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Abstract
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that
includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these
tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify
potential sources of local misfit, respectively. This full cadre of significance testing options is not yet
available for multiply imputed data sets, as methodologists have yet to develop a general score test for
this context. Thus, the goal of this article is to outline a new score test for multiply imputed data.
Consistent with its complete-data counterpart, this imputation-based score test provides an estimate of the
familiar expected parameter change statistic. The new procedure is available in the R package semTools
and naturally suited for identifying local misfit in SEM applications (i.e., a model modification index).
The article uses a simulation study to assess the performance (Type I error rate, power) of the proposed
score test relative to the score test produced by full information maximum likelihood (FIML) estimation.
Due to the two-stage nature of multiple imputation, the score test exhibited slightly lower power than the
corresponding FIML statistic in some situations but was generally well calibrated.

Translational Abstract
Multiple imputation is a missing data handling technique that creates several copies of the incomplete
data, each with different estimates of the missing values. The researcher analyzes each data set, and the
resulting estimates and standard errors are averaged into a single set of results. The primary goal of this
article was to outline a new significance testing approach for multiply imputed data. This test, which is
routinely referred to as the score test or modification index, attempts to evaluate the improvement in fit
that would result from adding additional parameters to the analysis model (e.g., adding an association that
was not estimated as part of the researcher’s model). These tests are quite population in complete-data
analyses, in which researchers often use the test results as the basis to modify or improve model fit. The
study used computer simulation to create many artificial data sets with missing values, after which it
imputed each data set and applied the score test to each data set. The primary outcome was tabulating
false-positive rates (i.e., incorrectly declaring an association as significant) and statistical power (i.e.,
sensitivity to detect an association). The simulation results show that the new test generally performed
well, producing acceptable false positive rates and adequate statistical power.

Keywords: multiple imputation, score test, modification index, expected parameter change, missing data

Supplemental materials: http://dx.doi.org/10.1037/met0000243.supp

Buse (1982) described a “trilogy of tests” for null hypothesis
significance testing: the Wald test (Wald, 1943), the likelihood
ratio test (Wilks, 1938), and the score test, also known as the
Lagrange multiplier test or modification index (Rao, 1948;
Saris, Satorra, & Sörbom, 1987; Sörbom, 1989). Our focus is

the application of these tests in structural equation modeling
(SEM) applications, particularly the score test, as described by
Bollen (1989, pp. 292–296). Despite their asymptotic equiva-
lence as general hypothesis tests, researchers tend to use the
tests for different purposes in SEM. The Wald test, for instance,
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is often used to evaluate the statistical significance of parame-
ters in the fitted model, and univariate Wald z tests are routinely
provided for each estimated parameter by SEM software as part
of standard statistical output (e.g., L. K. Muthén & Muthén,
1998 –2017; Rosseel, 2012). The likelihood ratio test is most
commonly used to evaluate model fit or compare two nested
models (e.g., the hypothesized model vs. a saturated and/or
baseline model; Bollen, 1989), and the test statistic is also used
to construct comparative fit indices (Bentler & Bonett, 1980).
Last, but certainly not least, the score test appears most often in
SEM as the modification index, a statistic used to quantify the
change in model fit that would result if a parameter constraint
were freed during estimation (MacCallum, 1986; Sörbom,
1989). Although we use the terms modification index and score
test interchangeably, the score test has many applications out-
side of SEM. For example, in econometrics (Godfrey, 1996)
and genetics (Jaffrézic, White, & Thompson, 2003; Sato, Ueki,
& Alzheimer’s Disease Neuroimaging Initiative, 2018), the
score test is used both to identify inadequately specified models
and to perform computationally efficient comparisons between
two models.

Although researchers tend to apply the trilogy of tests in differ-
ent ways and for different purposes, they are, in fact, exchangeable
because they fundamentally compare two nested models, albeit in
different ways. The likelihood ratio test requires the researcher to
explicitly fit two different models, whereas the Wald and score
tests effectively use information from the hypothesized model to
make projections about another model; the Wald test considers a
more restrictive model in which some of the estimated parameters
are constrained to zero, whereas as the score test makes projections
about a less restrictive model that adds paths or parameters. The
differences in the usable patterns of the tests lie in the ease with
which they can be applied to a particular task. For example, using
the Wald statistic as a global test of model fit is hypothetically
possible, but doing so would require exceedingly complex con-
straints on the saturated model parameters. More detailed discus-
sions about the use of these statistics in an SEM context can be
found in various SEM textbooks (e.g., Bollen, 1989, pp. 292–303;
Kline, 2011, pp. 215–219; see also Chou & Huh, 2012).

In the context of incomplete data analyses, full information
maximum likelihood (FIML) estimation (Allison, 1987; Arbuckle,
1996; B. Muthén, Kaplan, & Hollis, 1987) provides test statistics
that are direct extensions of their complete-data counterparts. In
fact, FIML significance tests have received considerable attention
in the methodology literature, and a great deal is known about
these procedures (Kenward & Molenberghs, 1998; Savalei, 2010a,
2010b; Savalei & Bentler, 2009; Savalei & Yuan, 2009; Yuan &
Bentler, 2000, 2010; Yuan & Savalei, 2014; Yuan, Tong, &
Zhang, 2015; Yuan & Zhang, 2012). However, much less is known
about test statistics for multiply imputed data. To date, much of the
literature has focused on improving the small-sample properties of
single-degree-of-freedom Wald tests (Barnard & Rubin, 1999;
Reiter, 2007; Steele, Wang, & Raftery, 2010), with relatively few
studies investigating multiparameter versions of this test (Grund,
Ludtke, & Robitzsch, 2016; Y. Liu & Enders, 2017). We are aware
of only two studies that have investigated the application of
imputation-based likelihood ratio tests to SEM: Lee and Cai
(2012) proposed a two-stage approach to computing this test that
is analogous to two-stage FIML estimation (Savalei & Bentler,

2009; Savalei & Falk, 2014; Savalei & Rhemtulla, 2014; Yuan et
al., 2015), and Enders and Mansolf (2018) examined the use of
Meng and Rubin’s (1992) pooled likelihood ratio statistic (also
referred to as the D3 statistic in the literature; Schafer, 1997) as a
global test of SEM fit. Importantly, methodologists have yet to
develop a general score test for multiply imputed data, much less
one that can serve as a so-called modification index for SEMs. As
such, the goal of this article is to outline a new score test procedure
and use Monte Carlo computer simulations to evaluate its perfor-
mance.

The score test and its use in model modification has been the
source of considerable controversy in the SEM literature, much of
which is warranted. Modification indices can be used to transform
a poorly fitting model into a well-fitting model by computing a
score test with one degree of freedom for each fixed parameter
(e.g., omitted path) in the model. For those parameters with large
test statistics, the model can be iteratively reestimated after lifting
the relevant constraints until the desired level of fit is achieved. As
many readers already know, the practice of data-driven model
modification has been widely criticized in the literature (Bollen,
1989, pp. 300–303; Brown, 2014; Kaplan, 1990; MacCallum,
Roznowski, & Necowitz, 1992; Yoon & Kim, 2014). Although not
diminishing these concerns, we note that it is the usage of modi-
fication indices that has been widely criticized, and not the test
itself. Indeed, modification indices remain useful in a priori, the-
oretically driven, or explicitly exploratory model modification
(MacCallum, 1986; see example applications in Byrne, Shavelson,
& Muthén, 1989; Kwok, Luo, & West, 2010), and the use of
modification indices for these purposes does not necessarily inval-
idate a model-building procedure. Further, the score test often
performs similarly as the Wald and likelihood ratio tests when an
SEM is approximately properly specified, and the procedure has
been recommended in cases in which the asymptotic properties of
other tests break down, such as testing the null hypothesis that a
variance component is zero in a mixed effects model (Verbeke &
Molenberghs, 2003). Because the score test only requires estima-
tion of a restricted model, it can also be useful in situations in
which a less restrictive model is difficult to estimate or fails to
converge. Lastly, a natural byproduct of the score test is an
expected parameter change (EPC) statistic (Kaplan, 1989; Saris et
al., 1987) that estimates the value of a parameter (or set of
parameters) that would result from freeing model constraints (e.g.,
adding a path or set of paths to an SEM). Prior research (Saris,
Satorra, & van der Veld, 2009; Whittaker, 2012) has demonstrated
the promising performance of score tests—even in an exploratory
fashion—when considered in combination with EPCs before mod-
ifying a hypothesized model. For these reasons, we argue that it is
important to develop and evaluate a score test procedure for
multiply imputed data.

