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Meta-Analytic Structural Equation Modeling With Moderating Effects on
SEM Parameters

Suzanne Jak
University of Amsterdam

Mike W.-L. Cheung
National University of Singapore

Abstract
Meta-analytic structural equation modeling (MASEM) is an increasingly popular meta-analytic technique
that combines the strengths of meta-analysis and structural equation modeling. MASEM facilitates the
evaluation of complete theoretical models (e.g., path models or factor analytic models), accounts for
sampling covariance between effect sizes, and provides measures of overall fit of the hypothesized model
on meta-analytic data. We propose a novel MASEM method, one-stage MASEM, which is better suitable
to explain study-level heterogeneity than existing methods. One-stage MASEM allows researchers to
incorporate continuous or categorical moderators into the MASEM, in which any parameter in the
structural equation model (e.g., path coefficients and factor loadings) can be modeled by the moderator
variable, while the method does not require complete data for the primary studies included in the
meta-analysis. We illustrate the new method on two real data sets, evaluate its empirical performance via
a computer simulation study, and provide user-friendly R-functions and annotated syntax to assist
researchers in applying one-stage MASEM. We close the article by presenting several future research
directions.

Translational Abstract
Meta-analytic structural equation modeling (MASEM) is an increasingly popular statistical technique
that combines the strengths of meta-analysis and structural equation modeling. Meta-analysis is useful in
combining results from different studies, whereas structural equation modeling allows researchers to test
different theoretical models. MASEM facilitates the evaluation of complete theoretical models and tests
how good the proposed models fit the published data. Because published studies may be different in
terms of samples and measurements, the findings are likely heterogeneous, that is, nonidentical. We
propose a novel MASEM method, one-stage MASEM, which is better suitable to explain study-level
heterogeneity than existing methods. One-stage MASEM allows researchers to use continuous or
categorical moderators, for example, the mean age of the participants and gender ratio, to explain the
differences across studies with potential missing data. We illustrate the new method on two real data sets,
and provide user-friendly R-functions and annotated syntax to assist researchers in applying one-stage
MASEM. We close the paper by presenting several future research directions.

Keywords: meta-analytic structural equation modeling, meta-analysis, structural equation modeling,
moderation analysis, heterogeneity
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With a growing number of empirical studies being published every
year, there is an increasing need to systematically review the available
empirical evidence. Consequently, meta-analysis is rapidly gaining
popularity in various scientific fields, including psychology (Schulze,
2007). Combining data from separate independent studies, meta-

analysis allows researchers to estimate an average effect size, estimate
the degree of heterogeneity across studies, and to explain the hetero-
geneity across studies using moderator variables.

Originally, meta-analysis was developed to analyze bivariate
effect sizes, representing the relationship between only two vari-
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ables (Glass, 1976). There are several advances extending meta-
analysis to address more complicated research questions. These
include, to name a few, analyzing more than one effect size with
a multivariate meta-analysis (e.g., Becker, 2007; Cheung, 2013;
Gleser & Olkin, 2009; Jackson, Riley, & White, 2011), handling
nonindependent effect sizes with either a three-level meta-analysis
(e.g., Cheung, 2014b; Konstantopoulos, 2011; Van den Noortgate,
López-López, Marín-Martínez, & Sánchez-Meca, 2013) or robust
standard errors (Hedges, Tipton, & Johnson, 2010; Tipton, 2015;
Tipton & Pustejovsky, 2015), meta-analyzing partial effect sizes
(Aloe, 2014; Aloe & Becker, 2012; Becker & Wu, 2007), and
conducting meta-analysis within the Bayesian framework (e.g.,
Schmid, 2001; Sutton & Abrams, 2001). These advances make
meta-analysis a powerful tool to synthesize existing research find-
ings and to help resolve the replicability crisis in psychology
(Anderson & Maxwell, 2016; Hedges & Schauer, 2018).

Another line of extension of standard meta-analysis is meta-
analytic structural equation modeling (MASEM). MASEM is a
statistical technique to fit hypothesized models on sets of variables
from multiple independent studies (Becker, 1992, 1995; Cheung,
2015a, 2019; Jak, 2015; Viswesvaran & Ones, 1995). MASEM
combines the strengths of meta-analysis (systematic synthesis of
study-results) and structural equation modeling (SEM; fitting mod-
els with intricate relations between observed and latent variables).
A MASEM analysis typically consists of two stages (Viswesvaran
& Ones, 1995). In Stage 1, correlation matrices from different
studies are combined to form a pooled correlation matrix. In Stage
2, a structural equation model, such as a path model or factor
analytic model, is fitted to the pooled correlation matrix.

The study of Topa and Moriano (2010) illustrates how MASEM
is used to answer research questions. Topa and Moriano (2010)
gathered correlation coefficients between social norms, attitudes,
perceived control, smoking intention, and smoking from 35 pub-
lished studies, obtaining a total of 217 correlations. A synthesis of
the observed correlations across studies provided a pooled corre-
lation matrix of the five variables. By fitting the path model from
Figure 1a to the pooled correlation matrix, they tested how well the
theory of planned behavior could predict smoking behavior.
Among other results, they found that social norms better predicted
smoking intentions than attitudes and perceived behavioral control.
If these authors had not applied MASEM, they might have erro-
neously concluded that behavioral intention is most predictive of
the intention to smoke because this variable showed the largest
pooled bivariate correlation with smoking intention.

MASEM thus allows researchers to evaluate the unique effects
of multiple predictors simultaneously. To give another example of
MASEM, Zeegers, Colonnesi, Stams, and Meins (2017) used
MASEM on the data from 63 independent studies to test the model
in Figure 1b. These researchers were interested in the indirect
effect of parent’s mentalization (defined as the degree to which
parents show frequent, coherent, or appropriate appreciation of
their infants’ internal states) on parent–child attachment via pa-
rent’s sensitivity. They found that there was a significant small
positive indirect effect, as well as a significant positive medium
sized direct effect, representing partial mediation of the effect of
mentalization on attachment via sensitivity.

MASEM is most commonly applied to evaluate path models,
such as in the two examples provided above, but the technique can
also be used for models with latent variables. Hong and Cheung

(2015), for example, obtained 159 correlation coefficients between
six cognitive vulnerabilities associated with depression from 73
studies. They applied meta-analytic confirmatory factor analysis to
evaluate two alternative factor analytic models underlying the
associations between the vulnerability measures. A one-factor
model provided the best fit to the meta-analytic data (see Figure
1c).

In the example of Topa and Moriano (2010), the authors ob-
served 217 correlations, while there would be 35 (studies) � (5 �
4)/2 (correlations) � 350 correlations observed if all studies pro-
vided complete data. Zeegers et al. (2017) observed 88 correla-
tions, while there would be 63 � (3 � 2)/2 � 189 correlations
observed if all studies provided complete data. Hong and Cheung
(2015) gathered 159 coefficients, while complete data would yield
73 � (6 � 5)/2 � 1,095 observed correlation coefficients. These
examples illustrate one of the strengths of MASEM; it can test new
theories that possibly have not been tested in any of the primary
studies (Bergh et al., 2016; Viswesvaran & Ones, 1995). In other
words, the primary studies may have only tested some of the
variables included in the MASEM models. For a MASEM, the
requirement is that all the bivariate correlations among these five
variables are present in the average correlation matrix, but they
may be missing in part of the primary studies (Jak & Cheung,
2018a).

However, there is an important caveat in fitting MASEM on the
bivariate correlations based on different studies. Let us use the
theory of planned behavior in Figure 1a as an example. Suppose
that the average correlation coefficients between social norms,
attitudes, and perceived control are based on the children popula-
tion, whereas the average correlation coefficient between smoking
intention and smoking behavior is from the adult population. It
does not make any theoretical sense to combine these correlation
coefficients from different populations into an average correlation
matrix for MASEM. Therefore, researchers should set clear inclu-
sion criteria based on what studies can be meaningfully combined
before conducting a MASEM (Aguinis, Dalton, Bosco, Pierce, &
Dalton, 2011).

While standard meta-analysis evaluates each relationship be-
tween the variables of interest in a univariate way, MASEM is a
multivariate technique that evaluates complete theoretical models,
accounts for sampling covariance between effect sizes, provides
the researcher measures of overall fit of a hypothesized model, and
provides parameter estimates from SEMs with confidence inter-
vals and standard errors. It is for these reasons that MASEM is
increasingly applied in the social sciences (Sheng, Kong, Cortina,
& Hou, 2016).

We summarize some key procedures and decisions that re-
searchers have to make when conducting a MASEM (see Cheung,
2015a; Viswesvaran & Ones, 1995; also see Cooper, 2010 for
some general issues in meta-analysis):

1. Identify key constructs, measurements, and structural
equation models. Before conducting the meta-analysis,
researchers have to identify all the relevant key con-
structs, measurement models, and structural equation
models. Relatively smaller models, with not too many
observed variables, are generally better analyzable than
large models. Therefore, it is advisable to be as strict as
the theory permits with the identification of relevant
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constructs. Researchers may formulate several theoreti-
cally meaningful models for future testing.

2. Formulate inclusion/exclusion criteria. This step is essen-
tial as it provides theoretical justifications on whether the
selected studies can be meaningfully combined. For ex-
ample, researchers may need to ask whether it makes
sense to combine studies from different populations such
as children versus adults and studies that use different
measurement instruments.

3. Identify and extract all the relevant correlation matrices,
sample sizes, and study characteristics (moderators). The
basic inputs in a MASEM are the correlation matrices
and their sample sizes. It is quite likely that some of the
correlations are incomplete (please refer to the later sec-
tions on how missing data are handled in MASEM).
Researchers should attempt to retrieve additional unpub-

lished data, such as dissertations and conference presen-
tations, in order to minimize the influence of publication
bias. Also, it is important that the correlation matrices are
assumed independent. That is, each study only contrib-
utes one correlation matrix. When the correlation matri-
ces are not independent, either a multilevel model (Wil-
son, Polanin, & Lipsey, 2016) or a robust standard error
approach (Hedges et al., 2010; Tipton, 2015; Tipton &
Pustejovsky, 2015) may be used to handle the depen-
dency in the data.

4. Choose an appropriate approach to combine the cor-
relation matrices. Several models, for example, the
univariate-r (Viswesvaran & Ones, 1995), generalized
least squares (GLS; Becker, 1992, 1995), or two-stage
SEM (TSSEM; Cheung, 2014a; Cheung & Chan, 2005),
have been proposed in the literature. The univariate-r

Figure 1. Three models from applications of MASEM. In panel c: PI � pessimistic inferential style; DA �
dysfunctional attitudes; RU � ruminative style; AS � anxiety sensitivity; IU � intolerance of uncertainty; NE �
fear of negative evaluation.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

432 JAK AND CHEUNG



approach independently meta-analyzes the cells in the
correlation matrix, whereas the GLS and TSSEM ap-
proaches take the dependence of the correlations in the
correlation matrix into account with a multivariate ap-
proach.

5. Fit the structural equation models with the associated
approach. If the univariate-r approach is used in the
above Step 4, the average correlation matrix is treated as
if it was an observed covariance matrix in fitting the
structural equation models. A harmonic mean of the
sample sizes is usually used as the sample size in SEM.
If the GLS approach is used, the parameters and their
standard errors in the path models are estimated using
matrix operations and the multivariate delta method (see
Becker, 1992 for the technical details). The TSSEM
approach uses weighted least squares (WLS) estimation,
also known as the asymptotically distribution-free (ADF)
in SEM, to weigh the precision of the average correlation
matrix in fitting the structural equation models. Readers
may refer to Cheung (2015a) for the details on the dif-
ferences between these approaches.

