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Abstract

Our capacity to jointly represent information about the world underpins our social experience. By leveraging one
individual’s brain activity to model another’s, we can measure shared information across brains—even in dynamic,
naturalistic scenarios where an explicit response model may be unobtainable. Introducing experimental manipulations
allows us to measure, for example, shared responses between speakers and listeners or between perception and recall. In
this tutorial, we develop the logic of intersubject correlation (ISC) analysis and discuss the family of neuroscientific
questions that stem from this approach. We also extend this logic to spatially distributed response patterns and functional
network estimation. We provide a thorough and accessible treatment of methodological considerations specific to ISC
analysis and outline best practices.
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Introduction
Traditional methods for fMRI data analysis are not conducive
to studying the multidimensional dynamics that characterize
social interaction in real-life contexts. Methodological con-
straints require relatively brief, isolated stimulus events or
tasks, accompanied by a pre-defined model of the expected
neural response. Brain areas involved in a particular function are
localized by contrasting neural responses to tightly controlled
stimuli varying along a few isolated parameters of experimental
interest. As a result, many of the core questions of social and
affective neuroscience have proven difficult to study (Zaki and
Ochsner, 2009; Hasson and Honey, 2012; Adolphs et al., 2016).
For instance, narrative comprehension is triggered by complex
situations that unfold over minutes and cannot be captured in
brief epochs, while face-to-face social interactions additionally

involve a multitude of communication channels such as words,
sentences, intonation, facial expressions and gestures (Hasson
et al., 2012). Predicting fluctuations in brain activity during these
dynamic, continuous episodes is difficult. Finally, the social
and affective symptoms of patients with psychiatric disorders
may only be revealed in open, complex situations that cannot
be boiled down to experimental paradigms with brief, disjoint
events (Klin et al., 2002).

Intersubject correlation (ISC) analysis provides complemen-
tary insights to traditional analyses by circumventing the need
for a pre-defined response model and allowing experimenters
to measure the consistency of neural responses to complex,
naturalistic stimuli across individuals (Hasson et al., 2004, 2010).
Beyond simply measuring response reliability, ISC analyses allow
us to measure shared content across experimental conditions.
By capitalizing on the richness of naturalistic experimental
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paradigms, ISC has the potential to empower the investigation
of social interactions. This tutorial situates ISC among related
methods and extends the logic of ISC to spatially distributed
response patterns and functional connectivity. We provide
illustrative examples of how ISC analyses can be used to address
novel questions and put special emphasis on methodological
and interpretational considerations.

Situating ISC among traditional methods
Traditional analyses of functional magnetic resonance imaging
(fMRI) data follow a simple conceptual framework. During
experimental design, we generate at least two conditions that
differ according to some variable of experimental interest: one
may be thought to trigger a particular function while the other
is as similar as possible without triggering that function, or
the conditions may vary parametrically along a single variable
such as retinotopic eccentricity. In fMRI, noise dominates signals
at frequencies lower than 0.04 Hz, so when presenting stimuli
intended to evoke a particular function, instances of each con-
dition typically range from brief ‘events’ (tens of milliseconds to
several seconds) to ‘blocks’ about 20 s in duration (Boynton et al.,
1996; Chen and Tyler, 2008). We assume that neural activity
is roughly constant within each instance of a condition and
that a brain region is involved in a function, or tuned to an
experimental variable, if its activity increases in response to the
condition where the variable of interest is present or increased in
magnitude, relative to a condition where the variable of interest
is not present (i.e. the control condition) or lesser in magnitude.
These are typically referred to as subtraction (Friston et al.,
1996) and parametric (Büchel et al., 1998) designs, respectively.
These designs lend themselves to generating predictions
about the hypothesized time courses of neural activation. The
hypothesized time courses serve as predictors in a general linear
model (GLM) that quantifies how well the expected time course
predicts activity observed in each voxel, thereby localizing the
function of interest (Friston et al., 1994). Fluctuations in brain
activity over time within a condition or across repetition are
considered noise, while the difference across conditions is the
signal. Because each predictor typically comprises multiple trials
of the same condition and we assume that neural activity is
identical across trials of the same condition, this approach
effectively collapses across trials (i.e. trial averaging; Dale and
Buckner, 1997). This approach is powerful whenever (i) the func-
tion can be recruited in short epochs, (ii) tightly controlled stim-
uli can be generated to isolate and manipulate the parameter of
experimental interest and (iii) we have detailed and exhaustive
hypotheses about the time course of relevant brain activity.
Cutting edge modeling efforts (e.g. Huth et al., 2016) suffer from
similar constraints. For example, when using word embeddings
to predict brain activity during narrative comprehension, each
occurrence of a word receives the same embedding regardless
of the overarching narrative. In real-life scenarios, where the
response to each token changes as a function of an evolving
narrative context, such trial-averaging methods will fall short
(Ben-Yakov et al., 2012).

ISC analyses provide a complementary, data-driven alterna-
tive for identifying brain regions with activity driven by the
stimuli or paradigm. The core idea is best illustrated for subjects
listening to a spoken story. If multiple subjects listen to the same
story, brain regions that are systematically driven by the story
will fluctuate synchronously across viewers, while brain regions
that do not process the story in the same way across subjects,
or are not responsive to the story at all, will not. For example,

a voxel in early auditory cortex will consistently track the low-
level auditory features of the spoken words across all viewers.
The response time course of this voxel will be highly correlated
across subjects. On the other hand, a region of the brain that is
not entrained by the story (e.g. one involved in low-level visual
or motor processing) will not yield a consistent response time
course across subjects. Finally, regions that respond to the story
in a way that varies temporally to some extent across subjects,
for instance because they are involved in emotional reactions to
the story that evolve somewhat idiosyncratically from subject
to subject, will show intermediate correlations, particularly in
the lower frequency range (see Box 1). In summary, correlating
brain activity across subjects while they are exposed to a com-
plex stimulus reveals brain areas that process the stimulus in
a consistent, time-locked manner. Correlations approaching 1
indicate that the region encodes information about the stim-
ulus and that this information is processed in a stereotyped
way across individuals, while correlations approaching 0 reflect
regions with idiosyncratic processing or encoding little informa-
tion about the stimulus.

This logic can be meaningfully applied to specific frequency
bands of the signal (Box 1). If we study the processing of features
of the soundtrack that fluctuate rapidly, we would look for cor-
relation across viewers in higher frequency ranges. If we study
emotional responses that fluctuate slowly, we would look for
correlations in slower frequency ranges that also allow for more
leeway across viewers in the precise timing of the reaction. Our
dependence on the hemodynamic response in fMRI constrains
the frequency bands that can be studied with that measurement
modality (Box 1). Some of these limitations can be overcome by
using other measurement modalities, e.g. electrocorticography
(ECoG) (Mukamel et al., 2005; Honey et al., 2012a), but here we
concentrate on fMRI analyses.

Unlike traditional designs where the order of trials may be
counterbalanced or randomized across subjects, ISC analysis
critically relies on subjects receiving the same time-locked
stimulus. Similar to functional connectivity analyses (Friston,
1994), typical ISC analyses summarize the relatedness of two
response time series; however, rather than correlating time
series across different voxels within a subject, ISC analyses
typically correlate time series across subjects (Figure 1). By
computing correlations across subjects rather than across
voxels within a subject, ISC analyses are less susceptible
to idiosyncratic physiological noise and head motion than
functional connectivity analyses (Simony et al., 2016). In another
sense, ISC can be understood as specific case of the traditional
GLM where the predictor of interest is not generated a priori
based on the stimulus or experimental design, but is instead
the response time course from the corresponding region in
another subject (or the average time course across other
subjects). In a traditional GLM, we typically convolve the hypoth-
esized time course of neural activity with a hemodynamic
response function (HRF; e.g. Cohen, 1997; Friston et al., 1998)
reflecting the lag and temporal smoothness of the blood-
oxygen-level-dependent (BOLD) response. The same HRF is
typically used across brain regions, tasks and subjects, despite
evidence for considerable inhomogeneity (Birn et al., 2001;
Handwerker et al., 2004). In ISC analyses, there is no need
to convolve the hypothesized time course with an HRF, as
the hemodynamic responses in one brain are used to predict
responses in another brain. Using responses in one brain
area to predict responses in the same brain area in another
subject mitigates situations in which different brain areas have
systematically different HRFs.
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Fig. 1. The logic of ISC analysis. The response time course of a specific voxel in a given subject, xA(t), can be considered a mixture of three components: a consistent

stimulus-evoked component (green), an idiosyncratic stimulus-evoked component (blue) and stimulus-unrelated idiosyncratic or noise component (red). If brain activity

is correlated over time across subjects, the green component has a correlation of 1, and the other two components zero. The relative proportion of these components

determines the observed ISC.