The organization of this article is as follows. First, we intro-
duce notation and describe a pair of nested confirmatory factor
analysis (CFA) models that we use to motivate and describe the
proposed score test. Second, we provide a brief review of, and
rationale for, multiple imputation in the SEM context. Third, we
describe the score test for multiply imputed data. To ensure that
the exposition is accessible to the broadest possible readership,
we have included online supplemental materials that provide a
concise description and summary of the maximum likelihood
principles needed to understand the composition of the test
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statistic (Appendix A of the online supplemental materials).
Fourth, we use Monte Carlo computer simulations to evaluate
the imputation-based score test, comparing its performance
with the FIML counterpart. Fifth, we include a real data anal-
ysis example that uses the R package semTools (Jorgensen,
Pornprasertmanit, Schoemann, & Rosseel, 2019) to apply the
new test. Finally, we conclude with practical recommendations
and avenues for future research.

Motivating Example and Notation

To place our ensuing description of the multiple imputation
score test in a specific context, we rely on a simple CFA model
with four continuous observed variables, X1, . . . , X4. Figure 1a
depicts the model as a path diagram. Figure 1b shows the same
model with an added covariance between ε1 and ε2, the residuals
associated with X1 and X2. For identification, the variance of
the latent variable F is fixed to 1 and the mean of the latent
variable is fixed to 0. This yields models with 12 (Figure 1a) and
13 (Figure 1b) parameters: four intercepts �1, . . . , �4, which here
estimate the means of X1, . . . , X4; four factor loadings �1, . . . ,
�4; four residual variances �ε1

2 , . . . , �ε4

2 , a single residual covari-
ance �ε1ε2

between ε1 and ε2 (Figure 1b only). Consider the case in
which the fit of the model in Figure 1a is not satisfactory. To
improve model fit, one may consider adding the residual covari-
ance �ε1ε2

to the model. Using only the results from the model in
Figure 1a, the score test can project the improvement in fit that
would result from estimating the more complex model in Figure
1b. The test also provides the information required to estimate the
value of the residual covariance that would result if this parameter
were freed during estimation (i.e., the EPC).

More generally, consider the case in which a researcher com-
pares two (parametrically) nested models1: a restricted model and
a general model (e.g., Figures 1a and 1b, respectively), with the
intention of determining whether the general model provides a
significantly better fit to the data than the restricted model. We let

�r � (�1, �2, . . . , �q) denote the vector of q parameters for the
restricted model, and we let �g � (�1, �2, . . . , �q, �q�1) denote
the vector of q � 1 parameters of the general model, where the
parameter �q�1 in the general model is constrained to zero in
the restricted model. We use the g and r subscripts to differentiate
various quantities or features of these two models. Returning to the
models in Figure 1, �g for the general model (Figure 1b) is given
by �g � ��1, . . . , �4, �1, . . . , �4, �ε1

2 , . . . , �ε4

2 , �ε1ε2
�. The restricted

model (Figure 1a), which corresponds to the researcher’s hypoth-
esized model, is defined by fixing �ε1ε2

to zero, and its parameter
vector �r is given by �r � ��1, . . . , �4, �1, . . . , �4, �ε1

2 , . . . , �ε4

2 �.
The comparison of the models in Figure 1 is one example of a

larger class of model comparison problems, which can involve
multiple parameters (e.g., �q�1, �q�2, . . . , �q�J), linear and
nonlinear constraints, and modeling approaches beyond traditional
factor analysis or SEM (e.g., multilevel models). Our proposed
extension of the score test to multiply imputed data readily gen-
eralizes to accommodate these contexts. When appropriate, we
will indicate the differences between single-parameter and
multiple-parameter tests. We chose to use the comparison of the
models in Figure 1 as our motivating example both to present some
of the more complex statistical concepts in a familiar statistical
framework and ground the multiple imputation score test in a
context in which researchers routinely use its complete-data coun-
terpart (model modification in SEM).

Multiple Imputation

Multiple imputation dates back nearly 40 years (Rubin, 1987,
1996) and is an established and popular method for dealing with
missing data. We provide some brief background here and refer
readers to the literature for additional information (Enders, 2010;
Graham, 2012; Schafer, 1997; Schafer & Graham, 2002; Schafer
& Olsen, 1998; Sinharay, Stern, & Russell, 2001; van Buuren,
2012). Multiple imputation is often described as a three-step pro-
cedure. In the first step, the researcher creates many copies of an
incomplete data set, each of which is imputed with different
estimates of the missing values; for example, Graham, Olchowski,
and Gilreath (2007) recommended at least 20 imputed data sets.
We use X(m), m � 1, . . . , M, to represent imputed data sets
generated from an incomplete data matrix X. Next, the analysis
model (e.g., the restricted CFA model from Figure 1a) is fit to each
of the filled-in data sets, which gives a set of imputation-specific
maximum likelihood estimates �̂r

�m� and an estimate V̂r
�m� of the

parameter covariance matrix, the diagonal of which contains the
complete-data sampling variances (i.e., squared standard errors)
for data set m. Finally, Rubin’s rules (Rubin, 1987) are applied to
the M sets of results, giving a vector of pooled estimates �̂r and
standard errors. As mentioned previously, Lee and Cai (2012) and
Enders and Mansolf (2018) discuss model fit statistics for multiply
imputed data.

In the context of an SEM application, the imputation step
typically employs a saturated model and an iterative Bayesian
estimation procedure such as the Gibbs sampler. Because im-

1 By parametrically nested, we mean that the restricted model is con-
structed by placing constraints on the parameters of the more general
model. For brevity, we will simply use nested to refer to parametrically
nested models.

Figure 1. Path diagrams for factor analysis models. F represents the
latent variable, X1, . . . , X4 represent the four observed variables, �1, . . .
, �4 represent the factor loadings, and ε1, . . . , ε4 represent the residuals for
X1, . . . , X4 after controlling for F, with �ε2

2 �ε1

2 , . . . , �ε4

2 representing the
residual variances of ε1, . . . , ε4 and �ε1ε2

representing the residual
covariance of ε1 and ε2. Figure 1a contains the restricted model, with �ε1ε2
constrained to zero (not estimated). Figure 1b contains the general model
with �ε1ε2

unconstrained (freely estimated).
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putations are generated from a saturated model, they are appro-
priate for a range of nested model comparisons beyond that
depicted in Figure 1. The iterative algorithm alternates between
two major steps: (a) estimate saturated model parameters, con-
ditional on the current filled-in data set, and then (b) update
imputations conditional on the current model parameters. Joint
modeling (Asparouhov & Muthén, 2010; Schafer, 1997) and
fully conditional specification (van Buuren, 2012; van Buuren,
Brand, Groothuis-Oudshoorn, & Rubin, 2006) are the primary
frameworks for generating multiple imputations. The joint
model approach repeatedly estimates a multivariate model, typ-
ically an unrestricted mean vector and covariance matrix. The
imputation step then samples replacement values from a mul-
tivariate normal distribution. In contrast, fully conditional spec-
ification implements a round-robin imputation scheme in which
each incomplete variable is regressed on all other variables
(complete or previously imputed), and the resulting regression
model parameters define a univariate distribution of replace-
ment values for each observation. Joint model imputation is
available in commercial packages such as SAS and Mplus
(L. K. Muthén & Muthén, 1998 –2017) as well as R packages
such as jomo (Quartagno & Carpenter, 2018) and Amelia
(Honaker, King, & Blackwell, 2018), among others. Fully con-
ditional specification is available in commercial software pack-
ages such as SPSS and SAS, and it is also available in the
popular R package mice (van Buuren et al., 2018) and the
standalone application Blimp (Enders, Du, & Keller, in press;
Enders, Keller, & Levy, 2018; Keller & Enders, 2019). Both
approaches can accommodate incomplete binary and ordinal
variables via a latent variable (i.e., probit regression) formula-
tion, and the procedures are theoretical equivalent when applied
to multivariate normal data (J. C. Liu, Gelman, Hill, Su, &
Kropko, 2014).

It is important to address a compelling question before pro-
ceeding—why imputation? After all, FIML test statistics are
well understood, and the estimator is available in virtually
every SEM software program. We believe there are often com-
pelling reasons to adopt imputation instead of FIML. First,
imputation is arguably more flexible for models that include
mixtures of continuous and categorical (nominal and ordinal)
variables. Such combinations of metrics are ubiquitous in SEM
applications, for example, MIMIC models with categorical co-
variates, multiple-group models with incomplete grouping vari-
ables, measurement models that feature discrete questionnaire
responses as indicators, and scale scores or item parcels com-
puted from an incomplete set of questionnaire items, among
others. Second, emerging evidence suggests that a particular
model-based variant of multiple imputation (e.g., fully Bayes-
ian imputation; substantive model compatible imputation) is
superior for models that include interactive or nonlinear effects
and random coefficients (Enders et al., in press; Erler, Rizo-
poulos, Jaddoe, Franco, & Lesaffre, 2019; Erler et al., 2016).
Third, the ease with which multiple imputation can facilitate an
inclusive analytic strategy (Collins, Schafer, & Kam, 2001) that
includes auxiliary variables is a potentially important advan-
tage. Of course, FIML estimation can also incorporate auxiliary
variables (Graham, 2003), but it is well known that the satu-
rated correlates model can suffer from convergence problems
because it imposes an illogical structure on certain covariance

matrices (Savalei & Bentler, 2009). For these and other reasons,
we believe that marrying SEM and multiple imputation is often
a preferable strategy for handling missing data, in which case it
is important to have a full cadre of significance tests that
includes the score test.

