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ABSTRACT: Herein we report a highly para-selective C−H
olefination of aniline derivatives by a Pd/S,O-ligand-based
catalyst. The reaction proceeds under mild reaction conditions
with high efficiency and broad substrate scope, including mono-,
di-, and trisubstituted tertiary, secondary, and primary anilines.
The S,O-ligand is responsible for the dramatic improvements in
substrate scope and the high para-selectivity observed. This
methodology is operationally simple, scalable, and can be
performed under aerobic conditions.

1. INTRODUCTION

Aromatic amines are ubiquitous structural motifs in natural
products, pharmaceuticals, fluorescent dyes, and organic
functional materials.1 As a consequence, the selective
functionalization of anilines is of great interest in organic
chemistry. Historically, Friedel−Crafts reactions of aniline
derivatives are problematic, as has been stated in classical
textbooks.2 Cross couplings are effective reactions for the
functionalization of aromatic amines, however, these protocols
suffer from the disadvantage of requiring prefunctionalized
starting materials.3 In the last decades, metal-catalyzed C−H
functionalization reactions have become a powerful tool to
efficiently functionalize organic molecules.4 The vast majority
of C−H functionalization reactions of aniline derivatives rely
on the use of directing groups attached to the nitrogen atom,
which results in the ortho-functionalized products.5 However,
selective C−H functionalization reactions of aniline derivatives
at remote positions are rare.6 In the particular case of metal-
catalyzed para-selective C−H functionalization of anilines, the
reported transformations are limited to unsubstituted anilines
or to anilines bearing electron-donating groups (Scheme 1a).7

Few exceptions to this trend have been reported (Scheme 1b).
For instance, anilides with an ester group or halogen atom have
been para-difluoromethylated using a Ru(II)-catalyst.8 Also, a
highly para-selective copper(II)-catalyzed arylation of electron-
rich and -poor anilines was described by Gaunt and co-

workers.9 In the context of Pd-catalyzed para-C−H olefination
of anilines, only two examples using unsubstituted tertiary
anilines have been reported (Scheme 1c). In the example
described by Ishii et al.,7b 7.5 equiv of tertiary aniline are
necessary to obtain the olefinated products in good yields and
para-selectivities using Pd/HPMoV as catalyst and 2,4,6-
trimethylbenzoic acid as an additive. In the second example,
the para-olefination of unsubstituted N,N-dialkylanilines using
Pd as catalyst, Cu as oxidant, and a mixture of DCE/HOAc as
solvent is reported.7f Therefore, a general strategy for para-
selective C−H olefination of aromatic amines is still elusive.
Herein, we report a highly efficient para-selective C−H
olefination of aniline derivatives promoted by a Pd/S,O-ligand
based catalyst (Scheme 1d). The reaction proceeds under mild
conditions with a broad range of mono-, di-, and trisubstituted
tertiary, secondary, and primary anilines. Remarkably, anilines
bearing several electron withdrawing groups are also
compatible, affording the para-olefinated products in good
yields. In addition, this para-selective C−H olefination of
anilines is also easily scalable and is compatible with the use of
oxygen as the only oxidant, which are important features for
industrial applications. The S,O-ligand is responsible for the

Received: February 22, 2019
Published: March 28, 2019

Article

pubs.acs.org/JACSCite This: J. Am. Chem. Soc. 2019, 141, 6719−6725

© 2019 American Chemical Society 6719 DOI: 10.1021/jacs.9b01908
J. Am. Chem. Soc. 2019, 141, 6719−6725

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 A

M
ST

E
R

D
A

M
 o

n 
M

ar
ch

 2
4,

 2
02

0 
at

 1
2:

30
:5

7 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/JACS
http://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.9b01908
http://dx.doi.org/10.1021/jacs.9b01908
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


dramatic improvements in substrate scope and the high para-
selectivity observed.
Recently, we have discovered that bidentate S,O-ligands are

capable of promoting Pd-catalyzed C−H olefination reactions
of nondirected arenes.10 In these reactions, the site-selectivity
was mainly dictated by the substrate and controlled by
electronic factors, with preferential functionalization at the
most electron-rich position in the arene. We found out that
besides accelerating the reaction, the presence of the S,O-
ligand influences the site-selectivity of the process. With this in
mind, we speculated that using our Pd/S,O-ligand catalyst,
both the reactivity and the site-selectivity of the C−H
olefination of aniline derivatives could be enhanced.

