
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

On the Effectiveness of Communication-Centric Modelling of Complex
Embedded Systems

Meyer, H.; Odyurt, U.; Polstra, S.; Paradas, E.; Gonzalez Alonso, I.; Pimentel, A.D.
DOI
10.1109/BDCloud.2018.00143
Publication date
2018
Document Version
Final published version
Published in
16th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA 2018) : 17th IEEE International Conference on Ubiquitous Computing and
Communications (IUCC 2018) : 8th IEEE International Conference on Big Data and Cloud
Computing (BDCloud 2018) : 11th IEEE International Conference on Social Computing and
Networking (SocialCom 2018) : 8th IEEE International Conference on Sustainable Computing
and Communications (SustainCom 2018)
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Meyer, H., Odyurt, U., Polstra, S., Paradas, E., Gonzalez Alonso, I., & Pimentel, A. D. (2018).
On the Effectiveness of Communication-Centric Modelling of Complex Embedded Systems.
In J. Chen, & L. T. Yang (Eds.), 16th IEEE International Symposium on Parallel and
Distributed Processing with Applications (ISPA 2018) : 17th IEEE International Conference on
Ubiquitous Computing and Communications (IUCC 2018) : 8th IEEE International Conference
on Big Data and Cloud Computing (BDCloud 2018) : 11th IEEE International Conference on
Social Computing and Networking (SocialCom 2018) : 8th IEEE International Conference on
Sustainable Computing and Communications (SustainCom 2018):
ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018 : proceedings : 11-13 December 2018,
Melbourne, Australia (pp. 979-986). IEEE Computer Society.
https://doi.org/10.1109/BDCloud.2018.00143

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

https://doi.org/10.1109/BDCloud.2018.00143
https://dare.uva.nl/personal/pure/en/publications/on-the-effectiveness-of-communicationcentric-modelling-of-complex-embedded-systems(6595ddc0-ca21-4d4c-8a9d-6681421a7b62).html
https://doi.org/10.1109/BDCloud.2018.00143

On the Effectiveness of Communication-Centric
Modelling of Complex Embedded Systems

Hugo Meyer
Informatics Institute (IvI)
University of Amsterdam

Amsterdam, The Netherlands

h.d.meyer@uva.nl

Evangelos Paradas
ASML Netherlands B.V.

Veldhoven, The Netherlands

evangelos.paradas@asml.com

Uraz Odyurt
Informatics Institute (IvI)
University of Amsterdam

Amsterdam, The Netherlands

u.odyurt@uva.nl

Ignacio Gonzalez Alonso
ASML Netherlands B.V.

Veldhoven, The Netherlands

ignacio.alonso@asml.com

Simon Polstra
Informatics Institute (IvI)
University of Amsterdam

Amsterdam, The Netherlands

s.polstra@uva.nl

Andy D. Pimentel
Informatics Institute (IvI)
University of Amsterdam

Amsterdam, The Netherlands

a.d.pimentel@uva.nl

Abstract—Performance anomaly detection and prevention in
complex industrial systems, involving many distributed embed-
ded computing nodes, is an ever-present challenge. Understand-
ing such complex systems using purely analytical, or experimental
techniques is neither sufficient, nor cost efficient. Efficient high-
level models that allow the study of current system behaviour,
predict performance trends and assess possible optimisation
measures, are in demand. This paper presents an approach
to automatically infer such high-level system models by using
system-level tracing and to represent the current state of the
system using Discrete Event Simulation (DES) techniques. The
current behaviour pattern of the system is followed by replaying
observations, while behavioural potentials under alternative sets
of circumstances are considered by exploring what-if questions.
Our results are applicable to anomaly detection and anomaly
prevention solutions for complex systems. The main approach
in keeping our workflow as efficient and as compact as possible
is the use of a communication-centric modelling approach for
complex embedded systems. As our use-case, we discuss the main
challenges of modelling software processes and resource util-
isation in semiconductor photolithography machines produced
by ASML and how such complex systems can be mimicked
with high-level event-based simulation. An automatically inferred
OMNEST simulation model is presented and the different steps
that were taken to simulate the behaviour of this production
grade system are described. Initial evaluations show the maxi-
mum difference in application process lifetimes between real and
simulated executions is less than 1%.