Statistical Background: Score, Score Vector, and
Information Matrix

In the interest of space, this section assumes that readers are
already familiar with the maximum likelihood principles needed to
construct the complete-data (or FIML) score test. In particular, the
building blocks of the test statistic are the score, the score vector,
and the information matrix. This section describes these quantities
in the context of multiple imputation. In general, the imputation-
based expressions are the same as those from a complete-data
maximum-likelihood analysis, the key difference being that they
are applied to each filled-in data set. To ensure that our exposition
is accessible to the broadest possible readership, we also include
online supplemental materials (Appendix A of the online supple-
mental materials) that provide a more detailed description and
summary of the concepts needed to understand the composition of
the score test statistic, and a variety of resources describe maxi-
mum likelihood estimation in greater depth (Casella & Berger,
2002, Chapter 7; Eliason, 1993; Ferron & Hess, 2007; Silvey,
1975, Chapter 4; Spanos, 1999, Chapter 13).

To keep the discussion as simple as possible, we describe a
single-degree-of-freedom score test that evaluates a constraint on a
single parameter. The test readily extends to multiple parameters,
and Appendix B of the online supplemental materials gives the
generalization of the test statistic to multiple parameter constraints.
The first ingredients of the modification index are the score and the
score vector. In calculus terms, the score for a parameter is the
derivative or slope of the log-likelihood surface taken at a partic-
ular value of that parameter, and the score vector concatenates the
parameter-specific score values into a vector that quantifies the
instantaneous rate of change in the log-likelihood with respect to
each model parameter. For the restricted model in imputation m,
the score vector Sr

(m) has q elements, one for each parameter in �r
(m),

and each element of the score vector is the first partial derivative
of the log-likelihood with respect to the corresponding model
parameter

Sr
(m) � Sr(X

(m) | �r) � �
��r

LLr(X
(m) | �r), (1)

where �

��r
indicates that partial derivatives of the log likelihood

LLr(X
(m) | �r) are taken with respect to each element of �r, and

the m superscripts indicate that each data set yields a unique
score vector. At the maximum likelihood estimates of the
restricted model in a given imputed data set m, denoted by �̂r

�m�,
the q elements of the score vector, denoted Ŝr

�m�, all equal zero,
indicating that the estimates maximize the log-likelihood func-
tion.

The score test is used to determine whether freeing a constraint
would significantly improve model fit. In the case of the models in
Figure 1, this involves estimating the restricted model, then pro-
jecting how fit would change if the residual covariance ��1�2

were
freed during estimation. Doing so requires an augmented param-
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eter vector �̂g
�m� � ��̂r

�m�, 0� that contains the restricted-model
maximum likelihood estimates �̂r

�m� within each imputed data set
and a zero2 value corresponding to the constrained parameter �q�1.
Similarly, we define a score vector Ŝg

�m� that reflects the gradient of
general-model log likelihood taken at the parameter values in �̂g

�m�,
given by

Ŝg
(m) � �

��g
LLg�X(m) | �̂g

(m) � ��̂r
(m), 0�� � �0q, Ŝg,q�1

(m) �, (2)

where Ŝg,q�1
�m� is the slope of the log likelihood that results from

constraining parameter �q�1 (e.g., the residual covariance) to zero.
Even when the restricted model is true in the population, the
additional element of the score vector is unlikely equal to zero in
practice because it, too, is an estimate subject to sampling error. A
positive score (i.e., slope) indicates that increasing the value of the
�q�1 would increase the log-likelihood, whereas a negative score
indicates that decreasing the parameter’s value by a small amount
would increase the log-likelihood.

The score vector from Equation 2 can be viewed as measuring
the discrepancy in fit between the general and restricted models.
The score test we are proposing uses the information matrix to
standardize this discrepancy into a test statistic. Like the score
vector, the information matrix is calculated by differentiating the
log-likelihood function with respect to the model parameters. In
calculus terms, the information matrix for imputation set m is the
matrix of second derivatives of the log-likelihood surface (i.e.,
negative of the Hessian), as follows:

Ir
(m) � 	 �2

��r � (�r)
TLLr�X(m) | �r

(m)�. (3)

The information matrix captures how the elements of the score vector
(i.e., gradients or slopes) change as a function of changes in the model
parameters. Visually, values on the diagonal of the information matrix
quantify the “peaked-ness” of the log likelihood near its maximum
(e.g., if slopes change rapidly, the surface is peaked and precision is
high). Off-diagonal element (i, j) of the information matrix quantifies
the change in the ith element of the score vector as a function of
changes in the jth parameter (e.g., the degree to which changes in one
parameter covary with changes in another).

The information matrix can be used as a metric by which to judge
the magnitude of (i.e., standardize) the score vector, as large elements
of the information matrix indicate that the score vector is sensitive to
changes in the model parameters near �̂r

�m� (i.e., the log likelihood is
very peaked near its maximum). Many readers are familiar with the
fact that inverting the information matrix and substituting the maxi-
mum likelihood estimates gives the parameter covariance matrix, the
diagonal of which contains the complete-data sampling variances (i.e.,
squared standard errors) for data set m:

Ir
	1(m) � V̂r

(m) ��
var�
̂1

(m)� cov�
̂1
(m), 
̂2

(m)� · · · cov�
̂1
(m), 
̂2

(m)�
cov�
̂2

(m), 
̂1
(m)� var�
̂2

(m)� É É

É É Ì É

cov�
̂q, 
̂1
(m)� · · · · · · var�
̂q

(m)�
�.

(4)

From this relationship, we can see that large elements of the infor-
mation matrix indicate a high degree of precision for the maximum
likelihood estimates, thus resulting in small standard errors.

Note that SEM packages typically offer at least three methods
for estimating the information matrix: the first-order, observed,
and expected information matrices. Details on the calculation of
these matrices and on their use in SEM can be found in Appendix
A of the online supplemental materials, and Savalei (2010a) gives
a detailed and accessible description of these information matri-
ces.3 Very briefly, the scalar formulas for the elements of the
information matrix feature deviation score sums that capture the
differences between the observed data and the model-implied
means. If the data are normally distributed, the expected informa-
tion is simpler to compute because it replaces these sums with their
expectations (i.e., zeros), whereas the observed information com-
putes the sums from the data. When applied to FIML estimation,
the observed information is preferred because it accommodates a
missing-at-random (MAR) mechanism, whereas the expected in-
formation requires the stricter missing-completely-at-random as-
sumption (Kenward & Molenberghs, 1998). The first-order infor-
mation matrix is calculated as the covariance matrix of the first
derivatives of each observation’s log-likelihood function. These
variances and covariances are easier to compute than the second
derivatives they approximate, and they are asymptotically equiv-
alent to the expected and observed information matrices if the
distributional assumptions of the model hold (Greene, 2012, pp.
521–522). However, some authors have noted that this approxi-
mation tends to perform worse than the expected or observed
information matrices in practice (Maydeu-Olivares, 2017). All
three information estates are appropriate for imputed data, and the
simulations presented later in the article provide a comparison of
the three information matrices.

Multiple Imputation Score Test

Having established its core building blocks, we now propose
a multiple imputation score test. The construction of the test
statistic is analogous to that of the popular Wald test (com-
monly referred to as the D1 statistic) for multiply imputed data
(Li, Raghunathan, & Rubin, 1991; Rubin, 1987; Schafer, 1997;
van Buuren, 2012). To provide a comparison, the multiple
imputation Wald statistic is

D1 �
(�̂ 	 �0)�((1 � r�V� )	1(�̂ 	 �0)

k . (5)

The Wald test can be viewed as the sum of squared differences
between a vector4 of pooled estimates �̂ and their corresponding
hypothesized values �0 (e.g., a zero vector) standardized by a
pooled estimate of the parameter covariance matrix (1 � r�)V�,
where r� is the average relative increase in variance and V� is the
pooled within-sample variance–covariance matrix of the model
parameters (V� � 1

m�V̂r
�m�). Finally, dividing by k, the number of

2 More generally, the constrained parameter in the augmented parameter
vector could also be fixed to any nonzero value (e.g., a factor correlation fixed
to 1 to test redundancy), and the score test procedure would still apply.