Notwithstanding the benefits of MASEM, the current MASEM-
methods do not take full advantage of a major strength of standard
meta-analysis, which is the ability to explain heterogeneity in
effect sizes across studies by including study-level moderators.
Typical moderators in meta-analyses are, for example, the mean
age of participants and the percentage of males in the sample.
Some existing MASEM methods are able to account for hetero-
geneity, thereby providing unbiased parameter estimates and sig-
nificance tests (Cheung & Jak, 2017), but are not well suited to test
the effect of continuous study-level variables on the parameters in
the structural models. Other MASEM methods allow for the in-
clusion of continuous moderators but do not account for missing
correlations in the primary studies (Cheung & Cheung, 2016).
Therefore, all three applications discussed before used standard
univariate metaregression in addition to MASEM to evaluate
whether variability in the study’s individual correlation coeffi-
cients could be explained by continuous study-level moderators.

For example, Zeegers et al. (2017) fitted the path model from
Figure 1b to evaluate the hypothesized mediational effect of pa-
rent’s mentalization on parent–child attachment through parental
sensitivity. They were also interested in whether the effects of
mentalization and sensitivity were moderated by the children’s age
at the time of assessment. However, because it was not possible to
include age as a moderator in the path model, they tested the
moderation effects on the bivariate correlations between the vari-
ables in three separate analyses. That is, they performed a univar-
iate random-effects meta-analysis on the correlation coefficients
between sensitivity and attachment and then included the average
age of children in the sample as a moderator variable in a metare-
gression to explain study-level heterogeneity on the bivariate cor-
relations. Next, they used this same procedure to test moderator
effects on the correlation between sensitivity and mentalization,
and the correlation between mentalization and attachment.

Although there are well-established techniques to test modera-
tion in multiple regression (Aiken, West, & Reno, 1991) and SEM

(e.g., Klein & Muthén, 2007; Lee & Zhu, 2002; Little, Bovaird, &
Widaman, 2006; Marsh, Wen, & Hau, 2004), none of these tech-
niques can directly be applied to MASEM. In most SEM applica-
tions, except for multilevel SEM, researchers model the within-
study variations. However, when only the summary statistics
(correlation coefficients) are available for a research synthesis,
researchers can only model the between-study variations in the
meta-analysis or MASEM (Shadish, 1996).

Aim of This Study

It would be highly desirable if fitting the SEM and evaluating
heterogeneity could be performed within the same framework.
Moreover, researchers applying MASEM are presumably more
interested in testing whether the effects in the hypothesized SEM-
model (such as regression coefficients in a path model and factor
loadings in a factor model) are moderated, than in the evaluation
of moderating effects on the bivariate correlations. The purpose of
this article is, therefore, to present a novel approach that allows
researchers to incorporate moderator variables into their MASEM,
in which all the parameter in the SEM can be modeled by the
moderator variable. The new random-effects MASEM approach
does not involve two strictly separated stages. Therefore, we call it
“one-stage MASEM.”

Before we present one-stage MASEM in detail, we will review
the currently available MASEM methods. First, we illustrate the
fixed- and random-effects models in MASEM. Then we discuss
correlation- and parameter-based MASEM, including full infor-
mation MASEM and Bayesian MASEM. Next, we will introduce
one-stage MASEM, illustrate its use on two real data sets, and
present a simulation study to evaluate the empirical performance.

Fixed- and Random-Effects Models

Similar to standard (univariate) meta-analysis, MASEM consists
of fixed- and random effects methods. Fixed-effects methods (or
common effects models) assume that all studies share the same
population effect sizes, so that observed differences between effect
sizes are the result of sampling error (Hedges & Vevea, 1998). The
primary goal of the fixed-effects model is to summarize the studies
in a meta-analysis. Random effects models, on the other hand,
assume a “super distribution” of population effect sizes. That is,
each study is assumed to have its own population effect size. The
mean (often denoted with the symbol �) and variance (often
denoted with the symbol �2) of the “super distribution” of popu-
lation effect sizes is estimated in the random-effects analysis,
while also accounting for sampling error in the individual studies
(sampling variance is often represented by v). The primary goal of
a random-effects model is to generalize findings of a meta-analysis
beyond the studies included in the meta-analysis.

Mathematically, the fixed-effects model is a special case of the
random-effects model by setting �2 � 0. If the fixed-effects model
is incorrectly applied to data from a random-effects model, the
estimated confidence intervals tend to be too short (Schmidt, Oh,
& Hayes, 2009). Because it is very likely that the population effect
sizes differ across studies, for example, because different studies
focus on slightly different populations, or use different measure-
ment instruments, the random-effects model is generally preferred
(Borenstein, Hedges, Higgins, & Rothstein, 2009; Hedges, 2016).
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In the remainder of the article, we focus on random-effects models
unless it is explicitly stated that we are discussing a fixed-effects
model.

When the variance component gets larger, the usefulness of the
average effect is questionable (Kisamore & Brannick, 2008), be-
cause the population effects may vary a lot. Let us consider a
simple example with � � .1 and � � .2. Assuming that the
population effects sizes are normally distributed, about 95% of the
population effect sizes lay between .1 � 1.96 � .2 or (�.29, .49).
This indicates that the population effect size can be either very
positively large (.49) or negative (�.29). Similar concerns have
been raised in MASEM. That is, even if the proposed structural
equation model fits well on the average correlation matrix, it does
not necessarily mean that the proposed model fits equally well in
all population correlation matrices (see Cheung & Cheung, 2016
for the discussion). The proposed one-stage MASEM in this study
resolves this issue by allowing studies with different parameter
estimates depending on the values of the moderator.

Correlation- and Parameter-Based MASEM

Cheung and Cheung (2016) differentiated two types of
random-effects MASEM: correlation-based and parameter-
based MASEM.1 In correlation-based MASEM, the correlation
matrices are the effect sizes and source of heterogeneity in the
meta-analysis. On the other hand, parameter-based MASEM con-
siders the estimated parameters in SEM as the effect sizes and
source of heterogeneity in the meta-analysis. We will discuss the
current methods using this classification, and also we discuss one
other method that is not specifically correlation or parameter-based
MASEM. For each method, we indicated in Table 1 whether
the method provides estimates of the heterogeneity, if the method
allows the inclusion of continuous moderator variables to explain
heterogeneity and if the method is applicable with missing data.

Correlation-Based MASEM

Two-stage methods for correlation-based MASEM have in com-
mon that there is a first stage, in which a pooled correlation matrix is
estimated using fixed- or random effects meta-analysis, and a second
stage in which the parameters of the structural equation model are
estimated. Becker (1992, 1995) proposed using GLS to estimate a
pooled correlation matrix and its asymptotic sampling covariance
matrix. Next, the pooled correlation matrix and its asymptotic sam-
pling covariance matrix are used to fit path models. Viswesvaran and
Ones (1995) proposed applying univariate meta-analyses on the indi-
vidual correlations to construct a pooled correlation matrix, and using
the pooled matrix as if it was an observed covariance matrix to fit a
structural equation model. For the ease of reference, we call this
approach the univariate-r approach here. Based on the work of Becker
(1992), Cheung and Chan (2005; Cheung, 2014a) proposed the
TSSEM approach to conduct MASEM for path models, confirmatory
factor analytic models, and SEM. Figure 2 provides a conceptual
overview of the two stages of TSSEM.

Because in two-stage correlation-based MASEM the structural
equation model is fitted on the pooled correlation matrix, and not
directly on the observed correlations, it is not possible to evaluate
the heterogeneity of parameters from the structural equation model
from Stage 2 (see rows 1–3 of Table 1). One solution is creating

subgroups of studies based on the moderator variable of interest
and comparing the estimates in the subgroups. Categorizing con-
tinuous moderator variables, however, leads to a loss of informa-
tion on the moderating variable, and always results in smaller
numbers of studies to be analyzed within each group, with asso-
ciated estimation problems (Jak & Cheung, 2018b; MacCallum,
Zhang, Preacher, & Rucker, 2002). Note that at Stage 2 of
correlation-based MASEM, it is possible to evaluate heterogeneity
of the correlation coefficients, using multivariate metaregression
(Berkey, Hoaglin, Antczak-Bouckoms, Mosteller, & Colditz,
1998; Jackson, White, & Thompson, 2010).

Yu, Downes, Carter, and O’Boyle (2016) proposed a way of
quantifying the heterogeneity at Stage 2 in terms of credible intervals
of SEM-parameters by fitting structural equation models from corre-
lation matrices generated from a parametric bootstrap. They called
this method Full Information MASEM (FIMASEM). FIMASEM
involves three steps: (a) estimating the pooled correlations and their
variances, (b) performing a parametric bootstrap to generate a large
number of heterogeneous correlation matrices, and (c) fitting the SEM
to all generated matrices. Although this method provides correct
credible intervals, the obtained test statistics and goodness-of-fit in-
dices are questionable, making it impossible to evaluate the fit of the
hypothesized models with this approach (Cheung, 2018; cf. Yu,
Downes, Carter, & O’Boyle, 2018). Moreover, because Yu et al.
(2016) did not discuss how moderators could be handled in their
approach, it is still unclear how their approach can be extended to
models with moderators (see row 4 of Table 1). Because the corre-
lation matrices that are generated with the parametric bootstrap are not
tied to specific studies and their associated values on the moderator
variables, it seems impossible to explain between-studies variability in
SEM parameters with continuous moderator variables (Ke, Zhang, &
Tong, 2018).

Parameter-Based MASEM

An alternative way of evaluating SEM on meta-analytic data is to
fit the SEM in each of the primary studies, and then combine the
parameters of interest (e.g., factor loadings or path coefficients) as
effect sizes in a meta-analysis. This method (called “parameter-based
MASEM” by Cheung & Cheung, 2016) has indeed been proposed to
combine regression coefficients (Becker & Wu, 2007) as well as
factor loadings (Gnambs & Staufenbiel, 2016). Becker and Wu
(2007), for example, proposed a method for using regression coeffi-
cients as the effect sizes in a multivariate meta-analysis. This ap-
proach takes the dependency of the regression coefficients effectively
into account. Also, study-level moderators can be included in the
multivariate meta-analysis to explain differences in regression coef-
ficients across studies. As pointed out by the authors, a limitation of

1 One reviewer remarked that the use of the terms correlation- versus
parameter-based MASEM is a poor description and imprecise use of the
terminology because all models rely on “estimated” parameters, not the actual
parameters themselves. For example, the correlation coefficients in Stage 1 of
correlation-based MASEM are also parameter estimates. We acknowledge the
potential confusions of these terms. However, because it is necessary to
differentiate these two types of meta-analysis in MASEM and these terms have
been used before, we continue using these terms in this study. “Correlation-
based” indicates that the bivariate correlation coefficients are meta-analyzed,
while “parameter-based” indicates that parameters of the structural equation
model (e.g. path coefficients) are meta-analyzed.
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this approach is that the sampling covariance matrix among the
regression coefficients is often not reported. Researchers may, there-
fore, have to assume that the regression coefficients are uncorrelated,
or plug in an arbitrary correlation. Moreover, the estimated regression
coefficients may not be comparable across studies unless the same set
of predictors are used in all studies, or the predictors are uncorrelated.
Considering multiple regression as one of the simplest MASEM
models, one could say that our new approach extends the earlier work
of Becker and Wu (2007) to a broader range of structural equation
models, such as factor models.