Index Terms—System of systems, Modelling and simulation,
Performance monitoring, Distributed Cyber-Physical Systems
(DCPS)

I. INTRODUCTION

The extreme complexity of industrial distributed embed-

ded computing systems, Distributed Cyber-Physical Systems

(DCPS) in particular, and any system of systems in general,

results in highly dynamic behaviour [1]. This characteristic in-

This paper is composed as part of the research project 14208, titled
“Interactive DSL for Composable EFB Adaptation using Bi-simulation and
Extrinsic Coordination (iDAPT)”, funded by The Netherlands Organisation
for Scientific Research (NWO).

troduces challenges when optimising these systems to achieve

better operational qualities and higher reliability [2], [3].

The process of optimising and improving a system’s be-

haviour, which may be driven internally, or externally, in-

volves different steps. As shown in Fig. 1, the main steps

are, detection, imitation, prediction and enhancement. The

dynamic nature of complex systems dictates the need for

continuous detection of behaviour. This is done by continuous

monitoring of the system state and collecting different metrics,

such as system latencies and resource utilisation. A model of

the system under observation and the simulation based on it,

mimicking the system’s behaviour, will represent the imitation

step. To keep this simulated behaviour accurately close to the

actual system, the model needs to be calibrated using data

from the detection step, in a continuous fashion. An accurate

representation of the system enables prediction of possible

scenarios, where the performance of the system can be neg-

atively affected (performance anomalies). For instance, high

CPU utilisation of some application processes could degrade

the performance of others, in turn putting the whole system in

a critical state. This involves resource utilisation trend analysis.

Accurate predictions allow the usage of automatic, or manual

actuation mechanisms, e.g., limiting the memory footprint

of application processes, adapting their priority or changing

their CPU scheduling policy. An important consideration is

that the impact of an actuation should be correctly predicted

and its impact should be monitored after deployment. In this

paper, we focus on detection and imitation of complex system

behaviour, which are the first two steps towards a complete

solution for automatic anomaly detection and actuation. It

is important to remark that throughout this work, complex

computing systems and DCPS are interchangeable terms. We

focus on the cyber component of DCPS and not on addressing

the physical aspects.

One of the many challenges to be addressed in order to

optimise or steer system behaviour, is efficient monitoring.

The monitoring should capture sufficient behaviour, while ab-

979

2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big
Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications

978-1-7281-1141-4/18/$31.00 ©2018 IEEE
DOI 10.1109/BDCloud.2018.00143

Fig. 1. Conceptual overview of the different steps in our model-based DCPS
analysis and optimisation methodology

stracting it for simplicity. Capturing fully detailed system be-

haviour will increase the complexity of the model, resulting in

longer simulation times, which is not desirable. Accordingly,

monitoring can be performed in two fashions. One can divide

a complex system into its building blocks and subsystems

and consider them as performance black-boxes, focusing on

the inter-block communication. The alternative is to detect

desired internal behaviour, invasively and by instrumenting

the code itself. As will be argued in this paper, focusing on

certain subsystems, such as communication libraries, promises

a less laborious workflow, especially when aiming at automatic

model inference.

There can be numerous applications for our model-based

DCPS analysis and optimisation methodology. As a direct use-

case, adaptive computing systems can benefit from it, since

these systems are intended to react to changes, whether result-

ing from internal limitations, or the environment. The specific

use-case we are focusing on is to analyse current and predict

future system behaviour, in order to increase availability and

scalability of the software running on a complex industrial

system. By doing so, the availability and scalability of the

complex industrial system itself will be increased. This need

arises from the fact that within a distributed system, hundreds

of processes compete for scarce resources. These resources

might not be limited per se, if the hardware architecture

provides them in abundance, but yet, software design could

prevent efficient access and utilisation.

The main contribution of this paper is a methodology

that focuses on mimicking the behaviour of an operational

DCPS using high-level modelling and trace-driven simulation

techniques. The feasibility of using a communication-centric
tracing technique in combination with Discrete-Event Sim-

ulation (DES), to represent the full-system behaviour with

sufficient accuracy, is discussed and analysed. As a use-case

to evaluate our methodology, we have based our experimental

validation on ASML’s semiconductor photolithography sys-

tems, which are examples of complex DCPS. Initial results

show that our communication-centric monitoring and mod-

elling approach yields relatively accurate CPU utilisation trend

estimates (with an average difference of around 10 percentage

points of application process activity), while only capturing

(i.e. , monitoring) the behaviour of 1/6th of all application

processes. Simulations were executed using different event

scheduling policies and the average total execution time dif-

ference between real and simulated processes is less than 1%.