3 Most estimation software packages, and most statistical treatments of
the topic, divide the “total” information matrix by n to yield “unit”
information, which we have omitted for simplicity.

4 Although the preceding discussion of the score test referred to an
augmented vector containing only a single constrained parameter estimate,
the score test also generalizes to simultaneously testing a set of parameters
(Supplemental Appendix B of the online supplemental materials).
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parameters in �̂, rescales the test statistic from a chi-square to F
distribution. Imputation-based significance tests are quite different
from those of FIML because they require a between-imputation
component that captures variation in the test across data sets (Li et al.,
1991; Meng & Rubin, 1992; Reiter & Raghunathan, 2007; Rubin,
1987). The average relative increase in variance (0 � r� � 1) serves
this role by proportionally increasing the average parameter covari-
ance matrix V� to incorporate lack of precision due to missing data.
The score test in Equation 12 is comprised of analogous components.

First, the nonzero element (or elements, in the multiparameter
case) of the score vector from Equation 2 is pooled across impu-
tations to yield an average discrepancy in fit between the general
and restricted models:

S�g,q�1 � M	1 �
m�1

M

Sg,q�1
(m) . (6)

This averaging process is analogous to the sum of squared differences
between the estimates and hypothesized values in the Wald test; S�g,q�1

quantifies the discrepancy between zero (the value of the constrained
parameter in the restricted model) and the projected maximum like-
lihood estimate of the constrained parameter in the general model; this
difference is quantified by the average slope of the log likelihood
function. The pooled score value S�g,q�1 can be interpreted in frequen-
tist terms as a point estimate of the fixed population score value, and
it can also be interpreted as the mean of the observed-data posterior
distribution of the score in the Bayesian framework (Little & Rubin,
2002, pp. 210–211; Rubin, 1987).

As mentioned previously, the pooled discrepancy measure is stan-
dardized using the curvature of the log likelihood function from the
information matrix. If the null hypothesis is true and the data were
generated according to the restricted model, Sg,q�1

(m) is asymptotically
normal with a mean of zero. To determine the sampling variance of
Sg,q�1, we must partition the information matrix Ig

(m) to isolate the term
corresponding to the parameter of interest:

Ig
(m) � � P(m) Q(m)

�Q(m)�� r(m) � , (7)

where P(m) is the q � q submatrix of Ig
(m) corresponding to the free

parameters in the restricted model, Q(m) is the 1 � q submatrix of
Ig

(m) containing second partial derivatives of the log-likelihood with
respect to the fixed and free parameters, and r(m) is the diagonal
element of Ig

(m) corresponding to the fixed parameter �q�1 (e.g., the
residual covariance in Figure 1b). Following the complete-data
literature (Rao, 1948; Saris et al., 1987; Sörbom, 1989), the sam-
pling variance of Sg,q�1

(m) from data set m is as follows:

v(m) � r(m) 	 Q(m) �P(m)�	1 �Q(m)�� . (8)

Roughly speaking, v(m) can be viewed as the sampling variance in
the score vector that remains after subtracting out its covariation
due to other parameters.

The within-imputation score variance is computed by averaging
the M estimates of v as follows:

vW � M	1 �
m�1

M

v(m) . (9)

The within-imputation score variance vW is analogous to the
within-imputation variance of the parameter estimates in multiple

imputation inference in the sense that it quantifies the sampling
variance in the score value that would be expected if the data were
complete, much like the average of the squared standard errors on
the diagonal of V� in the Wald test. As such, a score test statistic
based on vW will be positively biased (i.e., reflect too much
precision) unless there is no missing data.

Following the logic of the Wald test, a multiple imputation score
test must augment vW with a second between-imputation compo-
nent that quantifies the added sampling variability in S�g,q�1 due to
missing data. This between-imputation score variance is calculated
by treating the set of imputation-specific score values Sg,q�1

(m) as an
independent, identically distributed random sample and calculating
the variance of the M score values around their pooled value as
follows:

vB � (M 	 1)	1 �
m�1

M

�Sg,q�1
(m) 	 S�g,q�1�2 . (10)

This quantity represents the added uncertainty in the score value
due to missing data and is analogous to the between-imputation
variance of the parameter estimates (i.e., the variance in the M
estimates around their means) in multiple imputation inference.

Combining the within- and between-imputation information
components vW and vB yields the total score variance vT:

vT � vW � �1 � 1
M�vB . (11)

In frequentist terms, vT estimates the total variability of the
observed-data score value across repeated samples. In Bayesian
terms, vT represents the total posterior variance of the score value,
calculated as the sum of a within-imputation component vW based
on complete data and a between-imputation component �1 �
1
M�vB, which accounts for missing data uncertainty.

Finally, the total sampling variance vT is used to standardize the
squared pooled score value and construct the multiple imputation
score test statistic:

TMI	score �
(S�g,q�1)

2

vT
: (12)

Determining a sampling distribution for TMI�score is complicated
by the fact that vB is an estimate of the between-imputation
variance of Sg,q�1

(m) based on a finite number of imputations. With an
infinite number of imputations, we can treat vB as fixed, in which
case TMI�score asymptotically follows a chi-square distribution
with a single degree of freedom (Rubin, 1987). With a finite
number of imputations M, the proper reference distribution is an F
distribution with a single numerator degree of freedom and de-
nominator degrees of freedom:

� � (M 	 1)	1 �
vW

vB �
vB

M

2

. (13)

This calculation is based on the degrees of freedom calculation for
the multiple imputation Wald test (Rubin, 1987). Alternate defi-
nitions of the degrees of freedom have been proposed in the
literature, but we do not consider these here (Barnard & Rubin,
1999; Li et al., 1991; Reiter, 2007).

Like the pooled Wald test statistic (D1) in Equation 5, our
example of testing a single parameter in Equation 12 is naturally
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extended to the case of a multiparameter test by augmenting the
score vector (in Equation 2) and information matrix (in Equation
7) with k 	 1 constrained or fixed parameters. With sufficiently
many imputations, the numerator of Equation 5 is approximately

2(k) distributed, which is scaled by 1/k (the denominator of
Equation 5) to yield an approximate F distribution to account for
a finite number of imputations. Details about the multiparameter
score test can be found in Appendix B of the online supplemental
materials.

Expected Parameter Change

Saris et al. (1987) noted that large modification indices do not
necessarily result in comparably large changes in parameter esti-
mates when the corresponding parameters are freed during esti-
mation. In other words, although the modification index tests the
statistical significance of parameters, it does not quantify the
magnitude of the constrained estimate. To account for this short-
coming, Saris et al. introduced a statistic called the EPC, which
quantifies the expected change in the parameter estimate that
would result from freeing that parameter during estimation. For the
model in Figure 1, the EPC estimates the residual covariance �ε1ε2
that would result from estimating the general model. These EPC
values are routinely printed alongside modification indices in SEM
software (L. K. Muthén & Muthén, 1998–2017; Rosseel, 2012).

This EPC value, like the score test, is calculated after estimating
the restricted model and is a function of the test statistic (i.e.,
modification index) and the score value. The complete-data EPC is
as follows:

EPC �
Tscore

Sg,q�1
. (14)

As explained previously, the nonzero element of the score
vector Sg,q�1 is the expected change in the log-likelihood for a
one-unit change in the parameter of interest. Thus, its reciprocal is
the expected change in the parameter for a one-unit change in the
log-likelihood. Multiplying this reciprocal by the change in the
log-likelihood that results from freeing the parameter, quantified
by Tscore, yields the EPC. Because the general model is not
estimated, EPC values will differ from the estimates that would
result from freeing each residual covariance. If the models do not
differ substantially in terms of fit, the differences between the EPC
values and the true parameter estimates will be small. However, if
model fit is poor, the score test statistic and resulting EPC values can
be biased (Saris et al., 1987).

In the context of imputation, we defined the pooled EPC as the
average of the EPC values across the M imputations:

EPCMI � M	1 �
m�1

M ��Sg,q�1
(m) �2 ⁄ v(m)�

Sg,q�1
(m) , (15)

where Sg,q�1
(m) is element q � 1 of the imputation-specific score

vector Sg
(m) and v(m) is sampling variance of the score value in data

set m, as defined in Equation 9. Note that, unlike its complete-data
counterpart, EPCMI is not a function of the score test statistic
TMI�score. Rather, it is estimated by averaging the imputation-
specific EPC values, each of which is calculated using its
corresponding score variance v(m).