Parameter-based MASEM can provide estimates of the heteroge-
neity of parameters in the SEM, and allows for the inclusion of
continuous moderator variables to explain this heterogeneity. How-
ever, with the exception of Bayesian MASEM which is discussed in
the next paragraph, each primary study has to provide either all
SEM-parameters of interest and their sampling covariance matrix, or
complete data on the correlation matrices in order to fit the hypoth-
esized model to the data of each study (see row 5 in Table 1). In
practice, complete data is hardly ever available for any study (Sheng
et al., 2016). Another problem with parameter-based MASEM is that
the hypothesized model may not fit well in the individual studies,
leading to biased parameter estimates being included in the meta-
analysis.

Recently, Ke, Zhang, and Tong (2018) presented a promising
parameter-based MASEM model in the Bayesian framework. Their
method overcomes the limitations related to missing data from other
parameter-based MASEM methods, and allows the evaluation of
model fit using Bayesian fit measures, specifically the deviance in-
formation criterion (DIC; Spiegelhalter, Best, Carlin, & Van Der
Linde, 2002) and posterior predictive checking (Gelman, Meng, &
Stern, 1996). Ke et al. (2018) focused on the estimation of the
heterogeneity in the SEM-parameters without explaining this
between-studies variance. In principle, their model can be extended in
order to include moderating variables, but the authors left this as a
suggestion for future research. Therefore, applied researchers are not
able to evaluate moderating effects on SEM parameters using this
approach yet (see row 6 in Table 1). Also, the model specification of
Bayesian MASEM might be challenging for the applied user, even
with the example scripts in OpenBUGS that the authors supplied.

One-Stage Fixed-Effects MASEM

One-stage methods fit the meta-analytic structural equation model
at the data from the primary studies directly. Oort and Jak (2016)
presented a one-stage approach using maximum likelihood estimation
for the fixed-effects model. Although this method is a fixed-effects
method, we explain the model because of its similarities with the
one-stage MASEM method that we propose in the next paragraph. In
the Oort and Jak (2016) procedure, the structural equation model is
fitted to the observed correlation matrices in a multigroup model,
where each study is a group, and the parameter estimates of the
structural model are constrained to be equal across groups/studies.
Missing variables in the individual studies are filtered out when
needed. This method stays within Stage 1 of TSSEM but restricts the
pooled correlation matrix to adhere to the structure of the hypothe-
sized structural equation model. A measure of fit is obtained by fitting
a saturated model in addition to the hypothesized model and compar-
ing the model loglikelihoods. The big disadvantage of the Oort and
Jak (2016) procedure is that it only allows estimation of fixed-effect
models, so it does not account for study-level heterogeneity, nor does
it allow the inclusion of continuous moderator variables to explain the
heterogeneity. The new method proposed in the next paragraph could
be viewed as the random-effects extension of Oort and Jak (2016).

The New Method: One-Stage MASEM

The one-stage MASEM allows researchers to incorporate mod-
erator variables into their MASEM, in which all parameters in the
SEM can be modeled by the moderator variable, and that does not
require complete data for the primary studies included in the
meta-analysis (see row 6 of Table 1). A conceptual overview of
one-stage MASEM is provided in Figure 3. Apart from seeing the
method as the random-effect extension of the Oort and Jak (2016)
procedure, one-stage MASEM can also be viewed as an extension
of the random-effects meta-analysis of correlation matrices in
Stage 1 of TSSEM (Cheung, 2014a). By treating studies in a
meta-analysis as subjects in SEM, the vector of correlation coef-
ficients and their variance component of the heterogeneity in a
meta-analysis are modeled as the mean and covariance structures
in SEM. Cheung only considered the unstructured (saturated)

Table 1
Overview of Possibilities of Different Random-Effects MASEM Methods

MASEM methods
Heterogeneity (correlations or

SEM parameters) Moderators
Missing

correlations

Univariate-r approach (Viswesvaran & Ones, 1995) Correlations Multiple-group analysis with categorical moderators Yes
GLS (Becker, 1992) Correlations Multiple-group analysis with categorical moderators Yes
TSSEM (Cheung, 2014a) Correlations Multiple-group analysis with categorical moderators Yes
FIMASEM (Yu, Downes, Carter, & O’Boyle, 2016) SEM parameters Unclear how moderators are handled Yes
Parameter-based MASEM (Cheung & Cheung, 2016) SEM parameters Categorical and continuous moderators on the SEM

parameters
No

Bayesian MASEM (Ke, Zhang, & Tong, 2018) SEM parameters Unclear how moderators are handled (but
theoretically possible)

Yes

One-stage MASEM Correlations Categorical and continuous moderators on the SEM
parameters

Yes

Note. MASEM � meta-analytic structural equation modeling; SEM � structural equation modeling; GLS � generalized least squares; TSSEM �
two-stage SEM; FIMASEM � Full Information MASEM. Heterogeneity: Does the method provide estimates of the heterogeneity in the correlation
coefficients or the parameters in the SEM model? Moderators: Does the method allow for categorical or continuous moderators explaining (part of) the
heterogeneity of SEM parameters? Missing correlations � Can the method handle primary studies with incomplete correlation matrices?
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model on the mean structure of the correlation coefficients. One-
stage MASEM is an extension of this approach by imposing a
model implied correlation structure on the mean structure.

Models Without Any Moderator

In one-stage MASEM, we consider the correlation coefficients as
the “variables” and the studies as “subjects” in the data set.2 Suppose
the analysis involves 5 � 5 correlation matrices with k studies; we
create a data matrix of k “subjects” (studies) and 10 “variables”
(correlation coefficients). When there are incomplete data, they are
handled by the use of the full information maximum likelihood
(FIML) in the analysis.

Let us provide a brief overview of how missing correlations
are handled with FIML in both TSSEM and one-stage MASEM.
Rubin (1987) provided a framework to classify missing mech-
anisms in primary data. Pigott (2009) applied Rubin’s (1987)
definitions to meta-analysis. If the values of the missing corre-
lations are not related to the missing values or other observed

variables in the analysis, the data are missing completely at
random (MCAR). For example, a researcher does not include a
correlation in his or her design because he or she is not
interested in that correlation. The data are missing at random

2 Mehta and Neale (2005) introduced the analogy of people as variables to
illustrate how single level structural equation models could be used to analyze
multilevel structural equation models. “Practically, this involves switching
subscripts of a univariate MLM (people and clusters) with those of a CFA
model (variables and people); that is, individual scores are conceptualized as
separate variables, and the unit of analysis for the SEM model is now the
cluster” (Mehta & Neale, 2005, p. 263). In a series of articles, Cheung (2008,
2013, 2014b) extended this framework to the univariate, multivariate, and
three-level meta-analyses. Specifically, studies (or independent clusters) in a
meta-analysis are conceptualized as subjects in a structural equation model.
The known within-study sampling variance-covariance matrix Vi among the
effect sizes is properly handled by imposing it as fixed values via definition
variables (see Cheung, 2013 for the details).

Figure 2. Conceptual representation of the TSSEM approach. The arrow pointing to the dashed box of the
pooled correlation matrix indicates that in TSSEM, the pooled bivariate correlations can be specified to be a
function of the moderator variable X.
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(MAR) if the missingness can be fully accounted for by the
other variables in the analysis. For example, a researcher does
not report a correlation because other correlations are very high
(or low). On the other hand, the data are missing not at random
(MNAR) if the missingness is related to the values of the
missing correlations even after controlling for other variables in
the analysis. For example, a researcher does not report a cor-
relation because that specific correlation is very high (or low).
As the incomplete correlations in MASEM are most likely
created by design (some researchers were interested in includ-
ing this set of variables whereas others were not), it may often
be reasonable to assume that the missing correlations are
MCAR (Yuan & Kano, 2018). On the other hand, if researchers
do not report some of the correlations because these correla-
tions are small or nonsignificant, the assumption of MCAR may
not be valid.

Both multiple imputation (MI) and FIML are unbiased and
efficient in handling missing data with either MCAR or MAR
(e.g., Enders, 2010; Graham, 2009; Schafer & Graham, 2002).
When the missingness mechanism is MNAR, FIML (and MI)
are not unbiased. However, the bias of FIML is generally

smaller than those in other ad hoc methods such as the listwise
or pairwise deletion (Jamshidian & Bentler, 1999; Muthén,
Kaplan, & Hollis, 1987). In fact, many missing data experts still
prefer to apply methods assuming MAR even the data are
MNAR in primary research. Enders (2010, p. 344), for example,
stated “a well-executed MAR analysis may be preferable to an
MNAR analysis, even if there is a reason to believe that
missingness is systematically related to the outcome variable.”
All current MASEM techniques such as Becker (1992), Cheung
and Chan (2004; Cheung, 2014a), and Viswesvaran and Ones
(1995)3 assume that the missing correlations are either MCAR
or MAR. Therefore, it may be reasonable to apply FIML in

3 Viswesvaran and Ones (1995) state that the population matrix should be
filled with the best possible estimates. As one reviewer remarked, in case of
missing correlation coefficients in primary studies due to selective reporting
(publication bias), leading to MNAR data, one could in principle plug in
estimates adjusted for publication bias. It is, however, not evident how such an
estimate should be obtained.

Figure 3. Conceptual representation of one-stage MASEM. The arrow pointing to the dashed box of the
structural equation model indicates that all parameters of the hypothesized model can be specified to be a
function of moderator variable X.
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MASEM as well, although researchers should evaluate the
missing data assumptions in their specific MASEM analyses.

Let us illustrate the key idea of FIML with the model in Figure
1a. There are five variables in the structural equation model (5 �
4/2 � 10 means in �(�)i and a 10 � 10 covariance matrix in �(�)i)
when there is no missing data. Please note that there is a subscript
i in the model implied means and covariance matrix meaning that
their dimensions may vary across studies. Suppose that there is a
data point (correlation coefficient) missing in the second study. A
filter matrix is created to remove the relevant dimensions with that
missing value. Therefore, there will be only nine elements in �(�)2

and the dimension of �(�)2 is 9 � 9. The log-likelihood of the
model is calculated by summing the individual log-likelihoods
with possibly different dimensions. The model fit, parameter esti-
mates, and their standard errors are computed by maximizing the
log-likelihood of the model. Readers may refer to Enders (2010)
for a comprehensive treatment on this subject.

One-stage MASEM fits the SEM by restricting the pooled
correlations in the (multivariate) random-effects model. In its
simplest form, the random-effects model decomposes the vector ri

of observed correlation coefficients for a study i in three parts:

ri � �R � ui � �i, (1)

where �R indicates the mean vector of the correlation coefficients,
ui is a vector of deviations of study i’s population correlation
coefficients from �R, and �i is a vector with the sampling error of
study i. Cov(ui) � T2 denotes the between-studies covariance
matrix that has to be estimated, and Cov(�i) � Vi denotes the
sampling covariance matrix of the correlation coefficients, which
is usually treated as known in a meta-analysis (see Olkin and
Siotani (1976) for the formula in computing Vi).