The rest of this paper is organised as follows. In Section II

we discuss related work and relevant state-of-the-art, while

Section III elaborates our methodology. The results from

our experiments are included in Section IV, and Section V

concludes the paper.

II. RELATED WORK

Modelling and simulation based analysis of distributed

industrial systems is a well known notion and its challenges

have been on the agenda of the scientific community [2],

[3]. Accordingly, our high-level workflow involves detection,

imitation, prediction, and enhancement phases, replacing the

“design, collect information/data, build, execute, and analyse”

problem solving cycle [2]. Under our workflow, modelling

and simulation steps fall under the imitation phase. As a

starting step in understanding of embedded system behaviour

and complex computing systems involving them, efforts in

modelling and design-space exploration resulted in efficient

offline methodologies [4] and tools, e.g., [5], [6].

High-level modelling and discrete-event simulation are

widely used techniques in the domain of embedded systems.

Most existing system-level embedded system modelling and

simulation research [3]–[7] has focused on: 1) manually build-

ing (engineering) system models and 2) typically addressing

the design of the embedded systems, not the online analysis of

existing (already engineered) systems. Instrumenting software

components of the system can be an effective way of collecting

accurate and real-time information about systems’ behaviour,

as shown in [8].

The vast majority of embedded modelling and simulation

studies focus on relatively simple use-cases, such a multi-

media systems [9]–[17]. Our technology demonstrator, as a

production-grade complex distributed system of systems, in-

volves challenges beyond the ones mentioned in [2]. Previous

research has looked at complex systems as a black-box [18],

or examples such as [19] have considered process mining

techniques [20]–[22]. These approaches use readily available

offline information. In contrast, our work aims at an online

solution for runtime modelling and simulation. Applications

of data-driven model generation in other fields, such as

hydroinformatics [23] and signal-transduction networks [24],

also worth mentioning.

III. PERFORMANCE ANALYSIS OF COMPLEX SYSTEMS

Complex computing systems are commonly composed of

other subsystems that have been built separately and later on

integrated together. As it has been mentioned, in this paper we

focus on analysing the performance behaviour of such systems.

We refer to performance as timing behaviour (latency, through-

put, computation time etc.), as well as memory footprint of

980

processes. In order to facilitate the performance analysis of

complex DCPS and, eventually perform online management of

the system behaviour, we firstly concentrated our efforts in de-

signing efficient system monitoring techniques and high-level

(application and hardware) models that accurately represent

the performance behaviour of DCPS.

A. Methodology

Fig. 2 depicts the main components of our methodology.

As it can be observed, application processes are continuously

monitored in order to feed a high-level application model that

mimics the behaviour of the system with calibration data.

This application model is called Current Model (CMod), for

it represents the current state of the system. The CMod is

used to detect trends in the usage of resources that could lead

to performance anomalies in the form of machine hiccups,

or full system-stops. Another high-level application model,

called Prospective Model (PMod), initially derived from the

CMod, constantly receives updates from it about the current

status of the system. The PMod is intended to explore different

scenarios, where performance behaviour can be managed and

improved, resulting in actuation decisions over the monitored

application processes. The analysis interface is in charge of

the evaluation of trends, prediction of future scenarios and

validation of actuation decisions. Actuation decisions could

include changing CPU scheduling, or limiting per-process

CPU usage, amongst others.

The time needed to design, collect information, build,

and execute simulations can be reduced by using high-level

simulation models that are calibrated using traces obtained

from the system. Our system observation approach is based

on lightweight software tracing techniques, applied to extract

the behaviour of different software components of the system.

Devising system observation points is critical in determining

sources of bottlenecks and collecting performance metric

values. Initial observations, or traces that our monitoring

subsystem captures, are used to construct a system baseline,

which in turn is used to calibrate the CMod. The CMod itself

is automatically inferred from the monitoring data (details are

covered in Section III-B3). Online calibration (using current

system metrics) is a continuous activity, applied to CMod at

runtime. In order to maintain a balance between the accuracy

of simulations and the added overhead, we evaluate the be-
havioural coverage (the extent that the monitoring is capturing

the real state of the system) of our observations and apply

probing techniques with a reduced footprint.

In order to monitor the system behaviour, we use a

communication-centric approach, which allows us to capture

process behaviour by observing their interactions through a

communication library. From this perspective, we identify

tasks by observing communication and computation patterns

of application processes and simulate how these processes

compete for resources [1].