Simulation Study

We conducted a simulation study to assess the performance of
the multiple imputation score test in terms of Type I error rate and
statistical power. We compared the multiple imputation score test
with the FIML score test and to the score test from complete-data
maximum likelihood (i.e., before missingness was imposed on the
generated data). As mentioned previously, the score test is asymp-
totically equivalent to the Wald and likelihood ratio statistics as
general hypothesis tests. In the interest of space, we limit our
presentation to the score tests, but Figures S1 to S4 and Tables S1
and S2 in the online supplemental materials show a broader
comparison that includes the Wald and likelihood ratio statistics.

Population Models

We based the population model on a classic simulation study
(Chou & Bentler, 1990) that compared the relative performance of
the Wald, likelihood ratio, and score tests in complete data. The
population model used for the simulation study is displayed in
Figure 2. In the measurement portion of the model, each of four
latent variables F1 to F4 is measured using three indicator variables
with factor loadings of 1 (X1, X4, X7, X10) or 0.8 (X2, X3, X5, X6,
X8, X9, X11, X12). Residual variances for observed variables were
set to one third of the squared factor loading for each observed
variable, yielding item-level reliabilities of .75.

In the structural portion of the model, F1 is correlated with F2

(�12), F3 is predicted by F1 (�13) and F2 (�23), and F4 is predicted
by F1 (�14), F2 (�24), and F3 (�34). Population values for the
correlation �12 and the regression coefficients �13 and �23 were
fixed to values such that the correlations between F1, F2, and F3

were all equal to .3 (�12 � .3; �13 � �13  .231). Population
values for the remaining structural parameters �14, �24, and �34

were determined by the conditions of the corresponding simulation
study, to be described. The means of all observed and latent
variables were set to zero in the population model.

Simulation Conditions

In the first simulation study, �14, �24, and �34 were set to zero
in the population model to examine the Type I error rate, which
was assessed separately for one- (�14), two- (�14 and �24), and
three-parameter (�14, �24, and �34) Wald, score, and likelihood
ratio tests. Sample sizes used to evaluate Type I error rates were

Figure 2. Latent regression model used in simulation study. Only latent
variables and structural paths are shown. Dashed paths are manipulated and
tested according to the simulation conditions.
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100, 200, 400, and 800, and tests were evaluated with 0% (com-
plete data), 10%, 20%, and 30% missing data, yielding a 4 (sample
size) � 4 (missing data rate) � 3 (number of parameters) design.

In the second simulation study, each of the one-, two-, and
three-parameter tests described in the previous paragraph was
evaluated under varying effect size conditions to examine statisti-
cal power and assess the accuracy of EPC estimates. To yield
interpretable power estimates, we manipulated the population val-
ues of �14, �24, and �34 to yield (multiple) R2 values of .02, .13,
and .26, corresponding to Cohen’s (1988) small, medium, and
large effect sizes, for the latent regression predicting F4. All tested
structural parameters �14, �24, and �34 were identical for each
condition in the population model (see Table 1 for the specific
parameter values used). For the one- and two-parameter tests, any
untested parameters were set to zero in the population model so
that test statistics for truly nonzero parameters would not be
inflated due to invalid constraints on untested parameters (i.e.,
higher power in conditions with inflated Type I error rates; Bollen,
1989; Byron, 1972). Sample sizes used to evaluate power were 50,
100, and 200, and tests were evaluated with 0% (complete data),
10%, 20%, and 30% missing data, yielding a 3 (sample size) � 4
(missing data rate) � 3 (number of parameters) � 3 (R2 effect
size) design. EPC values were calculated for the regression coef-
ficient �14 in the one-parameter test conditions for all information
matrices in complete and incomplete data and for FIML estimation
in incomplete data.

Data Simulation and Imputation

Data were simulated according to a multivariate normal distribu-
tion with all means equal to zero and covariance matrix equal to the
model-implied covariance matrix of the population model, calculated
according to the corresponding simulation condition. After simulating
1,000 data sets per condition, data were deleted according to a MAR
model, in which all indicators for F1 predicted missingness on all
indicators for F2, and all indicators for F3 predicted missingness on all
indicators for F4. Missingness was determined according to a logistic
regression model with a pseudo-R2 value of .5 (McKelvey & Zavoina,
1975), with parameters of �0 � �3.22 and �1 � 1.81 corresponding
to a 10% missing data rate, parameters of �0 � �2.10 and �1 � 1.81
corresponding to a 20% missing data rate, and parameters of
�0 � �1.30 and �1 � 1.81 corresponding to a 30% missing data rate.
R (R Core Team, 2018) was used to perform the data generation using
the mvtnorm package (Genz et al., 2018). Blimp (Enders et al., 2018,
in press; Keller & Enders, 2019) was used to impute missing values
using fully conditional imputation (van Buuren, 2012; van Buuren et
al., 2006). Because all manifest variables in the simulation were
continuous, imputations were generated from a normal distribution,

conditional on the observed data. In all conditions, 20 imputations
were used, with burn-in and thinning intervals determined after ex-
amining potential scale reduction factor diagnostics (Gelman et al.,
2014; Gelman & Rubin, 1992).

Statistical Analyses and Tests

We used the sem() function in the R package lavaan (Rosseel,
2012) to fit the restricted and general models implied by the path
diagram in Figure 2 to the generated data, both before missingness
was imposed on the complete data (using traditional maximum like-
lihood estimation) and after imposing missingness (using FIML).
After imputing the missing data 20 times, we used the sem.mi()
function in the R package semTools (Jorgensen et al., 2019) to fit
the models to each imputed data set.

The restricted and general models had correctly specified mea-
surement models (described in the previous paragraph), identifying
each factor’s variance by fixing its first indicator’s factor loading
to 1 (corresponding to its population value) and identifying factor
means by fixing them to 0. In the general model, all structural
paths in Figure 2 were freely estimated, whereas one, two, or three
of the nonzero dashed paths (depending on the condition) were
fixed to zero in the restricted model. Analyses of multiple impu-
tations were treated as converged if the general or restricted model
converged for at least one imputed data set(s).5

From the restricted model, a score test statistic was calculated to
simultaneously test whether the one, two, or three (depending on
the condition) nonzero dashed paths in Figure 2—which were
fixed to zero—should be freed. Score tests for complete-data and
FIML were conducted using the lavTestScore() function in
lavaan, and using the lavTestScore.mi() function in
semTools, for multiple imputations. The pooled, augmented
information matrix with which a pooled score test is calculated
(in the Multiple Imputation Score Test section) used any im-
putations for which the model converged, and standard errors
(and by implication, the information matrix) could be calcu-
lated. Additionally from the restricted model alone, EPCs for
individual fixed-to-zero parameters are available from the
modificationIndices() function in lavaan, and from
the modificationIndices.mi() function in semTools
for multiple imputations, both of which return 1-df score tests
(i.e., modification indices) only for individual parameters, not
multiparameter tests.6

As mentioned previously, SEM packages usually offer at least
three methods for estimating the information matrix: the first-
order, observed, and expected information matrices. Details on the
calculation of these matrices and on their use in SEM can be found
in Appendix A of the online supplemental materials and in Savalei

5 The semTools package prints a message to make users aware of how
many imputations for which a model converged, so the user can decide
whether to generate additional or replacement imputations or to try differ-
ent starting values for particular imputations.

6 The lavTestScore() and lavTestScore.mi() functions also optionally
provide EPCs for all user-specified (both fixed and free) parameters, but
they are the expected changes on the condition that all parameters in the
test are freed. This can be quite useful information (e.g., Oberski, 2014),
but it differs from the most common use of EPCs (i.e., in tandem with 1-df
modification indices; Saris et al., 2009; Whittaker, 2012). Thus, the current
study only investigated EPCs associated with 1-df modification indices.

Table 1
Structural Regression Coefficients for Simulation Study (�14 �
�24 � �34)

R2

Number of parameters

1 2 3

.02 .141 .088 .065

.13 .361 .224 .165

.26 .510 .316 .233
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(2010a). We used observed information exclusively with FIML
estimation because it provides important theoretical advantages in
this context (Kenward & Molenberghs, 1998). Applied to imputed
data, the observed information does not have an inherent theoret-
ical advantage over other estimates of information as it does with
FIML. To assess the performance of different information matri-
ces—all of which are available in popular software (L. K. Muthén
& Muthén, 1998-2017; Rosseel, 2012), and thus could be used in
practice, we evaluated the performance of the multiple imputation
score test with observed, expected, and first-order information
matrices. Although researchers with different goals could validly
justify different arbitrary thresholds for qualifying Type I error
rates as substantially inflated, we define an acceptable range for
Type I error rates as 2.5%  �  7.5% and Type I error rates
7.5% � �  10% and � 	 10% as moderate and large inflation,
respectively (Savalei, 2010a, 2010b).

