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Standard errors of two-level scalability coefficients

Letty Koopman* , Bonne J. H. Zijlstra and
L. Andries van der Ark
Research Institute of Child Development and Education, University of Amsterdam,
The Netherlands

For the construction of tests and questionnaires that require multiple raters (e.g., a child

behaviour checklist completed by both parents) a novel ordinal scaling technique is

currently being further developed, called two-level Mokken scale analysis. The technique

useswithin-rater and between-rater coefficients to assess the scalability of the test. These

coefficients are generalizations of Mokken’s scalability coefficients. In this paper we

derived standard errors for the two-level coefficients and for their ratios. The

coefficients, the estimates, the estimated standard errors and the software implemen-

tation are discussed and illustrated using a real-data example, and a small-scale simulation

study demonstrates the accuracy of the estimates.

1. Introduction

Mokken scale analysis is a popular nonparametric scaling technique (Mokken, 1971; see

also Sijtsma&Molenaar, 2002; Sijtsma&Van der Ark, 2017). It is used for test construction

in many areas of the social and behavioural sciences and related fields. Recent examples
include clinical psychology (e.g., Chou, Lee, Liu, & Hung, 2017; Freedland et al., 2016),

education (e.g., Chen, Watson, & Hilton, 2016; Joe, Hiver, & Al-Hoorie, 2017), tourism

(e.g., Coromina & Camprub�ı, 2016), health practice (e.g., Swiger, Raju, Breckenridge-

Sproat, & Patrician, 2017), andmedicine (e.g., Ahmadi, Reidpath, Allotey, &Hassali, 2016;

Banas, Lyimo, Hospers, Van der Ven, & De Bruin, 2017). Mokken scale analysis consists of

several procedures to check the assumptions of the underlying nonparametric item

response theory model and an automated item selection procedure to select items from a

pool of items. Arguably, the best-known aspect ofMokken scale analysis are the scalability
coefficients, also known asH coefficients, which are instrumental for defining the degree

to which a set of items form a single scale (Mokken, 1971, p. 174). Scalability coefficients

are available for item pairs, items, and the entire set of items. In this paper we refer to

Mokken’s original scalability coefficients as single-level scalability coefficients. We are

currently developing Mokken scale analysis for two-level data based on the ideas of

Snijders (2001; see also Crisan, Van de Pol, & Van der Ark, 2016; Reise, Meijer, Ainsworth,

Morales, & Hays, 2006), who generalized Mokken’s scalability coefficients to two-level

data. This study discusses the next step in the development of two-level Mokken scale
analysis: deriving standard errors of the two-level scalability coefficients, which are

needed for sound interpretation. Future steps in the development of two-level Mokken
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scale analysis include the development of an automated item selection procedure and

methods to test assumptions of underlying item response theory models.

Mokken scale analysis for two-level data can be applied when subjects are assessed

by several raters, for example when measuring the classroom environment using the
pupils’ ratings on several items of the WIHIC questionnaire (Fraser, McRobbie, & Fisher,

1996). Typically, all pupils in a class respond to the questionnaire, and the average test

score across pupils is the measured value of the classroom environment. Other

examples include child behaviour rated by parents, caregivers or teachers (e.g.,

Achenbach et al., 2008), teaching behaviour rated by students (Maulana, Helms-Lorenz,

& Van de Grift, 2015), university courses rated by participants (e.g., Rampichini, Grilli,

& Petrucci, 2004), learning environments rated by interns (Boor et al., 2007),

ecological settings such as a neighbourhood rated by the inhabitants (Raudenbush &
Sampson, 1999), and leadership rated by the employees in a work group (Dyer,

Hanges, & Hall, 2005). In these examples, the raters at level 1 (pupils, students,

participants, etc.) are nested within the subjects at level 2 (classrooms, teachers,

courses, etc.), but in contrast to most multilevel examples, the interest lies in scaling

the subject scores at level 2. Crisan et al. (2016) found that ignoring the two-level

structure results in inflated reliability and scalability coefficients. The main problem is

that multilevel measurement instruments aim to measure the trait level of the subjects,

whereas common item analyses provide information on the raters.
Mokken (1971, pp. 164–169) derived asymptotic standard errors for the single-level

total-scale scalability coefficient for dichotomous items, which could be applied to small

numbers of items only, and VanOnna (2004) used several computer-intensivemethods to

compute the sampling distribution of the single-level total-scale scalability coefficient for

polytomous items.More recently, under the assumption that the response patterns follow

a multinomial distribution, Kuijpers, Van der Ark, and Croon (2013) derived standard

errors for all coefficients by means of a marginal modelling framework and the delta

method. This method has a smaller burden of computation and is therefore applicable to
larger data sets, for both dichotomous and polytomous items. Kuijpers, Van der Ark,

Croon, and Sijtsma (2016) showed that bias of the standard errors was negligible, and that

the coverage of the 95% confidence intervals was satisfactory. The structure of two-level

data is more complex than the structure of single-level data, so the method of Kuijpers

et al. (2013) cannot be applied straightforwardly to two-level data. Three types of

problems arise. The number of coefficients is three times larger for two-level data, the

distributional assumptions of single-level data do not hold for two-level data, and

probabilities should be estimated differently for two-level data. Applying the standard
errors derived by Kuijpers et al. (2013) for two-level data is referred to as the naive

approach. In the present study these problems are tackled, resulting in corrected

standard errors for all two-level scalability coefficients.

The rest of this paper is organized as follows. Section 2 demonstrates an application of

two-level scalability coefficients. Section 3 briefly discusses latent variable models for

two-level measurement. Section 4 discusses the two-level scalability coefficients

proposed by Snijders (2001) in more detail. Section 8 describes the mathematical

derivation of standard errors and the implementation of the two-level scalability
coefficients and their standard errors in software, followed by a discussion in Section 24.

Throughout the paperwe refer to online supplementarymaterial (Appendix S1), inwhich

a small worked-out data example can be found to enhance understanding of the concepts

and formulas presented.
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2. Applying two-level scalability coefficients

For two-level Mokken scale analysis, Snijders (2001) introduced nine different scalability
coefficients. He distinguished three classes (our terminology) of scalability coefficients:

within-rater and between-rater coefficients, and the ratios of the between-rater and

within-rater coefficient. As for single-level coefficients, each class has three types:

coefficients for each item pair, coefficients for each item, and a coefficient for the entire

scale. All coefficients are denoted by the letterH. The class is indicated by a superscript:W

for within-rater coefficients, B for between-rater coefficients, and BW for ratios of

coefficients (i.e.,HBW = H
B/HW). The type is indicated by a subscript: ij for itempairs, i for

items, and no subscript for the entire set. Indices i and j are item indices, so for specific
items, subscripts i and j may be replaced by the corresponding item numbers.

Within-rater scalability coefficients denote the consistency of item scores within

raters. Their interpretation is very similar to the interpretation of Mokken’s original

(single-level) coefficients, where there is just one rater. Between-rater scalability

coefficients denote the consistency of item scores between raters of the same subject.