Formal definition of ISC
Although we focus on the most commonly used ISC analysis
in this tutorial, this is only one member of a larger family of
conceptually related analyses. We first quantitatively consider a
typical ISC analysis, then extend this logic to related methods. At
the individual subject level of analysis we can decompose brain
activity in a single voxel into several variables (Figure 1). When a
given subject A listens to a story, the brain activity in a particular
voxel over time can be interpreted as a mixture of three signals.
The first, which we call c(t), reflects processing that is triggered
by the stimulus and is consistent across subjects. For example,
brain areas supporting low-level sensory processing closely track
stimulus features and respond consistently across individuals.
However, stimuli such as stories or movies can also synchronize
higher-level brain functions, such as semantic, emotional and
social processing, across subjects in regions beyond sensory
cortex (Hasson et al., 2004; Lerner et al., 2011; Thomas et al., 2018).
The synchronized component of such higher brain functions is
included in c(t). The second variable, which we call idA(t), cap-
tures idiosyncratic responses for subject A that are nonetheless
induced by the stimulus, but with timing and intensity specific
to that subject. For example, the same story may be interpreted
differently by different subjects if it triggers subject-specific
memories or emotions, or the story may evoke similar processes
at different times across subjects. The third variable, which we
call εA(t), reflects spontaneous activity unrelated to the stimulus
(e.g. thinking about your grocery list during the experiment) and
noise (e.g. respiration, head motion). The standardized signal in
a voxel xA(t) is then a linear combination of these standardized
components:

xA (t) = αAc (t) + βAidA (t) + εA (t)

To map all brain regions processing the story, the analy-
sis should quantify how much of the neural activity in each
brain region is related to shared and idiosyncratic responses, i.e.
α + β > 0. The larger α + β, the more the voxel is processing
the stimulus. The logic of ISC is that if a second subject B views
the same movie, her brain activity will also be a mixture of
c, idB and εB. By definition, c(t) will be perfectly correlated for
subjects A and B (which is why we do not label c(t) with a
subscript subject variable A or B), while id(t) and ε(t) will not
be systematically correlated across subjects. By modeling one
subject with another subject’s time course, we are effectively
filtering out both id(t) and ε(t). The actual correlation between
the response time course of the two subjects A and B at voxel x,
rAB = r(xA, xB), will thus increase monotonically with α (Figure 2),
with rAB

2 ∼ αA • αB; and with a larger number of subjects, the
average r becomes a proxy for the average α. Importantly, ISC is
therefore a tool to detect and quantify shared, stimulus-locked
responses and is insensitive to id(t)—a fact that needs to be
considered carefully when interpreting results.

Interestingly, although we do not need to know a priori the
time course of the consistent, stimulus-evoked component c(t)
as we must in a conventional the GLM, we can estimate c(t) for
each voxel from the data, because for large numbers of subjects
N, lim

N→∞
(x(t)) = c(t); that is, simply averaging the x(t) across

many subjects provides an estimate ĉ(t) because the inconsistent
components id(t) and ε(t) will average out to small values close
to zero. The main difference between a traditional hypothesis-
driven GLM and an ISC analysis is that in the GLM we must have
an a priori hypothesis about the time course of activity that is
triggered by the experimental design and then search for regions
with this response profile. The stimulus or task is designed
so as to generate a specific expected time course. Instead, in
ISC analyses we use the shared variance across subjects as a
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Fig. 2. ISC as a proxy for consistent, stimulus-evoked processing. To quantify the

relationship between ISC and what proportion of brain activity is consistent, we

ran simulations in which response time series were generated for 20 subjects

using a mixture of two time series with mean = 0 and SD = 1: one was consistent

across subjects and one reflected subject-specific noise, with x(t) = α • c(t) + (1−α)

• noise(t), where α is the proportion of consistent signal to noise. The average

r value over the 20 subjects is shown as a function of α (i.e. the proportion of

consistent activity). Each line represents 1 of the 30 simulations. The dashed line

illustrates that cases with 50% consistent signal yield an ISC of 0.5.

data-driven estimate of c(t), and this is done separately for each
voxel or region of interest (ROI), allowing each to have a unique
time course.

ISC analysis effectively filters out subject-specific signals and
reveals voxels with a consistent, stimulus-evoked response time
series across subjects. What if, on the other hand, we want to
account for idiosyncrasies particular to a given subject? Using
the same logic, we can compute correlations within a subject
across multiple sessions with the same stimulus. This approach
is called ‘intrasubject correlation’ and provides some traction on
the reliability of idiosyncratic processes peculiar to individuals
(Golland et al., 2007). In the context of ISC, both id(t) and ε(t) are
uncorrelated across individuals, and the analysis thus isolates
c(t). If subject A receives the same stimulus multiple times, the
correlation between these multiple instances will be sensitive
to idA(t) to the extent that the subject-specific processes are
stable over multiple exposures. Experience, however, changes
how we process stimuli (e.g. Lahav et al., 2007; Engel et al., 2012;
Aly et al., 2018). Before measuring intrasubject correlation, one
should consider two caveats: first, being exposed repeatedly
to the same stimulus leads to habituation (Grill-Spector et al.,
2006) and second, some idiosyncratic processes are unreliable in
their timing and would thus still fail to register as intrasubject
correlation in repeated sessions.

The remainder of this tutorial is divided into two parts. In
the first part, we explore how the logic of ISC analyses can be
extended to functional network estimation and pattern similar-
ity and what kinds of scientific questions benefit from these
approaches. In the second part, we address practicalities and
implementational considerations for designing, analyzing and
interpreting experiments using ISC analyses. Finally, the appen-
dices provide recipes for how to implement these analyses.

Part I: extensions and applications
Temporal ISFC

The analyses discussed thus far measure the consistency of
responses by computing correlations between homologous brain
regions (e.g. the same voxel x) across subjects or sessions. How-

ever, the logic of ISC can also be used to investigate the func-
tional integration (i.e. connectivity) of diverse brain regions dur-
ing stimulus processing. We infer that two brain regions are
functionally connected if their activity fluctuates in concert
(Friston, 1994). The problem with applying this notion to fMRI
is that noise in the brain is often shared across voxels. For
example, respiration and head motion lead to fluctuations in
the BOLD signal across the brain, resulting in spurious inter-
voxel correlations that have little to do with concerted neural
activity (Power et al., 2012). The logic of ISC offers a way to
sidestep these confounds by computing the correlation between
the activity of two brain regions x and y not within a subject,
but ‘across’ different individuals—an approach called ‘intersub-
ject functional correlation’ (ISFC) analysis (Simony et al., 2016;
Figure 3). Just as r(xA, xB) is a proxy for the amount of informa-
tion about the stimulus consistently encoded by voxel or brain
area x, we can extend this reasoning to concerted fluctuations
in activity across brain regions x and y such that r(xA, yB) is
a proxy for shared information about the stimulus encoded
consistently across these brain regions (Figure 3). That is, ISFC
analyses aim to quantify systematic stimulus-evoked commu-
nication across brain regions and can reveal stimulus-related
functional networks. ISFC analyses yield a voxel-by-voxel (or
ROI-by-ROI) matrix of correlation values for a pair of subjects
(or between one subject and the average of others). In practice,
computing ISFC yields two asymmetric matrices for r(xA, yB)
and r(xB, yA), which are then averaged. The off-diagonal val-
ues of this matrix represent functional connectivity between
regions, while the diagonal values represent conventional ISCs
(each region correlated with itself across subjects). In this sense,
the conventional ISC analysis can be understood as a subset
of the ISFC analysis (Figure 3). Unlike resting-state functional
connectivity analyses, which are intended to measure intrinsic
fluctuations (e.g. due to daydreaming) while subjects perform
the ‘rest’ task in the scanner, ISFC analyses deliberately filter
out idiosyncratic and stimulus-unrelated fluctuations. While
traditional functional connectivity analyses yield very similar
functional networks whether subjects are at rest or listening
to a complex narrative, ISFCs are abolished during rest and
very robust during stimulus processing (Simony et al., 2016). Kim
et al. (2017) have demonstrated that using ISFC analysis to factor
out spontaneous activity during a naturalistic vision paradigm
yields substantially different functional network solutions com-
pared to rest.

Spatial ISC

In addition to computing correlations in response fluctuations
over time per voxel or brain area, we can extend the logic
of ISCs to multivoxel pattern analysis (Figure 4; Norman et al.,
2006; Haxby et al., 2014). In the simplest spatial analogue of
ISC (Figure 4A), we compute the correlation between spatially
distributed response patterns at a single time point (or the
average response pattern across time for a given event) across
subjects, thus isolating the shared response pattern c(s) and
filtering out idiosyncratic response topographies idA(s) and ε(s).
This purely spatial approach (referred to as ‘intersubject pat-
tern correlation’) ignores the temporal evolution of responses
and instead focuses on punctate patterns of activity that are
consistent across subjects (Chen et al., 2017, Zadbood et al.,
2017). Computing the spatial ISC at each time point yields a
correlation matrix, analogous to the ISFC matrix (Figure 3), but
over time rather than space. In this time-point-by-time-point
correlation matrix, the diagonal represents the reliability of the
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Fig. 3. ISFC analysis. Computing ISCs between each voxel and all other voxels yields a voxel-by-voxel ISFC matrix. The diagonal values of this matrix reflect the

conventional ISC map where correlations are only computed between homologous targets across subjects. A single value on the diagonal corresponds to the ISC for a

given voxel x, or r (xA, xB). A single column (or row) of this matrix represents the functional connectivity map for one seed voxel. The off-diagonal values capture all

inter-voxel functional correlations, r (xA, yB).