2. RESULTS AND DISCUSSION
2.1. Scope of Pd/S,O-Ligand Catalyzed C−H Olefina-

tion of Aniline Derivatives. Initially, we applied our
standard conditions for the C−H olefination of nondirected
arenes (5 mol % of Pd(OAc)2, 5 mol % of 3-methyl-2-
(phenylthio)butanoic acid (L), 10 equiv of arene, and 1 equiv
of PhCO3

tBu as oxidant in AcOH at 100 °C for 6 h) on the
model substrate, N,N-dimethylaniline (1a). Unfortunately, no
olefinated product was observed under these conditions.
Different reaction parameters, including solvents, temper-
atures, reaction stoichiometries, oxidants, concentrations, and
ligands were screened (see the Supporting Information). We
were pleased to find out that the reaction of N,N-dimethylani-
line (1a, 1 equiv) with ethyl acrylate, using the Pd/S,O-ligand
(L) as catalyst, in DCE at 40 °C, furnished the olefinated
product 3a in 81% NMR yield with excellent para-selectivity
(p:o > 19:1) (71% isolated yield of the para-olefinated product

3a, Scheme 2). In contrast, the reaction without ligand, under
the same conditions, gave the olefinated product 3a in 18%
NMR yield as a mixture of the 3 possible isomers (o:m:p =
1:1:16).

To investigate the substrate scope of this transformation,
various aniline derivatives were examined (Table 1). We first
explored the olefination reaction of several tertiary aniline
derivatives. N,N-Diethyl-, N,N-dibenzylaniline, and 1-phenyl-
pyrrolidine (1b−1d) were olefinated in excellent yield (73−
85%) and excellent selectivity toward their para positions.
Good yields and slightly deteriorated selectivities were
observed using 4-phenylmorpholine (1e) and N-methyldiphe-

Scheme 1. Metal-Catalyzed para-C−H Functionalizations of
Anilines

Scheme 2. S,O-Ligand Promoted Pd-Catalyzed para-
Selective C−H Olefination of N,N-Dimethylaniline

Table 1. para-Selective C−H Olefination of N,N-
Dialkylanilines*

*Yields and selectivities were determined by 1H NMR analysis of the
crude mixture using CH2Br2 as an internal standard. Isolated yields of
p-isomer were given in the square bracket. aThe reaction was
performed at 60 °C. b2 M of DCE was used. c0.8 M of DCE was used.
d1.5 equiv of aniline derivative and 1 equiv of olefin were used.
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nylamine (1f). Julolidine reacted to form only the para-
olefinated product 3g in 60% isolated yield. Having proved the
compatibility of the method with a variety of tertiary aniline
derivatives, different meta-substituted N,N-dimethylanilines
were then tested. The reaction of m-methyl N,N-dimethylani-
line (1h) provided the olefinated product 3h in good yield
(70%) and para-selectivity (>10:1). Good yield (75%) and
moderate para-selectivity was observed in the reaction of the
m-methoxy N,N-dimethylaniline (1i). In contrast, the reaction
of the m-phenoxy N,N-dimethylaniline (1j) exhibited a perfect
para-selectivity, obtaining the product 3j in 66% isolated yield.
The corresponding para-olefinated products of N,N-dimethy-
laniline derivatives bearing electron withdrawing substituents
such as F, Cl, and CO2Me (1k−m) were obtained in good
yields (51−65%). Similarly, the reaction tolerated two fluorine
atoms at the meta position of the aniline, providing the para-
olefinated product 3n in 42% isolated yield. Interestingly, and
in accordance with the high para-selectivity observed in these
transformations, only 3% of the ortho-olefinated product was
detected when using p-methyl N,N-dimethylaniline (1o). To
extend the substrate scope of the reaction, we tested the
reaction of o-methyl N,N-dimethylaniline (1p) under standard
reaction conditions, but only trace amounts of product were
detected by 1H NMR spectroscopy.11

Alternatively, N-benzyl ortho-substituted aniline derivatives
were efficiently para-olefinated using our Pd/S,O-ligand based
catalyst (Table 2). The reaction of o-Me-, OMe-, Cl-, CF3-,

