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ABSTRACT
The trigger for the short bursts observed in γ -rays from many magnetar sources remains
unknown. One particular open question in this context is the localization of burst emission to
a singular active region or a larger area across the neutron star. While several observational
studies have attempted to investigate this question by looking at the phase dependence of burst
properties, results have been mixed. At the same time, it is not obvious a priori that bursts from
a localized active region would actually give rise to a detectable phase dependence, taking
into account issues such as geometry, relativistic effects, and intrinsic burst properties such
brightness and duration. In this paper, we build a simple theoretical model to investigate the
circumstances under which the latter effects could affect detectability of dependence of burst
emission on rotational phase. We find that even for strongly phase-dependent emission, inferred
burst properties may not show a rotational phase dependence, depending on the geometry of
the system and the observer. Furthermore, the observed properties of bursts with durations
short as 10–20 per cent of the spin period can vary strongly depending on the rotational phase at
which the burst was emitted. We also show that detectability of a rotational phase dependence
depends strongly on the minimum number of bursts observed, and find that existing burst
samples may simply be too small to rule out a phase dependence.

Key words: stars: magnetars – magnetic fields – gamma-rays: stars – X-rays: bursts.

1 IN T RO D U C T I O N

Magnetars, the most highly magnetized neutron stars (with dipole
fields �1013 G), are isolated stars powered primarily by magnetic
field decay (Thompson & Duncan 1993, 1995; Kouveliotou et al.
1998, 1999). One of their key characteristics is the sporadic emis-
sion of soft γ -ray bursts (for reviews of this specific aspect, see
Woods & Thompson 2006; Turolla, Zane & Watts 2015; Kaspi &
Beloborodov 2017). Durations and fluences vary, but most of these
bursts are short, lasting ∼0.01–1 s, less than a typical magnetar
spin period P ∼ 6 s. The slow decay of the strong magnetic field
is assumed to build up stresses in the system: stress release must
involve rapid reconfiguration of the external magnetic field, parti-
cle acceleration, and γ -ray emission. However, what triggers the
occurrence of individual bursts, the way in which a burst pro-
gresses, and the associated emission processes, remain very poorly
understood (Turolla et al. 2015). The failure point could be inter-
nal, within the crust of the star, or in the external magnetosphere
itself.

� E-mail: cpc.elenbaas@gmail.com

One question is whether the bursts are triggered within a spe-
cific active region, fixed in the rotating frame of the star. Some
crust zones, for example, are expected to be particularly prone to
magnetically induced faulting and yielding (see e.g. Gourgouliatos
et al. 2015; Lander et al. 2015; Thompson, Yang & Ortiz 2017).
Certain regions of the magnetosphere could also be more active
than others, in which case there may also be a preferred height
above the neutron star surface. Being able to identify whether this
is the case would certainly help in efforts to determine the burst
mechanism.

One way to determine this, suggested by Lyutikov (2002), is
to look at whether there is any rotational phase dependence to
the bursts. A number of observational studies have attempted
to investigate this, using various different measures such as the
phase dependence of the time at which the burst peak is recorded,
or the phase distribution of all of the burst photons. The evidence
for phase dependence using these measures is mixed (see Sec-
tion 2 for more details). What has never been done is to deter-
mine from a theoretical perspective the circumstances under which
bursts from a localized active region would actually give rise to a
detectable phase dependence. This will depend on geometry, gravi-
tational light-bending, any beaming factor associated with the burst
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Table 1. Summary of burst phase-dependence results in the literature.

Reference Source Dates of bursts Satellite/ nbursts Methodb

[dd/mm/‘yy] Instrumenta

Gavriil et al. (2004) 1E 2259+586 18/06/‘02 RXTE/PCA 80 (i)
Savchenko et al. (2010) SGR J1550–5428 22/01/‘09 INTEGRAL/ACS 84 (i)
Scholz & Kaspi (2011) (22/01–30/09)/‘09 Swift/XRT 303 (i)
Lin et al. (2012) 22/01/‘09 Swift/XRT 31 (i)

30/01/‘09
Collazzi et al. (2015) 03/10/‘08–17/04/‘09 Fermi/GBM 354 (i)
Mus et al. (2015) 22/01/‘09 RXTE/PCA 4 (ii)

06/02/‘09
30/03/‘09
11/01/‘10

Gavriil et al. (2002) 1E 1048.1–5937 29/10/‘01 RXTE/PCA 2 (ii)
14/11/‘01

Gavriil et al. (2006) 29/06/‘04 RXTE/PCA 1 (ii)
Dib et al. (2009) 29/10/‘01 RXTE/PCA 4 (ii)

14/11/‘01
29/06/‘04
28/04/‘08

An et al. (2014) (17–27)/07/‘13 NuSTAR 8 (ii)
Woods et al. (2005) XTE J1810–197 22/07/‘03 RXTE/PCA 6 (ii)

16/02/‘04
19/04/‘04
19/05/‘04

Gavriil et al. (2011) 4U 0142+61 (06/04–26/06)/‘06 RXTE/PCA 6 (ii)
Palmer (1999) SGR 1806–20 (10–15)/11/‘83 ICE 33 (iii)
Palmer (2002) SGR 1900+14 - - - -

aSpacecraft/instrument acronyms: Rossi X-ray Timing Explorer (RXTE), Proportional Counter Array (PCA), Nuclear Spectroscopic Telescope
Array (NuSTAR), International Cometary Explorer (ICE), Anti-Coincidence Shield (ACS), X-ray Telescope (XRT), Nuclear Spectroscopic
Telescope Array (NuSTAR), and Gamma-ray Burst Monitor (GBM).
bThe methods are specified in Section 2.

emission, the size of the burst sample for a given source, and the
intrinsic burst properties (e.g. brightness, duration). Under some
circumstances, bursts may well be visible throughout most of the
rotational phase cycle even if they do originate from a specific active
region.

In this paper we address this fundamental question of the cir-
cumstances under which emission from a localized bursting region
would be detectable as a rotational phase dependence according to
the measures used in the literature. We then revisit the observational
studies carried out to date to see what constraints they actually place
on the degree to which bursting might be localized. We also con-
sider the degree to which the rotational phase at which a burst is
emitted might affect the properties measured by an observer.

First, we provide an overview of magnetar burst phase-
dependence studies in the literature in Section 2. Different methods
have been applied to various sources in an effort to assess the (non-
)phase dependence of magnetar bursts. Next in Section 3, we briefly
outline the method through which we aim to answer the aforemen-
tioned questions. We choose to simulate sequences of elementary
bursts of which we can control the input parameters and study any
phase-dependent effects we may observe. The light-curve model is
treated in Section 4 and the simulations are described in Section 5.
We discuss the results of the simulations and assess the claims made
in the literature in Sections 6 and 7. We find that under certain condi-
tions the properties of the observed bursts may become significantly
phase-dependent. However, we also find that for a large range of
input burst parameters and configurations, a guaranteed detection of
phase dependence requires many more bursts than have commonly
been observed.