Fig. 4. ISCs of spatially distributed response patterns (‘intersubject pattern correlation’). For a given searchlight or ROI, we compute the correlation between response

patterns for a single time point i (or the averaged response patterns across time points in an event) across subjects. We can also compute intersubject pattern

correlations across time points to capture the evolution of response patterns over time (e.g. if a particular pattern recurs at multiple time points). Computing the

pairwise intersubject pattern correlations across all time points results in a time-point-by-time-point correlation matrix. The diagonal of this matrix reflects the

intersubject pattern correlation at each time point, while the off-diagonal values reflect intersubject pattern correlations across time points.

spatial response patterns across subjects at each moment in
time, while the off-diagonal values capture whether the same
response pattern observed in time ti is reinstated at time tj. This
matrix resembles a time point representational dissimilarity
matrix (RDM) as constructed using representational similarity
analysis (RSA), but pairwise dissimilarities are computed across
subjects rather than within subjects (Kriegeskorte et al., 2008).
Spatially distributed response patterns can be assessed within
an ROI or using a searchlight analysis to map local response
consistency throughout cortex (Kriegeskorte et al., 2006).

Combining temporal and spatial ISC

Spatial and temporal ISC, while related in many cases, can
in principal reveal different, sometimes even complementary,
sources of shared responses across subjects. For example, a
small region of cortex may yield strong univariate temporal ISCs
when response time series are aggregated across voxels, but
lack any consistent multivariate variations across space. This
would lead to high temporal ISC and low spatial ISC. Conversely,
a small patch of cortex may yield consistent spatial response
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Fig. 5. Spatiotemporal ISCs. (A) To quantify the ISC of spatially distributed response patterns over time, we concatenate response patterns for multiple time points

for each subject, resulting in a single vector representing a spatially distributed response trajectory and submit this vector to ISC analysis. The response pattern for

each time point can be represented as a vector in a multidimensional space where each dimension corresponds to the response magnitude of a particular voxel; the

concatenated spatiotemporal vector is a response trajectory over time in this voxel space. Like the purely spatial approach, this approach requires voxels be functionally

aligned across subjects. (B) For a given set of spatially distributed voxels, we can also compute the pairwise dissimilarities between response patterns at each time

point to construct a time-point-by-time-point RDM for each subject. We can then submit the off-diagonal triangle (Ritchie et al., 2017) of this matrix to ISC analysis.

Note that representational geometry is invariant to an arbitrary rotation of the response trajectory in voxel space; therefore, computing ISCs using these second-order

RDMs abstracts away from each subject’s idiosyncratic voxel space.

patterns for some time points (or average response patterns
across several time points), with inconsistent responses for a
given voxel over the entire time series. This would result in high
spatial ISC for some time points and low temporal ISC overall.
Even if the aggregate response time series for this region does
not yield high temporal ISC, particular time points may have
high spatial ISC. To combine the shared signal across space and
time we can concatenate spatial response patterns over time,
resulting in a multivoxel response trajectory and assess the
intersubject (or intrasubject) consistency of these spatiotempo-
ral response patterns (Feilong et al., 2018; Figure 5). Alternatively,
we can apply RSA by computing the pairwise dissimilarities
among time points (or conditions) within each subject, then use
ISC analysis to quantify the similarity of these time point RDMs
across subjects (Kriegeskorte et al., 2008; Raizada and Connolly,
2012; Charest et al., 2014).

Applications of ISC analysis

What sorts of scientific questions can be addressed using ISC
analysis? In the simplest case, computing temporal ISCs across a
movie or spoken narrative provides insights into the reliability of
stimulus-locked neural responses across subjects (Hasson et al.,
2010). However, by capitalizing on a shared naturalistic stimulus,
ISC analyses can also be used to measure commonalities in

stimulus-evoked processing across imaging modalities, such as
fMRI, ECoG, electroencephalography (EEG) and functional near-
infrared spectroscopy (fNIRS) (Mukamel et al., 2005; Liu et al.,
2017; Haufe et al., 2018). In this context, ISCs reflect neural signals
captured by both measurement modalities. This approach has
also been used to explore homologies in neural responses across
species (humans and macaques; Mantini et al., 2012). By using
interspecies functional correlation analysis in conjunction with
a naturalistic visual stimulus, Mantini et al. (2012) were able to
identify functional homologies across primate species without
assuming anatomical correspondence. The same logic can be
used to compare neural entrainment to a naturalistic stimulus
across populations, such as between autistic patients and con-
trols (Hasson et al., 2009; Salmi et al., 2013) or over the course of
development (Cantlon and Li, 2013; Campbell et al., 2015; Petroni
et al., 2018; Piazza et al., 2018).

Consider that all the experiments described thus far relied on
an identical stimulus. Relaxing this constraint opens the door to
a variety of novel questions. To examine how the brain integrates
information over time, we can first segment a continuous
stimulus, such as a spoken story, at different granularities, such
as word or paragraph scales, and present subjects with intact
and shuffled versions of the stimulus (Hasson et al., 2008b;
Lerner et al., 2011). While responses to the intact stimulus
will capture a continuous narrative thread, responses to the
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shuffled stimulus will not. If shuffled at a very fine scale
(e.g. at the level of individual words), ISC will only be high in
brain areas with relatively short temporal receptive windows
(TRWs), such as early auditory areas. Disrupting the temporal
order of a stimulus at an intermediate scale will reveal high
ISCs in areas that encode information integrated over longer
time periods (i.e. areas with intermediate TRWs), while the
fully intact stimulus will yield ISCs across areas with the full
range of TRWs. High-level cortical areas encoding features
of the narrative that unfold over minutes will only exhibit
high ISCs during the intact condition. We can also un-shuffle
the brain responses to the shuffled stimulus and compare
ISCs across response to the shuffled and intact stimuli. A
similar approach has revealed that motor brain region not
only process individual observed actions (e.g. grasping) but
also contain information about how these actions chain
together to achieve meaningful goals (e.g. making breakfast;
Thomas et al., 2018).

Qualitatively different stimuli may differentially synchronize
brain activity. For example, stimuli varying in emotional content
(Nummenmaa et al., 2012), predictability (Dikker et al., 2014) or
audience appeal (Dmochowski et al., 2014) have been shown
to yield differential ISCs. Yeshurun et al. (2017a) capitalized on
the fact that minor stimulus manipulations, such as occasional
word substitutions in a spoken story, can radically change the
narrative interpretation. Despite surface-level similarity, these
stimuli yielded increasingly differentiated responses in higher-
level cortical areas.

Even more dramatic stimulus manipulations can be used
to isolate systems processing high-level content. For example,
Regev et al. (2013) presented subjects with spoken and written
versions of a narrative. While low-level auditory and visual areas
diverged according to presentation modality, particular brain
areas yielded high temporal ISCs across modalities indicative
of modality-invariant linguistic processing. This approach can
also be used to study how complex perceptual stimuli are
compressed in memory. In another study, the neural responses
of Russian-speaking subjects listening to a story told in Russian
were correlated with the responses of English-speaking subjects
listening to an English translation of the story (Honey et al.,
2012b). This design allows us to identify brain areas that are
sensitive to the content of the narrative irrespective of linguistic
variations. Chen et al. (2017) scanned subjects while they viewed
a naturalistic movie stimulus, then instructed subjects to
verbally recall events from the movie. They demonstrated
that spatially distributed response patterns across subjects
in default mode areas encode event-level representations
that are shared across both subjects and across the movie-
viewing and verbal recall conditions, indicating a common,
high-level representational format for both encoding and
retrieval.

Cleverly, instead of directly manipulating the stimulus, we
can manipulate attention (Ki et al., 2016; Regev et al., 2018) or
narrative context (Yeshurun et al., 2017b). For example, in the
report by Regev et al. (2018), two distinct and unrelated nar-
ratives, one spoken and one written, were presented simul-
taneously to subjects, and subjects were instructed to orient
attention to either the spoken or written story. ISFC analysis
was then used to measure how attention routed information
from the visual and auditory cortex to higher-order linguistic and
extra-linguistic areas (Regev et al., 2018). Yeshurun et al. (2017b)
manipulated context while presenting two groups of subjects
with an identical narrative stimulus. Prior to listening to the
stimulus, the groups received brief prompts biasing them to

interpret the stimulus according to one of two very different
contexts. In high-level cortical areas, within-group ISCs were
significantly greater than between-group ISCs, indicating that,
despite receiving identical stimuli, the context manipulation
resulted in divergent narrative processing. Using an abstract,
ambiguous stimulus, Nguyen et al. (2019) were able to show that
subjects with similar interpretations of the stimulus had similar
neural responses.

