explosions in our own galaxy. If a supernova went off close enough to Earth in
its history, the radiation from the explosion could seriously damage our atmosphere,
potentially causing mass extinction events. We showed that paleo-detectors would
record evidence for one of these events within them, providing evidence for how life
evolved on Earth.
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