2 OVERV I EW O F PUBLI SHED BURST
PHASE-DEPENDENCE ANALYSI S

Here we provide a review of previous work where, given the ac-
quired data, the phase dependence of magnetar bursts has been
evaluated. We focus on how the data were obtained and processed,
and what method was used to determine the absence or presence of a
phase dependence in the burst occurrences or properties. In practice,
three methods have been applied: (i) searching for any significant
deviations from uniformity of burst occurrence and photon arrival-
time distributions against phase, (ii) searching for any correlation
between the phase at which bursts occur and the pulse maxima of the
(underlying) pulsed emission, and (iii) Fourier analysis on the burst
occurrence times in an effort to search for significant periodicities.
The latter has been applied only once; the first two are far more
common. It is worth mentioning that the first two methods depend
on the accuracy of the ascertained timing ephemeris. The longer
the time baseline spanned by the bursts, the greater the risk of un-
detected time anomalies, such as glitches or spin-down deviations,
that may undermine the inference of the phase. Table 1 provides a
summary of the references that have carried out phase-dependence
analysis of magnetar bursts.

The active phase of 1E 2259+586 on 2002 June 18 consisted of
80 bursts and was studied using method (i) (Gavriil, Kaspi & Woods
2004); it was claimed that the burst peak phase occurrences tended
to correlate with the intensity of the pulsed emission, yet no phase
dependencies were observed for the burst durations, fluences, peak
fluxes, and rise/fall times.

In excess of 300 bursts were observed from SGR J1550–5428
between 2008 March and 2010 January and many of those bursts
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were detected by multiple space-based telescopes simultaneously.
Savchenko et al. (2010) found that the burst start times (the moment
the burst exceeds 5σ above background) of 84 bursts, observed with
the Anti-Coincidence Shield (ACS) aboard the INTEGRAL space-
craft, appear to be distributed randomly across phase, i.e. no signif-
icant departure from the mean bursts per phase bin was identified.
Scholz & Kaspi (2011) and Collazzi et al. (2015) studied the burst
peak times of, respectively, 303 and 354 bursts, and both found no
significant (>3σ ) deviations from the mean number of burst peaks
per phase bin. Scholz & Kaspi (2011) however do show that the
phase-folded photon times of arrival of the bursts exhibit an ap-
parent pulse which has an offset with respect to maximum of the
associated quiescent pulse profile. Lin et al. (2012) study a sample
of 31 bursts and similarly find that the burst count distribution is
not uniform across phase. Moreover, they find that the phase proba-
bility density anti-correlates with the phase profile of the persistent
emission (with a correlation factor of −0.5 and chance probability
of 3.4 × 10−2), which may suggest that the burst emission region is
distinct to that of the persistent emission. Contrary to these results
however, Collazzi et al. (2015) do not find a significant (>3σ ) pulse
shape in the epoch folded burst emission light curves. Note that the
data set used by Lin et al. (2012) constitutes a subset of the data
used by Collazzi et al. (2015).

A total of 12 bursts from 1E 1048.1–5937 were analysed using
method (ii); 4 of which were observed with RXTE/PCA between
2001 October 29 and 2008 April 28 (Gavriil, Kaspi & Woods 2002;
Gavriil, Kaspi & Woods 2006; Dib, Kaspi & Gavriil 2009) and 8 of
which were observed with NuSTAR in 2013 July 17–27 (An et al.
2014). It was determined that the majority of the bursts1 observed
with RXTE/PCA had a probable chance alignment with pulse max-
ima of less than 0.01. For the latter eight bursts from the same
source however there is no evidence for a preferred phase occur-
rence. Six bursts from XTE J1810–197 observed with RXTE/PCA
were also studied with method (ii) (Woods et al. 2005). These bursts
consisted of individual burst spikes, which in turn occurred near the
corresponding pulse maxima of the source, either leading or trail-
ing. A chance alignment of these spikes with the pulse maxima was
estimated at roughly 0.004. Gavriil, Dib & Kaspi (2011) studied
six bursts of 4U 0142+61 observed with RXTE/PCA in 2006 from
April to June. They found that several bursts appear to occur near the
maxima of contemporaneous folded pulse profiles (no significance
criteria are specified in the reference). They argue that this may
indicate that the bursts comprise extreme episodes of local transient
emission sites.

Palmer (1999, 2002) studied the burst properties of SGR 1806–20
and SGR 1900+14, where for the former source it was found that
active bursting episodes emerge from local active regions character-
ized as ‘relaxation systems’. From a larger burst sample, a group of
33 bursts was identified as belonging to a single relaxation system.
Method (iii), i.e. Fourier analysis on the burst occurrences of this
group, revealed no apparent modulation at the rotation frequency of
the NS, indicating the lack of a phase dependence.2

1 Dib et al. (2009) discuss the four bursts from AXP 1E 1048.1–5937 and
note that only three of them occur near pulse maximum, whereas the fourth
burst does not.
2 No further details of the analysis procedure on the SGR 1806–20, such
as the applied nominal threshold to determine significance, are given in the
article. The phase-dependence analysis procedure of the SGR 1900+14 data
is also not described.

Here we will focus mainly on the (non-)uniform phase occurrence
of burst peaks as a proxy for the phase dependency of magnetar
bursts. We briefly discuss the use of alternative methods in Section 7.

3 M E T H O D O L O G Y

To understand how the observed emission may depend on the ro-
tational phase, we intentionally introduce a phase dependency by
fixing the burst location to a certain region or burst patch on the mag-
netar surface and then set out to describe and simulate the process
from emission, where we control the input parameters, to detec-
tion and characterization. Subsequently, we can study the effects
of a certain configuration on the burst parameters by investigating
the phase distributions of the observed burst properties. Moreover,
we can establish detectability criteria for the phase dependency for
certain input values/distributions and system configurations.

In order to do so, we require a light-curve model that describes
how the burst emission is modified depending on the location of the
bursts and additional system parameters, e.g. the inclination angle
to the observer and compactness of the source. The latter parameter
will reshape the trajectory of emitted photons through gravitational
light bending.

In Section 4 we ascertain an expression that describes the fraction
of rays, i.e. paths along which the emitted photons propagate, that
extend out from the burst location and intersect with an observer at
infinity. Subsequently, in Section 5, we simulate sequences of bursts
and investigate how the burst properties are modified through the
correction of the burst intensity by the aforementioned expression.