Finally, one of the most promising applications of ISC analy-
ses, and perhaps the most relevant to the aims of social neuro-
science, has been in exploring social interaction across subjects
(i.e. brain-to-brain coupling; Hasson et al., 2012; Nummenmaa
et al., 2018). For instance, the brain activity of an individual
telling a story has been shown to correlate substantially with
the brain activity of people listening to that story, and the
magnitude of that correlation predicts how well the listener
understood the story (Stephens et al., 2010). Similarly, the brain
activity of subjects communicating via gestures correlates with
that of subjects trying to guess the concept from viewing the
gestures (Schippers et al., 2010). Importantly, in these approaches
we must consider the fact that there will be variable temporal
lags between sender and receiver brains, and the analyses must
allow for such shifts. To capture simple delays, we can shift the
sender’s voxel time course back and forth in time with respect to
the receiver’s response time course and examine which of these
delays leads to the optimal synchrony (cross-correlation analy-
sis; Stephens et al., 2010). Another approach has been to adopt
methods that intrinsically accommodate such time shifts, such
as Granger causality analysis (Schippers et al., 2010), dynamic
time warping (Silbert et al., 2014) or linear interpolation (Lerner
et al., 2014). In the spatial domain, Zadbood et al. (2017) extended
the results of Chen et al. (2017), demonstrating that perception
of a naturalistic stimulus, verbal recall and subsequent narrative
comprehension all rely on common, event-level representations
encoded in default mode cortical areas. Finally, recent efforts
have used simultaneous ‘hyperscanning’ techniques (Montague
et al., 2002; Babiloni and Astolfi, 2014) to extend measurements of
brain-to-brain coupling to real-time social interactions (Dumas
et al., 2010; Saito et al., 2010; Dumas, 2011; Cui et al., 2012;
Jiang et al., 2012; Schilbach et al., 2013), and in some cases going
beyond dyads to dynamic group interactions (Jiang et al., 2015;
Dikker et al., 2017).

Part II: practical considerations
Experimental design

A fundamental difference between designing experiments for
a traditional GLM analysis and an ISC analysis is that in tra-
ditional designs, the main source of signal is the difference in
mean amplitude between instances of the conditions (typically
collapsed across many trials). Response fluctuations within a
condition are considered noise. To increase design efficiency,
it is thus best to have many repetitions of the conditions but
keep each instance relatively short (<20 s). This is because noise
follows a 1/f distribution, and longer blocks deposit the signal in
lower, noisier frequencies. ISC instead uses the fluctuations in
activity over time ‘within’ an instance of condition, or over the
course of a continuous stimulus, as the signal of interest. Several
interrelated factors must be taken into consideration, including
the sampling rate, the frequency of neural fluctuations of inter-
est and the time over which the stimulus conveys meaningful
information. Correlations computed over few samples (i.e. time
points) are highly unreliable (Fisher, 1921; Bonett and Wright,
2000), so longer epochs are preferred. As a guideline, blocks of
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duration of at least 30–60 TRs are ideal (Simony et al., 2016);
in practice, given a typical sampling rate for fMRI of ∼2 s TRs,
stimuli used for ISC analyses often range from ∼1 min movies
(e.g. Thomas et al., 2018), to ∼5 min narratives (e.g. Lerner et al.,
2011) to feature-length films over 1 h long (e.g. Hasson et al.,
2004; Haxby et al., 2011). Note that while some neuroimaging
modalities have much higher temporal resolution than fMRI (e.g.
ECoG), the neural signals most reliably shared across individ-
uals may nonetheless fluctuate relatively slowly (Honey et al.,
2012a). To understand the minimal duration of epochs, it is
thus important to consider the frequency of the signals one is
interested in measuring and how different cortical areas may
be sensitive to information evolving over different time scales.
For example, to capture consistent, stimulus-evoked process-
ing in prefrontal regions, we need to present subjects with
a coherent stimulus that unfolds over at least several min-
utes (Wilson et al., 2007; Jääskeläinen et al., 2008; Hasson et al.,
2008b; Lerner et al., 2011). Note that the window size used to
compute ISC and the coherence of the stimulus are indepen-
dent parameters. We can use a relatively brief sliding window
of 30 TRs to compute dynamic ISCs during a coherent 1 h
movie to assess how signal in higher-order brain areas fluc-
tuates over time as the movie unfolds. However, using a 30
TR sliding window and scrambling the movie at the scale 10 s
segments will not capture reliable responses in these higher-
order areas. Thus, to capture responses with long processing
timescales, we advise using coherent stimuli that unfold over
minutes (Hasson et al., 2015). When using sliding window ISCs to
measure fluctuations in synchrony, there is a trade-off between
the temporal resolution at which fluctuations and the relia-
bility of the ISC estimate when determining the width of the
window. Related metrics such as intersubject phase synchrony
that capture instantaneous, time-varying synchronization may
provide additional insights into dynamic intersubject coupling
(Glerean et al., 2012).

ISC analyses—because they do not require an explicit model
of the task or stimulus—are particularly useful for naturalistic
experimental paradigms, where constructing such a model may
be prohibitively difficult. Relative to traditional fMRI experi-
ments that typically use highly controlled stimuli, naturalistic
stimuli are more ecologically valid (Zaki and Ochsner, 2009;
Hasson and Honey, 2012; Adolphs et al., 2016; Hamilton and Huth,
2018), convey rich perceptual and semantic information (Bartels
and Zeki, 2004; Huth et al., 2012, 2016) and more fully sample neu-
ral representational space (Haxby et al., 2011, 2014). Recent work
(Vanderwal et al., 2015) also suggests that naturalistic stimuli
may improve subject compliance (in terms of wakefulness and
head motion relative to, e.g. rest), which is particularly important
when scanning patient populations and children. As mentioned
previously, different stimuli will variably synchronize different
brain systems; for example, engaging, Hollywood-style movies
may yield greater, more widespread ISCs than real-life, unedited
videos (Hasson et al., 2010; Cohen et al., 2017).

Conventional ISC analyses critically depend on temporal sim-
ilarity across subjects. It is therefore essential to have the scan-
ner hardware trigger the computer controlling the paradigm to
start the stimulus at the same time across subjects; logging all
trigger pulses from the scanner will ensure that stimuli are pre-
sented at the same moment, relative to each acquired volume,
in all subjects. If the design is divided into multiple epochs, the
order of the epochs can be randomized across subjects during
the data acquisition and rearranged to a common order prior to
ISC calculation (assuming there is no narrative structure across
epochs).

In theory, block and event-related designs can be analyzed
using an ISC approach if stimuli were presented with exactly
the same timing for all subjects (Hejnar et al., 2007; Pajula et
al., 2012). In that case, the entire functional time course can
be correlated across subjects (cf. Bordier and Macaluso, 2015).
However, if data from both rest and stimulus periods are cor-
related across subjects as a single time series, increases and
decreases in the BOLD signal will be largely driven by the onset
and offset of each event, yielding ISC maps resembling the acti-
vation maps of a traditional GLM analysis. Experiments designed
for traditional GLM analyses often do not use identical trial
orders across subjects to avoid confounding order effects and
may have variable event durations due to subject-specific behav-
ioral responses. To concentrate on processing during a task, it
is essential to splice the data to exclude rest, onsets, offsets
and compute ISC only during the task. To exclude onsets and
offsets entirely, we recommend removing the first 10 s of data
of each epoch and only considering data up to the end of the
stimulation epoch. Note, however, that these transients may last
considerably longer than 10 s and may vary across subjects,
stimuli and brain areas. Visually inspecting the response time
series in representative ROIs may be informative for gauging the
duration of transients. This need for trimming further motivates
designs with relatively long epochs. After splicing and trimming,
time series from each block of a given condition should then be
standardized (z-scored) prior to concatenating segments to avoid
introducing large signal changes at the joints (see Appendix A
for details on pre-processing data). If blocks comprise different
conditions, data from all the blocks of a given condition can be
concatenated to generate an ISC estimate per condition to be
compared at the second level across conditions.

Computing ISC and statistical inference

Like most fMRI analyses, conventional ISC analyses follow the
historical approach of dividing the statistical analysis into two
stages: individual subject (first-level) and group (second-level)
analyses. At the first level, we assess the similarity of brain
activity across different subjects, while at the second level, we
assess whether this level of similarity is significantly greater
than zero or significantly different across groups or conditions.

At the individual subject level of analysis, we use Pearson
correlation to measure the statistical association between the
response time course for one subject and other subjects at
each voxel or ROI. The Pearson correlation coefficient measures
the linear association or dependence between two continuous
variables. Note that Pearson correlation is scale-invariant; that
is, Pearson correlation implicitly mean-centers and scales the
input variables to unit variance (i.e. z-scoring). These proper-
ties of the Pearson correlation coefficient also apply to spa-
tial approaches to ISC (i.e. effectively mean-centering regional
response magnitudes; Misaki et al., 2010). There are two com-
monly used approaches for computing ISCs at the individual
subject level:

Pairwise approach: In this approach, each subject is correlated
with every other subject, leading to N(N − 1)/2 rAB values, where
rAB

2 ∼ αA • αB and the average of these r-values, r2 ∼ α2.
The resulting correlation values are typically represented as a
symmetric subject-by-subject correlation matrix where each cell
of the upper (or lower) triangle reflects the ISC between a pair of
subjects.