CO2Me-, and COMe-substituted N-benzyl aniline derivatives
1q−1v exhibited perfect para-selectivities, providing the para-
olefinated products in good yields (47−70%). Only traces
amounts of the C−H olefinated product occurring at the ortho
position of the benzene ring of the benzyl group were detected.
In contrast, this byproduct was formed in greater quantity
when the reactions were performed without the ligand (see the
Supporting Information).
After proving the efficiency of the new catalytic system in

anilines bearing both electron donating and withdrawing
groups, we evaluated a variety of di- and trisubstituted N-
benzylaniline derivatives. Disubstituted anilines with an ortho
methyl ester group and different substituents at the meta-
position (i.e., F, OMe, and Me) underwent C−H olefination to
provide the para-olefinated products 3w−3y in good yields
(57−75%). N-Benzyl-m-methyl-o-(trifluoromethyl)aniline
(1z) and o-chloro-m-methoxyaniline (1aa) were also compat-
ible with this system, providing the para-olefinated products in
53% and 52% isolated yield, respectively. Slightly higher yields
for the olefinated products 3ab and 3ac were obtained when
2,5-dichloro- and 2,3-dichloro aniline derivatives were used.
The reaction of the trisubstituted o-methyl ester m,m′-
difluoroaniline derivative provided the para-olefinated product
3ad in 60% isolated yield.
Finally, we studied the compatibility of the current catalytic

system with primary anilines (Table 3). We observed that the

efficiency of the reaction is highly dependent on the
substituents attached to the aromatic ring. The reaction of
ortho-disubstituted anilines bearing two electron donating
groups provided the olefinated product in low yields. In these
reactions, we detected the formation of the oxidative amination
product (see the Supporting Information for further details).12

To our delight, the olefinated products were obtained in high
yields and with perfect para-selectivities with ortho-disubsti-
tuted anilines bearing one ester group at the ortho-position.
Thus, different substituents at the other ortho-position such as
CO2Me, Me, OMe, and Cl were compatible in the reaction,
providing the olefinated products 3ae−3ah in good isolated
yields (64−71%). The reaction of the trisubstituted aniline 1ai
bearing two fluorine atoms and a methyl ester furnished the

Table 2. para-Selective C−H Olefination of N-
Benzylanilines*

*Yields and selectivities were determined by 1H NMR analysis of the
crude mixture using CH2Br2 as an internal standard. Isolated yields of
p-isomer were given in the square bracket. a2 Equiv of aniline
derivative was used. b0.1 M of DCE was used. cYields and selectivites
were determined by 1H NMR analysis of the crude mixture using
hexafluorobenzene as an internal standard.

Table 3. para-Selective C−H Olefination of Primary
Anilines*

*Yields and selectivities were determined by 1H NMR analysis of the
crude mixture using CH2Br2 as an internal standard. Isolated yields of
p-isomer were given in the square bracket. a1.5 Equiv of aniline
derivative was used.
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olefinated aniline 3ai in 70% isolated yield. A fair yield (45%)
was obtained in the reaction of the disubstituted (o-CF3 and o-
OMe) aniline.
It is worth mentioning that in all these reactions (Tables 1,2,

and 3), the presence of the S,O-ligand is crucial to achieve
good yield and high para-selectivity (see the Supporting
Information for the results of the reactions in the absence of
the S,O-ligand).
Next, we investigated the scope of olefins as depicted in

Table 4. The reaction of N,N-diethylaniline with methyl,

cyclohexyl, and phenyl acrylates provided the products 4a−4c
in high yield (85−96%) and selectivity. α-Methylene-γ-
butyrolactone afforded compound 4d in excellent yield as a
mixture of 4dA and 4 dB in a 1.4 to 1 ratio. Likewise, other
activated olefins (i.e., vinyl amide, methyl vinyl ketone, vinyl
phosphonate and vinyl sulfonate) were also employed to
provide products 4e−4h in good yields.
To prove the applicability of the present catalytic system, a

half-gram-scale reaction of N,N-dimethylaniline (1a) was
conducted to afford 3a in comparable yield (64%) to that of
the original value (for further details, see the Supporting
Information). In addition, we explored the possibility of
replacing PhCO3

tBu with oxygen (Scheme 3). The reaction of
N,N-dimethylaniline (1a) under otherwise identical conditions
using a balloon of oxygen showed the formation of the
olefinated product 3a in 15% yield. To our delight, the reaction
using 2 bar of oxygen provided the desired product in 57%
yield in good para-selectivity. These results show the potential

of this methodology to be implemented in the chemical
industry.