4 LI G H T C U RV E M O D E L

In the following we adopt natural units, i.e. G = c = 1, and the
spatial spherical coordinates (r, ϕ, θ ), where ϕ is the polar angle to
the y-axis and θ is azimuthal angle to the z-axis. Since magnetars
rotate slowly (typically |�| ∼ 10−1 rad s−1), they can be considered
to be almost spherically symmetric. Accordingly, we may assume
that the metric external to the star is approximately given by the
Schwarzschild space–time solution,

ds2 = −A(r)dt2 + A−1(r)dr2 + r2
(
dϕ2 + sin2 ϕ dθ2

)
(1)

where A(r) = (1 − RS/r), and RS = 2M the Schwarzschild radius,
with M corresponding to the gravitational mass of the compact
object. To model the effect of gravitational light bending on the burst
emission, we consider the configuration illustrated in Fig. 1, which is
based on the work done by Pechenick, Ftaclas & Cohen (1983). The
stellar surface is located at a distance R from the origin; for neutron
stars, R lies roughly in the range 2.5 − 4RS. For now we assume
that the burst emission originates at3 r = R over a circular patch of
angular radius ψ centred at point p(R, ϕ, θ ) with total intensity I.
Depending on the burst emission mechanism, I may be anisotropic
and depends on δ ∈ [0, π ), i.e. the angle between the normal vector to
the stellar surface n̂ and the outgoing emission vector k̂R . The latter

3 Note that here we only consider the case where burst emission escapes
from the system at the stellar surface (as it would from a trapped fireball,
e.g., due to the reduced scattering opacity close to the surface; Thompson &
Duncan 1995). It is for surface emission that the effects of GR will be most
significant. We argue that bursts that occur high-up in the magnetosphere will
be much less affected by the effects of GR or occultation of the star itself, and
thus may exhibit weak to no phase-dependent properties. In effect, we are
considering the most optimistic case for the detection of phase-dependent
effects.
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Figure 1. Schematic representation of null geodesic G connecting the burst patch, centred at point p(θ0) of angular width ψ , with the observer. The observer
is set in the +z-direction, where the z-axis makes an angle χ with the rotational axis of the neutron star (NS) �. The normal vector to the NS surface n̂ at p is at
an angle α with � and at an angle θ0 with the observer’s line of sight, where the latter depends on the rotational phase of the NS, i.e. θ0 = θ0(φ) as prescribed
by equation (16). In a stationary frame at r = R, photons radiate from the burst location (along k̂R) at and angle δ to the normal. The intensity of the source
may be isotropic or beamed I = I(δ), depending on the underlying emission mechanism and properties of the emitting region.

lies at r = R along the associated null geodesic G of the outgoing
emission, which in turn intersects with the observer at r = r0, where
k̂R → k̂. We presume that the region r < R is opaque and r > R
is entirely transparent. Moreover, due to the comparatively long
rotation period of magnetars, we may neglect certain corrections,
such as oblateness of the stellar surface, light travel-time delays,
and Doppler effects, which become significant for NSs with |�| �
1 rad s−1 (e.g. Morsink et al. 2007).

The Schwarzschild solution admits four Killing vectors associ-
ated with conserved quantities that emerge from symmetries inher-
ent in the solution for which,

Kμẋμ = constant, (2)

where ẋμ = dxμ/dλ, with λ is some affine parameter. Considering
the orbital motion of a photon with tangent 4-vector V μ = ẋμ in the
equatorial plane, i.e. ϕ = π/2, the Schwarzschild solution admits
two Killing vectors

εμ = (∂t )μ = (−A(r), 0, 0, 0), (3)

Jμ = (∂ϕ)μ = (0, 0, 0, r2), (4)

associated, respectively, with conservation of energy and the mag-
nitude of angular momentum. Accordingly, we may define

εμẋμ = −A(r)V t ≡ −1, (5)

Jμẋμ = r2V θ ≡ b, (6)

where b ≥ 0 denotes the impact parameter of the photon trajectory,
i.e. the null geodesicG. Since ẋθ = 0 and gμνẋ

μẋν = 0 for massless
particles, we find that the tangent 4-vector of an outgoing photon is
given by,

V μ =
(
A−1(r),

√
1 − b2

r2
A(r), 0,

b

r2

)
. (7)

Setting b = 0, we obtain the tangent 4-vector of a radially outgoing
photon,

Wμ = (A−1(r), 1, 0, 0). (8)

A stationary observer with 4-velocity

Uμ = (A−1/2(r), 0, 0, 0), (9)

will observe an angle

cos ξ =
√

1 − b2

r2
A(r), (10)

between the photons prescribed by Vμ and Wμ (Pechenick et al.
1983). Note that n̂ · k̂R = cos δ = cos (ξ |r=R), such that we may
write

δ(b) = arcsin

(
b

bmax

)
, with bmax = R

A1/2(r = R)
. (11)

The total angular deflection of G, which determines the ‘bending’
of the photon trajectory from the surface patch to the observer, is
given by

θ∗(b) =
∫ r0

R

b

r2

[
1 − b2

r2
A(r)

]−1/2

dr. (12)

Incidentally, the total coordinate light travel time along G is given
by

T∗(b) =
∫ r0

R

A−1(r)

[
1 − b2

r2
A(r)

]−1/2

dr. (13)

The difference in travel time between radially emitted photons
(with b = 0) and those with an arbitrary impact parameter can be
estimated accordingly,

�t∗(b) =
∫ r0

R

A−1(r)

{[
1 − b2

r2
A(r)

]−1/2

− 1

}
dr. (14)

The maximum travel time delay then for a typical NS with
R = 2.5 RS (R = 106 cm, M = 1.5 M
), is �t∗(bmax) �
6.7 × 10−2 ms � P ∼ 6 s.

To an observer in the +z-direction, the system is axisymmetric
around the z-axis, such that the location of the burst patch p can be
uniquely described by θ0. The angle between the observer’s line of
sight and the rotation axis of the neutron star � is denoted by χ .
Furthermore, the angle between the location of the burst patch and
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� is given by α. Accordingly, depending on the rotational phase of
the neutron star,

φ(t) = 2πt

P
, (15)

the angle between the observer and burst patch θ0 is given by the
relation

cos[θ0(φ)] = cos χ cos α + sin χ sin α cos φ. (16)

The observed brightness is the integral of the intensity at the
observer,

dIobs = I (r0, �
′)d�′ = A2(r = R)I (R, �′)d�′, (17)

over the solid angle subtended in the observer’s sky,

d�′ = sin θ ′dθ ′dϕ′ � θ ′dθ ′dϕ′. (18)

Due to the axisymmetry dϕ′ = dϕ ≡ �(θ∗, θ0), where we define the
polar differential distance as the function �(θ∗, θ0), which under
the conditions θ0 + ψ ≤ θ∗ ≤ π and θ0 − ψ ≥ 0 is given by the
following expression:

�(θ∗, θ0) =

⎧⎪⎨
⎪⎩

2 arccos
(

cos ψ−cos θ0 cos θ∗
sin θ0 sin θ∗

)
if θ0 − ψ ≤ θ∗
≤ θ0 + ψ,

0 otherwise.

