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Abstract. States of self stress (SSS) are assignments of forces on the edges of a network that satisfy
mechanical equilibrium in the absence of external forces. In this work we show that a particular class of
quasilocalized SSS in packing-derived networks, first introduced by D.M. Sussman, C.P. Goodrich, A.J.
Liu (Soft Matter 12, 3982 (2016)), are characterized by a decay length that diverges as 1/

√
zc − z, where

z is the mean connectivity of the network, and zc ≡ 4 is the Maxwell threshold in two dimensions, at odds
with previous claims. Our results verify the previously proposed analogy between quasilocalized SSS and
the mechanical response to a local dipolar force in random networks of relaxed Hookean springs. We show
that the normalization factor that distinguishes between quasilocalized SSS and the response to a local
dipole constitutes a measure of the mechanical coupling of the forced spring to the elastic network in which
it is embedded. We further demonstrate that the lengthscale that characterizes quasilocalized SSS does
not depend on its associated degree of mechanical coupling, but instead only on the network connectivity.

1 Introduction

The unjamming point [1–4] marks the loss of solidity in
disordered materials that occurs by tuning some external,
macroscopic (e.g. deformation or confining pressure) [1] or
intrinsic, microscopic (e.g. the connectivity of a network)
control parameter [5]. While substantial progress in un-
derstanding the nature of the unjamming transition has
been achieved in recent years [6–10], several aspects of this
critical point are still debated.

One of the enduring open problems within the field of
unjamming concerns the identification of the various di-
verging lengthscales associated with this transition, and
understanding their dependencies on the relevant con-
trol parameters. Most previous observations focus on two
lengthscales, which follow different scaling laws with con-
nectivity z; the first length l∗ ∼ (z−zc)−1 with zc ≡ 2d̄ in
d̄ spatial dimensions emerges due to an interplay between
boundary constraints and bulk degrees of freedom. In [11]
it was first proposed that the length l∗ emerges as the
unjamming transition is approached in gently compressed
soft spheres, or in elastic networks. A point-to-set corre-
lation length that follows the same scaling ∼ (z − zc)−1

was extracted in [12] by fixing the forces that cross the
boundary of a square cavity in a packing and analyzing the
force-balance solutions inside the cavity. The length l∗ was
further identified in floppy materials [13] by freezing the
degrees of freedom outside a spherical shell, and decreas-
ing the size of the shell until the floppiness of the interior
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of the shell disappears. A dual protocol was applied in [14]
to soft-sphere packings in two dimensions, by eliminating
the interactions across the boundaries of a square zone,
and reducing the size of the zone until rigidity within the
zone is lost. In [15] it was claimed that the length l∗ can be
observed by considering the mechanical response to inflat-
ing a single particle in a packing of soft spheres. In [16] l∗

was argued to control fluctuations in coarse-grained elastic
moduli fields. More recently, the fluctuations of the me-
chanical response to nonlocal forcing in soft-sphere pack-
ings were analyzed and shown to exhibit a signature of
l∗ [17]. In [18] the length l∗ was shown to characterize the
spatial correlations of the expected variation of the shear
modulus of packing-derived random spring networks, in-
duced by the removal of a spring.

The second length �c ∼ (z − zc)−1/2 associated with
the unjamming transition characterizes the mechanical re-
sponse to various local and global perturbations, and was
shown to mark the crossover between atomistic-scale and
continuum-like mechanical responses. The length �c was
first observed in [19] by extracting the dominant wave-
length of vibrational modes of a packing of soft spheres
at the frequency scale ω∗ ∼ z − zc, in consistency with
later theoretical predictions [20] using effective medium
theory. In [13] the length �c was predicted to characterize
the response to local perturbations in floppy spring net-
works using similar theoretical tools. In [21] the length �c

was observed by considering a rescaled Debye-Waller fac-
tor in harmonic spheres at vanishing temperatures above
and below the jamming point. In [22] �c was observed
in the linear response to boundary perturbations in two
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and three dimensions. A more direct observation of �c was
made in [23] by considering the mechanical response to lo-
cal dipole forces in packings of harmonic discs and random
networks of Hookean springs. In [16] �c was shown to char-
acterize the transverse response to a point force. More re-
cently, the transverse nonaffine displacements fluctuations
in response to long-wavelength forcing were shown to ex-
hibit the scale �c in [17]. In [18] the length �c was shown to
characterize the spatial correlations of the expected varia-
tion of the bulk modulus of packing-derived random spring
networks, induced by the removal of a spring.