Leave-one-out approach: The other approach leverages the fact
that c(t) can be approximated by averaging the response time
course x(t) over subjects. For every subject A, we can then approx-
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imate c(t) by averaging over all other subjects (i.e. excluding
subject A) and get an approximate α for each subject using αA ∼
r(xA, xB�=A)

2. Using this approach, we obtain higher r values than
using the pairwise approach because r in the pairwise approach
is a function of α while in the leave-one-out approach r is a
function of

√
α; if α = 0.5; the pairwise approach will lead to r

values around 0.5, while the leave-one-out approach will have
values around 0.71. We obtain N estimates (one per subject),
instead of N(N − 1)/2 as in the pairwise approach.

At the second level, we draw inferences about shared activity
at the population level. Performing group-level statistical tests
for population inference in the context of ISC analyses is sur-
prisingly complex (Chen et al., 2016, 2017b), and we will point
to the core problems below. In general, for one-sample tests—i.e.
testing whether the mean ISC is significantly greater than zero—
we recommend using either time series randomization (circular
time shift or phase randomization) or the bootstrap hypothesis
test. For two-sample tests, we recommend using a permutation
test that randomizes condition or group assignments, or, for
those familiar with traditional data analysis packages like AFNI,
FSL or SPM, the conventional two-sample t-test.

In traditional GLM analyses, first-level models are con-
structed independently per subject, and the resulting parameter
estimates (e.g. regression coefficients or contrasts) are submit-
ted to a group-level analysis where subject is modeled as a
random effect. In ISC analyses, however, each subject typically
contributes to the first-level model for every other subject. This
means that, in both the pairwise approach, and to a lesser
extent the leave-one-out approach, the resulting correlation
coefficients are not statistically independent samples and
therefore violate the assumptions of common parametric tests
(e.g. t-test, ANOVA). For example, in the pairwise approach,
each subject contributes to (N − 1)/2 pairs, leading to highly
interdependent correlation values and artificially inflated
degrees of freedom. A further problem is that fMRI data follow
a power law, and such data can generate spurious correlations
(Schaworonkow et al., 2015). Parametric tests, such as the one-
sample t-test, should thus never be used to test the significance
of pairwise ISCs. For the leave-one-out approach, especially
when comparing ISCs across two conditions or groups, these
problems are somewhat attenuated: the issues related to
power laws and non-independence are likely to influence both
conditions or groups similarly. Accordingly, when comparing two
conditions using the leave-one-out approach, two-sample t-tests
yield robust results that are very similar to the non-parametric
tests described below (e.g. Thomas et al., 2018). People with
limited programming experience may opt for this approach as it
can be easily integrated into traditional analysis packages such
as AFNI, FSL or SPM (Appendices A and B). Further validation of
this approach is, however, ongoing.

In general, there have been two main approaches for statis-
tical evaluation in the literature. These approaches are imple-
mented in either the freely available ISC Toolbox (Kauppi et al.,
2014) or the Brain Imaging Analysis Kit (BrainIAK, https://
brainiak.org; see Appendices C and D for basic usage of these
toolkits; see). In the context of conventional ISC analysis,
the first approach assumes that if response time series are
correlated across subjects due to time-locked shared neural
responses, shifting one of the time series back or forth by a
random interval should disrupt the temporal alignment and
attenuate the correlation (while still preserving the temporal
autocorrelation structure of the response time series; Kauppi
et al., 2010a, 2014). In this resampling approach, each time series
is randomly shifted many times (e.g. 10 000 times), and r is

calculated each time to generate a null distribution of r values.
The actual value of r obtained from the original data is then
ranked among the time-shifted null distribution, resulting in a
P-value. The closely related phase randomization approach (e.g.
Lerner et al., 2011) proceeds by applying the Fourier transform
to the time series, randomizing the phase of each Fourier
component, then inverting the Fourier transformation, thus
preserving the power spectrum of the signal but disrupting the
temporal alignment. Phase randomization is performed at each
iteration of the resampling procedure, prior to computing ISC,
and the resulting r values are aggregated into a null distribution.
Both of these non-parametric approaches apply randomization
at the level of the time series and require ISCs to be recomputed
at every permutation, making them computationally intensive.

The second main approach operates directly on the ISC
values (e.g. rAB in the pairwise approach) for group-level
inference and includes both non-parametric and parametric
procedures (Chen et al., 2016, 2017b). Chen et al. (2016) have
suggested that the above approach based on randomized
temporal offsets may result in inflated false positive rates
(FPRs). To account for this, they advocate for two non-parametric
approaches that better control the FPR. For one-sample tests
using the pairwise approach (where H0: r = 0), they propose a
subject-level bootstrap hypothesis testing procedure. At each
iteration of the bootstrap, N subjects are randomly sampled
with replacement, the ISCs for the resulting sample of subjects
is retrieved and then the test statistic is computed across these
pairs. Because this is a non-parametric test, we compute the
median ISC rather than the mean (Chen et al., 2016). Repeating
this procedure many times (e.g. 10 000 times) yields a bootstrap
distribution. Note that constructing a correlation matrix while
sampling with replacement will yield off-diagonal 1s when
computing ISC for the same subject sampled more than once.
We recommend excluding these values when computing the
median ISC for each bootstrap sample (Nili et al., 2014). To test
the hypothesis, the null distribution should be normalized by
subtracting the actual median correlation from each bootstrap
median, and the actual median correlation is ranked against
this distribution (Hall and Wilson, 1991). For two-sample tests,
Chen et al. (2016) recommend using a subject-level permutation
test to control FPR. In this procedure, group assignments are
randomly permuted at each iteration, effectively exchanging
entire rows/columns of the pairwise ISC matrix. Note that
directly bootstrapping or permuting ‘pairs’ of subjects disrupts
the correlation structure among pairs, does not respect the
exchangeability criterion of permutation tests and increases
the FPR. Finally, Chen et al. (2017) propose a parametric linear
mixed-effects modeling procedure with crossed random effects
indicating which subjects contribute to each pair so as to
account for the correlation structure among pairs. This approach
has greater flexibility (e.g. can accommodate covariates) and
potentially lower computational cost than non-parametric tests,
but relies on stronger assumptions. Because these approaches
operate on ISC values rather than the response time series, they
are also applicable to spatial ISC methods.

Finally, note that Pearson correlation coefficients used
during ISC analyses should be Gaussianized via the Fisher z-
transformation (inverse hyperbolic tangent function ‘arctanh’)
prior to averaging, as simple averaging will tend toward a
downward bias (Fisher, 1915; Silver and Dunlap, 1987; Chen et al.,
2016). Fisher z-transformation is important for any parametric
statistical test; in the case of non-parametric methods, the
median Pearson correlation should be preferred to the mean
(Chen et al., 2016). If you opt to report average Pearson
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correlations (e.g. when plotting ISC maps), they should be
Fisher-transformed prior to averaging, and then the average
should be inverse Fisher-transformed.

These statistical tests are often performed independently
for every voxel in the brain, introducing a pernicious multiple
testing problem (Nichols, 2012). A common approach is to control
the false discovery rate (FDR), which sets the proportion of false
positives among detections to a low value such as .05 (Benjamini
and Hochberg, 1995; Benjamini and Yekutieli, 2001; Genovese
et al., 2002). Controlling FDR in this way ignores the spatial
structure of ISC values across voxels and lacks any spatial speci-
ficity; we cannot conclude that any particular voxel in an FDR-
corrected ISC map is significant, only that no more than 5% of the
detected voxels are false positives (Poldrack et al., 2011, pp. 121–
123). A common alternative is to control the family-wise error
rate (FWER) using cluster-extent based thresholding (Nichols
and Hayasaka, 2003; Woo et al., 2014), which takes the spatial
contiguity of brain signals into account. In this approach, we set
a cluster-forming threshold (e.g. P = 0.001; cf. Smith and Nichols,
2009) then assess the significance of clusters of voxels that
survive this threshold by modeling the distribution of clusters
occurring by chance using either random field theory (Worsley
et al., 1992), Monte Carlo simulation (Forman et al., 1995) or per-
mutations (Nichols and Holmes, 2002; Eklund et al., 2016). Note
that cluster-wise inference methods suffer from a similar spatial
specificity problem: we cannot conclude that any particular
voxel or peak within a cluster is significant, only that the cluster
as a whole is significant. In the permutation-based approaches
described above, instead of constructing a null distribution of r
values for each voxel, we can aggregate the maximum r value
across all tested voxels at each iteration of the permutation test,
resulting in a null distribution of maximum r values. We can
reject the null hypothesis for any voxel where the observed r
value exceeds our threshold for statistical significance based on
this null distribution of maximal r values (e.g. observed r values
in the top 5% of the null distribution), strongly controlling the
FWER (Nichols and Holmes, 2002; Simony et al., 2016). For sim-
plicity, we suggest controlling FDR in keeping with the precedent
in the field, while bearing the above limitations in mind.