(19)

Consequently, together with θ ′ = ξ and equation (10) evaluated at
r0 → ∞, we obtain

d�′ � �[θ∗(b), θ0] ξdξ � �(b, θ0)

r2
0

b db. (20)

We write the brightness of the source as

I (R,�′) = I0f [δ(b)], (21)

with the beaming functions given by f(b). Currently, we do not have
a physical model for the shape of the beaming function, which will
most likely depend on the radiative transfer properties of the local
magnetic field. Accordingly, the influence of the magnetic field on
the light trajectories is ignored for now. An example of a more
realistic model was considered by van Putten et al. (2016) in the
case of fireball beaming. Here, for descriptive purposes, we consider
a Gaussian shape for the beaming function,

f [δ(b)] =
⎧⎨
⎩

1 isotropic,√
π

2σ 2
b

erf
(

π

2
√

2σb

)−1
exp

(
− δ(b)2

2σ 2
b

)
beamed,

(22)

where σ b parameterizes the beam width. We neglect rotational aber-
ration of light effects, since the star rotates slowly. Finally, we find
the expression for the observed intensity of the source

Iobs(θ0) = I0

(
R

r0

)2

κ(θ0), (23)

where we define

κ(θ0) ≡
(

R1/2

bmax

)4 ∫ bmax

0
f [δ(b)] �(b, θ0) b db. (24)

Fig. 2 shows the observed burst emission Iobs as a function of burst
patch location θ0 for a compact object with R = 2.5 RS. In this case
the size of the patch is ψ = 1◦. We consider the observed intensity
for the case of isotropic and beamed emission. Note that the location
of the terminator lies ‘behind’ the star, i.e. beyond θ0 = π/2, at θ0 �
0.72π . At this angle, only photons with an impact parameter of bmax

� 3.23RS reach the observer. Note that the beamed emission is more

Figure 2. Burst emission as a function of the angle between the observer
and the burst location, parametrized by θ0 (see Fig. 1) for a burst spot area
of ψ = 1◦. The solid (dashed) curves denote emission from an isotropic (a
beamed) source. A beam width of σ b = π/6 was used. The black curves
represent emission from a compact object with R = 1.6 RS (close to the most
extreme case, i.e. R > 1.5 RS). The magenta curves denote the emission from
a typical neutron star R = 2.5 RS (R = 106 cm, M = 1.5 M
). The blue curves
denote the emission from a non-relativistic source R � RS, i.e. if we neglect
the GR light bending effects. The dotted lines indicate the location of the
terminator, respectively, at θ0 = 0.5π and θ0 ∼ 0.72π for R � RS and
R = 2.5 RS, beyond which the burst patch is invisible. Note that emission is
always visible in the R = 1.6 RS case, regardless the location of the burst,
i.e. ∀θ0. Moreover, in this extreme case the intensity of the burst patch is
greatly amplified at θ0 → π due to gravitational lensing effects. This plot
is similar to fig. 4 in Pechenick et al. (1983).

prominent at θ0 = 0 and drops off faster than the isotropic emission
with increasing θ0. For comparison, we plotted the emission profiles
of sources with R = 1.6 RS and R � RS, where the former is close to
the most extreme case, i.e. R > 1.5 RS and the latter approximates
flat spacetime.

In the simulations we concentrate on the relative changes in
intensity between the input and observed burst. Accordingly, from
equations (16) and (24), we define

κ∗(φ) ≡ κ[θ (φ)]

κmax
, (25)

which depends on the angles χ , α, and the phase of the neutron star,
and describes the fraction of rays that intersect with the observer
at infinity, from the entire ray-bundle that extends outwards from
the burst patch. In the following section, we use this expression
as our measure for how the burst intensity is modulated. Varying
χ separately from α, or vice versa, acts as a multiplicative factor
to the absolute intensity. Since, we only consider the fractional
intensity, we may explore the parameter space of these angles by
setting χ = α. Fig. 3 illustrates the shape of κ∗(φ) for R = 2.5 RS

in four different angle configurations, in the case of both isotropic
and beamed emissions.
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1276 C. Elenbaas, A. L. Watts and D. Huppenkothen

Figure 3. Fraction of rays that intersect with the observer at infinity, from
the entire ray-bundle that extends outwards from the burst patch, i.e. κ∗(φ).
The solid (dashed) curves represent isotropic (beamed, with σ b = π/6)
emission from a source with R = 2.5 RS. The colours represent four different
geometries, given by χ and α.

5 SI M U L ATI O N S

Per simulation run we produce a sequence of n bursts where we
control the input parameters of the bursts and the system. Nonethe-
less, we treat the detection of individual photons, which are entirely
described by their times-of-arrival (TOA), in a probabilistic fashion.

We assume for simplicity that a single magnetar burst can be
modelled with a exponential rise/exponential decay profile that al-
lows for asymmetry, i.e. the rise time and fall time may be different.
When simulating photons emitted at the source, this corresponds to
drawing N random photon times-of-emission (TOE) from a skewed
Laplace distribution,

pTOE(t) = 1

(1 + s)τ

{
exp [(t − t0)/τ ] if t < t0,

exp [−(t − t0)/(sτ )] if t ≥ t0,
(26)

where τ denotes the exponential rise time of the burst, (sτ ) the
decay time, with s the skewness factor, and t0 the peak time of the
burst. The profile of a simulated burst is shown in Fig. 4. We delib-
erately adopt an oversimplified burst profile to better understand the
differences between the input and output data. Huppenkothen et al.
(2015) decompose complex magnetar bursts, observed from SGR
J1550-5418, into several spike-like components, which in turn are
modelled with a similar profile as in equation (26). In this paper,
we assume that a burst can be represented as a single spike, as a
simple model that lets us explore the relevant effects. Note that we
define the duration of the burst, T90, as the time it takes for the
fluence to increase from 0.05 to 0.95 of the total burst fluence. We
fix the compactness of the source to R = 2.5 RS, corresponding to a
typical neutron star with R = 106 cm and M = 1.5M
, and set the
rotation period to P = 6 s. We choose a light-curve bin width, δt, and
background count level, b, such that the background count rate ap-
proximates that from Fermi/GBM data (Huppenkothen et al. 2015),
i.e. ζ GBM ∼ 318 counts s−1. A list of the simulation parameters is
given in Table A1.

5.1 General simulation procedure

Here we proceed to describe in more detail the general form of a
simulation run step by step:

Figure 4. Profile of an input burst, i.e. the photon emission rate at the burst
patch, where t0 represents the time at which the burst peaks, A denotes the
burst amplitude, τ denotes the rise time, τ s parameterizes the decay time,
determined by s the skewness parameter for a given τ . For s > 1 (s < 1) the
burst rises faster (slower) than it decays. The burst duration is given by T90,
which is defined as the time the fluence increases from 0.05 to 0.95 of the
total burst fluence; the interval T90 contains 0.90N photons.

(I) We decide on the number of bursts n we wish to produce per
simulation run and set the inclination angle of the source χ . Next,
we assign values to the burst parameters ψ , α, N, t0, τ , s, and T90,
where the latter three parameters cannot be defined independently
of each other. In the following simulation runs, described in Sec-
tions 5.2, 5.3, and 5.4, we only consider symmetric input bursts,
s = 1, with a size of ψ = 1◦, and draw their peak time from a uni-
form distribution, i.e. t0 ∼ Uniform(0, P), where P is the rotation
period of the magnetar which we set to P = 6.

(II) We generate a single burst by drawing N photon emission
times (TOEs) from pTOE(t): We draw random numbers from a uni-
form distribution Uniform(0, 1) and transform these values to follow
the required skewed Laplace distribution by using the inverse cu-
mulative distribution function of the latter, i.e. the percent point
function,

TOE(x) =
{

t0 + τ ln [(1 + s) x] if x < (1 + s)−1,

t0 − sτ ln
[(

1 + s−1
)

(1 − x)
]

if x ≥ (1 + s)−1.