4

The structural model, for example, a path model, is nested under
the model in Equation 1 and is obtained by restricting �R:

�R � vechs�F(I � A)�1 S(I � A)�1T FT�, (2)

where using the RAM-formulation (McArdle & McDonald, 1984),
I is an identity matrix, F is a selection matrix with 1’s for observed
variables and 0’s for latent variables, A is a square matrix with
asymmetric paths such as regression coefficients and factor load-
ings, S is a symmetrical matrix with variances and covariances,
and vechs() vectorizes the lower diagonal of its argument. If there
are 5 � 5 correlation matrices in the analysis, �R is a 10 � 1
column vector whereas T2 and Vi are two 10 � 10 matrices. To
illustrate the RAM-model formulation, for the path model in
Figure 1a, the matrices A, S, and F would look as follows when the
variables are arranged as social norms, attitudes, perceived control,
smoking intention, and smoking:

A � �
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

a4,1 a4,2 a4,3 0 0
0 0 a5,3 a5,4 0

�, S � �
1

s2,1 1
s3,1 s3,2 1

0 0 0 s4,4

0 0 0 0 s5,5

�, and

F � �
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

�.

In general, for models with p observed variables, �R will be a
p � (p � 1)/2 dimensional column vector, and A, S, and F will be
of dimensions p � p. For models with p observed variables and q
latent variables, matrices A and S will be of dimensions (p � q) �
(p � q), matrix F will be p � (p � q) and filters out the latent
variables, so that �R will be a p � (p � 1)/2 dimensional column
vector. For more explanation of the RAM-formulation, see
McArdle (2005) and Loehlin and Beaujean (2016).

Because we are using correlation matrices as inputs, the vari-
ances of the exogenous variables are fixed at 1. Moreover, the
diagonal elements of the model implied correlation matrix in
Equation 2 should always be equal to one during estimation
(Cudeck, 1989). Either imposing constraints on the parameters or
reparameterizing the model is required to ensure that all the
diagonal elements are equal to 1 (see Section 7.3.2.1 of Cheung
[2015a]).

All model parameters are estimated with FIML as implemented
in the metaSEM package (Cheung, 2015b) which uses the
OpenMx package (Neale et al., 2016) as the backend in the R
statistical platform (R Core Team, 2019). A test statistic of the
hypothesized model can be obtained by performing a likelihood
ratio test with the saturated model from Equation 1, similar to Oort
and Jak (2016). A detailed graphical display of one-stage MASEM
is provided in Figure 4. In order to facilitate the comparison with
TSSEM, we also provide a detailed graphical overview of TSSEM
in Figure 5.

Moderation of the Regression Coefficients
in the A Matrix

Bauer (2017) presented a method that might model any SEM-
parameter as a function of a moderator variable in the context of
measurement invariance.5 Conceptually, the inclusion of modera-
tors to explain variation in the SEM-parameters across studies with
one-stage MASEM resembles the approach of Bauer (2017). Mod-
erator variables can be included in one-stage MASEM to explain
(part of the) heterogeneity across studies, by regressing model
parameters on moderator variables. In principle, all model param-
eters in the A and S matrices can be regressed on the moderators.
We expect that in practice, researchers are most often interested in
moderation of A. Regressing the direct effects in A on moderator
variable X would be modeled as:

4 Olkin and Siotani (1976) provided an analytic formula to estimate Vi.
The metaSEM package, which is used in this article, uses an SEM ap-
proach to compute Vi (Cheung & Chan, 2004). Because both approaches
use maximum likelihood estimation with the assumption of multivariate
normal on the data, the results are identical.

5 In testing the measurement invariance across groups, researchers usu-
ally choose between a multiple-group SEM approach and a multiple-
indicator multiple-cause (MIMIC) approach. These two approaches have
their own pros and cons. For example, the multiple-group approach can be
used to model any between-group differences on the intercepts of the
variables, factor loadings, and latent variance-covariance matrices. How-
ever, the multiple-group approach can only handle categorical moderators
such as gender and ethnicity. On the other hand, the MIMIC model allows
both categorical and continuous moderators such as age. The limitation of
the standard MIMIC model is that only the intercepts of the variables can
be modeled. Bauer (2017) resolved this dilemma by presenting a new
approach that can use both categorical and continuous moderators to model
all the parameters in factor models.
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Figure 4. Detailed graphical representation of one-stage MASEM. See the online article for the color version
of this figure.
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Figure 5. Detailed graphical representation of TSSEM. See the online article for the color version of this
figure.
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Ai � A0 � A1 XXi, (3)

where Ai is the matrix with the ith study-specific asymmetric
paths, Xi is a matrix with the ith study-specific values of the
moderator variable X, A1 is a matrix with the regression effects of
the moderator variable(s), A0 represents a matrix with intercept
values for the asymmetric paths when Xi � 0, and the X-operator
denotes the Hadamard or element-wise product. Taking the model
from Figure 1a as an example, the model matrices would look as
follows:

A0 ��
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

a0,4,1 a0,4,2 a0,4,3 0 0
0 0 a0,5,3 a0,5,4 0

�,

A1 ��
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

a1,4,1 a1,4,2 a1,4,3 0 0
0 0 a1,5,3 a1,5,4 0

�, and

Xi ��
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
xi xi xi 0 0
0 0 xi xi 0

�.

Note that in this model, the value of the moderator can be
different for each coefficient in theory, allowing the inclusion for
effect-size level moderators. However, we expect that in practice,
the moderator will be study-level so that all values in Xi are equal
within the same study. Similar to creating an interaction term for
continuous variables, the results will be more stable if we center or
standardize Xi before the analysis.

The complete model (obtained by plugging in Equation 3 in
Equation 2 in Equation 1) then becomes:

ri � vechs(F(I – (A0 � A1 XXi))
�1S(I – (A0 � A1 XXi))

�1TFT)

� ui � �i. (4)

Cov(ui) � T2 in this model represents the residual between-
study covariance matrix. Therefore, the model implied mean and
covariance structure of the ith study are:

�(�)i � vechs(F(I – (A0 � A1 XXi))
�1

� S(I – (A0 � A1 XXi))
�1TFT), and

�(�)i � T2 � Vi.

(5)

A comparison with the T2 of the model without moderators will
provide insight in how much of the between-study variance in the
observed correlation coefficients is explained by the moderators.
Suppose T0

2 and T1
2 are the heterogeneity (co)variance matrices

from a model with and without the moderators. We may calculate
an R1,1

2 on the first correlation coefficient by using the following
formula, where the indices in the bracket indicate the elements in
the matrices:

�T1
2�1, 1� � T0

2�1, 1�� ⁄ T0
2�1, 1�. (6)

Negative values of R2 are usually truncated to zero. This defi-
nition resembles the standard explained variance used in mixed-
effects meta-analysis (e.g., Borenstein et al., 2009).

Moderation of the Covariances in the S Matrix

Although most research questions will focus on the moderation
of direct effects in path models, researchers may still test moder-
ating effect on the covariances in S by regressing S on moderator
variable X as:

Si � S0 � S1 XXi, (7)

where Si is the matrix with the ith study-specific symmetric paths,
Xi is a matrix with the ith study-specific values of the moderator
variable X, S1 is a matrix with the regression effects of the
moderator variable(s), S0 represents a matrix with intercept values
for the symmetric paths, and the X-operator denotes the Hadamard
or element-wise product.

Because correlation structures are fitted in MASEM, the ele-
ments on the diagonal of the S are no free parameters. Thus, only
the off-diagonal elements in S can be moderated by X. Taking the
model from Figure 1a as an example would lead to the following
model matrices:

S0 ��
1

s0,2,1 1
s0,3,1 s0,3,2 1

0 0 0 s0,4,4

0 0 0 0 s0,5,5

�,

S1 ��
0

s1,2,1 0
s1,3,1 s1,3,2 0

0 0 0 0
0 0 0 0 0

�, and

Xi ��
0
xi 0
xi xi 0
0 0 0 0
0 0 0 0 0

�.

Similar to a model where the elements in A are moderated, the
T2 of the models with and without moderators can be used to
estimate how much of the between-studies variance in the ob-
served correlation coefficients is explained by the moderators.

Illustrations

We will present two illustrations of one-stage MASEM with
moderators using two real data sets. The first illustration evaluates
a path model, and the second illustration evaluates a factor model.
A detailed and annotated overview of scripts and outputs for all
analyses are included as online supplementary materials. The latest
version of the R code is also available in Github (https://github
.com/mikewlcheung/code-in-articles).

Illustration 1: Work–Family Conflict and Strain

Nohe, Meier, Sonntag, and Michel (2015) meta-analyzed data
from 32 independent samples from 30 panel studies on the rela-
tionship between work–family conflict and strain, in order to
evaluate whether work–family conflict predicts strain, strain pre-
dicts work–family conflict, or whether they are reciprocally re-
lated. The authors originally analyzed their data using univariate
meta-analysis to obtain the average correlation coefficients and
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subsequently treated the average correlation matrix as input in a
standard SEM-analysis (the univariate-r method). The theoretical
model that the researchers were interested in is the two-wave
cross-lagged panel model as depicted in Figure 6. This model
includes two autoregressive effects, strain to strain and work to
work (	S2S and 	W2W), and two cross-lagged effects, work to
strain and strain to work (	W2S and 	S2W) between strain and
work-family conflict.

The authors evaluated the moderation effect of time lag on the
bivariate correlation coefficients, using a series of univariate
metaregressions. However, the actual interest was not in modera-
tion of the bivariate correlations, but in moderation of the regres-
sion coefficients between waves (see Figure 6). In this illustration,
we will reanalyze their data using one-stage MASEM with a time
lag as a moderator of the regression coefficients. For comparison,
we will analyze the same data with TSSEM, which should give
similar results for the model without moderators.

Data. The dataset consists of 32 four by four correlation
matrices with the bivariate correlations between work–family con-
flict and strain; both measured at two-time points (these data are
obtained from Table A1 in the article by Nohe, Meier, Sonntag, &
Michel, 2015). The associated sample sizes ranged from 66 to
2,235, with an average of 403.3 and a median of 247.5. Studies
differed in the time lag between the two waves. The average time
lag was 14.12 months, and the median time lag was 12 months,
with a range from around 1 week to 72 months.

Analysis. We used the R-package metaSEM (Cheung,
2015b), which includes dedicated functions to apply TSSEM as
well as one-stage MASEM. We fitted the model from Figure 6 to
the observed correlation matrices in order to evaluate the regres-
sion coefficients. Note that because the model is saturated, the
model fit is perfect by definition. Next, we included time lag as a
potential moderator of the regression coefficients. It was expected
that studies with a longer time interval between the two waves
would find smaller effects across time. With one-stage MASEM,
the variable “lag” is included as a continuous moderator. For
comparison, we also analyzed the effect of lag using subgroup

TSSEM (Jak & Cheung, 2018b). We categorized the variable by
creating three subgroups of studies based on the time lag: 1–6
months, 7–12 months, and more than 13 months. This categoriza-
tion corresponds to the subgroups that the authors analyzed in the
original meta-analysis. Next, we fitted the path model to all three
groups simultaneously and used a chi-square difference test be-
tween a model with and without the regression coefficients con-
strained to be equal across subgroups. We used a significance level
of 
 � .05 in this study.

Results. In the following section, we first present the results
of the overall analysis and then the results of the moderation
analysis.