Other diverging lengths besides those mentioned above
have been identified in previous studies of jamming and
unjamming; some examples are the correlation length
of nonaffine displacements observed in strain-stiffening
floppy networks, shown in [24] to scale as (γc − γ)−1/2

in networks deformed away from the stiffening strain γc.
In [16] a length ∼ (z − zc)−0.4 was observed in the longi-
tudinal response to a point forcing in harmonic disc pack-
ings. In [17] a length ∼ (z−zc)−0.66 was shown to describe
the longitudinal compliance in harmonic sphere packings.
A length that follows this same scaling was shown in [25]
to characterize fluctuations of the connectivity of jammed
repulsive soft spheres. In [26] a length that character-
izes nonlocality in granular flows was observed to grow
with decreasing stress anisotropy μ towards the critical
μc (where flow ceases) as (μ − μc)−1/2.

In this work we focus on geometric properties of con-
tact networks formed in dense materials that can poten-
tially undergo an unjamming transition, such as packings
of grains, bubbles or droplets. In particular, we study the
lengthscale that characterizes quasilocalized states of self
stress as observed in packing-derived contact networks in
two dimensions. States of self stress (SSS) are assignments
of contractile or compressive forces on the edges of a net-
work, that satisfy mechanical equilibrium on the nodes of
the network [27]. They play an important role in deter-
mining the force chains in granular matter [28] and the
physics of topological metamaterials [29,30]. In random
networks with connectivities above the isostatic point zc

one expects the number of orthonormal SSS to be exten-
sive [31], and proportional to z − zc, if fluctuations in the
connectivity of the network are small [32].

In [31] (referred to as SUS in what follows) a particu-
lar construction of an orthonormal set of SSS was intro-
duced (see precise definitions in what follows); the set can
be defined given a choice of any edge of the network, such
that one SSS is quasilocalized on that particular edge, and
all other SSS have no component on that edge. In what
follows we refer to the quasilocalized member of the con-
structed orthonormal set of SSS as a quasilocalized state of
self stress (QLS). The spatial decay of QLS was argued in
SUS to be characterized by a length �QLS ∼ (z−zc)−0.8 in
two dimensions (2D), and �QLS ∼ (z − zc)−0.6 in three di-
mensions (3D). In [33] an explicit expression for QLS was
put forward, from which a relation between QLS in ran-
dom networks and the mechanical response to local dipo-
lar forces (referred to in what follows simply as the dipole
response) in Hookean spring networks can be directly es-

tablished. Based on this relation, it was argued in [33]
that the spatial decay of SSS should be characterized by
the same length �c ∼ (z−zc)−1/2 that characterizes dipole
responses as observed in [23], at odds with the observa-
tions of [31]. In [34] this disagreement is discussed, and the
authors conclude that it is “open to interpretation” which
of the scaling laws (z − zc)−1/2 or (z − zc)−2/3 better de-
scribes their data for the spatial decay of QLS. It was
further suggested in [34] that the normalization factors
(defined and discussed in detail in what follows) that dis-
tinguish between QLS and dipole responses, which lead to
a different ensemble averaging of these two objects, could
alter the scaling with connectivity of the lengthscale that
characterizes these objects’ spatial decay.

Here we resolve the controversy described above and
provide direct numerical evidence that the lengthscale
that characterizes the spatial decay of QLS in packing-
derived networks is indeed �QLS ∼ �c ∼ (z − zc)−1/2, as
proposed in [33], and at odds with the observations of [31]
and with the claims made in [34]. We go further and con-
firm that the normalization factors that were neglected in
the argumentation of [33] do indeed not affect the scaling
with connectivity of the discussed lengthscales. We show
that the spatial decay of QLS with very large normaliza-
tion factors exhibits the same lengthscale as the spatial de-
cay of QLS with typical normalization factors, and further
demonstrate the lack of correlation between this length-
scale and normalization factors by examining the spatial
patterns of dipole responses.

Our work is structured as follows; in sect. 2 we re-
view the theoretical formalism presented in [33] and [23],
within which QLS and the mechanical responses to lo-
cal dipolar forces in relaxed Hookean spring networks are
defined, and we discuss various mechanical interpreta-
tions of the normalization factors associated to QLS. In
sect. 3 we concisely provide details of the models stud-
ied and numerical methods used. Section 4 describes re-
sults from our numerical experiments, supporting that the
lengthscale that characterizes the spatial decay of QLS is
�QLS ∼ �c ∼ (z−zc)−1/2, and is independent of their asso-
ciated normalization factors. Our findings are summarized
in sect. 5.