(27)

(III) Using equation (15), we determine the phase of each TOEi,
i.e. φi. Whether an emitted photon reaches the observer depends
on whether the ray, along which the photon propagates, intersects
with the detector, given by κ∗(φi), which denotes the fraction of
photons directed into our line of sight. In order to decide whether
a given photon intersects with the detector, we use rejection sam-
pling: for each TOEi we generate a latent variable z drawn from
p(z) = Uniform(0, 1). We only keep the TOEi if z < κ∗(φi).4

(IV) The TOEs that we save are detected by the observer. A
detected photon is recorded as a count with a corresponding TOAi,

4 If no burst photons are detected, i.e. Ndet = 0, we move on to the next burst
[step (II)].
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Rotational phase dependence of magnetar bursts 1277

where the TOAi = TOEi of the respective photon, since we consider
a perfect detector and may neglect the distance to the source and
gravitational time-delay effects (see Section 4). Furthermore, we
add background counts or TOAs uniformly to the detected TOA
data from the burst (with length Ndet ≤ N), such that the mean
background count rate becomes approximately ζ .

(V) We bin the total TOA data in Nbins time bins of length δt,
whereby the counts in each bin follow Poisson statistics. We pro-
ceed by applying a similar burst identification algorithm as used by
Gavriil et al. (2004), assuming that we can infer the background
count rate to be ζ , yet have no prior knowledge of the burst and
system input parameters. The probability of the number of counts
ki in the ith bin occurring is given by the Poisson distribution,

Pi = μki e−μ

ki!
, (28)

where μ represents the mean count level, which in our case will be
b = ζ δt. Bins for which

Pi ≤ 3 × 10−3N−1
bins (29)

are recorded as significant departures from the mean, where we
have corrected for the number of trails by dividing by Nbins, i.e.
the total number of bins searched over. From these, the time bin
containing the maximum departure ysig is labeled as t

sig
0 . The burst

edges, labeled as tin and tout, are ascertained by making use of a
running mean, i.e. when the mean count level of an interval μ∗ of
�Tinterval = 0.25 s, moving outwards in steps of δt on both sides of
t

sig
0 , falls below b∗ = 1.1b, the burst edges are then given by the

centre time of the respective intervals, tin before and tout after the
burst. The duration of this interval is denoted �T = |tin − tout|.

(VI) We fit the light curve of any identified bursts with the fol-
lowing burst model,

m(t) = NpTOE(t | t0, τ, s) + ζ, (30)

using an L-BFGS-B constrained optimizer (Zhu et al. 1997) to de-
termine the maximum (Poisson) likelihood, whereby we fix the
background parameter ζ and provide initial guesses for the remain-
ing parameters:

t init
0 = t

sig
0 , (31)

τ init = (
t

sig
0 − tin

) [
ln

(
ysig

b∗

)]−1

, (32)

s init = 1, (33)

and Ninit is defined as the number of counts in the interval �T minus
the background counts,5 i.e. ζ�T. After the fit, we delete the bins
in �T from the light curve, and repeat steps (V) and (VI) until no
significant departures from the mean, i.e. μ = b, are recorded.

(VII) We return to step (II) until we have generated the pre-
defined number of bursts n. Note that the number of observed
bursts might be different, since bursts might go undetected, or be
interpreted as multiple separate bursts. Moreover, some identified
‘bursts’ may simply be significant statistical deviations from the
background level. However, according to the condition stated in
equation (29), we only expect this to be the case in ∼0.3 per cent of
the input bursts.

5 If N init < y
sig
0 , we set N init = (1 + sinit)τ inity

sig
0 /δt .

Figure 5. Folded profiles of input bursts of the initial simulation run. We
consider symmetric bursts of three separate durations. Here the rise-time τ

is determined by the values for s and T90. We choose N such that the burst
amplitude is A = 104 photons s−1 at t0.

Table 2. Input parameters for Run 1, consist-
ing of 12 separate simulations. We consider
a constant input burst profile with peak times
distributed uniformly across phase. Per sim-
ulation we vary the burst duration T90, and
angles χ , α, where we set χ = α (see Sec-
tion 4).

Parameter Value

n 104

χ , α (◦) 30, 45, 60, 90
A (photons s−1) 104

T90 (s) 0.15, 1.5, 3.0
δt (s) 200−1

5.2 Run 1: initial simulation run

We start with the simplest scenario, where we consider simulations
of sequences of identical bursts, referred to as Run 1. Per simulation
we fix the values for χ , α, ψ , s, and T90. The latter two parameters
determine the value of τ . Subsequently, we define N using the
condition that the input burst amplitude A is 104 photons s−1. We
run simulations for three separate burst durations (see Fig. 5) and
vary the angles χ and α, to study their effects on the observed
quantities.

We concentrate on the difference in input and observed best-
fitting value for the time of the burst peak (respectively, t0 and tbf

0 ),
where the difference is parametrized as �t0 ≡ tbf

0 − t0, the rise-time
τ , skewness factor s, and burst duration T90. The input values of the
latter three parameters are denoted as τ 0, s0, and T90,0. All input
parameters of Run 1 are listed in Table 2.

5.3 Run 2: T90-distribution

Next we perform a simulation run, Run 2, where in step (I) of
the general simulation procedure (Section 5.1), we draw the burst
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1278 C. Elenbaas, A. L. Watts and D. Huppenkothen

Table 3. Input parameters for Run 2, con-
sisting of four separate simulations. The in-
put burst durations T90 are drawn from a
lognormal distribution with lower and upper
cut-off, respectively, at T min

90 = 300−1 s and
T max

90 = 3 s. Per simulation run we vary the
angles χ , α, where we set χ = α.

Parameter Value

n 104

χ , α (◦) 30, 45, 60, 90
A (photons s−1) 104

T90 (s) ∼LogNormal(T90, σ
2
T90

)
T 90 (s) 0.1
σT90 (s) 1
δt (s) 1400−1

Table 4. Input parameters for Run 3, con-
sisting of four separate simulations. The in-
put burst amplitudes A are drawn from a
power-law distribution [equation (34)], with
Amin = 5 × 102 photons s−1, and Amax = 106

photons s−1. Per simulation run we vary the
angles χ , α, where we set χ = α.

Parameter Value

n 104

χ , α (◦) 30, 45, 60, 90
A (photons s−1) ∼Powerlaw(�)
� 5/3
T90 (s) 1
δt (s) 200−1

duration T90 for each individual burst from a lognormal distribution
centred at T 90 = 0.1 s, with a width of σT90 = 1 (e.g. Göğüş et al.
2001), and lower and upper burst duration cut-off at, respectively,
T min

90 = 300−1 s and T max
90 = 3 s < P. Fixing the input burst ampli-

tude at A = 104 photons s−1, as done in Run 1, we find that the
rise time of the shortest admissible burst duration, i.e. 300−1 s, is
τmin ∼ 7.2 × 10−4 s. Accordingly, we set δt = 1400−1 s for this
simulation run. The input parameters are summarized in Table 3
and the results are presented in Section 6.2.2.