The ratios of the between-rater and within-rater scalability coefficients denote the rater

effect: lower ratios indicate the need for a larger number of raters per subject. Item-pair

scalability coefficients consider the item scores of two items, and an I-item test contains
I
2

� �
item-pair coefficientsHij for each class. Item scalability coefficients consider the scores

of a single item with respect to the scores on all other items, and an I-item test contains I

item coefficients Hi for each class. The coefficients for the entire set consider all item

scores, and an I-item test contains one scale coefficient H for each class. Computational

details are provided later on.

Thewithin-rater and between-rater scalability coefficients have amaximum value of 1,

indicating a perfect correlation between all items. When all variation in item scores is due

to random fluctuation, these coefficients have a value of 0. For all classes of two-level
scalability coefficients, min(Hij) ≤ min(Hi) ≤ (H) ≤ max(Hi) ≤ max(Hij) (Sijtsma&Mole-

naar, 2002, p. 58). Furthermore, it is expected that HW
ij �HB

ij , H
W
i �HB

i , and H
W ≥ H

B

(Snijders, 2001).

For ease of illustration for two-level scalability coefficients, we discuss the coefficients

and their standard errors thatwere estimated on a small real-data set. The sample consisted

of 14 upper-level primary-school teachers (the subjects) in the Netherlands. Each teacher

was rated by a number of pupils (the raters). The number of pupils per class ranged

between 5 and 39 (mean = 18.50, SD = 10.22), and the total number of pupils was 259.
Note that a sample of 14 subjects is not sufficient for test construction, but we believe it

suffices for this illustration. The pupils rated the teachers using a questionnairemeasuring

the teacher’s autonomy support of pupils. Autonomy support consists of various

behaviours such as providing choice, encouraging persistence at difficult activities, and

acknowledging feelings (see, for example, Reeve, Jang, Carrell, Jeon, & Barch, 2004). The

data set contains the scores of all 259 pupils on seven items of the questionnaire (Table 1).

Each item has five ordered answer categories.

Except for the item-pair ratios HBW
ij , Table 2 shows the estimated two-level scalability

coefficients, the naive standard errors, which ignore the nested structure of the data (in

brackets), and the corrected standard errors as proposed in this paper (in parentheses). All

point estimates of the scalability coefficients exceed zero, suggesting a positive relation

between the items both within and between raters of the same subject. However, this

does not take into account the precision of the estimates. When requiring that the lower

bound of the 95% Wald-based confidence interval of the scalability coefficient (H –

Standard errors of two-level H coefficients 215



1.96SE) exceeds zero, 65 of the 87 scalability coefficients exceed zero using the naive

estimate, and only 19 exceed zero when using the corrected estimate. Specifically, the

between-rater and ratio coefficients are not larger than zero with the corrected approach,

thus in the population it is plausible that the items are unrelated on the subject level.

Because zero is included in the interval, we cannot conclude that the teachers are

consistently ordered based on the ratings of the pupils. This small example shows that the

corrected standard errors are necessary to investigate the precision of the coefficient

point estimates. This paper explains how these standard errors can be derived.

Table 1. Subset of seven items measuring teachers’ autonomy support behaviour

Item Content

1 The teacher lets me choose what I am going to do

2 The teacher decides which task I will start with (inversely coded)

3 I get to choose which task I will start with

4 The teacher listens to me when I disagree with something

5 The teacher helps me when I ask for it

6 The teacher accepts me for who I am

7 The teacher helps me when I do not understand a task

Table 2. Estimated two-level scalability coefficients, with naive standard errors in brackets and

corrected standard errors in parentheses

Item pairs Items

1 2 3 4 5 6 7 bHW
i

bHB
i

bHBW
i

1 .128a .139a .163a .130a .148a .106a .317b .137a .432a

[.049] [.053] [.056] [.055] [.068] [.049] [.055] [.044] [.108]

(.154) (.184) (.166) (.169) (.174) (.155) (.135) (.160) (.356)

2 .281a .146a .114 .123 .090 .088 .216a .113a .526a

[.086] [.070] [.072] [.063] [.095] [.074] [.065] [.057] [.189]

(.152) (.136) (.156) (.144) (.169) (.154) (.164) (.142) (.317)

3 .316b .457b .165a .112 .184a .097 .288b .141a .491a

[.072] [.072] [.061] [.063] [.082] [.074] [.058] [.050] [.128]

(.149) (.178) (.162) (.177) (.178) (.172) (.142) (.157) (.328)

4 .267a .120 .193a .165a .190a .132a .308b .154a .500a

[.082] [.097] [.088] [.066] [.083] [.075] [.060] [.055] [.133]

(.166) (.170) (.167) (.142) (.163) (.147) (.126) (.147) (.356)

5 .280a .114 .337b .429b .168a .107 .357b .136a .381a

[.080] [.097] [.087] [.081] [.074] [.073] [.057] [.051] [.121]

(.173) (.189) (.134) (.140) (.161) (.151) (.122) (.148) (.308)

6 .346b .214a .231a .453b .487b .128a .362b .150a .416a

[.082] [.104] [.105] [.083] [.092] [.057] [.055] [.064] [.145]

(.165) (.240) (.227) (.140) (.143) (.140) (.152) (.152) (.272)

7 .435b .183a .192a .374b .461b .388b .337b .111 .330a

[.080] [.084] [.085] [.076] [.079] [.073] [.052] [.059] [.159]

(.171) (.222) (.157) (.108) (.120) (.179) (.127) (.144) (.338)

Total bHW =.311b [.048] (.130) bHB = .135a [.048] (.146) bHBW = .433a [.112] (.304)

Notes. Results for the items in Table 1. The upper triangle contains HB
ij , the lower triangle HW

ij .
aLower bound of the naive 95% Wald-based confidence interval exceeds zero.
bLower bound of both the naive and corrected 95%Wald-based confidence intervals exceeds zero.
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3. Two-level measurement

In two-level test data, S subjects, indexed by s, are rated by a unique set of Rs raters each,
indexedby rorq.Weuse two indices to distinguish between two raters in a pair. Note that

each rater scores only one subject. The raters respond to I items, indexed by i or j. Each

item hasm + 1 ordered response categories, scored 0, 1, . . .,m, indexed by x or y. LetXsri

denote the item score for subject s by rater r on item i, that is, Xsri = x (x = 0, . . ., m).

Subjects are generally scaled by their average score across raters:

Xs:: ¼ 1

IRs

XRs

r¼ 1

XI

i¼ 1

Xsri: ð1Þ

Several authors have proposed item response theory models for two-level test data.
Snijders (2001) proposed a nonparametric item response theory model that generalizes

the Mokken (1971) model for monotone homogeneity to two-level data. Parametric item

response theorymodels for two-level test data with an interest in scaling at level 2 include

the ecometric model (Raudenbush & Sampson, 1999), the rater bundle model (Wilson &

Hoskens, 2001) and the hierarchical ratermodel (Patz, Junker, Johnson,&Mariano, 2002).

For estimating scalability coefficients and deriving their standard errors it is not important

which model triggers the item responses. The only assumption we make for estimating

the scalability coefficients and deriving their standard errors is that the ordered item
scores follow a multinomial distribution with varying multinomial parameters for each

subject, which is true under all item response theory models.