Simulation Results

As described at the end of the Multiple Imputation Score Test
section, the score test can be evaluated as an approximate chi-
squared or F statistic. As might be expected with a large number
of imputations (m � 20), we did not observe meaningful differ-
ences between p values calculated using the two reference distri-
butions. Because the FIML and complete-data score tests use a
chi-square reference distribution, we limit our attention to chi-
square tests here to improve comparability of the simulation re-
sults. Although we limit the subsequent presentation to the score
tests, Figures S1 to S4 and Tables S1 and S2 in the online
supplemental materials give a broader comparison that includes
Wald and likelihood ratio statistics. In some cases, when the null
hypothesis for the one-, two-, or three-parameter test was false
(power and EPC simulations), certain test statistics could not be
calculated. Specifically, when sample size was low (N � 50) and
missing data rate was high (30%), up to 12.2% of multiple impu-
tation likelihood ratio tests could not be calculated, with higher
failure rates for multiparameter tests. In six replications, either the
unrestricted (four replications) or restricted (two replications)
model failed to converge under FIML estimation. The two repli-
cations for which the restricted model failed to converge, both of
which occurred at the smallest sample size (N � 50) and highest
missing data rate (30%) in the power simulation, were excluded
from the results presented in the following sections. All replica-
tions for which all score tests could be calculated were included in
the results.

Type I Error

Like its FIML counterpart, the multiple imputation score test
can be computed using three different information matrices, al-
though it is unclear whether the usual recommendation to use
observed information (Kenward & Molenberghs, 1998; Savalei,
2010a) also applies to multiple imputation. Figure 3 presents
empirical Type I error rates for the three versions of the test. As
sample size increased to N � 800, all three information matrices
produced acceptable Type I error rates close to the nominal � �
.05 level. However, differences appeared at small sample sizes.
The multiple imputation score test achieved its best calibration
when computed using the expected information, in which case the

empirical Type I error rates were close to the nominal � � .05
under almost all conditions. The notable exception was a slightly
lower Type I error rate (approximately .03) for the three-parameter
test with 30% missing data and a sample size of 100. The expected
information should perform well with normally distributed data
(Browne, 1974, 1984), but there was no clear reason to prefer this
method a priori.

Among the remaining two options, the test statistic with ob-
served information was the next best calibrated, although it exhib-
ited inflated Type I error rates in many conditions. This is consis-
tent with prior research showing inflated Type I error rates of the
likelihood ratio test using FIML7 even with samples as large as
N � 400 (Savalei & Bentler, 2009), especially in models that
estimated more parameters (i.e., included more auxiliary vari-
ables). The test based on first-order information, however, exhib-
ited the largest deviations from the nominal error rate. Decreasing
the sample size, increasing the missing data rate, and increasing
the number of parameters being evaluated all diminished perfor-
mance, and these factors exerted a much larger impact on the
first-order information tests than on the other tests. Although tests
based on observed information were generally well calibrated in
all but the smallest sample size condition (N � 100), first-order
tests were generally only well calibrated in the largest sample size
condition (N � 800). Based on these results, we restrict the
remainder of our results to the score test with expected informa-
tion, and we compare its performance to the FIML test with
observed information. We also include the complete-data score test
with expected information as a comparison (also the best among
the complete-data options; see Table S1 in the online supplemental
materials).

Figure 4 shows empirical Type I error rates for the complete-
data, multiple-imputation, and FIML score tests. In the smallest
sample size condition (N � 100), the multiple imputation score test
had Type I error rates lower than 5% when calculated with 30%
missing data. Within these conditions (N � 100, 30% missing
data), the Type I error rate of the multiple imputation score test
decreased as the number of parameters increased, reaching a
minimum of � � 2.3% with three parameters, 30% missing data,
and N � 100. At missing data rates of 10% and 20%, Type I error
rates for the multiple-imputation score test were within acceptable
ranges (2.5%  �  7.5%).

The FIML score test, in contrast, exhibited moderate (7.5% �
�  10%) to large (� 	 10%) Type I error inflation in many
conditions; this inflation increased as sample size decreased, the
missing data rate increased, and the number of parameters in-
creased. At N � 100, the empirical Type I error rate of the FIML
score test was only within acceptable ranges (2.5%  �  7.5%)
when used for a single-parameter test with 10% or 20% missing
data. The three-parameter FIML score test with 30% missing data
and a sample size of 100 exhibited large Type I error inflation
(� 	 10%), and the comparable condition with N � 200 also
exhibited moderate Type I error inflation (7.5% � �  10%). In
contrast, the multiple imputation score test was well calibrated
under these same conditions, except for the aforementioned

7 The likelihood ratio test also exhibits inflated Type I errors with
complete data, and there have been several proposed robust corrections
based on aspects of sample size and model size (Nevitt & Hancock, 2004).
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Type I error deflation when three parameters were tested with
30% missing data and N � 100. In all other conditions with N �
100, the FIML test had moderate Type I error inflation (7.5% �
�  10%), while the multiple imputation score test was well
calibrated. When sample size was large (N � 400 or 800), both
the multiple imputation and FIML score tests were well cali-
brated, while the multiple imputation score test had superior
Type I error control to the FIML score test when sample size
was small (N � 100 or 200). Lastly, the complete-data score
test was well calibrated across conditions and deviated very
little from � � .05 in any condition.

Power

Figure 5 shows empirical power estimates for the single-
parameter multiple imputation, FIML, and complete-data score test

statistics. Power differences among the score tests were relatively
unaffected by the number of parameters tested, so we limit the
presentation to the single-parameter case to highlight the main
trends. Table S2 in the online supplemental materials gives the
power estimates for the two- and three-parameter tests.

Unsurprisingly, power for the single-parameter score tests in-
creased as the sample size and effect size increased, and power for
the incomplete-data tests (multiple imputation and FIML) de-
creased as the missing data rate increased. At the largest sample
sizes considered in the power simulation (N � 100 and 200), there
was generally no meaningful difference between the three tests.
However, large differences appeared at the smallest sample size
condition (N � 50), with multiple imputation score test exhibiting
the lowest power. For example, in the medium effect size condi-
tion with N � 50, the power of the imputation-based test was

Figure 3. Empirical Type I error for multiple imputation (MI) score tests. An alpha level of .05, indicated by
the dotted horizontal line, was used as the criterion for statistical significance. The dark gray shaded region
indicates little to no bias in Type I error rate, the light gray shaded region indicates moderate bias in Type I error
rate, and the white region indicates large bias in Type I error rate. Expected, observed, and first-order denote the
information matrix used.
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approximately half that of FIML. Presumably, the power differ-
ential reflects the fact that multiple imputation involves two stages
of estimation (i.e., the first stage employs a saturated model for the
purposes of imputation, and the second stage fits the SEM to the
filled-in data), whereas maximum likelihood involves one stage.
Similar power differences have been observed for the direct FIML
and two-stage FIML estimators (Savalei & Bentler, 2009) and for
the multiple imputation and FIML likelihood ratio tests (Enders &
Mansolf, 2018).

Although we would expect the complete-data score test to
always yield highest power, the incomplete-data FIML test para-
doxically had higher power in some situations. This apparent
advantage may be related to the FIML score test’s inflated Type I
error rate, which may indicate a greater tendency to yield low p
values in general. As sample size increased, the multiple imputa-
tion and FIML score tests approached the upper limit on power
(100%), diminishing the apparent differences between the power
of the two tests. In those conditions in which power differed

between the tests, most notably when sample size was small (N �
50), the power advantage of the FIML score test over the multiple
imputation score test increased with missing data rate and effect
size.

Expected Parameter Change

Figure 6 contains median relative bias for multiple imputation,
FIML, and complete-data EPC. Median relative bias was calcu-
lated by subtracting the estimated EPC values in each condition
from their population value (�  .141 for R2 � .02; �  .360 for
R2 � .13; �  .510 for R2 � .26), dividing by the population
value, and calculating the median across replications:

Median relative bias � MEDIAN�EPC 	 �
� �. (23)

We chose to report median relative bias for EPC to account for
many severe outliers in FIML EPC. These severe outliers arose
primarily from the R2 � .26 condition.