5.4 Run 3: burst amplitude distribution

In this simulation run we fix the burst duration to T90 = 1 s and
draw an amplitude A for each individual burst from a power-law
distribution,

dn

dA
∝ A−�, with Amin < A < Amax, (34)

where Amin and Amax represent the limits of the distribution, and
� denotes the power-law index. Note that the number of emitted
photons during the burst N are linearly proportional to A, such that
these are distributed in a similar fashion.

In accordance with the observation of the energy distributions
of magnetar bursts, we choose � = 5/3 (e.g. Cheng et al. 1996).
The input parameters are summarized in Table 4 and the results are
presented in Section 6.2.3.

6 R ESULTS

6.1 Predictions for run 1

To better understand the results of the simulations, we first examine
how κ∗(φ) will affect the burst parameters. In Fig. 6, we plot the
predicted phase distributions of the burst parameters (rows) for the
three separate burst durations (columns) of Run 1. These curves
were obtained by fitting the burst model to the theoretical light
curve that results when the input model (see Fig. 5) is modulated,
for a given phase, by the appropriate κ∗(φ) but without taking into
account any photon noise or detectability effects (which are treated
properly in the full simulations). It gives an idea of the general
trends expected, but no idea of the scatter. Furthermore, we only
fit modulated burst profiles with a peak rate of �600 counts s−1,
since ones with lower peak rates will likely go undetected in the
simulations.

Based on the predicted curves, we expect that the parameter
distributions that we obtain from Run 1 will deviate from their
input parameters more strongly for longer burst durations T90 and
larger angles χ and α. Approaching φ = π from below (above), we
find that the bursts will appear to occur earlier (later), rise slower
(faster), to become more skewed, and last longer, than their input
counterparts. Note furthermore that, in contrast to the predicted
phase distributions of N, �t0, s, and T90, the phase distribution of
τ is neither symmetric nor perfectly anti-symmetric about φ = π .
The results of Run 1 are presented in Section 6.2.1.

6.2 Burst properties from simulations

6.2.1 Run 1: initial simulation run

In Figs 7, 8, and 9, we plot the phase distributions (left) and pa-
rameter densities (right) of the obtained bursts parameters for three
separate input burst durations T90,0, respectively, 0.15 s, 1.5 s, and
3.0 s. Table 5 lists the amount of bursts that were identified per
configuration.

As predicted, we find that especially for longer duration bursts
and larger angles, the phase dependence of the burst parameters
becomes more pronounced. Evidently this is much less the case
for bursts with T90 � P – the parameter densities remain strongly
peaked around their input values (e.g. Fig. 7). Nevertheless, in
those cases around φ ∼ π the bursts still go undetected for large
values of χ and α, because either no rays extending from the burst
patch intersect with the detector during the burst (i.e. the bursts are
invisible) or they do not significantly stand out from the background
level. The results confirm that when approaching φ = π from below
(above), the bursts will appear to occur earlier (later), rise slower
(faster), and last longer than their input counterparts. Moreover,
the predicted asymmetric profile of the rise-time phase distribution
(most notably in the parameter densities of Figs 8 and 9) is clearly
observed. Looking at the parameter densities, it appears that the
rise times of bursts going out of view are more spread out, yet
those of bursts coming into view are more clustered. This is in
accordance with the predictions; the initial slope of the rise-time
phase distribution (from ∼0 − 4π/5) is steeper compared to the
final slope (from ∼6π/5 − 2π ). The predicted values between
∼4π/5 − 6π/5 are produced less well in the simulations, since the
amount of detected photons is minimal around φ = π , complicating
burst identification and characterization. We find that both in the
predictions and, even more so, in the simulations that the majority
of observed bursts have τ/τ 0 < 1. Since, T90 ∝ τ we also find for
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Rotational phase dependence of magnetar bursts 1279

Figure 6. Predicted phase distributions of burst parameters (top to bottom) for the three bursts (left to right) studied in the initial simulation run, Run1. From
top to bottom: best-fitting burst counts, time difference between burst input t0 and the best-fitting value (�t0), best-fitting burst rise time τ , best-fitting skewness
factor s, and burst duration T90, inferred from the latter τ and s (the input parameters are given by N0, τ 0, s0, and T90,0). The distinct colours represent different
values for the angles, χ and α. These curves were obtained by fitting the burst model to theoretical burst profiles (Fig. 5) that are modulated by κ∗ (equation 25;
Fig. 3), depending on their phase occurrence. We only proceed to fit the modulated profile if the peak rate is �600 counts s−1. Note that for longer burst
durations and larger angles, the best-fitting parameters deviate more from their input values.

most observed bursts that T90/T90,0 < 1, i.e. the bursts seem to last
shorter than their input counterparts.

In general, the observed scatter is likely due to photon noise
effects, which become most significant near φ = π . These effects
influence the efficacy of the burst-identification algorithm and the
observed burst morphology.

6.2.2 Run 2: T90 distribution

The results of Run 2, where we draw the burst duration for each
individual burst from a lognormal distribution, are shown in Fig. 10.
Table 6 lists the number of identified bursts per configuration. The
results closely resemble those of Run 1, with T90 = 0.15 s (see
Fig. 7). We only find weak phase dependencies that only become
noticeable for large values of the angles, χ and α. In Fig. 11,
the input (dotted histogram) and best-fitting (solid histogram) T90

distributions are shown for the four separate configurations. Notice
the small dearth of short duration bursts in each histogram; short
duration bursts contain fewer counts and may therefore be missed
by the burst-identification algorithm (step (V) in Section 5.1). We
furthermore find that there is a slight excess at T90 ∼ 0.6 s (although

not apparent when χ = α = 90◦), which is due to the fact that for
most observed bursts τ/τ 0 < 1 and T90 ∝ τ .

6.2.3 Run 3: burst amplitude distribution

The results of Run 3, where we draw the burst amplitude/number
of emitted burst photons for each individual burst from a power-law
distribution, are presented in Fig. 12. Table 7 lists the number of
identified bursts per configuration. We find much less spread in the
phase distributions of the parameters, compared to e.g. the results
from the 1.5 s burst in Run 1 (Fig. 8), however we do observe a
considerable amount of scatter. The latter is likely due to the fact
that the majority of input bursts (∼0.87) are low-amplitude bursts,
i.e. A � 104 photons s−1, which are more difficult to character-
ize, i.e. their morphology is relatively heavily affected by Poisson
noise. Fig. 13 displays the input and observed burst amplitude dis-
tributions. Despite a slight offset at larger angles, we find that the
slope of the distributions is reproduced by the observed bursts. Input
bursts with an amplitude �103 photons s−1 may go unidentified as
they will likely fall below the significance threshold of the burst
identification algorithm.
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1280 C. Elenbaas, A. L. Watts and D. Huppenkothen

Figure 7. Phase distributions (left) and parameter densities (right) of burst
parameters of Run 1 for an input burst of T90,0 = 0.15 s. The theoretical
predictions for these distributions are shown in Fig. 6.