4. Scalability coefficients

4.1. Within- and between-rater probabilities

Let pxyðW Þ
ij be the within-rater bivariate probability P(Xsri = x, Xsrj = y); that is, the

probability that rater r scores x on item i and y on item j. In addition, let pxyðBÞij be the

between-rater bivariate probability P(Xsri = x, Xsqj = y); that is, the probability that for

subject s, one rater (r) scores x on item i and another rater (q) scores y on item j.
Furthermore, let pxi be the univariate probability P(Xsri = x); that is, the probability that

for subject s, rater r scores x on item i. Finally, let pxyðEÞij ¼ pxi p
y
j denote the expected

bivariate probability under marginal independence of the items, that for subject s, rater r

scores x on item i and y on item j.

For I items and K item pairs, there are B = K(m + 1)2 bivariate within-rater

probabilities pxyðW Þ
ij , B bivariate between-rater probabilities pxyðBÞij , B bivariate expected

probabilities pxyðEÞij , and U = I(m + 1) univariate probabilities pxi . The population

probabilities p are estimated by the sample proportions, p. For two-level data, this
amounts to averaging the relative frequencies (Koopman, Zijlstra, & Van der Ark, 2017;

Snijders, 2001). Let 1(Xsri = x) be an indicator function that takes value 1 if Xsri = x and

value 0 otherwise. The within-rater bivariate proportion of item-score pattern (Xsri = x,

Xsrj = y) is computed as

p
xyðW Þ
ij ¼ 1

S

XS
s¼ 1

1

Rs

XRs

r¼ 1

1ðXsri ¼ x;Xsrj ¼ yÞ: ð2Þ

The between-rater bivariate proportion of item-score pattern (Xsri = x, Xsqj = y) is

computed as
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p
xyðBÞ
ij ¼ 1

S

XS
s¼ 1

1

RsðRs � 1Þ
XXRs

q 6¼ r

1ðXsri ¼ x;Xsqj ¼ yÞ: ð3Þ

The univariate proportion of item score (Xsri = x) is computed as

pxi ¼
1

S

XS
s¼ 1

1

Rs

XRs

r¼ 1

1ðXsri ¼ xÞ: ð4Þ

Finally, the expected bivariate proportion under marginal independence of the items is

estimated as

p
xyðEÞ
ij ¼ pxi p

y
j : ð5Þ

Section S1.1 in Appendix S1 illustrates the computation of the bivariate and univariate
proportions.

4.2. Weighted Guttman errors

LetXi denote the item score of item i. Each item scoreXi hasm item steps, denoted by Zix

for item i and item step x (i = 1, . . ., I; x = 1, . . ., m), taking value 1 if the step has been

passed (Zix = 1 if Xi ≥ x) and 0 if the step has been failed (Zix = 0 if Xi < x). Let the

popularity of an item step be the probability of scoring value x or higher on item i, that is,

P(Xi ≥ x).

Each item pair has 2m item steps, Zi1, . . ., Zim, Zj1, . . ., Zjm, that need to be sorted in
descending order of popularity. In a perfect Guttman scale no further item steps are

passed once an item step is failed. Therefore, a Guttman error is defined as failing a more

popular item step before passing a less popular item step. As an example, the order of the

item steps for two items with three response categories may be

Z11;Z21;Z12;Z22: ð6Þ

Note that item steps Z10 and Z20 are omitted, because P(Xi ≥ 0) equals 1 by definition.
Replacing subscript ix in Equation 6with (g) = (1), (2), . . ., (2m) results in item stepsZ(1),

Z(2), Z(3), Z(4). Each item step of Equation 6 is evaluated for a particular item-score pattern

(x, y) as value zxyg and collected in the vector zxy ¼ ½zxy1 z
xy
2 . . . z

xy
2m�. For item-score pattern

(0, 2), z02 = [0 1 0 1]. For this pattern, the second and fourth item steps are passed

(z022 = z024 = 1), whereas the first and third are failed (z021 = z023 = 0), resulting in a

Guttman error. Theweight of this error indicates the deviation from the perfect Guttman

scale, by counting howmany item steps are failed before passing a less popular item step

(Molenaar, 1991). For pattern (0, 2) the weight is 3, because z021 is failed before z022 is
passed, and z021 and z023 are failed before z024 is passed. Note that for admissible item-score

patterns the weight results in value 0, and for dichotomous items the maximumweight is

1. In general, Guttman weights w
xy
ij for score x on item i and score y on item j can be

computed as

w
xy
ij ¼

X2m
h¼ 2

z
xy

h �
Xh�1

g¼ 1

ð1� zxyg Þ
" #( )

; ð7Þ
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(see, for example, Koopman et al., 2017;Kuijpers et al., 2013).Weights are estimated in a

sample as bwxy
ij by ordering the item steps according to their estimated item popularitybPðXi � xÞ ¼ Pm

x pxi (see also Section S1.2 in Appendix S1).

4.3. Two-level scalability coefficients

Scalability coefficients H compare the weighted sum of observed Guttman errors to the
weighted sum of expected Guttman errors under marginal independence of the items

(Crisan et al., 2016; Sijtsma & Molenaar, 2002; Snijders, 2001). Item-pair scalability

coefficients reflect the ratio of observed to expected weighted Guttman errors of an item

pair. The within- and between-rater scalability coefficients for item pairs are defined as

HW
ij ¼ 1� FW

ij

FE
ij

¼ 1�

P
x

P
y

w
xy
ij p

xyðW Þ
ijP

x

P
y

w
xy
ij p

xyðEÞ
ij

ð8Þ

and

HB
ij ¼ 1� FB

ij

FE
ij

¼ 1�

P
x

P
y

w
xy
ij p

xyðBÞ
ijP

x

P
y

w
xy
ij p

xyðEÞ
ij

; ð9Þ

respectively. The denominator is equal for the within- and between-rater coefficients

because they are based on the samemarginal frequencies. Item scalability coefficients sum

the weighted Guttman errors across all item pairs pertaining item i. The within- and
between-rater scalability coefficients for items are defined as

HW
i ¼ 1�

P
j 6¼ i

FW
ijP

j 6¼ i

FE
ij

¼ 1�

P
j 6¼ i

P
x

P
y

w
xy
ij p

xyðW Þ
ijP

j 6¼ i

P
x

P
y

w
xy
ij p

xyðEÞ
ij

ð10Þ

and

HB
i ¼ 1�

P
j 6¼ i

FB
ijP

j 6¼ i

FE
ij

¼ 1�

P
j 6¼ i

P
x

P
y

w
xy
ij p

xyðBÞ
ijP

j 6¼ i

P
x

P
y

w
xy
ij p

xyðEÞ
ij

; ð11Þ

respectively. Total-scale scalability coefficients sum the weighted Guttman errors across

all item pairs. The within- and between-rater scalability coefficient for the total scale are

defined as

HW ¼ 1�

PP
j 6¼i

FW
ijPP

j 6¼i

FE
ij

¼ 1�

PP
j 6¼i

P
x

P
y

w
xy
ij p

xyðW Þ
ijPP

j 6¼i

P
x

P
y

w
xy
ij p

xyðEÞ
ij

ð12Þ
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and

HB ¼ 1�

PP
j 6¼i

FB
ijPP

j 6¼i

FE
ij

¼ 1�

PP
j 6¼i

P
x

P
y

w
xy
ij p

xyðBÞ
ijPP

j 6¼i

P
x

P
y

w
xy
ij p

xyðEÞ
ij

; ð13Þ

respectively. The estimated scalability coefficients bH are computed by replacing pwith p

and w with bw in Equations 8–13. Section S1.3 in Appendix S1 shows an example of

estimating scalability coefficients using the proportions and estimated weights from the

sample.