Fig. 3 depicts our approach for modelling the system. Ap-

plication process traces are converted to communication and

computation events (in the form of read, write and compute

events). Queueing models are used to represent the hardware

and software components of the DCPS. Simulated processes

send requests to the simulated components, and the service

time in each of these queues is modelled as a function of

the different parameters included in the request, such as CPU

time, communication time, message size, amongst others.

Another important aspect that we take into account is the

event scheduling policy applied to determine the order and tim-

ing of simulation events. Moreover, using an event simulation

policy, where the starting time of events is strictly dictated

by the content of the traces, will closely follow the current

state of the system (appropriate for the CMod). However, if

we want to evaluate or explore future scenarios, where system

configurations can be different, the simulation events should

not be scheduled to strictly follow the timing behaviour of

collected traces, since a change in the configuration may affect

the starting time of events, and in some cases the ordering.

Relevant implementation details are covered in Section III-B.

B. From a methodology to an implementation

In this section we explain how the system monitoring

module and the system simulation models were implemented.

We have employed a communication-centric tracing technique

and the OMNEST discrete-event simulation framework [25].

Queueing models are used to represent components of the

DCPS and discrete-event simulation techniques allow us to

analyse the status of the system during different phases of

its execution. As shown before, simulations are trace-driven,

where application processes are represented by traces (active

entities) and system resources (passive entities, e.g., hardware,

communication libraries) are represented by queues, where

different service times are modelled.

In order to deploy the proposed methodology, the DCPS

should be analysed to discover the most applicable approach

for observing, modelling and simulating it, since different

systems may have different observation points available and

different requirements or metrics that should be taken into

account. Also, proper tuning or actuation knobs should be de-

termined depending on the main performance metrics that are

considered in the context of the system. The main components

of the implemented solution are described below.

1) Tracing application processes: As previously men-

tioned, to capture the trend of a system in an online fashion, we

developed a tracing tool following a communication-centric

approach, which allows us to limit the overhead introduced by

invasive tracing. To capture the system behaviour, the moni-

toring module is implemented at the system communication

module, i.e., the broker. When communication takes place,

all processes using the monitored broker module, shown in

Fig. 3, are indirectly traced. This approach reduces the amount

of information captured, making the analysis of behavioural

coverage (Section IV) extremely relevant. Pseudocode 1 elabo-

rates communication and computation event collection during

the execution of processes. When a process starts its execution,

a trace_comp_start call saves the id of the process, the

type of event (event) and the timestamp start. The process

981

Fig. 2. Main components of the proposed solution methodology

Fig. 3. Communication-centric modelling approach

continues its normal execution until it calls the communication

library, containing the tracing code (communicate). When

entering the communication library, the trace_comp_end
event saves the timestamp (timestamp end) and the amount of

resources that were used by the application until that point and

the communication event is traced using trace_comm_ini

and trace_comm_end. Then, collected traces are processed

to calculate time spent in communication and computation

related tasks. Computation events may contain not only CPU

usage information, but also idle time, I/O time, etc., while

communication events can also involve some CPU utilisation.

In order to reduce the number of simulated processes, real pro-

cess traces can be clustered into simulated processes according

to their degree of similarity and frequency of operation.

Different elements of the modelling interface from Fig. 2

perform the following:

• Aggregator, gathers tracing information from different

sources into a single log file,

• Parser, creates simulation events by converting traced

action codes, such as writes, reads, or computational

events,

• Topology generator, analyses the trace information to au-

tomatically infer the interconnections and the number of

application processes to be generated for the application

model (using process IDs),

• Calibration data generator, provides metric readings for

the simulator and its trace-driven virtual processes, by

analysing raw traces.

The outcome of tracing to be fed to the modelling interface,

contains information such as, event ID, process ID, event
initiation timestamp, event end timestamp, event type, CPU
utilisation, and for communication events only, message size
and destination process ID.

2) Hardware resource management: In the current version

of our CMod implementation in OMNEST, the system hard-

ware architecture is modelled as a module receiving requests

from different simulated processes, storing the requests in a

982

Pseudocode 1: Communication-centric tracing

Function main():
trace_comp_start (id, event,

timestamp start);
do some work;

communicate(payload1, dst1);

do some work;

communicate(payload2, dst2);

...