Interpreting ISC results

Traditional fMRI analyses localize task-related increases or
decreases in BOLD activity and results are typically described
as ‘region x is activated by task T.’ ISC results are interpreted
differently. If a region x shows significant ISC (or greater ISC for
one task or group than another), we do not conclude that region
x is activated by the stimulus, but rather we infer that region
x encodes information about the stimulus that is consistent
across individuals. If there is significant ISC, the response time
course in one subject’s brain predicts that in another. Similarly,
significant ISFC indicates that the response time course in one
brain area predicts that in another brain area across subjects.
Because the only thing in common between subjects across time
is the experimental paradigm, this cross-subject relationship
must be mediated by the paradigm—there is thus mutual
information between the stimulus and the neural response. This
is borne out by the demonstration that one can reconstruct with
high fidelity the sound envelope of a movie simply by looking
at the shared brain activity in early auditory cortex (Honey et al.,
2012a). Importantly, positive ISC in a brain region can be induced
by both consistent increases and decreases in brain activity
across subjects, and thus should not be interpreted as increased
activation across subjects. Given that the nervous system often

encodes information using reductions of firing rates (Dacey,
2000), and that reductions in BOLD activity have been related
to important brain functions (Anticevic et al., 2012), we feel that
moving away from activation can be fruitful. In short, significant
ISC reveals that there is a relationship between brain activity and
the stimulus, but not the nature of that relationship.

A simple way to gain qualitative insights about what is
encoded in a brain region with significant ISC is to explore the
average signal across subjects in that region. As mentioned
earlier, the average time course of activity across subjects
reflects c(t) and is representative of the systematic response
to the stimulus. Moreover, periods in which the stimulus
failed to recruit that brain region will average to zero, while
periods in which the stimulus caused consistent activation
or deactivation will exhibit significant positive or negative
deflections. Assuming a hemodynamic delay of ∼5 s, we can
inspect the stimulus for systematic features occurring prior to
these peaks (Hasson et al., 2004). To expand this approach to the
entire brain, at least two related possibilities exist. First, we can
calculate the average 4D brain activity (i.e. the 3D volume across
time), and then submit this to independent component analysis
to summarize the varying time series throughout the brain. The
time course of each IC can then be examined and related to the
paradigm (Lahnakoski et al., 2012). Second, if the ISC analysis
identifies a large number of regions surviving a particular
statistical criterion, one can submit the average time courses
throughout the brain to a clustering algorithm to functionally
parcellate the cortex or identify ROIs with similar time series
(Kauppi et al., 2010b, 2017; Thomas et al., 2018). Alternatively,
ISC can be computed using a sliding window approach in order
to identify epochs in which ISC was highest, which can then
be related to the stimulus (window sizes in the literature range
from 10 to 60 TRs; Nummenmaa et al., 2012; Simony et al., 2016).

It is important to quantify the specificity of neural responses
within and across regions. On the one hand, we observed that
different brain regions along the processing hierarchy respond
differently, resulting in high within-region correlation across
subjects and low inter-regional correlations (Hasson et al., 2010,
2015). If different brain areas have unique response profiles
and the resulting region-by-region correlation matrix is mean-
ingfully structured, this suggests that the observed ISCs are
not simply due to non-specific or non-neuronal variables like
arousal and stimulus-correlated head motion. However, we also
observed that ISC across brain areas belonging to the same
functional network (e.g. different areas within the default mode
network) tend to have stronger stimulus-locked covarying activ-
ity than areas sampled from different networks. This discovery
motivated the development of ISFC analysis (Simony et al., 2016).

In addition to relating ISCs to the stimulus, we can also relate
ISCs to behavioral measures. For example, Hasson et al. (2008a)
used a subsequent memory paradigm to index which events of
a movie viewed in the scanner would be remembered 3 days later
for each subject. A voxelwise pairwise ISC analysis revealed brain
areas (e.g. parahippocampal gyrus, temporoparietal junction)
where ISC was greater for events remembered by both subjects.
In addition to item- or event-level episodic recall, aggregate
comprehension scores can be related to the spatial extent or
magnitude of ISCs (e.g. Stephens et al., 2010).

Finally, as a measure of response reliability, inter- and intra-
subject correlations can play important roles in setting an upper
bound for the stimulus-related information we can hope to
extract from a response time course and can be used to estimate
a ‘noise ceiling’ to which models can be compared (Huth et al.,
2016; Nili et al., 2014). At a procedural level, ISC analyses can be
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used as a method for excluding outlier subjects or for feature
selection prior to subsequent analysis; e.g. restricting an analysis
to only ROIs with high consistency across subjects or ROIs with
particular processing timescale (e.g. Yeshurun et al., 2017a; cf.
Kriegeskorte et al., 2009).

Limitations
ISC analyses allow us to leverage more complex stimuli and
paradigms, but also have limitations that need to be considered
carefully when designing experiments and interpreting results.
Critically, ISC analyses require the fluctuations of brain activity
to roughly correspond across individuals in both time and space
(Box 1). In the temporal domain, methods such as dynamic time
warping can accommodate temporal mismatch and can in part
alleviate this limitation (Lerner et al., 2014; Silbert et al., 2014). In
the same vein, typical ISC analyses only measure linear associa-
tions in activity across subjects (cf. Glerean et al., 2012), and ISFC
analyses cannot capture non-linear transformations occurring
between brain areas (Anzellotti and Coutanche, 2018). In the
spatial domain, slight misalignments in functional–anatomical
correspondence across individuals can dramatically reduce
observed ISC values if brain activity is measured at a high spatial
resolution without smoothing. While coarse-grained spatial
response topographies may be preserved across subjects (e.g.
Chen et al., 2017), functional alignment algorithms such as hyper-
alignment resolve idiosyncrasies in fine-grained functional
topographies across subjects and can considerably improve both
spatial and temporal ISCs (Haxby et al., 2011; Chen et al., 2015;
Guntupalli et al., 2016; Chen et al., 2017; Feilong et al., 2018)

Second, BOLD activity is strongly affected by respiration,
and certain stimuli are known to entrain respiration (Codrons
et al., 2014). Although ISC analyses filter out idiosyncratic
noise, synchronized stimulus-related respiratory and motion
artifacts may contribute to ISCs. Regressing out BOLD signals
from the cerebrospinal fluid (CSF) and white matter during pre-
processing may provide some protection against such stimulus-
correlated noise (at the cost of reducing sensitivity to stimulus-
evoked effects of interest). Consult Simony and colleagues (2016)
for a more detailed examination on the possible contribution of
physiological measurements to ISC analysis.

Finally, our discussion has largely been limited to ISC anal-
yses as they have historically developed in the fMRI commu-
nity. Closely related analyses have in fact expanded outside the
context of neuroimaging; for example, to measuring intersubject
synchrony of pupil dilation (Kang and Wheatley, 2017) and gaze
direction (Hasson et al., 2008b; Shepherd et al., 2010; Wang et al.,
2012). On the other hand, conceptually related analyses from the
broader family of metrics for quantifying neural covariation have
been developed in the context of other neuroimaging modalities
(e.g. EEG, fNIRS); for example, correlated component analysis for
EEG (Dmochowski et al., 2012, 2014), wavelet transform coher-
ence for fNIRS (Cui et al., 2012; Dommer et al., 2012; Holper et al.,
2012; Jiang et al., 2012, 2015; Nozawa et al., 2016; Hu et al., 2017)
and adaptations of phase synchrony for fMRI (Glerean et al., 2012;
Nummenmaa et al., 2014a, 2014b).

Conclusion
With social and affective neuroscience aiming to study brain
processes involved in rich and naturalistic situations, ISC anal-
ysis adds a valuable tool to our methodological arsenal. At base,
this tool enables us to filter out idiosyncratic signals and localize
brain regions that encode stimulus qualities consistently across

individuals without an explicit model of the stimulus. Recent
extensions of this approach incorporate spatially distributed
response patterns and measure functional interactions between
brain regions in real-life natural contexts. These tools not only
provide a measure of the reliability of neural representation but
also provide a window into how humans, as social organisms,
share and transmit information from person to person.
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Box 1. Spatiotemporal considerations.

Box 1. Spatiotemporal considerations

ISC can be evaluated both spatially and temporally at mul-
tiple scales. It is important to measure brain activity at a
scale relevant to the phenomenon of interest.