Overall analysis. One-stage MASEM and TSSEM provide the
same parameter estimates and standard errors for the overall model
(see the first two columns of Table 2). The two cross-lagged
effects are both positive, statistically significant, and of similar
small size (0.080 and 0.086). These results support the idea that the
effects of strain and work–family conflict are reciprocal (Nohe et
al., 2015). The autoregressive effects are both positive, of medium
size, and also statistically significant (0.586 for strain and 0.572 for
work–family conflict).

Moderation analysis. We added the variable “lag,” which was
standardized to improve numerical stability, as a moderator ex-
plaining variance in the four regression coefficients across studies.
The omnibus test of the moderation effects was statistically sig-
nificant, �2(4) � 23.522, p � .05. All four moderation effects were
in the expected direction (negative), although only the autoregres-
sive effect of work–family conflict was statistically significant (see
the third column of Table 2). The intercept of this regression
coefficient is 0.573, which corresponds to a study with the mean
time lag (14.12 months). For each standard deviation of months
increase in a time lag, the estimated autoregressive effects are
expected to decrease with 0.062 points. The calculation of R2 with
the between-studies variance of the model with and without the
moderator shows that 40.7% of the variance in the correlation
coefficient between work-family conflict at T1 and T2 could be
explained by lag.

Figure 6. Hypothesized panel model from Nohe et al. (2015), with time lag as a moderator of the regression
coefficients.
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As a comparison, we also tested moderation using subgroup
TSSEM. Constraining the four regression coefficients to be equal
across the three subgroups of studies did not significantly deteriorate
model fit, �2(8) � 14.738, p � .064, so for this analysis, the hypoth-
esis of equal regression coefficients across lags would not be rejected.
Testing the equality of only the regression coefficient 	W2W, which
was found to be significantly moderated with the one-stage MASEM,
also did not result in rejection of the null hypothesis of equality of the
effect across subgroups, �2(2) � 2.527, p � .283. To demonstrate that
the one-stage MASEM works with incomplete data as well, we
randomly dropped one of the four variables in each study. This means
that three out of six correlations (half of the data) are dropped in each
study. As can be seen in the online supplementary materials, the results
are comparable to those with complete data. As expected, the standard
errors of the findings with incomplete data tend to be larger because of the
smaller numbers of studies.

Conclusion. This illustration showed that one-stage MASEM
and TSSEM lead to the same parameter estimates in the models
without moderators. When analyzing the effect of the moderator,
we found different results. In TSSEM we needed to categorize the
continuous moderator in order to create subgroups. As a conse-
quence, the power to detect moderation effects decreased. More-
over, it is rather difficult to decide how to categorize the variable,
especially if the results change based on different categorization
options. In this example, we followed the procedure of the original
authors, but we could also have performed a median split to create

two subgroups instead of three. Analyzing two subgroups instead
of three would have led to a rejection of the null hypothesis of
equal effects across the two subgroups �2(4) � 13.247, p � .010.
With one-stage MASEM on the other hand, we could include Lag
as the original continuous variable that it was, without making
arbitrary splits, and with the additional benefit that this procedure
results in more statistical power to detect moderation effects.

Illustration 2: Factor Analysis of the Rosenberg
Self-Esteem Scale

Gnambs, Scharl, and Schroeders (2018) examined the factor
structure of the Rosenberg Self-Esteem Scale (RSES; Rosenberg,
1965) using data from 113 independent samples from various
countries. By applying fixed-effects TSSEM, they found that a
bifactor model with one general self-esteem factor and two spe-
cific factors for positively and negatively worded items and fitted
the combined data best. As a sensitivity analysis, a random-effects
TSSEM was applied as well, leading to the same conclusions. The
authors were interested in whether the factor loadings were mod-
erated by the country’s individualism score as defined by Minkov
et al. (2017). This moderator hypothesis was tested using subgroup
analysis by splitting the samples into two groups on the mean
individualism score. It appeared that the factor loadings were
generally larger in samples from more individualistic countries.

Gnambs et al. (2018) were forced to categorize the individual-
ism variable based on some value (they used the mean in this case),
while ideally the variable would have been evaluated using all
available information. Moreover, the choice to use a fixed-effects
approach is questionable, since homogeneity of correlation coef-
ficients across samples is very unlikely. We reanalyze their data
using one-stage MASEM with individualism as a continuous mod-
erator. Figure 7 shows the hypothesized model, in which the
dashed arrows from individualism to the factor loadings represent
the moderation effects on the factor loadings.

Data. The RSES consists of 10 items. Half of the items are
positively formulated (e.g., “On the whole, I am satisfied with
myself”) and the other half is negatively phrased (e.g., “At times,
I think I am no good at all”). For 34 of the 113 samples, the
bivariate correlations between the items were available, and indi-
vidualism scores were reported. For the remaining samples, the
authors calculated the bivariate correlations from the reported
factor loadings (Gnambs & Staufenbiel, 2016). Because these
reproduced correlations may be wrong if the specified factor
structure is wrong, we will only use the 34 samples for which the
bivariate correlations were directly available. The sample sizes of
the individual samples ranged from 122 to 22,131, with a median
sample size of 1,221. The individualism scores ranged from �126
(Philippines) to 180 (Netherlands) with a mean of 70, which was
standardized in the analyses to improve numerical stability.

Analysis. Using one-stage MASEM, we fitted the hypothe-
sized bifactor model to the observed correlation matrices. Then,
we evaluated the fit of the factor model and interpreted the pa-
rameter estimates. The exact fit will typically be rejected in
MASEM, due to the large total sample size. Therefore, as in
standard SEM, it is common to evaluate the approximate fit of the
hypothesized model. The approximate close fit is associated with
RMSEA-values under .05, a satisfactory approximate fit with
RMSEA-values under .08, and a bad approximate fit is associated

Table 2
Estimated Path Coefficients With Standard Errors, Variance
Estimates, and Explained Variance (R2) of the Analyses With
TSSEM and One-Stage MASEM on the Dataset of Nohe et al.
(2015)

TSSEM
One-stage
MASEM

One-stage
MASEM with

moderator

Item Estimate (SE) Estimate (SE) Estimate (SE) R2

	S2S .586 (.021) .586 (.021) .586 (.020)
	W2W .572 (.022) .572 (.022) .573 (.018)
	W2S .080 (.025) .080 (.025) .080 (.024)
	S2W .086 (.025) .086 (.025) .085 (.024)
W1_S1 .380 (.023) .380 (.023) .381 (.023)
W2_S2 .169 (.025) .169 (.025) .167 (.025)
Lag ¡ 	S2S �.028 (.020) ns
Lag ¡ 	W2W �.062 (.019)
Lag ¡ 	W2S �.026 (.021) ns
Lag ¡ 	S2W �.002 (.021) ns
�W1_S1

2 .013 .013 .014 .000
�W1_W2

2 .009 .009 .005 .407
�W1_S2

2 .007 .007 .006 .097
�S1_W2

2 .007 .007 .006 .083
�S1_S2

2 .007 .007 .006 .139
�W2_S2

2 .012 .012 .012 .000

Note. TSSEM � two-stage SEM; MASEM � Meta-analytic structural
equation modeling. ns indicates that the parameter estimate not statistically
significant at 
 � .05. The between-studies variance (�2) of the correlation
coefficient in TSSEM is estimated from the Stage 1 analysis. R2 denotes
the proportion of between-studies variance (�2) in the correlation coeffi-
cient that is explained by the regression of 	 on Lag. It is calculated as 1 �
(�1

2/�0
2), where �1

2 and �0
2 represent the �2 of the model with and without the

moderator respectively. Negative values are truncated to zero. ns indicates
that the parameter estimate is not statistically significant at 
 � .05.
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with RMSEA-values larger than .10 (MacCallum, Browne, &
Sugawara, 1996). In addition to the RMSEA, we evaluated the
standardized root mean squared residual (SRMR). SRMR-values
under .08 are considered satisfactory (Hu & Bentler, 1999). Mod-
eration of the factor loadings is evaluated by including individu-
alism as a continuous moderator variable. Based on the results
from the subgroup analyses in the original study, it was expected
that factor loadings increase with larger individualism scores. For
comparison with existing methods, we also analyzed the data using
TSSEM. For the subgroup TSSEM, we split the samples based on
the mean individualism score.

Results. In the following section, we first present the results
of the overall analysis and then the results of the moderation
analysis.

Overall analyses. The model fit of the bifactor model was
good, with very similar to identical fit-statistics, parameter esti-
mates, and standard errors for the two methods (see Table 3).
Factor loadings for the general factor were all positive and signif-
icantly larger than 0, ranging from 0.39 to 0.80. Factor loadings for
the specific factors were generally smaller, and two factor loadings
for the positive factor were not statistically significant. These
results are in line with the results the authors found in the original
article.

Moderation analysis. We added individualism as a moderator
of all factor loadings to the analysis. Overall, individualism had a
statistically significant positive effect on the factor loadings,
�2(20) � 270.883, p � .05. The largest effects were found on the
factor loadings of the general factor (see Table 4), for which six of

Figure 7. Bifactor model on self-esteem indicators from Gnambs et al. (2018), with individualism as a
moderator of the factor loadings.

Table 3
Estimated Factor Loadings (With Standard Errors) and Model Fit of the Analyses With TSSEM and One-Stage MASEM on the
Dataset of Gnambs et al. (2018)

Item

TSSEM One-stage MASEM

General factor Specific factor General factor Specific factor

1. On the whole, I am satisfied with myself (positive). .753 (.014) �.048 (.043) ns .752 (.014) �.046 (.044) ns
2. At times, I think I am no good at all (negative). .536 (.013) .588 (.024) .536 (.013) .588 (.025)
3. I feel that I have a number of good qualities (positive). .596 (.017) .531 (.070) .595 (.018) .533 (.071)
4. I am able to do things as well as other people (positive) .522 (.013) .306 (.038) .522 (.013) .307 (.038)
5. I feel I do not have much to be proud of (negative). .527 (.014) .326 (.022) .528 (.016) .323 (.023)
6. I certainly feel useless at times (negative). .514 (.012) .598 (.023) .515 (.012) .599 (.024)
7. I feel that I’m a person of worth, at least on an equal plane

with others (positive). .621 (.014) .317 (.041) .620 (.014) .318 (.042)
8. I wish I could have more respect for myself (negative). .385 (.018) .400 (.030) .385 (.019) .399 (.032)
9. All in all, I am inclined to feel that I am a failure (negative). .595 (.014) .387 (.022) .595 (.014) .385 (.023)

10. I take a positive attitude toward myself (positive). .802 (.014) �.034 (.044) ns .803 (.015) �.034 (.045) ns
Fit statistics �2(25) � 37.621, p � .050 �2(25) � 35.938, p � .073

RMSEA � .002
95% CI [.000, .004]

RMSEA � .002
95% CI [.000, .004]

SRMR � .016 SRMR � .016

Note. TSSEM � two-stage SEM; MASEM � Meta-analytic structural equation modeling. ns indicates that the parameter estimate is not statistically
significant at 
 � .05.
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the 10 factor loadings were significantly moderated. The strongest
effect of individualism was found for the factor loading of Item 8:
“I wish I could have more respect for myself.” The factor loadings
of the negative factor were not significantly moderated by indi-
vidualism, while four of the five factor loadings for the positive
factor were significantly larger in more individualistic countries.
This corresponds with the conclusions in the original article.
Individualism of the country explained 0.20% to 40.00% of the
variance in the correlation coefficients across studies.