Figure 4. Empirical Type I error for multiple imputation (MI), complete-data (CD), and full-information
maximum likelihood (ML) score tests. An alpha level of .05, indicated by the dotted horizontal line, was used
as the criterion for statistical significance. The dark gray shaded region indicates little to no bias in Type I error
rate, the light gray shaded region indicates moderate bias in Type I error rate, and the white region indicates large
bias in Type I error rate. Expected and observed denote the information matrix used.
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The multiple imputation EPC was unbiased in almost all con-
ditions, with slight downward bias when the missing data rate was
high and sample size was low. Complete-data EPC was also
unbiased in almost all conditions, with similar but smaller biases
occurring in the same conditions as multiple imputation EPC. In
contrast, FIML EPC was severely positively biased for all effect
sizes except R2 � .02 (�  .141), for which median relative bias
was within an acceptable range. The presence of outliers and bias
in EPCs using FIML may be due to the tendency for the unre-
stricted model’s observed information matrix to be non-positive-
definite or otherwise poorly behaved, a phenomenon that has been
documented elsewhere (e.g., Freedman, 2007; Morgan, Palmer, &
Ridout, 2007).

Real Data Example

The multiple imputation score test is relatively straightforward
to implement in software and is now available in the R package
semTools (Jorgensen et al., 2019). To illustrate its application,
we used a publicly available online data set containing responses
to the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965).
These data were downloaded from the http://personality-testing
.info/_rawdata/ web page. According the website,

Users were informed at the beginning of the test that there [sic]
answers would be used for research and were asked to confirm that
their answers were accurate and suitable for research upon completion
(those that did not have been removed from these datasets).

Figure 5. Empirical power for single-parameter multiple imputation (MI), complete-data (CD), and
full-information maximum likelihood (ML) score tests. Power of .8 (using � � .05 as criterion for
significance) is indicated by the dotted horizontal line. Expected and observed denote the information
matrix used.
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The item content for the RSES is presented in Table 2. The original
data contained 47,974 individual response vectors, and we selected
1,000 cases for the example. The data are available from Maxwell
Mansolf upon request.

To better control the strength of the missing data mechanism, we
restricted the data to contain only cases between 18 and 64 years
of age with complete data for the Rosenberg items, age, and gender
(N � 34,660), then selected 1,000 cases at random to analyze,
which constituted the complete data set. We then deleted item
response data for Items 5, 8, 9, and 10 according to a linear
regression model in which missingness was predicted by age,
yielding the incomplete data set. Logistic regression parameters
were selected to yield approximately 15% missing data and
McKelvey and Zavoina pseudo-R2 of .5 between age and miss-
ingness (standardized b0 � �2.6, b1 � 1.815).

We used fully conditional specification (i.e., the “mice”
algorithm) in Blimp (available at http://www.appliedmissingdata

.com/blimpusermanual-2-1.pdf) to generate 50 data sets. To
maintain the metric of the original variables, discrete imputes
were generated from an ordinal probit model (Carpenter &
Kenward, 2013). We then fit a one-factor measurement model
(analogous to Figure 1a) that featured the 10 RSES items as
indicators to each imputed data set; we fit this model using
maximum likelihood estimation, treating the observed data as
continuous, to illustrate the multiple imputation score test and
EPC in the maximum likelihood context in which we derived
them in this article. We used the semTools and lavaan
packages to pool the estimates, calculate fit measures, imple-
ment the score test, and compute EPCs. The basic R syntax for
the analysis is given in the Appendix to illustrate how the
package can be used (more extensive annotated syntax is pro-
vided in Section C of the online supplemental materials). Con-
sistent with previous findings that a one-factor model does not
adequately describe the RSES (Huang & Dong, 2012), the

Figure 6. Median relative bias in EPC. Zero bias is indicated by the dotted horizontal line. Expected and
observed denote the information matrix used. CD � complete data; MI � multiple imputation; ML �
full-information maximum likelihood.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

405MULTIPLE IMPUTATION SCORE TEST

http://www.appliedmissingdata.com/blimpusermanual-2-1.pdf
http://www.appliedmissingdata.com/blimpusermanual-2-1.pdf
http://dx.doi.org/10.1037/met0000243.supp


pooled likelihood ratio test statistic and pooled fit indices
(Enders & Mansolf, 2018; Meng & Rubin, 1992) indicated poor
fit, 
2(35) � 600.90, comparative fit index � .879, Tucker-
Lewis index � 0.845, root mean square error of approxima-
tion � 0.134. Next, we used the score tests to identify residual
covariances that might improve model fit. Table 3 contains the
resulting test statistics and corresponding EPCs. Consistent
with the findings of Reise, Kim, Mansolf, and Widaman (2016),
the three largest modification indices and EPCs were for Items
9 and 10, Items 1 and 2, and Items 6 and 7. A detailed tutorial
on the use of the semTools package for calculating the
multiple imputation score test and EPC values can be found in
the online supplemental materials.

Discussion

SEM applications routinely employ a trilogy of significance tests
that includes the likelihood ratio test, Wald test, and score test or
modification index. Researchers use these tests to assess global model
fit, evaluate whether individual estimates differ from zero, and iden-
tify potential sources of local misfit, respectively. The FIML versions
of these tests have received considerable attention in the methodology
literature (Kenward & Molenberghs, 1998; Savalei, 2010a, 2010b;
Savalei & Bentler, 2009; Savalei & Yuan, 2009; Yuan & Bentler,
2000, 2010; Yuan & Savalei, 2014; Yuan et al., 2015; Yuan & Zhang,
2012). However, much less is known about test statistics for multiply
imputed data. In particular, methodologists have yet to develop a
general score test for multiply imputed data, much less one that can
serve as a modification index of local misfit in SEM analyses. As
such, the goal of this article was to outline a new score test procedure
and use Monte Carlo computer simulations to evaluate its perfor-
mance.

As sample size increased, the multiple imputation and FIML score
tests converged toward optimal Type I error rates and maximum
statistical power, although at smaller sample sizes and/or high missing
data rates, the FIML score test had inflated Type I error rates, whereas
the multiple imputation score test did not. On the other hand, the
multiple imputation score test generally had substantially lower power
than the FIML score test when the sample size was small (N � 50).
Presumably, this is because multiple imputation invokes two stages of
estimation, whereas FIML invokes only one. Specifically, the first
stage estimates a saturated model in order to generate imputations;

then, the second stages fits the restricted model to the filled-in data. In
contrast, FIML can be viewed as “imputing” the data directly from the
restricted model, thus eliminating the initial stage of missing data
handling. Similar power differences have been observed for the direct
FIML and two-stage FIML estimators for missing data (Savalei &
Bentler, 2009) and for the multiple imputation and FIML likelihood
ratio tests (Enders & Mansolf, 2018). The stark power difference
effectively disappeared with a sample size of N � 100, but the
potential for such large differences suggests that future studies should
thoroughly probe the intersection of sample size and effect size.

EPC estimates based on the multiple imputation score test were
considerably more accurate than the corresponding FIML EPCs,
particularly when effect size for the omitted parameter was mod-
erate or large. Unlike with the test statistics themselves, EPC bias
for FIML increased, rather than decreased, with a larger sample
size. Taken as a whole, our results suggest that the imputation-
based score test is comparable, if not superior, to that of FIML, at
least in the limited conditions we investigated here. At least in part,
it seems that using expected versus observed information might
play a role in producing this difference; the latter is recommended
for FIML, whereas imputation can accommodate either. Impor-
tantly, the expected information requires the multivariate normal-
ity assumption, so we do not feel comfortable concluding that the
imputation-based test will outperform FIML in general. Future
research should attempt to clarify these issues.

One central issue is how to compute the score test in SEM
software. Although SEM software packages naturally produce all
of the ingredients (e.g., the score vector, information matrix),
combining the component parts requires some effort. To facilitate
its application, the R package semTools now implements the
imputation-based score test, and it allows users to choose8 an
information matrix. Our simulation results clearly favor the ex-
pected information, but additional research is needed to determine
whether this recommendation generalizes to a broader array of
conditions. In the interim, it may be wise to conduct a sensitivity
analysis to determine whether one’s conclusions about local misfit
are stable across computational options. Based on complete-data
research and the results presented here, we would not expect the
first-order information matrix to perform well (see Maydeu-
Olivares, 2017), but semTools nevertheless offers this option.

8 Score tests in both lavaan (for complete data or FIML) and
semTools (for multiple imputations) are calculated using expected
information by default regardless of the information matrix used to
obtain SE estimates.

Table 2
Item Content for the Rosenberg Self-Esteem Scale

Item

1. I feel that I am a person of worth, at least on an equal plane with
others.

2. I feel that I have a number of good qualities.
3. All in all, I am inclined to feel that I am a failure. (R)
4. I am able to do things as well as most other people.
5. I feel I do not have much to be proud of. (R)
6. I take a positive attitude toward myself.
7. On the whole, I am satisfied with myself.
8. I wish I could have more respect for myself. (R)
9. I certainly feel useless at times. (R)

10. At times I think I am no good at all. (R)

Note. (R) indicates reverse worded and scored.