Temporal scale: Brain activity fluctuates at a number
of frequencies that range from milliseconds (e.g. action
potentials; >100 Hz) to the minute-long fluctuations often
seen in BOLD activity (0.01 Hz). Our cognition also operates
over multiple temporal scales; our visual system is able to
perceive flicker at up to 10 Hz, while our emotions fluctuate
at frequencies typically below 0.1 Hz. To use ISC, we must
determine the frequency range relevant to our function of
interest and adopt a measurement technique that is sensi-
tive to fluctuations of brain activity in that frequency band
(see above). Band-pass filtering brain activity measure-
ments to that frequency band can help zoom in on a func-
tion of interest. Multi-modal approaches combining fMRI
with high temporal resolution technologies such as EEG
and ECoG can provide insights as to what frequency bands
contribute most to ISCs (Mukamel et al., 2005; Liu et al.,
2017; Haufe et al., 2018).

Spatial scale: The brain is organized at multiple spatial
scales and different functional topographies are multi-
plexed on the cortical sheet. For example, in V1, orien-
tation is represented at the sub-millimeter scale, while
eccentricity is represented at the centimeter scale; down-
stream visual areas encode overlapping representations
of eccentricity, object category and other object proper-
ties. Importantly, spatial (and spatiotemporal) ISC is sen-
sitive to shared representations that are encoded across
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distributed response patterns. Investigating fine-grained
representations across subjects requires a fine spatial scale
of measurement, and responses may be consistent across
subjects at some spatial scales and not others. At the
centimeter scale, representational maps are relatively con-
sistent across subjects, providing a rationale for applying
ISC analyses to smoothed fMRI data (see Appendix A). To
study ISCs at a finer scale, anatomical alignment will not
sufficiently align functional topographies across individu-
als; it will be essential to functionally realign voxels from
different brain using independent data prior to computing
ISCs in a shared representational space (Haxby et al., 2011;
Guntupalli et al., 2016).
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Appendix A. Typical pre-processing pipeline

In the following, we recommend a basic pre-processing pipeline
intended to precede ISC analysis, followed by an example of how
to implement this in SPM (Friston et al., 2007); however, several
other commonly used software tools implement components
and variations of this pre-processing pipeline, including AFNI
(Cox, 1996), fMRIPrep (Esteban et al., 2019) and FSL (Smith et al.,
2004). When acquiring data, we recommend locking the stimulus
onset to the scanner triggers (indicating TR onsets) and logging
all triggers. We also recommend using ascending or descend-
ing slice acquisition on the scanner rather than interleaved
sequences. Slice timing correction may be appropriate, but is not
universally recommended. Rigid-body registration is then used
to correct for head motion over the course of the scan. Note
that motion correction does not fully ameliorate the negative
effects of head motion. Spatial normalization is then used to
transform each subject’s data into a common coordinate space.
We recommend using either volumetric non-linear anatomical
normalization to a high-resolution template in MNI space (e.g.
Fonov et al., 2011) or surface-based normalization based on sulcal
curvature (Fischl et al., 1999). Typically, each subject’s functional
data are first aligned to that subject’s high-resolution anatomical
image using an affine transformation, and the anatomical image
is normalized to MNI space. These transformations should be
concatenated and applied in a single step to avoid resampling
and interpolating the data multiple times. For conventional tem-
poral ISC analyses, we recommend spatially smoothing the data
using a 4–8 mm full width at half maximum (FWHM) Gaussian
kernel (Pajula and Tohka, 2014). For spatial and spatiotemporal
ISC analysis, we recommend limited (e.g. 4 mm FWHM) or no
smoothing at all. Although ISCs filter out idiosyncratic noise
signals to some extent, we nonetheless recommend filtering out
nuisance variables prior to ISC analysis. Commonly used nui-
sance variables include head motion, principal component time
series from anatomically segmented cerebrospinal fluid masks
(Behzadi et al., 2007), framewise displacement (Power et al., 2014),
linear and quadratic trends, as well as sine/cosine bases com-
prising a high-pass (e.g. 0.007 Hz) or band-pass (e.g. 0.01–0.1 Hz)
filter. Nuisance variables and temporal filters should be com-
bined into a single regression model to ensure that noise signals
are not injected back into the data and to properly estimate
degrees of freedom (Lindquist et al., 2019). If performing a volu-
metric analysis, ISCs should be computed within a brain or gray
matter mask to reduce the number of subsequent tests (surface-
based analyses preclude this step).

Workflow (in SPM terminology as an example):

(a) Data acquisition with conditions synchronized to TR and
ascending or descending slice acquisition using the 4D
NIfTI format.

(b) Apply Slice timing correction to all images.
(c) Apply Realign (Estimate and Reslice), with options Register

to mean and Resliced images: Mean Image Only.
(d) Use Coregister Estimate, set Reference Image to the mean

EPI image from (c) and Source Image to the anatomical T1
image.

(e) Use Segment, Volumes: the coregistered T1 image from (d).
Then select Deformation Fields: Inverse+Forward to save
the functions that will transform the T1 and the EPI images
to MNI space.

(f) Normalize Write: select the deformation field from step
(e), and select all the EPI volumes and the T1 image and
the Gray-Matter segment.

(g) The normalized EPI images should then be smoothed
using a FWHM kernel of 2–2.5 times the original voxel
size (e.g. at 8 mm FWHM for data acquired at 3 × 3 × 3 mm;
Pajula and Tohka, 2014).

(h) An average Gray-Matter should be created, by selecting
all the normalized Gray-Matter segmentations of all the
subjects. For that, use ImCalc. Set Data Matrix to yes, select
all your normalized gray matter images (N = number of
subjects), and use Expression: mean(X).

(i) The average Gray-Matter segmentation should be thresh-
olded to provide a gray matter mask to use for ISC analyses.
A threshold of around 0.25 is often useful. To do this
use ImCalc, select the average normalized Gray, and set
Expression to i1 > 0.25.

(j) Optional: regress out the motion parameters and the aver-
age signal in the white matter and CSF, and apply a high-
pass filter (e.g. 100 s; Stephens et al., 2013). The simplest
way to do this is to extract the signal from the segmenta-
tions using the normalized CSF and White-Matter of the
participant (e.g. using MarsBaR), and then build a first-
level model with co-variates only, including the motion
parameters, the extracted average time-course of CSF and
White-Matter from MarsBaR and a 100 s high-pass filter.
Then evaluate the model selecting the option ‘save resid-
uals’. These residuals are then the signals that are used for
further analyses.

(k) The relevant segments of each subject’s data (i.e. the resid-
uals from i) are then trimmed (to remove the first 6–10 s
of each epoch capturing non-specific stimulus onset) and
z-scored (standardized to zero mean and unit variance) for
each voxel and segment, then concatenated into a single
4D NIfTI file. If you want to compare multiple conditions,
you can create one 4D NIfTI file for each condition. You
may then mask the functional data using a gray-matter
segmentation mask.

B. Parametric paired test for two conditions

(a) For each participant, you should have one 4D NIfTI file for
each condition in a standard space; e.g. sub-01_task-intact_
bold.nii.gz,sub-01_task-scrambled_bold.nii.gz,sub-02_
task-intact_bold.nii.gz, sub-02_task-scrambled_bold.

nii.gz, etc. We’ll compute leave-one-out ISCs separately for
each condition.

(b) We provide two simple scripts to compute the leave-one-
out ISCs. For those familiar with MATLAB, use the isc_loo.m

MATLAB script (specify the input and output directories). We
also provide a Python command-line interface (CLI) called
isc_cli.py for Linux or Mac (requires an installation of Python
3 with the NumPy/SciPy and NiBabel modules). You can run
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Screenshot from the GUI of the ISC Toolbox. File names are abbreviated here for illustration purposes.

the program on the command line using python3 isc_cli.py;
alternatively, you can make the script executable by running
chmod +x isc_cli.py, after which you can run the program
using./isc_cli.py. The isc_cli.py program requires input
(-i or - - input) and output (-o or - - output) specifying
filenames and accepts a handful of optional arguments for
specifying a mask filename (-m or - - mask), z-scoring input
time series (-z or - - zscore), Fisher z-transforming output ISCs
(-f or - - fisherz) or computing a summary statistic (-s or
- - summarize; either mean or median). Usage example:

python3 isc_cli.py

--input /input/path/sub-*_task-intact_bold.nii.gz \
- -output /output/path/intact_iscs.nii.gz \
- -mask /input/path/mask.nii.gz

- -zscore - -fisherz

(c) To test for a statistically significant difference between the
Fisher z-transformed ISC values for each condition, perform a
group-level analysis using standard fMRI analysis software. For
example, in AFNI, use 3dttest++ with the -setA, -setB and
-paired options. In SPM, this entails using ‘specify 2nd-level’ and
a paired t-test to compare two conditions. With large sample
sizes, you may also opt to correlate the ISC values with subject-
specific behavioral or demographic variables (e.g. how well each
participant comprehended a story stimulus).

(e) Correct the resulting P-values for multiple tests by, e.g.
controlling FDR at 0.05 (for example, by submitting the P-values
to AFNI’s 3dFDR).