Figure 8. Phase distributions (left) and parameter densities (right) of burst
parameters of Run 1 for an input burst of T90,0 = 1.5 s. The theoretical
predictions for these distributions are shown in Fig. 6.

Figure 9. Phase distributions (left) and parameter densities (right) of burst
parameters of Run 1 for an input burst of T90,0 = 3.0 s. The theoretical
predictions for these distributions are shown in Fig. 6.

Table 5. Number of identified bursts nid for
Run 1, per configuration. The input number
of bursts for each simulation run was n = 104.
We expect that ∼30 of the identified ‘bursts’
simply constitute statistical deviations that ex-
ceed the burst identification threshold (given
by equation 29).

T90 (s) χ = α (◦) nid

0.15 30 10 034
45 10 022
60 8875
90 6592

1.50 30 10 012
45 10 017
60 9940
30 7438

3.00 30 10 017
45 10 012
60 10 007
90 9553

6.3 Detectability of burst phase dependence

Here we set out to test the main method used in studies of burst
phase dependence to date, see Section 2. During the simulations
we determine and record the phase occurrence of the burst peak
φbf

0 , i.e. the phase occurrence of the best-fitting burst peak time tbf
0 .

After each burst we compile a distribution of the values for φbf
0

of all previous bursts up to the most recent one, and compare this
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Rotational phase dependence of magnetar bursts 1281

Figure 10. Phase distributions (left) and parameter densities (right) of burst
parameters of Run 2, where the input burst durations are drawn from a
lognormal distribution (see Fig. 11).

Table 6. Number of identified bursts nid for
Run 2, per configuration. The input number
of bursts for each configuration was n = 104.

χ = α (◦) nid

30 10 028
45 9871
60 7382
90 5971

Figure 11. Burst duration T90 distributions of four separate simulations
(with different values for χ and α) of Run 2. The dotted (solid) histograms
represent the input (observed) burst duration distributions. The slight dearth
of observed short duration bursts, present in each simulation, is simply due
to the fact that they consist of fewer counts and are therefore less likely to
be identified by the burst-identification algorithm.

Figure 12. Phase distributions (left) and parameter densities (right) of burst
parameters of Run 3, where the input burst amplitudes are drawn from a
power-law distribution (see Fig. 13).

Table 7. Number of identified bursts nid for
Run 3, per configuration. The input number
of bursts for each configuration was n = 104.

χ = α (◦) nid

30 6645
45 5831
60 4734
90 3717

Figure 13. Burst amplitude distributions of four separate simulations (with
different values for χ and α) of Run 3. The dotted (solid) histograms rep-
resent the input (observed) burst amplitude distributions. The cut-off of
observed low-amplitude bursts (at �103 photons s−1) is due to the fact
that the amplitude of these bursts likely occurs below the threshold of the
burst-identification algorithm.
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Figure 14. Evolution of the p-value against the number of bursts for three
separate burst durations (top to bottom) of Run 1. The distinct curves per
subplot represent different values for the angles χ and α. The horizontal
dashed line denotes the threshold level. The vertical dotted lines denote the
number of bursts at which the p-value drops below the threshold (see the
text for more details).

burst phase occurrence distribution to a uniform distribution using a
Kolmogorov–Smirnov (K–S) test, from which we obtain a p-value.
We set the significance threshold at a p-value of 0.003,correspond-
ing to a 0.3 per cent probability that the observed burst peak phase
occurrences are distributed uniformly across phase. To be clear,
we are simulating emission from a fixed point on the NS surface,
from which bursts are being emitted at random rotational phase.
The naive expectation that this would result in an observable phase
dependence most from the expected modulation of the intensity (see
Fig. 3) that results, for example, in missing some bursts emitted on
the dark side of the star.

In Fig. 14 we plot the evolution of the p-value against the number
of observed bursts up to that point in the simulation for the three
separate burst durations (from top to bottom) of Run 1. The different
curves per subplot correspond to different values of χ and α. The
horizontal dashed lines denote the threshold level and the vertical
dotted lines indicate the number of bursts at which the p-value of
a given simulation drops below the threshold level. Note that of
these 12 simulations, the p-value does not fall below the thresh-
old before 103 bursts for χ = α ≤ 45◦. Nevertheless, we do find
a decreasing trend for T90 = 3.0 s after ∼500 bursts, reaching the
threshold at ∼104 bursts (the length of the simulation), for those an-
gles. Remarkably, the p-value associated with the simulation where
T90 = 1.50 s and χ = α = 60◦ does not show a decreasing trend
before 104 bursts. The remaining configurations do drop below the
threshold fairly soon, i.e. after ∼20 − 150 bursts.

To determine the minimum number of bursts required to guar-
antee that the p-value drops below the threshold, we ran the

simulation per configuration Ns times, each time until the threshold
was reached, and recorded the number of bursts. Fig. 15 shows the
evolution of the p-value forNs = 10, 100, and 400 simulations, with
T90 = 0.15 s and χ = α = 90◦. We found that the maximum obtained
p-value (out of all Ns simulations for a given configuration) after a
specific number of bursts decreases at a certain rate (denoted by the
black markers). In Fig. 16, we plot the maximum p-value attained,
over Ns = 400 simulations per configuration, against the number of
bursts. Subsequently, we fit a straight line to the decreasing trends of
the log of the p-value and record the number of bursts at which these
lines intersect with the threshold level. Accordingly, we find an es-
timate for the minimum number of bursts nmin at which, assuming
a certain configuration, the observed φbf

0 distribution should devi-
ate significantly from a uniform distribution. If the φbf

0 distribution
does not significantly deviate from a uniform distribution after nmin

bursts, then the configuration will likely be such that the modulation
in intensity is less strong than assumed. The latter is dependent on
assumptions on the parameters that determine the shape of κ(θ0)
(equation 24).

For the burst durations and configurations that we study in Run 1,
we find for χ = α = 90◦ that nmin ∼ 100 bursts. For χ = α = 60◦, we
find nmin = 1446 bursts and nmin = 296 bursts, for T90 = 0.15 s and
T90 = 3.0 s, respectively. Yet, we do not find an nmin for T90 = 1.50 s,
since the attained maximum p-value does not exhibit a decreasing
trend before 103 bursts; consistent with the simulation run displayed
in the middle panel of Fig. 14. This is because the burst spot remains
(partially) visible throughout the NS’s rotation, such that enough
counts can be detected for the duration of the burst, and the fact
that the �t0 remains comparatively small, i.e. the corresponding
parameter density comprises a narrow peak (Fig. 8), in contrast to
e.g. the parameter density of the 3.0 s burst, which is much more
spread out (Fig. 9).

7 D I S C U S S I O N A N D C O N C L U S I O N

We have studied, from a theoretical perspective, the conditions un-
der which magnetar bursts from a predefined localized active region
or burst patch on the NS surface would give rise to a detectable phase
dependence. By adopting a straightforward input burst model, we
were able to examine the changes in the observed bursts after they
were modulated by the phase-dependent function κ∗(φ), which takes
into account the effects of gravitational light bending and depends
on the configuration of the system.