Function communicate(payload, dst):
trace_comp_end(id, event, timestamp end,

CPU used);

trace_comm_ini(id, event, timestamp start,
dst, size(payload));

communication occurs;

trace_comm_end(id, event, timestamp end,

CPU used);

trace_comp_start(id, event, timestamp start);

ready queue. CPU resource management is performed using a

FCFS (First Come, First Served), or a Round Robin scheduling

policy. CPU time is distributed as tokens that are given to

the simulated processes and returned when the processing is

finished. The number of tokens depends on the number of

CPU cores included in the simulated system.

3) Trace-driven virtual processes: These are generic simu-

lated processes, automatically generated based on the number

of executed application processes in the real system, i.e.,

observed processes using communication-centric monitoring.

Simulated processes are trace-driven and the simulation engine

executes one event at a time. Process models are automatically

inferred from the monitoring traces, avoiding the need to

manually derive these models, which is typically very com-

plex, or even infeasible to do for DCPS. Traces are processed

by simulated processes and resource requests are created

depending on the content of the trace, e.g., CPU used, type of

event (event) and timestamps. For instance, a process requiring

a certain number of CPU cycles to perform the operation

specified in the event, will create a CPU request. This request

will arrive at the ready queue of the simulated CPU and will be

served according to the CPU scheduling policy implemented

in the resource manager model.

4) Event scheduling policies: As was mentioned, two sim-

ulation models are part of the proposed methodology, namely

CMod and PMod. The CMod model should reflect, as closely

as possible, the real behaviour of the system. It may actually

be considered a model that replays collected traces. Fig. 4

depicts our two investigated event scheduling policies. The

simulated processes read the traces in order and one at a time

and schedule the next event according to a number of factors

considered in the event scheduling policies. These factors

are, current simulation clock (tsim), the initial timestamps

of events encoded in the trace (tini), gaps between events in

the trace (Δt), CPU utilisation, and the idleness of events. In

Fig. 4, the tini is observed below each “Real trace” line and

the tsim is below each “Simulation” line. Fig. 4a depicts our

closely synchronised (replay) policy, Policy 1, with the first

line showing two consecutive events from a real execution.

When simulating events A and B, simulated event times (not

the simulation itself) could be longer, or shorter. Whether event

A finishes earlier or later, the next event’s starting time will

be its own tini, resulting in close synchronisation. The only

exception is when A takes long enough to overtake B’s tini.
As such, B will start as soon as A ends,

tiniB = tendA
.

Fig. 4b shows how gaps between events (Δt) and process

idleness during an event are accounted for when scheduling

computation events. Policy 2 does not initiate events strictly

based on their tini, but instead, here the focus is on gaps

between events, such that

tiniB = tendA
+Δt.

Another consideration is the difference between the duration

of an event and its associated CPU time. In most cases, an

event includes process idleness, which is always added to the

simulated event in the form of a wait. This idle is added after

the event’s computation is over and the CPU token is released.

However, CPU availability might not occur at the start, adding

a delay to the event. Considering a delayed CPU access, the

next event will start at

tiniB = tiniA + delayA + compA + idleA +Δt.

This second event scheduling policy focuses on increasing

the flexibility when releasing events to the simulation engine

by avoiding the usage of timestamps specified in the traces.

While Policy 1 focuses on replaying the behaviour of the traces

(suitable for CMod), Policy 2 tries to maintain the simulation

accuracy as closely as possible to the real execution, without

forcing events to be scheduled at specific timestamps. This

makes the second policy more suitable to explore the impact

of different actuation mechanisms (as intended in PMod).

C. Use-case: Photolithography systems

As noted in Section I, the above elaborated techniques

have been applied to ASML’s semiconductor photolithogra-

phy machines, as this paper’s real-world demonstrator. These

complex DCPS include communication subsystems based on

the publish-subscribe architectural pattern. The subsystem

connects application processes from different software com-

ponents, which in turn run on distributed computing nodes.

IV. EXPERIMENTAL RESULTS

We have assessed our aforementioned methodology using a

simulation tool, developed with OMNEST and in combination

with a communication-centric monitoring tool. The simulation

tool follows the model described in Section III-B. The three

main metrics that we have considered to evaluate the quality

of our proposed methodology are: 1) the behavioural coverage

of our communication-centric monitoring tool; 2) the accuracy

983

(a) Policy 1

𝛥t = 2

𝛥t = 2

𝛥t = 2

𝛥t = 2

CPU = 2, idle = 4

CPU = 2

CPU = 2

CPU = 2

idle

idle

𝛥t = 2

CPU = 2 idledelay

delay

(b) Policy 2

Fig. 4. Different event scheduling policies during simulation, (a) Policy 1:
Close synchronisation of events based on traces, (b) Policy 2: Considering
computation events’ idleness when scheduling events

of simulations regarding CPU utilisation and; 3) the accuracy

of simulations considering process lifetimes.