(f) Visualize the resulting ISC maps by plotting any ISC values
surpassing FDR controlled at 0.05. Typically plotting the ISC
values themselves (or the difference in ISC values across con-
ditions) after thresholding by the significance level is preferred
to plotting P-values directly, as the ISC values indicate the effect
size (Chen et al., 2017a). As correlation values range from −1 to

+1, it may be appropriate to use a symmetric divergent (bipolar)
colormap; however, ISC values are typically positive in practice,
meaning a sequential (unipolar) colormap may be appropriate as
well. We recommend using perceptually uniform colormaps and
avoiding perceptually non-uniform colormaps (such as ‘jet’).

C. Pairwise ISC analysis using the ISC Toolbox

(a) Install the ISC Toolbox (Kauppi et al., 2014). Go to the source
code (https://www.nitrc.org/scm/?group_id=947) and click on
‘Download the Nightly SVN Tree Snapshot’. Unzip the zip file
in directory of choice. Follow the instructions in readme.txt to
install the atlas files from FSL.

(b) Perform an ISC analysis using the ISC Toolbox. This is will
perform a pairwise correlation analysis for a single condition
(i.e., r > 0).

1. Start MATLAB and make the directory in which you
installed the toolbox in step A your current directory.

2. Launch setISCToolboxPath to add the different tools to
your MATLAB path.

3. Start the analysis toolbox by typing ISCanalysis. This will
open a GUI.

See the screenshot from the GUI of the ISC Toolbox. File
names are abbreviated here for illustration purposes.

1. Give the project a name.
2. Indicate the Destination Directory into which results will

be copied.
3. Select the 4D NIfTI files that contain the pre-processed,

clipped, concatenated data from each subject. These files
must all have exactly the same number of volumes. You
must copy the full path of each of these files into the
window.
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4. Specify your TR in seconds.
5. Select ‘Basic ISC analysis’ in main parameters, and go to

Settings . . . and select Calculate average ISC maps.
6. Set the number of realizations to 1 000 000.
7. Do not select frequency specific analyses or time window

analyses.
8. Then press ‘Validate parameters’.
9. You should see a message confirming validation in the

MATLAB kernel.
10. Press ‘Run analysis’.
11. This will take a while and will create a directory with

results where you selected your destination directory.
12. In particular, in the subdirectory results, you will find

two useful files: ISCcorrmapBand0Session1.nii and Ses-
sion1Band0ThresholdsWin0.csv. The former contains the
average pairwise ISC for each voxel, the latter the values at
which to threshold this map to respect a certain threshold,
in the following order:

% 1. P < 0.05, no multiple comparisons correction.
% 2. P < 0.05, FDR corrected using independence or positive

dependence assumption.
% 3. P < 0.05, FDR corrected (no assumptions).
% 4. P < 0.05, Bonferroni corrected.
% 5. P < 0.005, no multiple comparisons correction.
% 6. P < 0.005, FDR corrected using independence or positive

dependence assumption.
% 7. P < 0.005, FDR corrected (no assumptions).
% 8. P < 0.005, Bonferroni corrected.
% 9. P < 0.001, no multiple comparisons correction.
% 10. P < 0.001, FDR corrected using independence or positive

dependence assumption.
% 11. P < 0.001, FDR corrected (no assumptions).
% 12. P < 0.001, Bonferroni corrected.

You can then load this map in your preferred viewer (e.g. SPM
with the anatomy toolbox). A table of significant clusters can be
easily exported into a text file.

D. ISC analysis using BrainIAK in Python

This manuscript is accompanied by a GitHub repository: https://
github.com/snastase/isc-tutorial. This repository contains a
Jupyter Notebook tutorial that introduces basic ISC analyses and
statistical tests implemented in Python using BrainIAK. The code
can be interactively executed and modified in the cloud using
the free Google Colaboratory notebook environment. To use the
tutorial notebook interactively, click ‘Open in playground’; this
will allow you to edit and run the code cells (you may need
to log into a Google account). Use ‘File > Save a copy in Drive
. . .’ or ‘Save a copy in GitHub . . .’ to save your changes. We
recommend exploring the tutorial notebook via the browser-
based Colaboratory environment; you may also download the
notebook file and run it locally using Jupyter Notebook (with
some minor modifications; see below). In addition to the
tutorial notebook, we include some convenience functions: an
example MATLAB script (isc_loo.m) and a simple, Python-based
command-line program (isc_cli.py) for computing leave-one-
out ISCs.

Installing Python

To install Python, we recommend using the Anaconda dis-
tribution: https://www.anaconda.com/distribution. Select the

installer compatible with your operating system and click on
the ‘Download’ button corresponding to Python 3 (e.g. Python
3.7). When the download is complete, open the installer and
follow the installation instructions. In the tutorial notebook, we
install some non-standard Python libraries not included in the
default Anaconda distribution, namely NiBabel (https://nipy.
org/nibabel), Nilearn (https://nilearn.github.io) and BrainIAK
(https://brainiak.org). These can be installed from the command
line using, e.g. pip install nibabel. BrainIAK is supported for
Linux and MacOS and requires an installation of Python version
3.4 or higher. Follow the instructions at the following link to
install BrainIAK and its dependencies using pip or conda: http://
brainiak.org/docs/installation.html. If you are unable to install
BrainIAK, you can use a demo version of the ISC functions by
downloading the isc_standalone.py module from the GitHub
repository.

Tutorial software

To use the tutorial software locally, you can either (a) clone
the GitHub repository to a local directory on the command
line using git clone https://github.com/snastase/isc-tutorial.
git or (b) click on the green ‘Clone or download’ button, click
‘Download ZIP’ and extract the contents of the archive in a
local directory. To open the tutorial notebook, navigate into the
isc-tutorial directory (or isc-tutorial-master if you down-
loaded the ZIP archive) and launch Jupyter Notebook (e.g. by run-
ning jupyter notebook from the command line). This will open
a browser window displaying the files in the directory where you
launched Jupyter Notebook. Click on the isc_tutorial.ipynb

notebook file, which will open another browser window con-
taining the interactive tutorial notebook. The tutorial notebook
contains both explanatory text and code cells. The first code
cell in the tutorial notebook is intended to install the soft-
ware requirements for BrainIAK in the Linux cloud instance
hosted by Google Colab and should not be executed if running
the notebook locally. If you have already successfully installed
BrainIAK, you can skip to the second code cell to import the
necessary BrainIAK functions. The third code cell downloads
the isc_standalone.py file for those unable to install BrainIAK
and will not be necessary if you cloned the GitHub repository
(which already contains a copy of the isc_standalone.py file).
For those working locally without a BrainIAK installation, skip
to the fourth cell that imports the necessary functions from the
isc_standalone.py module. To execute a code cell, click on the
cell, then either click the ‘Run’ button (or the run arrow to the
left of the cell in Google Colab) or type ‘Shift + Enter’. Click on a
code cell to edit it. Note that the ‘Open in Colab’ button at the top
of the notebook will open the notebook in a Google Colab cloud
instance as described above.

ISC analysis

The isc function in BrainIAK takes in NumPy arrays compris-
ing BOLD time series for one or more voxels or ROIs across
two or more subjects and returns ISC values for each voxel or
ROI. The pairwise argument can be used to toggle between
the pairwise approach (pairwise = True) and the leave-one-out
approach (pairwise = False). By default, this function returns
ISC values for either all pairs of subjects or each left-out sub-
ject; however, you can supply a summary_statistic (‘mean’ or
‘median’), which will yield a single summary ISC statistic across
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pairs or left-out subjects. If mean ISCs are requested, Fisher z-
transformation is applied appropriately.

Statistical tests

BrainIAK currently supplies four non-parametric methods
for statistically evaluating ISCs. The timeshift_isc and
phaseshift_isc functions operate directly on response time
series, applying circular time-shift or phase randomization prior
to re-computing ISC at each iteration of the resampling test.
On the other hand, the bootstrap_isc and permutation_isc

functions operate on ISC values, applying a bootstrap hypothesis
test and permutation tests, respectively. The permutation_isc

function can be provided group_assignment labels to perform
a two-sample test or performs a one-sample test using a sign-
flipping procedure. Similar to the core isc function, these
non-parametric tests can be supplied with pairwise and
summary_statistic arguments. Each statistical test returns
the observed ISC, P-values based on the null distribution and

the null distribution itself (as well as confidence intervals in the
bootstrap hypothesis test).

ISFC analysis

To perform ISFC analysis, supply BOLD time series data for
two or more voxels (or ROIs) across two or more subjects to
the isfc function. ISFCs can be computed using either the
pairwise (pairwise = True) or leave-one-out (pairwise = False)
approaches. The isfc function returns a tuple containing a con-
densed vector of off-diagonal ISFC values and the diagonal ISC
values (vectorize_isfcs = True) or a 3D NumPy array where
the first dimension corresponds to pairs or left-out subjects
and the latter two dimensions correspond to the voxel-by-voxel
(redundant) ISFC matrix (vectorize_isfcs = False). If a sum-
mary statistic is supplied, only the voxel-by-voxel ISFC matrix is
returned, collapsing across pairs or left-out subjects.
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