Table 3
Modification Indices and Expected Parameter Change Statistics
for the Rosenberg Data

Residual covariance MI EPC

(9, 10) 199.40 .28
(1, 2) 163.99 .15
(6, 7) 129.69 .15
(2, 4) 53.60 .09
(2, 9) 38.67 �.09

Note. Results are presented in decreasing order of MI, and only the five
highest values of MI are presented. MI � modification index; EPC �
expected parameter change.
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It is important to reinforce previous warnings about the
data-driven use of modification indices in sequential specifica-
tion searches (Bollen, 1989; Kaplan, 1990; MacCallum, 1986;
MacCallum et al., 1992; Yoon & Kim, 2014). Sampling error
alone can cause such exploratory modifications to yield models
that do not generalize well (MacCallum, 1986; MacCallum et
al., 1992). In practice, models are typically approximations
rather than perfect representatives of true data-generating pro-
cesses (i.e., approximation error; MacCallum, 2003), in which
case score test statistics can be expected to have some bias,
which can then exacerbate the effect of sampling error on
“capitalizing on chance” (MacCallum et al., 1992).

The two-stage nature of multiple imputation makes it different
from FIML when it comes to the impact of approximation and
sampling error. As noted previously, the first stage of multiple
imputation estimates a saturated model and uses the estimates from
this model to define distributions of missing values. The unstruc-
tured nature of the imputation model suggests that it may not be
subject to approximation error, but our simulation results suggest
that the additional layer of estimation increases noise when the
sample size is small (e.g., the imputation score test was underpow-
ered at N � 50). From this, there is probably no reason to expect
that multiple imputation would do better than FIML in a specifi-
cation search, but it is important to study whether it would do
worse. An anonymous reviewer insightfully suggested that the
fraction of missing information (FMI; see Graham et al., 2007;
Schafer, 1997) might be a useful diagnostic to consider in the
context of a model modification exercise. The FMI is an intuitive
quantity that captures the proportional increase in the sampling
variation of an estimate or test statistic due to missing data (the
FMI is largely a function of the missing data rate, but it also
depends on the correlations among the variables and the missing
data mechanism, among other things). The idea is that score tests
or EPCs with high FMI values are more likely to capitalize on
chance because the missing values substantially increase error.

We outline an FMI for the score test in Section B of the online
supplemental materials (Equation B14), which is implemented in
semTools and demonstrated in Section C of the online supple-
mental materials (the Obtaining Missing-Data Diagnostics subsec-
tion). In the real-data example, missing data accounted for an
FMI � 10% additional uncertainty in the pooled information
matrix, and by extension the three-degrees-of-freedom score test
calculated from it. The univariate tests showed that the tested
parameter with the highest modification index (199.40) and EPC
(0.28) involved the variables with 	16% missing data (i.e., the
covariance between the ninth and tenth indicators’ residuals). This
test had a substantial FMI (25.5%), whereas the other two tested
parameters with the highest modification indices (i.e., the covari-
ances between the second and fourth indicators’ and between the
second and ninth indicators’ residuals) had an FMI �3%. If these
constituted exploratory analyses, the substantial FMI associated
with the largest modification index should serve to warn the
researcher that the need to validate the freed parameter in a new
data set would be even greater than if the same decision were made
using complete data. Savalei and Rhemtulla (2012) show how to
compute FMI for parameter estimates from a FIML analysis, so
similarly extending this score-test diagnostic to FIML might help
adjudicate model modification decisions in both frameworks.

The intersection of model misspecification and missing data is
certainly an area that could benefit from methodological research.
Modification indices have constituted only one common method of
exploratory model modification; other, more recently proposed
methods include exploratory SEM (ESEM; Asparouhov &
Muthén, 2009), SEM trees (Brandmaier, von Oertzen, McArdle, &
Lindenberger, 2013), and regularized SEM (RegSEM; Jacobucci,
Grimm, & McArdle, 2016). ESEM involves specifying a hypoth-
esized restricted model with multiple-indicator constructs, and
employing an estimation algorithm that allows cross-loadings to be
freed in an exploratory, data-driven manner in order to improve the
fit of the model. SEM trees also begin with a restricted, single-
group SEM that is then recursively fitted to multiple groups
defined in an exploratory fashion by selecting from a pool of
candidate covariates used to “split” the sample. RegSEM9 employs
penalization (e.g., ridge or lasso) to select variables and effects to
include in an exploratory model-building process. Whereas FIML
could ease the application of any of these procedures to incomplete
data, multiple imputation could exacerbate any existing computa-
tional insensitivity (e.g., cross-validation and bootstrapping with
SEM trees) and potentially complicate their application, especially
if different parameters or covariates were chosen in different
imputations. In the latter case, a useful generalizability diagnostic
could be to only select parameters or covariates that are consis-
tently chosen across imputations similar to how bootstrapping and
random forests improve the generalizability of classification trees.

The simulation study presented here has a number of limitations.
Most importantly, we only considered the “ideal” case of multi-
variate normal data generated under a MAR mechanism, and we
restricted our attention to one latent variable model and a subset of
models nested within this model (see Figure 2). This was done in
order to assess the properties of the multiple imputation score test
under ideal conditions and compare it with established alternatives.
Thus, these results may not directly generalize to non-normal data,
different missing data mechanisms, or other classes of models. For
instance, future research comparing the relative performance of the
observed and expected information matrices under less ideal con-
ditions would be valuable, as prior research has shown that ob-
served information may be superior when normality is violated
(Efron & Hinkley, 1978; Maydeu-Olivares, 2017). Multiple impu-
tation is used in a variety of statistical contexts, and although we
expect the current results to generalize well to linear SEMs with
normally distributed MAR data, future work is needed to deter-
mine the statistical properties of multiple imputation tests, includ-
ing the score test, in other contexts. Within psychology, these tests
can be extended to categorical data analysis, including categorical
factor analysis and SEM as well as random coefficient modeling
(e.g., growth curve models, multilevel models).

In summary, we have introduced a score test for multiply
imputed data for use in model modification in SEM. We explained
the statistical underpinnings of the test, which serves as a useful
guide for methodological trainees and applied researchers, and we
demonstrated the superior performance of the test to the currently
available FIML score test using a large simulation study. Lastly,
we demonstrated the application of the multiple imputation score

9 The implementation in the R package regsem does not currently
accommodate missing data, but it is possible in principle.
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test in practice; in conjunction with this demonstration, we have
provided detailed R scripts using the package semTools, which
researchers can adapt to implement the multiple imputation score
test in their own data. This will be a valuable tool for SEM, the
behavioral sciences in general, and other fields of science (econo-
metrics, biomedicine) in which multiple imputation is routinely
used to account for missing data.
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Appendix

R Syntax for the Real Data Example

## Rosenberg (1979) Self-Esteem Scale data provided by
## http://personality-testing.info/_rawdata/
## R scripts that import data, impose missing values, and multiply impute the
## data can be found on this project's Open Science Framework (OSF) page:
## https://osf.io/m2gd8/
##_ _ _ _ _ _ _ _ _ _ _ _ _
## Import the Imputed Data
##_ _ _ _ _ _ _ _ _ _ _ _ _
## stored as a single stacked data.frame with an indicator variable
allimps <- read.csv(file = "rosenimps.csv", header = FALSE,

col.names = c("imp", colnames(cdata)))
## extract the rows for each imputation, store as a list of imputations
impList <- lapply(1:max(allimps$imp),

function(m) allimps[allimps$imp == m, −1])
## NOTE: Annotated syntax on our OSF page also reverse-scores items
##_ _ _ _ _ _ _ _ _ _ _ _ _
## Analyze the Imputed Data
##_ _ _ _ _ _ _ _ _ _ _ _ _
## load semTools (at least version 0.5-1.921), which also loads lavaan
library(semTools)
## if your version is not up to date, install the development version:
## devtools::install_github("simsem/semTools/semTools")
## specify the restricted model
(model <- paste("F =�"", paste0("X", 1:10, collapse = " + ")))
## fit the model to imputed data
fit.imps <- cfa.mi(model, data = impList, std.lv = TRUE)
## obtain pooled results (estimates, fit measures)
summary(fit.imps)
fitMeasures(fit.imps)
## specify constrained parameters that could be added to the model
myResidCors <- c('X9 �� ×10', 'X1 �� ×2', 'X6 �� ×7')
## request the score test, univariate tests of each parameter, and their EPCs
out.imps <- lavTestScore.mi(fit.imps, add = myResidCors, epc = TRUE,

test = "D1", asymptotic = TRUE)
## print multiparameter score test
out.imps$test
## print individual univariate tests, with expected parameter changes . . .
out.imps$uni
## . . . which are the usual modification indices (also with EPCs)
modindices.mi(fit.imps, op = "��"", minimum.value = 50, sort. = TRUE,

test = "D1")
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