2.2. Comparison of the Pd/S,O-Ligand Catalytic
System with the Reported Catalytic Systems for the
para-C−H Olefination of Anilines. As mentioned in the
Introduction, only two examples were reported for the Pd-
catalyzed para-C−H olefination of anilines.7b,f To demonstrate
that this catalytic system is a unique method to olefinate a
broad range of anilines, we compared our catalytic system with
previously described protocols. We performed the reaction of
N,N-dimethylaniline with methyl acrylate under the conditions
described by Moghaddam et al.:7f Pd(OAc)2 (5 mol %) and
Cu(OAc)2 (1.5 equiv) in a mixture of DCE/HOAc (1.5:1) at
60 °C; however, in our hands only a trace amount of olefinated
product was detected by 1H NMR spectroscopy. We then
tested different anilines under the conditions described by
Obora and Ishii using 7.5 equiv of aniline, Pd(OAc)2, (5 mol
%), H6PMo9V3O40·30H2O (0.5 mol %), and 0.5 equiv of 2,4,6-
trimethylbenzoic acid in DMF (Table 5).7b The reaction of

N,N-dimethylaniline under these conditions gave the olefi-
nated product in good yield and with slightly lower para-
selectivity than using our catalytic system. When we performed
the reaction of m-methyl N,N-dimethylaniline (1h), only 24%
1H NMR yield and moderate para-selectivity (4.6:1) was
observed using Ishii’s conditions. Using our catalytic system,
we obtained the olefinated product 3h in 70% yield and high
para-selectivity (10.7:1). Remarkably, under Ishii’s conditions,
no reaction or only trace amounts of product was detected
when m-methoxy- or m-methyl esther N,N-dimethylaniline (1i
or 1m) were employed. Similarly, the reaction of N-benzyl
ortho-substituted anilines (1q and 1u) under Ishii’s conditions
provided only a trace amount of product in contrast to our

Table 4. Scope of Olefins*

*Yields and selectivities were determined by 1H NMR analysis of the
crude mixture using CH2Br2 as an internal standard. Isolated yields of
p-isomer were given in square bracket.

Scheme 3. C−H Olefination of N,N-Dimethylaniline under
Aerobic Conditions

Table 5. Comparison of Pd/S,O-Ligand Catalyst with Ishii’s
Catalyst

aYields and selectivities were determined by 1H NMR analysis of the
crude mixture using CH2Br2 as an internal standard. bThe reactions
were performed at 60 °C for 2 h under a balloon of oxygen using
aniline (15 mmol), ethyl acrylate (2 mmol), Pd(OAc)2 (5 mol %),
H6PMogV3O40·30H2O (0.5 mol %), and 2,4,6-trimethylbenzoic acid
(1 mmol) in DMF (2 mL). cYields and site selectivities reported
previously in ref 7b. NR = no reaction.
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catalytic system that furnished the olefinated products in good
yields and perfect para-selectivities. Overall, Ishii’s conditions
are suitable for the olefination of unsubstituted tertiary
anilines, and therefore, we can confirm that our catalytic
system based on the Pd/S,O-ligand is at present the only
efficient protocol for the direct C−H olefination of a broad
range of anilines.
2.3. Explanation of the Difference in Reactivity of

Tertiary and Secondary Anilines Respect to the ortho-
Substituent. As shown in Table 1, the reaction of o-methyl
N,N-dimethylaniline (1p) under optimal conditions provided
only trace amounts of olefinated product. In contrast, N-benzyl
ortho-substituted anilines were efficiently para-olefinated using
our Pd/S,O-ligand based catalyst (Table 2). The lack of
reactivity of ortho-substituted N,N-dialkylanilines in aromatic
electrophilic substitution reactions has been observed before.13

It has been postulated that the ortho-substituent clashes with
the N-methyl group of the N,N-dimethylaniline forcing the
nitrogen to twist out of the plane with the aromatic ring,
reducing the conjugation of the nitrogen lone pair and
therefore deactivating the aniline derivative toward electro-
philic aromatic substitution. To corroborate this, we calculated
the torsion angle and the Voronoi deformation density (VDD)
charges of 1p and 1q (Chart 1) at dispersion-corrected density
functional theory (DFT) level (see the Supporting Informa-
tion).