In order to perform the simulations, traces from a fully

functional ASML photolithography machine, having the same

software components as a production machine, and thus the

same behaviour, minus all the moving robotic parts, were

used. This machine is used by ASML to perform machine

throughput qualification.

Traces were collected by introducing probes in one of the

main communication libraries, following the broker architec-

tural pattern. These traces were post-processed, and in turn,

used as input for the simulation model developed in OMNEST.

The collected traces correspond to four different workload

scenarios1 using a single recipe (pattern). In real operation,

recipes are optically projected onto a silicon wafer covered

with a film of light-sensitive material. The load scenarios

consist of: 1) printing the recipe onto 2 wafers, workload 2w;

2) printing the recipe onto 10 wafers, workload 10w; 3) se-

quentially printing the recipe onto a combination of 2-wafer

and 10-wafer batches, workload 2+10w and 4) sequentially

printing the recipe onto a combination of 2-wafer, 5-wafer and

10-wafer batches, workload 2+5+10w. The difference when

processing different batches of wafers lies in the fact that

different application processes are triggered, depending on the

number of wafers to be processed, as well as the number of

the batches.

Fig. 5 shows how the CPU utilisation trend of the total

1These workloads do not represent all possible workloads for photolithog-
raphy machines, but are sufficient for our experiments.

system is closely matched with the combined CPU utilisation

of the observed processes, i.e., the ones using the commu-

nication subsystem. We have compared both accumulated

utilisation values captured via the UNIX ‘top’ command and

from our tracing events (collected via resource usage system-

call, ‘getrusage’), with total system utilisation values from

‘top’. The absolute difference between CPU utilisation of

the processes involved with the communication subsystem and

total CPU utilisation of the full system represents the amount

of undetected behaviour. The figure depicts the undetected be-

haviour with small amounts of dispersion (of which 0.7−8.7%
are outliers), indicating a matching behaviour throughout the

execution time. As noted in Section I, the behaviour captured

from the communication subsystem involves 1/6th of all

application processes.

2 10 2+10 2+5+10

0

10

20

Workloads in number of wafers
totaltop − observedtop, in blue (◦)

totaltop − observedgetrusage, in red (×)

U
til

is
at

io
n

to
ta

l(
%
)
−

ob
se

rv
ed
(%

)

Fig. 5. Behavioural coverage at different stages: CPU utilisation differences
for multiple workloads, total system vs. communication-centric view

2 10 2+10 2+5+10

0

1

2

Workloads in number of wafers
observedgetrusage − simulatedpolicy1, in blue (◦)
observedgetrusage − simulatedpolicy2, in red (×)

U
til

is
at

io
n

ob
se

rv
ed
(%

)
−

si
m

ul
at

ed
(%

)

Fig. 6. CPU utilisation differences for multiple workloads, observed vs.
simulated results

The blue box plot is based on a graph resulting from

the absolute difference between full system CPU utilisation

and observed CPU utilisation for every point in time, all

from system parameters (‘top’). It shows median values of

984

10.10%, 11.35%, 11.35% and 11.30%. The red box plot is

generated similarly, with the only difference that observed

CPU utilisations are based on recorded communication events

data (‘getrusage’) and shows median values of 10.50%,

11.94%, 12.01% and 11.91%.

Fig. 6 shows the absolute CPU utilisation difference ob-

tained considering the two different simulation policies ex-

plained in the previous section. Median values for Policy 1 are

0.0149%, 1.6439%, 1.0684% and 1.0697%, while for Policy 2

these values are 0.0146%, 1.6119%, 1.0232% and 1.0108%.

These results are achieved considering load scenarios 2w, 10w,

2+10w and 2+5+10w, respectively. For both simulation poli-

cies, the absolute CPU utilisation difference ranges between

0.5% and 2.3%, showing that the simulated CPU utilisation

closely tracks the monitored CPU utilisation. Actual CPU

utilisation trends are confidential and graphs depicting them

cannot be presented.