In the subgroup analysis with TSSEM, we also found a signif-
icant overall effect on the factor loadings across the groups with
under versus above average scores on individualism, �2(20) �
165.773, p � .05. Plotting the estimated factor loadings from the
subgroup analyses without equality constraints on the loadings
shows that most factor loadings for the general factor and positive
factor are higher in the more individualistic samples. These plots,
all other syntax, and results can be found in the online supplemen-
tary materials. The largest difference between the subgroups is
found for Item 8, which matches the results of the analyses with
the continuous moderator in one-stage MASEM. The factor load-
ings for the negative factor were very similar across subgroups.

Conclusion. By applying one-stage MASEM on the self-
esteem data, we found results for the overall analyses that were
nearly identical to the results obtained with TSSEM. With one-
stage MASEM we were able to evaluate the regression of the
factor loadings on individualism, which gives a similar, but much
more precise, insight in how individualism of the samples affects
how indicative the self-esteem scale is for the underlying factor.

A Simulation Study

In order to evaluate the performance of one-stage MASEM under
various data conditions, we performed a simulation study. Specifi-
cally, we compared one-stage MASEM with the univariate-r ap-
proach, GLS, and TSSEM in simulated data sets with missing
variables under MCAR and MNAR. We followed the design of
Furlow and Beretvas (2005) who evaluated the performance of
fixed-effect univariate-r approach and GLS under different pat-
terns of missing data.

Method

Based on Furlow and Beretvas (2005), a two-factor confirma-
tory factor analytic (CFA) model with five indicators (�1 � �5)
was used in the simulation study. The transposed matrices of factor

loadings and factor correlations were �0.7 0.6 0.5 0 0

0 0 0.5 0.7 0.6 	 and � 1

0.6 1 	,
respectively. The residual (co)variance matrix of the indicators was a
diagonal matrix of �0.51 0.64 0.20 0.51 0.64�. These parameter
values result in a model implied population correlation matrix of

P ��
1

0.420 1
0.560 0.480 1
0.294 0.252 0.560 1
0.252 0.216 0.480 0.420 1

�.

Furlow and Beretvas (2005) generated multivariate normal data
from P using a fixed-effects (also known as the common-effects)
model. Because the present study focuses on the random-effects
model, we generated heterogeneous population correlation matri-
ces. Bosco, Aguinis, Singh, Field, and Pierce (2015) conducted a
large-scale review to benchmark the typical correlations observed
in applied psychology. Among other findings, they found that the
range of population standard deviations (�) of correlations between
broad relation types, for example, the correlation between attitudes
and intentions, ranged from .040 to .207 (Bosco et al., 2015; Table
3). Therefore, we used � � .10 as the population heterogeneity for
all correlation coefficients, and P as the average population cor-
relation matrix in this simulation study.

Furlow and Beretvas (2005) used a sample size of 100 for all
studies. Because of the presence of missing data, the aggregated
correlations were based on different sample sizes. They investi-
gated four factors in their simulation study: number of studies (10,
30), percentage of studies with missingness (40% and 60%),
percentage of variables missing (40% and 60%), and types of
missingness (MCAR and MNAR). We adopted these settings in
the present study and added a condition with 50 studies. The
methods to induce missing data, which were the same as what
Furlow and Beretvas (2005) used, are explained below.

Table 4
Estimated Moderating Effects (With Standard Errors) of Individualism of the Country on the Factor Loadings

Item

A0
Intercept

(General factor)

A0
Intercept

(Specific factor)

A1
Slope

(General factor)

A1
Slope

(Specific factor)

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

1. On the whole, I am satisfied with myself (positive) .727 (.019) .003 (.052) ns .088 (.021) �.162 (.034)
2. At times, I think I am no good at all (negative) .551 (.019) .569 (.028) .022 (.020) ns .007 (.030) ns
3. I feel that I have a number of good qualities (positive) .569 (.021) .505 (.044) .073 (.016) �.060 (.030)
4. I am able to do things as well as other people (positive) .504 (.018) .354 (.039) .035 (.016) �.042 (.026) ns
5. I feel I do not have much to be proud of (negative) .546 (.021) .300 (.031) .001 (.021) ns �.001 (.031) ns
6. I certainly feel useless at times (negative) .531 (.017) .580 (.026) .020 (.018) ns .005 (.027) ns
7. I feel that I’m a person of worth, at least on an equal plane with

others (positive) .596 (.019) .359 (.042) .073 (.018) �.075 (.030)
8. I wish I could have more respect for myself (negative) .392 (.020) .390 (.031) .123 (.02) .033 (.031) ns
9. All in all, I am inclined to feel that I am a failure (negative) .616 (.021) .358 (.034) �.017 (.023) ns .065 (.035) ns

10. I take a positive attitude toward myself (positive) .777 (.021) .016 (.054) ns .066 (.023) �.180 (.035)

Note. ns indicates that the parameter estimate is not statistically significant at 
 � .05.
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Percentage of studies with missingness. Either 40% or 60%
of the studies had missing data. In the condition of 10 studies, it
means that four (40%) or six (60%) studies included missing data.
In conditions with 30 studies, 12 (40%) or 18 (60%) of the studies
had missing data. In the condition of 50 studies, 20 (40%) or 30
(60%) studies included missing data.

Percentage of variables missing. For the studies with miss-
ing data, either 40% or 60% of the variables were missing. Be-
cause there were five variables in the model, it means that either
two or three variables would be missing. Suppose that x1 and x2
were selected missing, then all correlations of the other variables
with x1 and x2 are missing. When there is no missing variable in
a study, there are 10 observed correlation coefficients. This means
that in the presence of missing variables, there were only three or
one correlations observed in the conditions of 40% and 60%
missing.

Types of missingness. In the condition of MCAR, all the
studies and variables had an equal probability of being selected as
missing. For the conditions with MNAR data, we followed
the procedure of Furlow and Beretvas (2005). First, we calculated
the average correlation of the variables with other variables. In the
condition with two missing variables (40% missing variables), we
selected x2 and x5 that could be potentially missing because they
had the lowest average correlations. For the generated correlation
matrices, the sums of the correlations associated with x2 and x5
were calculated and rank ordered. Studies with the smallest values
on the sum were labeled as missing in both x2 and x5. This process
attempts to mirror the scenario that researchers do not report on the
variables with low correlations with other variables.

In the condition of three missing variables (60% missing vari-
ables), Variables x2, x4, and x5 were used to determine which
studies would include missing correlations in the generated data.
The sums of the correlations associated with x2, x4, and x5 were
calculated and ranked. For the studies with the lowest sums, we
removed variables x2, x4, and x5.

To summarize, there were 3 (number of studies) � 2 (percent-
age of studies with missingness) � 2 (percentage of variables
missing) � 2 (types of missingness) � 24 conditions. The number
of replications was 1,000. Each of these conditions was analyzed
with four methods, being the univariate-r approach (with the
harmonic mean across correlation coefficients as the sample size),
GLS, TSSEM, and one-stage MASEM.

The usefulness of a computer simulation depends on how rep-
resentative the evaluated conditions are for applied research.
Rosopa and Kim (2017) summarized 94 published studies in
human resource management, industrial-organizational psychol-
ogy, and allied fields using MASEM. Based on their Table 1, we
found that the 25th, 50th, and 75th percentiles of the numbers of
variables and numbers of studies were four, six, and nine, and 25,
42, and 69, respectively. In our simulation, there were five vari-
ables and 10, 30, or 50 studies. We also calculated the aggregated
sample sizes per correlation. In the study by Rosopa and Kim
(2017), the 25th, 50th, and 75th percentiles were 547, 1,838, and
3,590 while the same statistics in our simulation were 700, 1,800,
and 2,700. Therefore, our conditions seem to be quite representa-
tive of empirical studies using MASEM.

Procedure and analyses. Multivariate normal data of popu-
lation correlation matrices were first generated from P with � �
.10. If the generated correlation matrices were nonpositive definite,

they were regenerated until they were positive definite. The pop-
ulation correlation matrices were then used to generate sample
correlation matrices with possible missing variables based on the
conditions described above. These correlation matrices were ana-
lyzed by four different methods.

The test statistic, the associated p value, parameter estimates,
and their standard errors were recorded for each replication. The
degrees of freedom (dfs) of the proposed two-factor CFA is 3.
Under the null hypothesis, and if all assumptions hold, the test
statistic is expected to approximately follow a chi-square distribu-
tion with 3 dfs. We evaluated the mean of the chi-square statistics
and the rejection rates at 
 � .05 in all conditions. In addition, we
calculated the relative percentage bias of the parameter estimate
B(�̂) of the six factor loadings and one factor correlation by

B(�̂) � �̂� � �
�

� 100%, (8)

where �̂� and � are the mean of the parameter estimates over 1,000
replications and the population parameter, respectively. We
also calculated the relative percentage bias of the standard error
B(SĒ (�̂)) of the factor loadings and factor correlation using

B(SĒ(�̂)) � SĒ(�̂) � SD(�̂)
SD(�̂)

� 100%, (9)

where SĒ(�̂) and SD(�̂) are the mean of the standard errors and the
empirical standard deviation of the parameter estimates over 1,000
replications, respectively. Hoogland and Boomsma (1998) recom-
mended using a cutoff of a maximum of 5% for acceptable levels
of bias in parameter estimates and maximum 10% for acceptable
levels of standard error bias. All the simulations were conducted in
R (R Core Team, 2019) with the metaSEM (Cheung, 2015b) and
metafor (Viechtbauer, 2010) packages. The R code is available in
Github (https://github.com/mikewlcheung/code-in-articles).

Results

All replications were convergent without problems (99% or
more of the replications in all conditions for all methods). Tables
5 and 6 display the means of the test statistics and their rejection
percentages. The test statistic of the univariate-r approach was
largely overestimated in all conditions. The means of the test
statistics obtained with the univariate-r approach varied from 11.62
to 19.55, which is much higher than the expected value of 3. The
rejection percentages varied from 56.70% to 81.40% with 
 � .05.
For the other three methods (GLS, TSSEM and one-stage
MASEM), when the data are MCAR, the test statistic approxi-
mately followed a chi-square distribution with 3 dfs as expected,
although the rejection percentages were slightly above the nominal
value of 5%. In conditions with 10 studies, GLS and TSSEM lead
to inflated rejection percentages (around 11%), while one-stage
MASEM performs slightly better with rejection percentages
around 6%. Still, this indicates that 10 studies may generally not be
sufficient to conduct a random-effects MASEM. In all conditions
with MNAR, the test statistic was slightly inflated for GLS,
TSSEM, and one-stage SEM, with mean test statistics around 4.
The rejection percentages were highest for GLS and TSSEM, and
somewhat lower for one-stage MASEM. This indicates that the
presence of missing data with MNAR affects the performance of
the test statistic.
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Figure 8 shows the relative percentages bias of the parameter
estimates under MCAR and MNAR. When the missing data were
MCAR, the parameter estimates were unbiased; The relative bias
was less than 3% for all methods in all MCAR conditions. How-
ever, when the missing data were MNAR, the relative percentage
bias could be as large as �10% to �13%. The amount of bias in
the parameter estimates was consistent across methods.