In the case of o-methyl N-benzyl aniline (1q), the H of the
NHBn almost remains in the plane (∂ = 18°) and points
toward the o-methyl group. In contrast, one of the Me groups
of the NMe2 of 1p is twisted out of the plane (∂ = 69°) to
avoid the interaction with the methyl group at the ortho
position. As a consequence, the C atoms at the ortho and para
positions of 1q (−85 and −88 me., respectively) are more
negatively charged than the equivalent ones in 1p (−77 and
−74 me., respectively). Therefore, the lack of reactivity
observed in o-substituted N,N-dialkylanilines is a direct
consequence of the lower nucleophilicity of these anilines
compared with unsubstituted N,N-dialkylanilines or with o-
substituted N-benzyl anilines.
2.4. Preliminary Mechanistic Investigations. To gain

some insights into the role of the S,O-ligand in this
transformation, we conducted some additional experiments
(Scheme 4). We considered 2 different scenarios to explain the
observed acceleration in the presence of the ligand: (i) the
ligand causes a change in the mechanism of C−H bond
cleavage or (ii) the ligand accelerates the rate-limiting step.

First, we determined the hydrogen/deuterium isotopic effect in
the reaction with and without the ligand (Scheme 4a). Without
the ligand, we observed a kH/kD of 8.5 and in the presence of
the S,O-ligand (L) a kH/kD of 6.2. The observed primary
kinetic isotopic effect suggests that the C−H bond cleavage is
the turnover-limiting step in both cases. Furthermore, we
performed one-pot intermolecular competition experiments
between an electron-poor aniline, namely N,N-dimethyl-3-
(trifluoromethyl)aniline (1ak), and an electron rich-aniline,
namely N,N,3-trimethylaniline (1h) (Scheme 4b). We found
out that in both cases, the most electron-rich aniline 1h reacted
preferentially. These results are consistent with two possible
mechanisms: (i) the reaction proceeds via an electrophilic
palladation mechanism with the deprotonation of the Wheland
intermediate being the rate-limiting step14 or (ii) the reaction
proceeds via a base-assisted internal electrophilic-type
substitution (BIES) mechanism.15 At present, we cannot rule
out either mechanism but it seems reasonable to postulate that
the reaction proceeds via the same mechanism with and
without the ligand and that the S,O-ligand accelerates the C−
H bond cleavage, which is the rate-limiting step.

3. CONCLUSION

In conclusion, we have developed the first general para-
selective C−H olefination of aniline derivatives by Pd/S,O-
ligand catalysis. The reaction proceeds under mild reaction
conditions with a broad range of anilines, including mono-, di-,
and trisubstituted anilines bearing electron-donating and
-withdrawing groups. In total, 42 aniline derivatives underwent
para-selective C−H olefination in good yields using the
developed methodology. We have also shown that it is possible
to use oxygen as the only oxidant and that this methodology is
operationally simple and scalable. The S,O-ligand is respon-
sible for the dramatic improvements in substrate scope and the
high para-selectivity observed in this transformation. Prelimi-
nary mechanistic studies suggest that the ligand promotes the
C−H bond cleavage, which is the rate-limiting step. Further
applications and mechanistic studies are currently ongoing in
our laboratory