5. Estimating standard errors

We used the following strategy to derive standard errors. First, the scalability coefficients

were written as vector functions of the data using a recursive exp-log notation (e.g.,

Kuijpers et al., 2013; Van der Ark, Croon, & Sijtsma, 2008), a technique often used in

marginal modelling of categorical data (e.g., Bergsma, Croon, & Hagenaars, 2009, pp. 87–
92). Second, thematrix of first-order partial derivatives of the vector functionwas derived.

Finally, the delta method was applied (e.g., Agresti, 2012, pp. 577–581).

5.1. The generalized exp–log notation and the delta method

5.1.1. The generalized exp–log notation
The recursive exp-log notation may be used for functions of the data for which the

matrices of partial derivatives are not readily obtained. It is a general method to rewrite

these functions such that derivation of partial derivatives is easy to implement in software.

Let A1, . . ., Ac be design matrices whose values depend on the function that is written in

the recursive exp-log notation. Let n be a vector of order L = (m + 1)I containing the

frequencies of all possible item-score patterns, each pattern taking the form nxx...x
12...I . The

patterns are ordered lexicographically with the last digit changing fastest, such that

n ¼ n00...0
12...I n00...1

12...I � � � nmm...m
12...I

� �T
. Let vector ns be vector n for subject s, containing the

frequencies of the item-score patterns for subject s. For an example of vector n, see
Section S1.4 in Appendix S1. Let g(n) denote a vector function of the data. Finally, let exp

(x) denote the elementwise exponential of x, and log(x) the elementwise natural

logarithm of x. The recursive exp-log notation writes g(n) as a series of nested functions

g0, g1, g2, . . ., gc = g(n); that is,

gðnÞ ¼ expðAc logðAc�1. . . expðA2 logðA1 n|{z}
g0

Þ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

g1

Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
..
.
g2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gc�1

Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gc

Þ: ð14Þ
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Hence,

gi ¼
n; if i ¼ 0,

logðAigi�1Þ; if i is odd,

expðAigi�1Þ; if i is even.

8<: ð15Þ

5.1.2. Deriving the matrix of first-order partial derivatives

Let the Jacobian of g(n), which is the matrix of first-order partial derivatives with respect

to n, be G � G(n) = @g(n)/@nT, with nT denoting the transpose of vector n. For each gi
the Jacobian is Gi. Rewriting the scalability coefficients in recursive exp-log notation

enables the relatively straightforward computation of the Jacobian, because the chain rule
can be applied recurrently. The chain rule is used to differentiate a function of a function,

such as y = g(h(x)) (e.g., Stewart, 2008). First, substitute h(x) with u to obtain y = g(u).

Then the derivative of y is

dy

dx
¼ dy

du
� du

dx
: ð16Þ

Let Diag(x) be a diagonal matrix with x on the diagonal, and Diag(x)�1 the inverse of the

matrix Diag(x). Applying the chain rule to the function gi (i = 0, 1, . . ., c) results in

Gi ¼
I; if i ¼ 0,

DiagðAigi�1Þ�1AiGi�1; if i is an odd number,

Diag expðAigi�1Þð ÞAiGi�1; if i is an even number.

8<: ð17Þ

5.1.3. Applying the delta method

The delta method approximates the variance of the transformation of a variable by using a

one-step Taylor approximation (e.g., Agresti, 2012, pp. 577–594). LetVn be the variance–
covariance matrix of vector n. According to the delta method, the variance–covariance
matrix of the transformation of vector n, Vg(n), is approximated by

VgðnÞ � GVnG
T : ð18Þ

The standard errors, collected in SEg(n), are obtained by taking the square root of the

diagonal ofVg(n). The variance–covariancematrix and the standard errors are estimated in

the sample as bVgðnÞ and cSEgðnÞ, respectively.

5.1.4. A simple example

A simple example of the recursive exp-log notation is provided to enhance understanding
of the method, before moving on to rewriting the scalability coefficients. In this example

we derive the standard errors of the sample proportions, pa and pb, for dichotomous items

Xa and Xb, respectively. Let n
xy
ij denote the frequency of respondents scoring x on item i

and yon item j. The item-score frequencies of itemsXa andXb are lexicographically stored

in the vectorn ¼ ½n00
ab n

01
ab n

10
ab n

11
ab�T . For itemXi, a simple calculation results in the sample

Standard errors of two-level H coefficients 221



proportion pi ¼ n1þ
ij =N ¼ ðn10

ij þ n11
ij Þ=N , with N the total number of observations. The

proportions can be computed using the recursive exp-log notation. Let

A1 ¼
0 0 1 1

0 1 0 1

1 1 1 1

0@ 1A; A2 ¼ 1 0 �1

0 1 �1

� �
; ð19Þ

and [pa pb]
T = g(n) = exp(A2 log(A1n)) the transformation of n. First, g0 = n. Then,

following Equation 15,

g1 ¼ logðA1g0Þ ¼ log

0 0 1 1

0 1 0 1

1 1 1 1

0@ 1A n00
ab

n01
ab

n10
ab

n11
ab

0BB@
1CCA

0BB@
1CCA ¼ log

n1þ
ab

nþ1
ab

N

0@ 1A ð20Þ

and

gðnÞ ¼ g2 ¼ expðA2g1Þ ¼ exp
1 0 �1

0 1 �1

� �
log

n1þ
ab

nþ1
ab

N

0@ 1A0@ 1A ¼ pa
pb

� �
: ð21Þ

Following Equation 17,

G0 ¼ I;

G1 ¼DiagðA1g0Þ�1A1G0

¼DiagðA1g0Þ�1A1I

¼DiagðA1g0Þ�1A1

¼
1=n1þ

ab 0 0

0 1=nþ1
ab 0

0 0 1=N

0B@
1CA 0 0 1 1

0 1 0 1

1 1 1 1

0B@
1CA

¼
0 0 1=n1þ

ab 1=n1þ
ab

0 1=nþ1
ab 0 1=nþ1

ab

1=N 1=N 1=N 1=N

0B@
1CA;

G ¼G2 ¼ DiagðexpðA2g1ÞÞA2G1

¼Diag exp A2g1ð Þð ÞA2Diag A1g0ð Þ�1A1

¼Diag g2ð ÞA2Diag A1nð Þ�1A1

¼ pa 0

0 pb

� �
1 0 �1

0 1 �1

� � 0 0 1=n1þ
ab 1=n1þ

ab

0 1=nþ1
ab 0 1=nþ1

ab

1=N 1=N 1=N 1=N

0B@
1CA

¼N�1
�pa �pa 1� pa 1� pa

pb 1� pb �pb 1� pb

� �
:

ð22Þ

The vector n is assumed to follow a multinomial distribution with parameters N and

p ¼ n=N ¼ ½p00ab p01ab p10ab p11ab�T , resulting in the estimated variance–covariance matrix
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Vn ¼N DiagðpÞ � ppT
� �

¼N

p00abð1� p00abÞ �p00abp
01
ab �p00abp

10
ab �p00abp

11
ab

�p01abp
00
ab p01abð1� p01abÞ �p01abp

10
ab �p01abp

11
ab

�p10abp
00
ab �p10abp

01
ab p10abð1� p10abÞ �p10abp

11
ab

�p11abp
00
ab �p11abp

01
ab �p11abp

10
ab p11abð1� p11abÞ

0BBB@
1CCCA:

ð23Þ

Using Equation 18 to estimate the variance–covariance matrix of g(n), it may be verified

that

bVgðnÞ ¼GVnG
T

¼N�1
pað1� paÞ �papb

�pbpa pbð1� pbÞ

� �
: ð24Þ

The variances of the sampling distribution of pa and pb are the diagonal elements of bVgðnÞ
(Equation 24) and equal the well-known asymptotic variance estimator of the multino-
mial sampling distribution pa(1 � pa)/N and pb(1 � pb)/N, respectively, with the

standard errors being its square root.

5.2. Standard errors of two-level scalability coefficients

The two main challenges of applying the exp-log notation and the delta method are the

construction of design matrices A1, . . ., Ac for all 9 two-level scalability coefficients, and

the specification of an appropriate distribution for the vector nwith the derivation of its
variance–covariance matrix. We demonstrate the construction of the design matrices for

the item-pair, item, and total-scale coefficients, respectively, for all classes of coefficients,

and derive the variance–covariance matrix of the vector n.
Let HB

ij ¼ ½HB
12 H

B
13 . . .H

B
ðI�1;IÞ�T , HW

ij ¼ ½HW
12 H

W
13 . . .H

W
ðI�1;IÞ�T , and HBW

ij ¼ ½HBW
12

HBW
13 . . .HBW

ðI�1;IÞ�T be vectors of sizeK, containing the between-rater item-pair coefficients,

the within-rater item-pair coefficients, and the ratios of item-pair coefficients, respec-

tively. Let Hij ¼ gðnÞ ¼ ½HBT

ij HWT

ij HBWT

ij �T be a vector of size 3K containing all item-pair

coefficients. Similarly, letHi ¼ gyðnÞ ¼ ½HBT

i HWT

i HBWT

i �T be a vector of size 3I containing
all item coefficients, and letH= g‡(n) = [HB

H
W
H
BW]T be a vector of size 3 containing the

three total-scale coefficients.

5.2.1. Item-pair scalability coefficients in exp–log notation
The recursive exp–log notation to compute the two-level item-pair scalability coefficients
is

Hij ¼ gðnÞ ¼ expðA6 logðA5 expðA4 logðA3 expðA2 logðA1nÞÞÞÞÞÞ: ð25Þ

The (2B + U) 9 L matrix A1 contains submatrices BB, BW, and U:
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A1 ¼
BB

BW

U

0@ 1A: ð26Þ

The matrices BB and BW link the observed item-score frequencies to the bivariate

between- and within-rater proportions, respectively, and matrix U links them to the

univariate proportions. Let pB
s ¼ ns=ðSRsðRs � 1ÞÞ be a vector containing item-score

proportions for the between-rater proportions for each subject and letp ¼ PS
s¼1 ns=ðSRsÞ

be a vector containing the sample proportions of the item-score patterns in the vector n.
Let the subscript (l), l = 1, 2, . . ., L, represent the lth element of a vector. Also, let

1(Xi(l) = x) denote an indicator function of score x on item i on the lth item-score pattern
of the vectorn. Finally,n

y
sj denotes the frequency of raters scoring y on item j for subject s.

For the bth bivariate proportion (x, y) and the lth item-score pattern, entry (b, l) of the

B 9 L submatrix BB takes value 1ðXiðlÞ ¼ xÞ½PS
s¼1ðny

sj � 1ðXjðlÞ ¼ yÞÞpB
sðlÞ�=nðlÞ. In the

B 9 L submatrix BW entry (b, l) takes value 1(Xi(l) = x, Xj(l) = y)p(l)/n(l) for the bth

bivariate proportion and the lth item-score pattern. Element (u, l) of theU 9 L submatrix

U takes value 1(Xi(l) = x) p(l)/n(l) for the uth univariate proportion and the lth item-score

pattern. For a small-scale example of matrix A1 see Table S1.5 in Appendix S1.

Multiplying matrix A1 with vector n results in a vector containing the bivariate

between-rater proportions (pB
ij ¼ ½p00ðBÞ12 p

01ðBÞ
12 . . . p

mmðBÞ
ðI�1Þ;I �T ; Equation 3), within-rater

proportions (pW
ij ¼ ½p00ðW Þ

12 p
01ðW Þ
12 . . . p

mmðW Þ
ðI�1Þ;I �T ; Equation 2), and univariate proportions

(pi ¼ ½p01 p11 . . . pmI �T ; Equation 4). Hence, the function g1 equals

g1 ¼ logðA1nÞ ¼ log

pB
ij

pW
ij

pi

0@ 1A: ð27Þ

The design matrices A2, . . ., A5 are adjusted versions of matrices A2, . . ., A5 in Kuijpers

et al. (2013, pp. 61–63). Let 1(v) and 0(v) denote a unit vector and zero vector,

respectively, of length v, let I(v) denote the v 9 v identity matrix, and let 0 denote a zero
matrix or vector, whose order depends on the order of its neighbouringmatrices. Let P be

a B 9 U indicator matrix where entry (b, u) takes value 1 if the uth univariate proportion

contributes to the bth expected bivariate proportion p
xyðEÞ
ij (Equation 5), and 0 otherwise.

The 3B 9 (2B + U) matrix A2 equals

A2 ¼ Ið2BÞ 0
0 P

� �
: ð28Þ

Let (pE
ij ¼ p

00ðEÞ
12 p

01ðEÞ
12 . . . p

mmðEÞ
ðI�1Þ;I

h iT
) be the vector containing the expected bivariate

proportions under marginal independence of the items. Using the result in Equation 27

for g1, the function g2 equals

g2 ¼ expðA2g1Þ ¼
pB
ij

pW
ij

pE
ij

0B@
1CA: ð29Þ
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Let ⨁ denote the direct sum. The vector wij ¼ ½w00
ij w01

ij . . .wmm
ij �T contains the

(m + 1)2 weights for item pair (i, j) (Equation 7). The K 9 B block-diagonal matrix W

contains the weights for all K pairs of items; that is,

W ¼ a
I

i\ j

wT
ij ¼

wT
12 0 0 . . . 0
0 wT

13 0 . . . 0
0 0 wT

14 . . . 0

..

. ..
. ..

. ..
.