Figure 9 displays the relative percentage bias of the standard
errors under MCAR and MNAR. For the univariate-r approach, the
estimated standard errors were seriously underestimated (�21%
to �52%) in all conditions. When the missing data were MCAR,
the relative bias in the estimated standard errors of GLS, TSSEM,
and one-stage MASEM was generally within �10%, except in the
condition of 10 studies. In the conditions with 10 studies, the
results for GLS are still within the acceptable range for most
parameters. The standard errors of one-stage MASEM and TSSEM
are on the boundary of 10% but are increasingly underestimated
with more missing data. When the missing data were MNAR, the
relative bias in the estimated standard errors of GLS, TSSEM, and
one-stage MASEM was still roughly within �10%, with increas-
ingly better performance with larger numbers of studies.

Conclusion and Discussion of the Simulation Study

The present simulation study provides some initial support of
the proposed one-stage MASEM. Several conclusions can be
drawn from the simulation study. When the missingness mecha-
nism is MCAR, the parameter estimates of all methods are unbi-
ased. Both GLS, TSSEM, and one-stage MASEM work well in
terms of the chi-square statistic and estimated standard errors. The

univariate-r approach leads to inflated chi-square statistics and
severely underestimated standard errors in all conditions, and
should not be used in practice.

When the missingness mechanism is MNAR, some parameter
estimates are systematically biased for all methods. For example,
the estimated factor loadings of x2 and x5 are consistently over-
estimated because the studies with the smallest average correla-
tions related to x2 and x5 are systematically missing in the simu-
lation study. Although some parameter estimates are biased, the
estimated standard errors seem to work reasonably well, except for
the univariate-r approach.

To summarize, both GLS, TSSEM, and one-stage MASEM
work reasonably well under missing data of MCAR and at least 30
studies. The performance of all methods is affected by the presence
of missing data of MNAR. These findings are consistent with
earlier studies of missing data in meta-analysis (Furlow & Beret-
vas, 2005; Mavridis, Chaimani, Efthimiou, Leucht, & Salanti,
2014), and underscore the importance of avoiding data MNAR by
including as much as possible unpublished results in a meta-
analysis.

We evaluated existing and the new MASEM approach in several
realistic scenarios based on the reviews of meta-analyses and
MASEM studies by Bosco et al. (2015) and Rosopa and Kim
(2017). However, we did not evaluate all possible conditions. First,
we have only analyzed one CFA model, which was based on the
study by Furlow and Beretvas (2005). Obviously, there are other
CFA models, full SEM models, and path models with different
model complexity that would also be interesting to consider.
Second, we did not evaluate models with moderated effects in the

Table 5
Means of the Test Statistics (a Chi-Square Test With 3 Degrees of Freedom for the Proposed Model)

Type of
missing data

Number of
studies

Proportion of studies
with missing data

Proportion of variables
with missing data Uni_r GLS TSSEM OSMASEM

MCAR 10 .4 .4 12.03 3.49 3.94 3.70
MCAR 10 .4 .6 11.78 3.59 3.90 3.80
MCAR 10 .6 .4 12.21 3.60 3.85 3.97
MCAR 10 .6 .6 11.84 3.83 3.83 4.20
MCAR 30 .4 .4 11.62 2.89 3.18 3.08
MCAR 30 .4 .6 12.19 3.14 3.40 3.31
MCAR 30 .6 .4 12.77 3.17 3.43 3.34
MCAR 30 .6 .6 12.33 3.19 3.33 3.35
MCAR 50 .4 .4 11.70 2.85 3.10 3.06
MCAR 50 .4 .6 12.04 2.99 3.22 3.18
MCAR 50 .6 .4 13.09 3.14 3.35 3.34
MCAR 50 .6 .6 12.49 3.07 3.20 3.23
MNAR 10 .4 .4 12.86 4.26 4.15 3.91
MNAR 10 .4 .6 12.57 4.40 4.16 3.79
MNAR 10 .6 .4 14.30 5.16 4.52 4.65
MNAR 10 .6 .6 12.77 4.66 3.93 4.19
MNAR 30 .4 .4 14.81 4.41 4.15 3.96
MNAR 30 .4 .6 12.67 3.83 3.51 3.42
MNAR 30 .6 .4 17.02 5.50 4.87 4.67
MNAR 30 .6 .6 13.29 4.33 3.52 3.59
MNAR 50 .4 .4 16.31 4.64 4.39 4.25
MNAR 50 .4 .6 12.47 3.65 3.31 3.28
MNAR 50 .6 .4 19.55 6.00 5.42 5.16
MNAR 50 .6 .6 13.25 4.15 3.36 3.48

Note. MCAR � missing completely at random; MNAR � missing not at random; Unir_r � univariate r; GLS � generalized least squares; TSSEM �
two-stage structural equation modeling; OSMASEM � one-stage meta-analytic structural equation modeling.
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simulation study. This choice enabled us to compare the different
MASEM method to each other. A more comprehensive simulation
study evaluating one-Stage MASEM with continuous moderators
in a wide array of situations would be desirable for future research.
Third, we have manipulated data with MNAR following the op-
erationalization defined by Furlow and Beretvas (2005). Although
we think this is a reasonable procedure, there are other ways to
operationalize missing data with MNAR. For example, researchers
may decide not to report some variables if the associated regres-
sion coefficients instead of correlation coefficients are nonsignif-
icant or small. Also, in the case of MNAR data, it may actually be
more realistic if the percentage of missing data is smaller than 40%
or 60%. It is reasonable to expect that missing variables in
MASEM are a mix of MCAR and MNAR. Some variables are not
measured in the primary studies because these researchers are not
interested in these constructs. In some studies, researchers have
measured these variables and chosen not to report them because
they are nonsignificant. Future research may explore how different
methods perform under alternative MNAR conditions.

General Discussion

Summary

We presented one-stage MASEM as a novel method that allows
for the moderation of SEM-parameters by all types of moderators,
including continuous moderators. With one-stage MASEM, re-
searchers can evaluate their research questions about average pa-
rameters as well as differences in parameters across studies within
the same model. Another strength of this approach is that there are

readily available R-functions to apply the method. The specifica-
tion of the structural equation model, which has been a source of
trouble when researchers had to specify the model in matrix form,
has been improved since the metaSEM package may formulate
models with the lavaan syntax (Rosseel, 2012). While previously,
researchers had to define several large matrices specifying each
fixed and free parameter, one can now formulate any model using
only some simple operators, parameter labels, and variable names.

This article served to introduce the new one-stage MASEM,
evaluate its performance in a simulation study, and illustrate its
usefulness with real data. We will provide some practical recom-
mendations for researchers who would like to apply one-stage
MASEM in their research in the next section. Next, we will discuss
some potentially interesting avenues for future research.

Practical Recommendations for the Applications of the
One-Stage MASEM

When applying random-effects MASEM in general, and one-
stage MASEM in specific, one may encounter some practical
issues. Our simulation study showed that the number of studies in
the MASEM should be at least 30 in order to obtain valid results.
However, even if the number of included studies is larger than 30,
the computer program may sometimes have difficulties to con-
verge to an optimal solution. The functions implemented in meta-
SEM will, in this case, give a warning that the OpenMx status is
not either 0 or 1. One option to obtain convergence is to increase
the number of attempts of fitting the model using the rerun()
function. Applying this function will rerun the model until the
optimizer yields an acceptable solution or until the maximum

Table 6
Rejection Percentages (
 � .05) for Testing the Proposed Model With df � 3

Type of
missing data

Number of
studies

Proportion of studies
with missing data

Proportion of variables
with missing data Uni_r GLS TSSEM OSMASEM

MCAR 10 .4 .4 60.00 9.90 12.70 6.50
MCAR 10 .4 .6 57.30 10.50 11.21 5.30
MCAR 10 .6 .4 56.70 10.60 11.50 6.30
MCAR 10 .6 .6 58.26 12.30 11.03 6.80
MCAR 30 .4 .4 57.36 4.10 6.50 5.00
MCAR 30 .4 .6 59.40 6.80 8.20 7.10
MCAR 30 .6 .4 59.60 7.20 8.30 6.90
MCAR 30 .6 .6 59.30 6.80 7.40 6.70
MCAR 50 .4 .4 57.70 5.30 6.20 6.00
MCAR 50 .4 .6 56.70 5.00 6.30 5.60
MCAR 50 .6 .4 62.30 5.80 7.40 6.20
MCAR 50 .6 .6 59.10 5.60 6.50 6.20
MNAR 10 .4 .4 63.00 14.51 12.00 5.50
MNAR 10 .4 .6 59.90 15.60 14.80 6.80
MNAR 10 .6 .4 66.60 20.92 15.00 7.21
MNAR 10 .6 .6 57.56 18.05 12.30 6.40
MNAR 30 .4 .4 68.10 16.00 13.40 11.80
MNAR 30 .4 .6 61.50 10.10 7.50 6.40
MNAR 30 .6 .4 71.80 24.60 19.90 17.20
MNAR 30 .6 .6 62.30 14.90 9.40 7.40
MNAR 50 .4 .4 71.90 17.10 15.80 13.90
MNAR 50 .4 .6 61.60 9.00 6.30 5.40
MNAR 50 .6 .4 81.40 25.90 20.70 18.00
MNAR 50 .6 .6 60.50 13.90 7.50 8.00

Note. MCAR � missing completely at random; MNAR � missing not at random; Unir_r � univariate r; GLS � generalized least squares; TSSEM �
two-stage structural equation modeling; OSMASEM � one-stage meta-analytic structural equation modeling.
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number of attempts is reached. Between attempts, new start values
are randomly perturbed, and optimization-control parameters may
be altered (Neale et al., 2016). Another simple strategy is to center
or standardize the continuous moderators. It will improve the
numerical stability of the results and increase the chance of con-
vergence.

Estimation and convergence difficulties quite frequently relate
to the estimation of the between-studies (co)variances in T2. The
dimensions of this matrix can become very large with increasing
numbers of variables. For example, with five observed variables in
the MASEM model, there will be 5 � 4/2 � 10 correlations
between these variables. The covariance matrix of these 10 corre-
lations will thus contain 10 � 11/2 � 55 unique elements. Because
the number of studies in MASEM is often smaller than 55, it is
almost never possible to obtain reliable estimates of both the
between-studies variances and covariances. Therefore, it is recom-
mended to fix the between-studies covariances to zero, meaning
that T2 will be diagonal (Becker, 2009). In the one-stage MASEM
functions in metaSEM, the default model specification restricts T2

to be diagonal. Note that this restriction does not mean that the
observed correlations are assumed to be independent because the
within-studies covariance matrices (Vi) contain off-diagonal ele-
ments representing sampling covariance. A diagonal T2 implies
that the population correlation coefficients are independent at the
between-study level.

Even with a diagonal T2, one may encounter problems with
estimation of the between-studies variances. For example, the
between-studies variance for one of the correlation coefficients
may be very small or zero, leading to a negative estimate, or an
estimate at the lower bound of zero. To avoid negative estimates of
variances, the one-stage MASEM functions in metaSEM apply
either an exponential-log transformation on the variances or
squared standard deviations. Still, the real between-studies vari-
ance of coefficients may be zero, or the number of studies con-
tributing an effect size for a specific correlation coefficient may be
relatively small, leading to overparameterized models and associ-
ated estimation issues. It may then be necessary to fix some
individual variances to zero. This can be done using an optional
argument of the osmasem()-function.