Chart 1. Dihedral Angle and VDD Charges (in me.) for 1p
and 1q

Scheme 4. Mechanistic Studies
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S,O-Ligand-Promoted Pd-Catalyzed C−H Olefination of Thiophenes.
Eur. J. Org. Chem. 2019, 2019, 1842−1845. For other examples of
ligand-promoted C−H olefination of arenes, see: (d) Wang, P.;
Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss,
M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Ligand-accelerated non-
directed C−H functionalization of arenes. Nature 2017, 551, 489.
(e) Chen, H.; Wedi, P.; Meyer, T.; Tavakoli, G.; van Gemmeren, M.
Dual Ligand-Enabled Nondirected C−H Olefination of Arenes.
Angew. Chem., Int. Ed. 2018, 57, 2497−2501.
(11) Other N,N-dimethylaniline derivatives with different sub-
stituents at the ortho-position were evaluated under standard reaction
conditions. In none of these reactions was observed the formation of
the para-olefinated product in synthetically useful yields.
(12) Mizuta, Y.; Yasuda, K.; Obora, Y. Palladium-Catalyzed Z-
Selective Oxidative Amination of ortho-Substituted Anilines with
Olefins under an Open Air Atmosphere. J. Org. Chem. 2013, 78,
6332−6337.
(13) For similar observed reactivity of o-substituted N,N-dialkylani-
lines, see ref 9 and: Gathergood, N.; Zhuang, W.; Jørgensen, K. A.
Catalytic Enantioselective Friedel−Crafts Reactions of Aromatic
Compounds with Glyoxylate: A Simple Procedure for the Synthesis
of Optically Active Aromatic Mandelic Acid Esters. J. Am. Chem. Soc.
2000, 122, 12517−12522 and references therein. .
(14) In electrophilic aromatic substitution reactions, including
electrophilic palladation, the formation of the Wheland intermediate
is, in general, the rate-limiting step, providing small KIE values.
However, in some cases, large KIE values have been reported where
the rate of deprotonation is slow. See: Engle, K. M.; Wang, D.-H.; Yu,
J.-Q. Ligand-Accelerated C−H Activation Reactions: Evidence for a
Switch of Mechanism. J. Am. Chem. Soc. 2010, 132, 14137−14151 and
references therein. .
(15) (a) Ma, W.; Mei, R.; Tenti, G.; Ackermann, L. Ruthenium(II)-
Catalyzed Oxidative C−H Alkenylations of Sulfonic Acids, Sulfonyl
Chlorides and Sulfonamides. Chem. - Eur. J. 2014, 20, 15248−15251.
(b) Liu, W.; Richter, S. C.; Zhang, Y.; Ackermann, L. Manganese(I)-
Catalyzed Substitutive C−H Allylation. Angew. Chem., Int. Ed. 2016,
55, 7747−7750. (c) Zell, D.; Bursch, M.; Müller, V.; Grimme, S.;
Ackermann, L. Full Selectivity Control in Cobalt(III)-Catalyzed C−H
Alkylations by Switching of the C−H Activation Mechanism. Angew.
Chem., Int. Ed. 2017, 56, 10378−10382. (d) Raghuvanshi, K.; Zell, D.;
Ackermann, L. Ruthenium(II)-Catalyzed C−H Oxygenations of
Reusable Sulfoximine Benzamides. Org. Lett. 2017, 19, 1278−1281.
(e) Tan, E.; Quinonero, O.; Elena de Orbe, M.; Echavarren, A. M.
Broad-Scope Rh-Catalyzed Inverse-Sonogashira Reaction Directed by
Weakly Coordinating Groups. ACS Catal. 2018, 8, 2166−2172.
(f) Bu, Q.; Rogge, T.; Kotek, V.; Ackermann, L. Distal Weak
Coordination of Acetamides in Ruthenium(II)-Catalyzed C−H
Activation Processes. Angew. Chem., Int. Ed. 2018, 57, 765−768.
(g) Wang, Y.; Du, C.; Wang, Y.; Guo, X.; Fang, L.; Song, M.-P.; Niu,
J.-L.; Wei, D. High-Valent Cobalt-Catalyzed C−H Activation/
Annulation of 2-Benzamidopyridine 1-Oxide with Terminal Alkyne:
A Combined Theoretical and Experimental Study. Adv. Synth. Catal.
2018, 360, 2668−2677. (h) Sk, M. R.; Bera, S. S.; Maji, M. S.
Cp*Co(III)-Catalyzed C−H Alkenylation of Aromatic Ketones with
Alkenes. Adv. Synth. Catal. 2019, 361, 585−590. (i) Wang, L.;
Carrow, B. P. Oligothiophene Synthesis by a Distinct, General C−H
Activation Mechanism: Electrophilic Concerted Metalation-Deproto-
nation (eCMD) ChemRxiv, reprint, DOI: 10.26434/chem-
rxiv.7496306.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.9b01908
J. Am. Chem. Soc. 2019, 141, 6719−6725

6725

http://dx.doi.org/10.26434/chemrxiv.7496306
http://dx.doi.org/10.26434/chemrxiv.7496306
http://dx.doi.org/10.1021/jacs.9b01908