Fig. 7 depicts per-workload lifetime difference when sim-

ulating processes with the two previously covered event

scheduling policies. The y-axis represents process lifetime

difference for different workloads. The lifetime difference is

calculated by subtracting the lifetime of an observed process

(from the input traces) with a simulated process (from the

output traces). Ideally, the lifetime difference should be as

small as possible, indicating low deviation. Separate box plots

are drawn for our workloads in Fig. 7. There are specific

processes where the lifetime difference can be considerable,

such as the 221% lifetime difference observed in one of the

processes, when using Policy 2 for the 2-wafer experiment.

These major differences are present when processes have very

short lifetime or contain one small set of events to simulate (in

some cases only one event). Policy 2 presents, in most cases, a

higher process lifetime difference, due to the fact that events

are not scheduled according to timestamps recorded in the

traces, and only idleness of computation events is taken into

account, as shown in Fig. 4b. For the case of Policy 1, some

differences are higher because the last scheduled event can

be a computation event, where the idleness is not considered.

This may considerably increase lifetime difference.

Even taking into account that some events have a high

lifetime difference, the average total execution time differ-

ence, considering the two presented policies, ranges between

−0.0007% (a negative value indicates underestimation) and

0. Simulating between 63 thousand and 480 thousand events,

captured during 10 to 15 minutes of real machine execution,

takes about 10 to 15 seconds (using a single core of an Intel R©

Xeon R© Gold 6146, running at 3.20 GHz).

V. CONCLUSIONS AND FUTURE WORK

Modern complex industrial systems present highly dynamic

behaviour throughout their operational cycle, making the mon-

itoring, trend analysis and automatic detection and resolution

of performance anomalies very complex. In this paper, we

have presented a methodology that focuses on online analy-

sis and actuation of complex industrial systems by using a

2 10 2+10 2+5+10

−300

−200

−100

0

Workloads in number of wafers
Event scheduling policy 1, in blue (◦)
Event scheduling policy 2, in red (×)

Pr
oc

es
s

lif
et

im
e

di
ff

er
en

ce
(%

)

Fig. 7. Simulation of different workloads considering both Policy 1 and Policy
2

communication-centric modelling approach. The first compo-

nents of a fully-automated solution to manage performance

behaviour of the system, entailing system monitoring and high-

level modelling, have been implemented and evaluated using

a semiconductor photolithography machine as a use-case.

Our experiments indicate that the communication-centric

analysis of systems of systems, relying on communication

subsystems is effective. Following this communication-centric

perspective facilitates monitoring of the system at hand, re-

sulting in a reduced collection of data, without an excessive

loss in accuracy. The difference between captured and total

CPU utilisation in our experiments is around 10 percentage

points, while the difference between simulated (estimated) and

captured CPU utilisation is between 0 to 2 percentage points.

Furthermore, modelling, calibration, simulation and validation

steps are facilitated as well, for these steps make use of the

same compact (vs. monitoring a full system) data. We see this

as an effective way of addressing the ever growing complexity.

Our future steps will focus on improving the accuracy of

our communication-centric modelling approach by enhancing

the behavioural coverage of the communication subsystem. We

will also transition from post-execution processing of data to

run-time by adapting our workflow to operate in an online

fashion. Online representations of current and future states of

complex systems are critical to enable automatic management.

REFERENCES

[1] U. Odyurt, H. D. Meyer, S. Polstra, E. Paradas, I. G. Alonso,
and A. D. Pimentel, “Communication-centric analysis of complex
embedded computing systems: Work-in-progress,” in Proceedings of
the International Conference on Embedded Software, ser. EMSOFT
’18, Turin, Italy, 2018, short paper.

[2] J. W. Fowler and O. Rose, “Grand challenges in modeling and sim-
ulation of complex manufacturing systems,” SIMULATION, vol. 80,
no. 9, pp. 469–476, 2004.

[3] P. Derler, E. A. Lee, and A. S. Vincentelli, “Modeling cyber-physical
systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13–28, Jan.
2012.

985

[4] B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. A. Vissers,
“A methodology to design programmable embedded systems - the y-
chart approach,” in Embedded Processor Design Challenges: Systems,
Architectures, Modeling, and Simulation - SAMOS, 2002, pp. 18–37.

[5] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach
to exploring embedded system architectures at multiple abstraction
levels,” IEEE Trans. Comput., vol. 55, no. 2, pp. 99–112, Feb. 2006.