We found that the degree to which the inferred burst properties
become phase dependent is strongly contingent on the duration of
the bursts and geometry of the system; we find a stronger phase
dependency of the burst properties for longer duration bursts and
larger values of the angles χ and α. The former is because longer
bursts sample a wider range of photon trajectories and the lat-
ter is due to the fact that for larger values of χ and α the GR
effects become more significant. Furthermore, the majority of ob-
served bursts turn out to have τ/τ 0 < 1 and T90/T90,0 < 1, i.e.
they rise faster and appear shorter than their input counterparts.
Attempts to infer the properties of individual bursts with dura-
tions greater than ∼10−20 per cent of the spin period should cer-
tainly take into account potential distortion due to phase-dependent
effects.

Adopting a lognormal burst duration distribution that peaks at
T 90 = 0.1 s (as observed for well-sampled sources), from which
we draw the input duration for each individual burst, we found
that phase distributions of the parameters closely resembled those
of Run 1, for which T90 = 0.15 s. When considering a power-law
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Figure 15. Evolution of the p-value for Ns simulations for T90 = 0.15 s and χ = α = 90◦. From left to right we increase the value of Ns from 10, to 100,
to 400. The distinct coloured curves denote the evolution of the p-value for separate simulations. The black markers denote the maximum p-value that was
attained (out of all simulations) for a given number of bursts. The horizontal dashed line denotes the threshold value, the cyan dash-dotted curve represents the
fit to the decreasing trend of the log of the maximum p-values, and the vertical dotted curve denotes the intersection of the fit with the threshold level. The latter
occurs, from left to right, at nmin = 86, 95, and 104, respectively. The maximum p-values in the panel on the right are also plotted in the top panel of Fig. 16.

Figure 16. Maximum p-value attained, out of Ns simulations per configu-
ration, against the number of bursts for the three separate burst durations (top
to bottom) of Run 1. The horizontal dashed line denotes the threshold level,
the blue dash-dotted curves represent the fits to the decreasing trends, and
the vertical dotted lines denote the number of bursts where the fits intersect
with the threshold level.

distribution for the input burst amplitudes and burst duration of
T90 = 1 s, we observed a weak phase dependency of the burst
parameters and a considerable amount of scatter, which in turn is
caused by the large fraction of low-amplitude input bursts, which are
more affected by Poisson noise. We conclude that the observed dis-
tributions of burst properties from well-sampled sources are likely
not strongly distorted due to phase-dependent effects, by virtue of
being dominated by short bursts.

We studied the detectability of phase dependence, using the most
commonly-used measure (see Section 2) whereby one concentrates
on the phase occurrence of the burst peaks. In our set-up all bursts
originate at a specific small active region – in some respects the
most extreme phase-dependent scenario. However, rotational phase

dependence of the peak occurrences was not always apparent. We
found that one would require a minimum number of bursts for
certain input burst properties and a given system configuration, to
guarantee observing a phase dependence. Only in the case of the
most extreme geometries, i.e. χ = α > 60◦, does this approach the
burst sample sizes that were examined in the literature, which range
from tens to several hundred bursts. Studies that have not found a
phase dependence in the distribution of the burst peak occurrences
as yet (e.g. Savchenko et al. 2010; Scholz & Kaspi 2011; Collazzi
et al. 2015), might simply require a larger burst sample in order to
rule it out for certain geometries. For other geometries, however,
it will never be possible to rule out the presence of a burst phase
dependence.

In our study we have considered only a restricted range of sce-
narios, where the emission region is tied to the stellar surface. One
factor that we have not simulated in detail is that of any poten-
tial beaming of the burst emission. To offer brief insights for such
influences, we show in Fig. 17 the theoretical phase distributions
of the observed burst properties in the case of beamed emission
(equation 22 with σ b = π/6) from a burst with T90 = 1.5 s; the cor-
responding shape of κ∗(φ) is shown by the dashed curves in Fig. 3.
We compare it to its isotropic counterpart and find that the phase
dependency of the burst properties will be enhanced in the presence
of beaming.

The detectability of a burst phase dependence depends strongly
on the shape of κ∗(φ): the stronger the variation with φ the
greater the modification to the input burst profiles. Introducing
additional bursts patches or allowing for active regions to occur
at a certain height above the surface will cause the phase depen-
dence of κ∗ to decrease. A burst phase dependence in those cases
may then only become detectable if the emission is also strongly
beamed.

In this paper we have not studied the method whereby a phase
dependence is searched for in the epoch-folded photon times of
arrival. This method can, and should, be subjected to the same level
of scrutiny. An additional challenge with this method, however, is to
determine a proper false alarm rate. Straightforwardly looking for
deviations from uniformity of the times of arrival does not work,
since a single burst already consists a significant departure. One
must instead quantify the conditions under which one would detect
a burst photon phase dependence, even if the bursts originated at
random locations on or above the NS surface. We defer this topic
to future studies.

MNRAS 476, 1271–1285 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/476/1/1271/4848286 by U
niversiteit van Am

sterdam
 user on 09 April 2019



1284 C. Elenbaas, A. L. Watts and D. Huppenkothen

Figure 17. Predicted phase distributions of burst parameters in the presence
of beamed emission for a burst of T90 = 1.5 s (solid curves). Beaming is
described by equation (22), where we have set the beaming width σ b to π/6.
For comparison, the dotted curves represent the burst parameter distributions
for an isotropic burst with the same duration.
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A P P E N D I X : PA R A M E T E R TA B L E

Here we list brief descriptions of the simulation parameters and
their associated symbols (see Table A1).
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Table A1. A table of the simulation parameters appearing in Sections 5
and 6.

Symbol Description

n Number of input bursts
nid Number of identified bursts
nmin Number of bursts at which the p-value is

Guaranteed to drop below the threshold
R Neutron star radius
P Neutron star rotation period
ψ Size of the burst patch
χ Angle between NS axis of rotation and

the line-of-sight
α Colatitude of the burst patch
ζ Background rate
δt Light-curve bin width
b Background level
N Number of emitted photons
Ndet Number of detected photons
t0 Burst peak time
φ0 Burst peak phase occurrence
τ Rise-time
s Skewness factor
A Burst amplitude
Nbins Number of time bins
ysig Maximum departure amplitude
t
sig
0 Time bin with ysig

�T Time interval of an observed burst
tin, tout Limits of �T
μ Mean count level ∼b
μ∗ Running mean
�Tinterval Time interval over which μ∗ is estimated
�t0 Difference input and best-fitting burst peak

time: �t0 ≡ tbf − t0
T90 Burst duration
T 90 Mode of the duration distribution
σT90 Width of the duration distribution
T min

90 Minimum burst duration
T max

90 Maximum burst duration
� Power-law index of the amplitude

distribution
Amin Minimum burst amplitude
Amax Maximum burst amplitude
Ns Number of simulations

subscript ‘0’ Input parameter
superscript ‘init’ Initial guess
superscript ‘bf’ Best-fitting parameter

This paper has been typeset from a TEX/LATEX file prepared by the author.
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