0 0 0 . . . wT
I�1;I

0BBBBB@

1CCCCCA: ð30Þ

Let the vector c be a copy of the first row of W, necessary to construct scalar 1 in

Equations 8 and 9, and 0(B) be a zero vector of length B. Let ⨂ denote the Kronecker

product. Then the (3K + 1) 9 3B matrix A3 is given by

A3 ¼ cT 0T
ð2BÞ

Ið3Þ 	W

� �
: ð31Þ

Let Fij = [F12 F13 . . . FI–1,I]
T be the vector containing theweighted sum of Guttman errors,

using superscript B,W and E for the observed between-rater, observed within-rater, and

expected under marginal independence variant, respectively (Equations 8 and 9). Using

the result in Equation 29 for g2, g3 is given by

g3 ¼ logðA3g2Þ ¼ log

wT
12p

B
12

WpB
ij

WpW
ij

WpE
ij

0BBB@
1CCCA ¼ log

FB
12

FB
ij

FW
ij

FE
ij

0BB@
1CCA: ð32Þ

The (2K + 1) 9 (3K + 1) matrix A4 is given by

A4 ¼ 1 �1 0T
ð2K�1Þ 0T

ðKÞ
0ð2KÞ Ið2KÞ �1ð2Þ 	 IðKÞ

� �
: ð33Þ

Using equation 32 for g3, g4 results in

g4 ¼ expðA4g3Þ ¼
1

FB
ij=F

E
ij

FW
ij =F

E
ij

0@ 1A: ð34Þ

The 2K 9 (2K + 1) matrix A5 is given by

A5 ¼ 1ð2KÞ�Ið2KÞ
� �

; ð35Þ

and g5 is given by

g5 ¼ log A5g4ð Þ ¼ log
1� FB

ij=F
E
ij

1� FW
ij =F

E
ij

� �
¼ log

HB
ij

HW
ij

� �
: ð36Þ
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Finally, the 3K 9 4K matrix A6 is given by

A6 ¼ Ið3KÞ ð0 0�1ÞT 	 IðKÞ
	 


; ð37Þ

which gives

gðnÞ ¼ expðA6g5Þ ¼
HB

ij

HW
ij

HBW
ij

0B@
1CA; ð38Þ

the vector containing all item-pair scalability coefficients.

5.2.2. Item scalability coefficients in exp–log notation
The recursive exp–log notation for the two-level item scalability coefficients is

Hi ¼ gyðnÞ ¼ expðAy
6 logðAy

5 expðAy
4 logðAy

3 expðA2 logðA1nÞÞÞÞÞÞ: ð39Þ

The designmatricesA1 andA2 are used again in the computation of the item scalability
coefficients. The design matrices Ay

3, A
y
4, A

y
5 and Ay

6 differ slightly from A3, A4, A5 and A6.

The difference between the item coefficients and the item-pair coefficients is that the

weighted Guttman errors need to be summed over the item pairs for each item i

(Equations 10 and 11). Therefore, the steps up to computation of the weighted Guttman

errors are identical.

Row i of the I 9 K (m + 1)2 matrixW† pertains to item i. Each item pair has (m + 1)2

columns, containing the vector wT
ij if j 6¼ i in row i, and a zero vector for the columns

belonging to the remaining item pairs. Hence, the matrix W† is

Wy ¼

wT
12 wT

13 . . . wT
1I 0 . . . 0 0 . . . 0

wT
12 0 . . . 0 wT

23 . . . wT
2I 0 . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 . . . . . . wT
1I 0 . . . wT

2I 0 . . . wT
I�1;I

0BBB@
1CCCA: ð40Þ

Let vector c† be a copy of the first row ofmatrixW†. Replacing cwith c† andWwithW† in

matrix A3 (Equation 30) results in matrix A
y
3. Using the result in Equation 29 for g2, we

have that g
y
3 equals

gy3 ¼ log Ay
3g2

	 

¼ log

P
j 6¼ 1

FB
1jP

j 6¼ i

FB
ijP

j 6¼ i

FW
ijP

j 6¼ i

FE
ij

0BBBBBBBB@

1CCCCCCCCA
: ð41Þ

The matrices Ay
4, A

y
5 and Ay

6 are obtained by changing K to I in the order of the

submatrices and subvectors ofA4 (Equation 34),A5 (Equation 36), andA6 (Equation 38),

respectively; that is,
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Ay
4 ¼

1 �1 0T
ð2I�1Þ 0T

ðIÞ
0ð2IÞ Ið2IÞ �1ð2Þ 	 IðIÞ

� �
; ð42Þ

Ay
5 ¼ 1ð2IÞ �Ið2IÞ

� �
; ð43Þ

and

A
y
6 ¼ Ið3IÞ ð0 0�1ÞT 	 IðIÞ

	 

: ð44Þ

Using the result in Equation 41 for g
y
3, we have that g†(n) equals

gyðnÞ ¼ expðAy
6 logðAy

5 expðAy
4g

y
3ÞÞÞ ¼

HB
i

HW
i

HBW
i

0@ 1A: ð45Þ

5.2.3. Total-scale scalability coefficients in exp–log notation
The recursive exp–log notation for the two-level total-scale scalability coefficients is

H ¼ gzðnÞ ¼ expðAz
6 logðAz

5 expðAz
4 logðAz

3 expðA2 logðA1nÞÞÞÞÞÞ: ð46Þ

Similar to the changes for the item scalability coefficients (Section 16), the differences

in the function to compute the total-scale coefficients only affect the matrices A3, A4 and

A5. The submatrix W is reduced to a vector of order B containing all Guttman weights,
w‡ = [w12 w12 . . . wI–1,I]

T. Replacing both c and W with w‡ in matrix A3 (Equation 30)

results in matrix Az
3. Subsequently, g

z
3 equals

gz3 ¼ log Az
3 g2

	 

¼ log

P P
j 6¼ i

FB
ijP P

j 6¼ i

FB
ijP P

j 6¼ i

FW
ijP P

j 6¼ i

FE
ij

0BBBBBBBB@

1CCCCCCCCA
: ð47Þ

The matrices Az
4, A

z
5 and Az

6 are obtained by changing K to 1 in the order of the

submatrices and subvectors ofA4 (Equation 34),A5 (Equation 36), andA6 (Equation 38),
respectively; that is,

Az
4 ¼

1 �1 0 0

0ð2Þ Ið2Þ �1ð2Þ

� �
; ð48Þ

Az
5 ¼ 1ð2Þ �Ið2Þ

� � ð49Þ

and

Az
6 ¼ Ið3Þ ð0 0�1ÞT

	 

: ð50Þ
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Finally, g‡(n) equals

gzðnÞ ¼ expðAz
6 logðAz

5 expðAz
4g

z
3ÞÞÞ ¼

HB

HW

HBW

0@ 1A: ð51Þ

5.2.4. Deriving the variance–covariance matrix of n
In single-level data, the vector n is assumed to follow a multinomial distribution with

probability vector p. When multiple ratings of the same subject are present, the variance

in the data will be larger than expected under a multinomial distribution, because two
sources of variation are present: the random fluctuation of the multinomial parameters

across subjects and the variation of the raters within a subject (Agresti, 2012, p. 7; V�ag�o,
Kem�eny, & L�ang, 2011). If in two-level data a multinomial distribution is assumed for n,
this overdisperion is ignored, which results in standard errors that are too small (the naive

standard errors in Table 2).