[6] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra, “A frame-
work for system-level modeling and simulation of embedded systems
architectures,” EURASIP J. Embedded Syst., vol. 2007, no. 1, pp. 2–2,
Jan. 2007.

[7] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D.
Gajski, and J. Teich, “Electronic system-level synthesis methodolo-
gies,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 28, no. 10,
pp. 1517–1530, Oct. 2009.

[8] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and
A. Agarwal, “Application heartbeats: A generic interface for spec-
ifying program performance and goals in autonomous computing
environments,” in Proceedings of the 7th International Conference on
Autonomic Computing, ser. ICAC ’10, Washington, DC, USA, 2010,
pp. 79–88.

[9] E. Bondarev, P. de With, M. Chaudron, and J. Muskens, “Mod-
elling of input-parameter dependency for performance predictions
of component-based embedded systems,” in Proceedings of the 31st
EUROMICRO Conference on Software Engineering and Advanced
Applications, ser. EUROMICRO ’05, 2005, pp. 36–43.

[10] E. Bondarev, M. Chaudron, and P. H. N. de With, “Carat: A toolkit
for design and performance analysis of component-based embedded
systems,” in Proceedings of the Conference on Design, Automation
and Test in Europe, ser. DATE ’07, Nice, France, 2007, pp. 1024–
1029.

[11] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of
self-adaptive software with control-theoretical formal guarantees,”
in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014, 2014, pp. 299–310.

[12] H. Hoffmann, “Coadapt: Predictable behavior for accuracy-aware
applications running on power-aware systems,” in Proceedings of the
2014 Agile Conference, ser. AGILE ’14, 2014, pp. 223–232.

[13] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and
A. Leva, “Power optimization in embedded systems via feedback
control of resource allocation,” IEEE Transactions on Control Systems
Technology, vol. 21, no. 1, pp. 239–246, Jan. 2013.

[14] A. Muttreja, A. Raghunathan, S. Ravi, and N. K. Jha, “Automated
energy/performance macromodeling of embedded software,” in Pro-
ceedings of the 41st Annual Design Automation Conference, ser. DAC
’04, San Diego, CA, USA, 2004, pp. 99–102.

[15] W. Quan and A. D. Pimentel, “A scenario-based run-time task
mapping algorithm for mpsocs,” in Proceedings of the 50th Annual
Design Automation Conference, ser. DAC ’13, 2013, 131:1–131:6.

[16] M. Shafique, L. Bauer, and J. Henkel, “Enbudget: A run-time adaptive
predictive energy-budgeting scheme for energy-aware motion esti-
mation in h.264/mpeg-4 avc video encoder,” in Proceedings of the
Conference on Design, Automation and Test in Europe, ser. DATE
’10, 2010, pp. 1725–1730.

[17] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, “Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic appli-
cations,” in 2011 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation, Jul. 2011, pp. 404–
411.

[18] V. V. Parappurath, J. P. M. Voeten, and K. C. Kotterink, “Calibration
error bound estimation in performance modeling,” in Proceedings of
the 2013 Euromicro Conference on Digital System Design, ser. DSD
’13, 2013, pp. 97–102.

[19] A. Rozinat, I. S. M. De Jong, C. W. Günther, and W. M. P. Van Der
Aalst, “Process mining applied to the test process of wafer scanners
in asml,” Trans. Sys. Man Cyber Part C, vol. 39, no. 4, pp. 474–479,
Jul. 2009.

[20] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining process mod-
els from workflow logs,” in Advances in Database Technology —
EDBT’98, 1998, pp. 467–483.

[21] A. Weijters and W. van der Aalst, “Process mining discovering
workflow models from event-based data,” in Proceedings of the
ECAI Workshop on Knowledge Discovery and Spatial Data, 2001,
pp. 283–290.

[22] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Trans. on Knowl.
and Data Eng., vol. 16, no. 9, pp. 1128–1142, Sep. 2004.

[23] D. Solomatine, L. See, and R. Abrahart, “Data-driven modelling: Con-
cepts, approaches and experiences,” in Practical Hydroinformatics:
Computational Intelligence and Technological Developments in Water
Applications. 2008, pp. 17–30.

[24] K. A. Janes and M. B. Yaffe, “Data-driven modelling of signal-
transduction networks,” Nature reviews Molecular cell biology, vol. 7,
no. 11, p. 820, 2006.

[25] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, ser. Simutools ’08, 2008, 60:1–60:10.

986