In some cases, adding moderators to one-stage MASEM may
result in a negative R2 associated with the �2’s, implying that the
between-studies variance increased when adding moderators to
the model. This was actually the case in our illustration with the
Nohe-data for two of the six correlations. If this happens for
variable pairs that are not connected by a moderated parameter,
and the R2 is small, the increase in between-studies variance may
be practically zero, and the R2 is truncated to 0 (e.g., Borenstein et
al., 2009). This may, for example, be encountered if the number of
studies is small, or if there are many missing effect sizes for a
specific relationship that is tested for moderation. In these cases,

Figure 8. Relative percentage bias of parameter estimates. k � number of studies; MCAR � missing
completely at random; MNAR � missing not at random; missing studies � 0.4; missing variables � 0.6;
percentage of studies with missingness � 40, and percentage of missing variables � 60%; Unir_r � univariate
r; GLS � generalized least squares; TSSEM � two-stage structural equation modeling; OSMASEM � one-stage
meta-analytic structural equation modeling; f1 with f2 � correlation between the two latent factors; x1 on f1 �
factor loading of x1 on f1. See the online article for the color version of this figure.
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the estimation of the between-studies variance is unstable, leading
to an unstable estimate of R2. Unstable estimates of the between-
studies variance lower number of studies are not specific to
MASEM, as this phenomenon is well-known in the standard
meta-analysis (Chung, Rabe-Hesketh, & Choi, 2013; Sidik &
Jonkman, 2007; Veroniki et al., 2016).

Another issue is the occurrence of inadmissible parameter esti-
mates, such as correlation coefficients that are larger than one, or
many negative R2-values. Just as in standard structural equation
modeling such a finding is likely indicative of either a misspecified
or overparameterized model (Chen, Bollen, Paxton, Curran, &
Kirby, 2001). In such cases, researchers could evaluate how the
model can be respecified sensibly in order to decrease the number
of parameters to be estimated.

We have presented a method to evaluate moderation effects on
model parameters in MASEM, in which there is no theoretical
limit to the number of moderator variables that can be analyzed. In
practice, the number of moderator variables that can be added to
the model is limited, because the number of studies included in
MASEM is typically smaller than in standard meta-analysis. Re-
views of applied MASEM studies indicated that a number of
around 30 studies is typical in MASEM (Sheng et al., 2016). In our
examples, we found that convergence was difficult to obtain when
analyzing more than one moderator. It is therefore recommended
that researchers carefully select the moderator variables of interest.

With standard meta-analysis, researchers sometimes include a
large number of moderator variables for which there are no a priori
hypotheses formulated (Li, Dusseldorp, & Meulman, 2017; Song,
Sheldon, Sutton, Abrams, & Jones, 2001). One-stage MASEM is
not suited for such exploratory analyses. We recommend to only
evaluate moderator variables that are related to the main research
question(s). In our illustration with the self-esteem data, for ex-
ample, the authors expected the scale to be more indicative in
individualistic countries because expressions of overly positive
self-views are typically seen as less appropriate in less individu-
alistic societies (Gnambs, Scharl, & Schroeders, 2018). Other
study-level moderators such as the percentage of males in the
sample and the mean age of the sample were also available, but
were not related to the research question and therefore not ana-
lyzed.

Even if the number of studies in a MASEM-analysis is large, the
number of observed effect sizes for a particular relation in the
model may be small. For example, many studies may report
correlations between variables like attitudes and behavioral inten-
tion, while there are only a limited number of correlations reported
for the relations between attitudes and actual behavior because the
actual behavior is much harder to measure than behavioral inten-
tions. As a result, it may be possible to look at moderator effects
on the regression of behavioral intention on attitudes, but not to
evaluate moderator effects on the regression coefficients concern-

Figure 9. Relative percentage bias of standard errors of parameter estimates. k � number of studies; MCAR �
missing completely at random; MNAR � missing not at random; missing studies � 0.4; missing variables � 0.6;
percentage of studies with missingness � 40, and percentage of missing variables � 60%; Unir_r � univariate r;
GLS � generalized least squares; TSSEM � two-stage structural equation modeling; OSMASEM � one-stage
meta-analytic structural equation modeling; f1 with f2 � correlation between the two latent factors; x1 on f1 � factor
loading of x1 on f1. See the online article for the color version of this figure.
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ing actual behavior. In these situations, one would only estimate
those elements in the A1 or S1 matrix for which there is a sub-
stantial amount of studies reporting the correlation between the
variables involved.

Note that the SEM-parameters that can potentially be moderated
are not restricted to those parameters that are estimated and sig-
nificantly larger than zero in the overall analysis without the
moderators. The reason is that in the overall model, the parameter
estimates are basically averages over the included studies. A zero
average path can, however, still have significant variance across
studies. Therefore, if it is likely that there exist subpopulations in
which the parameter is nonzero, it makes perfect sense to evaluate
a moderating effect on a parameter that is zero in the overall
analysis without a moderator.

In accordance with the findings by Furlow and Beretvas (2005),
our simulation study showed that when missing correlations were
generated to be MNAR, parameter estimates, fit statistics, and
standard errors were inaccurate for all methods, including one-
stage MASEM. Therefore, researchers who want to conduct a
MASEM should carefully reflect on the mechanism that suppos-
edly caused the missing variables. Variables may be missing in
some studies for several reasons. For example, the variable may
have been outside the scope of the specific study, or a variable may
not have been operationalized yet at the time of the study (e.g.,
“mindfulness” and “cyberbullying” are fairly new concepts).
These two reasons would lead to missing data that is not related to
the values of the missing correlations, and therefore, we would
expect correct result from a MASEM-analysis. If, however, cor-
relations are missing because the variable did not show interesting
effects, and therefore the authors decided not to report anything on
this variable (selective reporting; John, Loewenstein, & Prelec,
2012), then the missingness is MNAR and biased results are to be
expected. Researchers could minimize missing correlations of this
kind by trying to include as much appropriate but unpublished
results as possible in their meta-analysis, for example, by directly
contacting authors. With the increase in preregistrations in psy-
chology, the chance of selective reporting of correlations may be
reduced in the future.

Directions for Future Research

We focused on introducing one-stage MASEM, and we pre-
sented an illustration of the method with real data, as well as a
small simulation study. The similarity in results obtained from
one-stage MASEM and TSSEM for the overall analysis, as well as
the results from the simulation study, provide confidence in the
performance of the new method. Still, there are several interesting
directions for future research. We are going to discuss them
one-by-one.

Alternative models for correlation structure analysis. In
the current research, we demonstrated a linear regression of re-
gression coefficients and factor loadings on the moderator. This is
in accordance with Bauer (2017) and Bauer and Hussong (2009),
who suggested the use of linear functions for factor loadings in
moderated factor analysis. In principle, other nonlinear functions
could also be used. For example, one could hypothesize a qua-
dratic or exponential effect of the moderator on certain parameters.
Specifically, because correlations are bounded between �1 and 1,
it may be preferred to apply a Fisher’s z transformation (Fisher,

1921) when the interest is in moderation of correlation param-
eters (Bauer, 2017). One would then effectively regress the
z-transformed correlation parameters on the moderator variable,
and back-transform the coefficients to obtain the model implied
correlation coefficients. Applying this transformation would lin-
earize the relationship between the correlation and the moderator
while ensuring that the correlations will be between �1 and 1.
Alternatively, we may directly fit a correlation structure model on
the Fisher’s z transformed scores (see Fouladi, 2000). Future
research may explore the pros and cons of one-stage MASEM on
the Fisher’s z transformed scores.

MASEM with raw data. The presented MASEM-approaches
are designed for the use with summary statistics (correlation ma-
trices) from primary studies. Raw data are rarely available for
MASEM. However, there are cases where raw data may be avail-
able. For example, researchers may meta-analyze their own data
via an internal meta-analysis (Ueno, Fastrich, & Murayama, 2016).
Another example is to test theoretical models based on replicated
studies (Hedges & Schauer, 2018). When the raw data are acces-
sible to researchers, an alternative approach to meta-analysis on
summary statistics is to conduct an individual patient data (IPD)
meta-analysis (e.g., Jones, Riley, Williamson, & Whitehead,
2009), which is also known as an integrative data analysis (IDA)
in psychology (Curran & Hussong, 2009).

An obvious choice to conduct MASEM with raw data is mul-
tilevel SEM (e.g., Muthén, 1994), where the study is the clustering
variable. With multilevel SEM, researchers can then directly
model the between- and within-study variation, and include all
types of moderating variables at the between level. There are
several other key advantages of analyzing raw data. First, research-
ers may handle missing and non-normal data at the participant
level with FIML (e.g., Tong, Zhang, & Yuan, 2014). Second,
binary and ordinal dependent variables may also be included in the
analysis (Muthén, 1984). We expect that more and more raw data
will be available in the future via the Open Science initiative.
Therefore, future research could focus on the specificities of ap-
plying MASEM on raw data.

MASEM with missing data not at random. Several research
questions related to missing data in MASEM may be addressed in
the future. First, it would be interesting to study how realistic the
assumption of MCAR or MAR in MASEM is. The answers may
depend on the model under consideration. For example, for stan-
dardized measures and psychological tests, researchers generally
report information for all items. As a result, variables are often
either completely present or completely missing for MASEM
studies on factor models (e.g., Gnambs et al., 2018; Norton, Cosco,
Doyle, Done, & Sacker, 2013). The most prominent bias in meta-
analytic CFA studies may be publication bias since studies with
poor model fit are less likely to be published. With regression or
path models, missing variables are more likely subjected to
MNAR. Researchers may initially include many predictors in a
model, and only report about those that show significant or strong
effects. Another key question that could be addressed is how to
detect and adjust for the potential bias introduced by missing
variables due to nonreporting or publication bias. There are several
approaches to address potential publication bias in standard meta-
analysis (e.g., Duval & Tweedie, 2000; Ferguson & Brannick,
2012; Vevea & Woods, 2005). Future research may focus on how
these methods can be implemented in MASEM.
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Comparisons of approaches via simulations. Besides the
frequentist approaches listed in Table 1, Ke et al. (2018) recently
proposed a Bayesian approach to conduct MASEM. Their ap-
proach can be extended to include categorical and continuous
moderators. It is of interest to compare the empirical performance
of these approaches via computer simulations. However, it is not
straightforward to design a simulation that fits all models in
correlation- and parameter-based MASEM. Several issues have to
be carefully considered. One of them is the source of heterogene-
ity. The correlation-based MASEM, including the univariate-r,
GLS, TSSEM, and one-stage MASEM approaches assume that the
variation (heterogeneity) is due to the correlation coefficients. On
the other hand, the FIMASEM, parameter-based MASEM, and
Bayesian MASEM theorize that the variation in the SEM param-
eters is the source of heterogeneity. The correlation coefficients
and the parameters in SEM are nonlinearly related. Therefore, if
researchers generate data from one model, say the correlation-
based MASEM, and fit the data with the other model, say the
parameter-based MASEM, the model is misspecified (Cheung,
Sun, & Chan, 2019). One possible solution is to generate data from
both models and see how robust these approaches are. Other
interesting factors to consider for the simulation studies could, for
example, be the number of studies, the sample sizes of the indi-
vidual studies, the patterns of missing data, models with and
without a moderator, the number of moderators, the number of
parameters to be moderated, and the employed moderating func-
tions.

Conclusion

We proposed a new MASEM method that is better suitable to
explain study-level heterogeneity than existing methods. We illus-
trated the method using two real data examples and provided initial
insight in its empirical performance via a computer simulation. We
discussed several practical issues about the method, and provided
user-friendly functions in the metaSEM package, facilitating the
use of one-stage MASEM in substantive research.
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