Suppose that for each subject R1 = R2 = . . . = RS = R, and that the probability vector

ps exists for subject s, with expectation E(ps) = p. Then, for a given single subject, the

conditional distribution of the vector with item-score patterns is multinomial with
expectation E(n|p) = Rp and variance–covariance matrix V(n|p) = R(Diag(p) � ppT).
The variance of the marginal distribution of n for a randomly selected subject is E(V(n|
p)) + V(E(n|p)) (Rice, 2006, p. 151, theorem B). Because the subjects are assumed to be

independent, the variance–covariance matrix of n for S subjects is defined as

Vn ¼
XS
s¼ 1

EðV ðnjpÞÞ þ V ðEðnjpÞÞ½ �

¼
XS
s¼ 1

E½RðDiagðpÞ � ppT Þ� þ V ðRpÞ� �
¼ SR DiagðEðpÞÞ � EðppT Þ� �þ SR2 EðppT Þ � EðpÞEðpÞT

h i
¼ SR DiagðEðpÞÞ � EðpÞEðpÞT

h i
þ SRðR� 1Þ EðppT Þ � EðpÞEðpÞT

h i
ð52Þ

(see, for example, V�ag�o et al., 2011; Rice, 2006, p. 140, corollary B).When the number of

ratersRs varies per subject, the quantityR in Equation 52 can be replaced by the harmonic
mean Rs ¼ S=

PRs

s¼1 R
�1
s . For single-level scalability coefficients, there is only one

replication per subject (R = 1), and the right-hand side of Equation 52 reduces to S

[Diag(E(p)) � E(p)E(p))T], the well-known covariance matrix of the multinomial

distribution with parameters S and E(p)).

5.2.5. Estimating the standard errors

Applying the rules from Equation 17 to the functions g(n), g†(n) and g‡(n) results in the
Jacobian matrices G, G† and G‡, respectively. Because of its complexity and size, the

Jacobian is not printed. The variance–covariance matrices of the coefficients are

approximated by means of the delta method (Equation 18) as
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VðHijÞ �GVn G
T :

VðHiÞ �Gy Vn G
yT :

VðHÞ �Gz Vn G
zT :

ð53Þ

The standard errors are retrieved by taking the square root of the diagonal of the variance–
covariance matrices in Equation 53.

5.2.6. Asymptotic distribution of two-level scalability coefficients

The distribution of the single-level coefficients for dichotomous items is asymptotically

normal (Mokken, 1971, pp. 166–167, theorem 3.3.1). The proof is based on the fact that

the asymptotic distribution of linear functions of the vector with item-score pattern
frequencies n, in which the frequencies are considered as random variables, is normal

(Rao, 1973, p. 383 (ii)). This proof is also valid for the two-level case, because the vectorn
is constructed from S independent subjects, each with finite expectation and variance.

Therefore themultivariate central limit theorem applies (Rao, 1973, p. 128 (iv)), although

it is necessary that the variance–covariance matrix is adjusted to account for overdisper-

sion, which has been done in Section 18. If bHðSÞ is the vector of estimated two-level

scalability coefficients for a random sample of S independent subjects,with expectationH
and estimated variance–covariance matrix Vð bHðSÞÞ, then for S ? ∞,
ð bHðSÞ �HÞ ! N ½0;VðbHðSÞÞ�.

5.2.7. Performance for simulated data

In a small-scale simulation study, we investigated the sampling distribution of the two-

level scalability coefficients and the coverage of the Wald-based confidence intervals. A

normally distributed sampling distribution and a 95% coverage rate indicate that the

standard errors are unbiased and accurate. The population was based on the real-data
example and consisted of 100,000 subjects, each scored on 7 five-category items by 18

raters. The scores were generated by the hierarchical rater model (Patz et al., 2002).

Model parameters were chosen such that the total-scale coefficients were similar to the

values in the small real-data example. An overview of the data simulation method is

provided in the online supplementary material (Appendix S2). Because the asymptotic

results are based on the number of subjects S?∞, it is expected that the results

deteriorate as S decreases. We investigated two levels of S that are relatively small: S = 14

(as in the real-data example) and S = 50. Both levels represent a relatively poor condition
for obtaining unbiased and accurate standard error estimates. For both levels of S, 1,000

data sets were sampled from the population; for each sample, the two-level scalability

coefficients and their standard errors were estimated. Due to limited space, the remaining

variables were fixed.

Figure 1 shows the results. The sampling distribution of all coefficients was close to

normal. For S = 14 subjects, on averageHWwas slightly overestimated in the samples,HB

was correctly estimated, and H
BW was underestimated. For all three coefficients the

standard errors were slightly smaller than the standard deviation of the sampling
distribution. In addition, the coverage was slightly too low, with .95 falling outside the

95% confidence interval. For S = 50 subjects, the estimated coefficients and standard

errors were close to the true values, and the 95% confidence intervals of the estimated
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coverages included .95. This simulation example demonstrates that even for limited

sample sizes, the sampling distribution of the two-level scalability coefficients is close to

normal and Wald-based intervals quickly give satisfactory coverage rates.

5.2.8. Computational strategy

Computing the design matrices and the matrices of partial derivatives can be quite

demanding, as more items are being used and more subjects are being scaled. For

example, with 10 five-category items the matrix A1 is of order 2,301 9 9,765,625. Two

adjustments can be applied to reduce the burden of computation substantially: using only

non-zero frequencies in vector n and computing g3 and G3 directly from the data.

The length of the vector n and the number of columns in the design matrix A1 and
Jacobian matrices Gi is L, the number of all possible item-score patterns. L increases

exponentially with the number of items. However, only observed patterns contribute to

the computation of the scalability coefficients and the standard errors, and unobserved

patterns may be removed from the vectors and matrices (see Kuijpers et al., 2013, p. 55

for proof). As a result, the number of observed item-scorepatterns L* is atmost the lesser of

(m + 1)I and the number of subject-rater combinations
PS

s¼1 Rs.

HW

0.1 0.2 0.3 0.4 0.5 0.6

H = .335
SE = .077
H = .352
SE = .076
Cov. = .925

S  = 14

HB

−0.1 0.0 0.1 0.2 0.3 0.4

H = .154
SE = .083
H = .154
SE = .080
Cov. = .898

HBW

−0.5 0.0 0.5 1.0

H = .458
SE = .170
H = .406
SE = .155
Cov. = .932

HW

0.20 0.30 0.40

H = .335
SE = .041
H = .337
SE = .041
Cov. = .948

S  = 50

HB

0.00 0.10 0.20 0.30

H = .154
SE = .043
H = .151
SE = .043
Cov. = .936

HBW

0.1 0.2 0.3 0.4 0.5 0.6 0.7

H = .458
SE = .084
H = .440
SE = .081
Cov. = .945

Figure 1. Plot of the sampling distribution of the two-level scalability coefficients for S = 14 (upper

panel) and S = 50 (lower panel) subjects, based on 1,000 simulated data sets. The dashed black line

is the kernel density of the sampling distribution and the solid grey line is the density of the normal

distribution with population value H as mean and the standard deviation (SE) of the sampling

distribution. Value bH is the average estimated coefficient and cSE the average estimated standard

error across the simulated data sets. Coverage (Cov.) is the proportion of times the populationH falls

inside the 95% Wald-based confidence interval of the sample estimate.
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Tedious but straightforward algebra shows that the result of g3 and its matrix of partial

derivatives G3 can be computed directly from the data. This is convenient, because the

order of matrices A1, . . ., A3 and of the rows of G1 and G2 is a multiple of the number of

bivariate response patternsB,which grows rapidlywhenmore items or answer categories
are used (B = 1,125 for 10 five-category items). The order of the remaining matrices does

not exceed a multiple of the number of item pairs K (K = 45 for 10 items), although the

number of columns of the matrices Gi will always equal L*. See the Appendix for direct

computation of g3 and G3 from the data.

5.3. Implementation in R

The estimation of the two-level scalability coefficients and their standard errors are
available as function MLcoefH() in R (R Development Core Team, 2017) in the

package mokken (Van der Ark, 2007, 2012). The argument of MLcoefH() is a data

matrix with one subject column and a column per item. The function returns a list with

three matrices, one for the item pair, one for the item, and one for the total-scale

coefficients. These matrices contain the within, between and ratio coefficients with

their standard errors. The autonomy support data example from this paper can be

obtained in R by the following command lines.

> # Load mokken package
> library(mokken)
> # Read data
> data(autonomySupport)
> # Scalability coefficients and standard errors
> MLcoefH(autonomySupport)

6. Discussion

We derived standard errors for two-level scalability coefficients (Crisan et al., 2016;

Snijders, 2001). As a result, the precision of estimated scalability coefficients can be

determined, leading tomore information with respect to the scalability of the items in the
data. Estimation of both the two-level scalability coefficients and their standard errors is

implemented as R function MLcoefH() in the mokken package. The computational

shortcut has reduced the computation time considerably, but estimating standard errors

can still be time-consuming when the number of items and subjects is large.

The main reason to compute standard errors is confidence interval construction. We

chose to use the Wald-based confidence interval, as the distribution of the two-level

scalability coefficients is asymptotically normal. The simulation example demonstrated

that even for a small number of subjects, the standard error estimates and coverage levels
were close to the desired values. In addition, the sampling distribution of the two-level

scalability coefficients was close to normal. Future research should focus on the bias and

coverage of the two-level coefficients in a wider range of conditions, such as unequal

group sizes and other values of the scalability coefficients. There may be situations where

alternative intervals are preferred, such as bootstrap or profile likelihood confidence

intervals.

With the derivation of the standard errors, the development of two-level Mokken scale

analysis can continue. We intend to develop methods to determine how well the model
fits the data. Also, generalization of the scalability coefficients and standard errors is

required for situations where raters score multiple subjects. In addition, we plan to
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generalize the automated item selection procedure to accommodate two-level test data as

well.
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Appendix S1. Small data example.

Table S1. Transposed data matrix for S = 3 subjects, with Rs = 4, 5, and 6 raters,

respectively, who respond to I = 2 items with m + 1 = 3 response categories.

Table S2. Bivariate within-rater proportions, expected proportions, and weights of

guttman errors of items Xa and Xb in Table S1.

Table S3. Between-rater bivariate proportions of items Xa and Xb in Table S1.

Table S4. Univariate proportions and estimated popularities of items Xa and Xb in

Table S1.
Table S5. Values of Matrix A1 for Items Xa and Xb in Table S1.

Appendix S2. Data simulation method.

Appendix : Computing g3 and G3 directly from the data

To reduce the burden of computation when estimating standard errors of the scalability

coefficients it is possible to compute g3 (Equation 32) and its JacobianG3 directly from the

data. The vector g3 contains the natural logarithm of the observed and expectedweighted
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sum of Guttman errors (Fij) with a copy of the first element (FB
12), and can be easily

computed using Equations 8 and 9,

g3 ¼ log

FB
12

FB
ij

FW
ij

FE
ij

0BB@
1CCA: ðA1Þ

The Jacobian then is a (3K + 1) 9 L* matrix,

G3 ¼ @g3
@nT

¼

cT
@FB

ij

@nT

@FW
ij

@nT

@FEij
@nT

0BBBB@
1CCCCA; ðA2Þ

where c is a vector that equals the first row of @FB
ij=@n

T . Writing the numerator of the last

term of Equation 9 in matrix notation, it follows that

FB
ij ¼ W expðIðBÞ logðBBnÞÞ; ðA3Þ

writing the numerator of the last term of Equation 8 in matrix notation, it follows that

FW
ij ¼ W expðIðBÞ logðBWnÞÞ; ðA4Þ

and writing the denominator of the last term of Equation 8 in matrix notation, it follows

that

FE
ij ¼ W expðP logðUnÞÞ: ðA5Þ

The result in Equations (A3–A5) can be used to compute g3. Applying Equation 17 to

FB
ij (Equation A3), FW

ij (Equation A4), and FE
ij (Equation A5) provides three K 9 L*

matrices, for which the rows pertain to item pairs 1, . . ., K and the columns to item-score

pattern 1, . . ., L*. For FB
ij, the partial derivative then equals

@FB
ij

@nT
¼ DiagðFB

ijÞ�1WBB; ðA6Þ

where the resulting element (k, l) equals the dot product of the kth row ofW and the lth

column of BB, divided by the kth element of FB
ij. For F

W
ij , the partial derivative equals
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@FW
ij

@nT
¼ DiagðFW

ij Þ�1WBW ; ðA7Þ

where the resulting element (k, l) equals the dot product of the kth row ofW and the lth

column of BW, divided by the kth element of FW
ij . For F

E
ij, the partial derivative equals

@FE
ij

@nT
¼ DiagðFE

ijÞ�1WDiagðexpðP logðpiÞÞÞPDiagðpiÞ�1U; ðA8Þ

where the resulting element (k, l) equals
P

x

P
y w

xy
ij ðux

iðlÞp
y
j þ u

y

jðlÞp
x
i Þ=FE

ij . The result in

Equations (A6–A8) can be used to compute G3 (Equation A2). The Jacobians Gy
3 and Gz

3

may be obtained usingG3. LetD
Tbe an I 9 Kmatrix forwhich the rowspertain to items 1,

. . ., I, and the columns pertain to itempairs 1, . . .,K. Element (i, k) ofD† equals 1 if item i is

in item pair k, and 0 otherwise. It follows that

Gy
3 ¼

@gy3
@nT

¼

cy

Dy @FBij
@nT

Dy @FWij
@nT

Dy @FE
ij

@nT

0BBBB@
1CCCCA ðA9Þ

and

Gz
3 ¼

@gz3
@nT

¼

cz

1T
ðKÞ

@FB
ij

@nT

1T
ðKÞ

@FW
ij

@nT

1T
ðKÞ

@FE
ij

@nT

0BBBB@
1CCCCA; ðA10Þ

where c† is a copy of the first row of D† @FB
ij=@n

T , and c‡ equals 1T
K@F

B
ij=@n

T .
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