2 Quasilocalized states of self stress and
dipole responses

In this section we review the theoretical framework [23,
33,27,4] within which the two objects of interest —dipole
responses and QLS— are defined and can be related. We
also hold a discussion about the normalization factors that
are shown to distinguish between dipole responses and
QLS.

2.1 Response to a local dipolar force in Hookean
spring networks

We consider a random network of unit point masses con-
nected by relaxed Hookean springs, i.e. that all springs
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Fig. 1. An illustration of the dipole vectors �Dα ≡ ∂rα
∂�x

, where
rα is the length of the dash-dotted line that connects the two
nodes that form the α-th pair, and �x represents the nodes’
coordinates.

reside precisely at their respective rest-lengths, so that
the energy of the mechanical equilibrium ground state is
zero. We assume that the network connectivity z > zc,
and that all the springs share the same stiffness κ, which
together with the characteristic length λ of a spring forms
our microscopic unit of energy κλ2. We label springs by
Greek letters, and nodes’ coordinates by Roman letters.
The potential energy reads

U =
1
2

∑

α

(rα − �α)2, (1)

where we have set κ = 1, rα is the length of the α-th
spring, and �α is its rest-length. The dynamical matrix
reads

M ≡ ∂2U

∂	x∂	x
=

∑

α

	Dα
	Dα, (2)

where we have introduced the dipole vectors 	Dα ≡ ∂rα

∂�x ,
illustrated in fig. 1. Notice that, since we consider relaxed
spring networks, the term that involves tensions or com-
pressions in the springs is absent from eq. (2). The dynam-
ical matrix can be expressed in terms of the equilibrium
matrix S [27] as

M = STS. (3)

The equilibrium matrix S holds geometric information of
the spring network. It is related to the dipole vectors 	Dα

via
	Dα ↔ ST |α〉, (4)

where |α〉 is a vector in the space of springs which has
zeros in all components except for the α-th component
which is set to unity. The double arrow (↔) should be
understood as “represented by”, since it maps between
vector and bra-ket notations.

Now, if a dipolar force 	Dα is applied to the network,
the (linear) displacement response reads

δ 	R = M−1 · 	Dα, (5)

written in bra-ket notation as

|δR〉 = M−1ST |α〉. (6)

We denote by |ϕ〉 the set of forces that arise in the springs
due to the displacement |δR〉, referred to in what follows
as the dipole response. In our system of Hookean springs

with unit stiffnesses, and to linear order in |δR〉, these
are simply the elongation or contraction of each spring,
namely

|ϕ〉 = S|δR〉 = S
(
STS

)−1 ST |α〉, (7)

where we have used eqs. (3) and (6). This expression for
the dipole response |ϕ〉 will be compared to analogous
expressions for QLS in what follows.

2.2 Quasilocalized states of self stress

We consider next networks where each edge is thought of
as a rigid bar, and we assume the connectivity is larger
than the Maxwell threshold zc. Such networks are referred
to by some workers (e.g. [27]) as frames. States of self
stress (SSS) are assignments {φjk} of forces on each of
the edges 〈jk〉 of such a network, that satisfy mechanical
equilibrium, namely that

	Fk =
∑

j(k)

n̂jkφjk = 0, (8)

where j(k) denotes all the nodes j connected to the k-th
node, and n̂jk is the unit vector pointing from the j-th to
the k-th node. It is convenient to express eq. (8) using our
bra-ket notation as

|F 〉 = ST |φ〉, (9)

where S is the same equilibrium matrix discussed above.
If fluctuations in the connectivity z of the network are
small (see relevant discussion in [32]), as assumed here
and in what follows, the dimension of the null-space of
S scales as N(z − zc), where N is the number of nodes
in the network. In other words, zero is an eigenvalue of
the operator SST , and there are on the order of N(z −
zc) degenerate eigenmodes |φ�〉 of SST associated with
the zero eigenvalue, which precisely constitute a set of
orthonormal SSS. We refer to any such orthonormal set
of solutions to eq. (8) as a spanning of the null space of
SST , or just a spanning set.

In SUS a particular spanning set was introduced as
follows: given a choice of a single edge α of the network, all
besides one member of the spanning set have no projection
on the α-th edge. It was shown in SUS that the single
member in this spanning set, that has a nonzero projection
on the α-th edge, is quasilocalized, i.e. its spatial structure
is characterized by a core of size �QLS, decorated by power-
law decays in the far field. We therefore refer to such SSS
as quasilocalized states of self stress (QLS). A different
and unique QLS can be associated with each edge α of
the network, as explained in what follows.

In [33] it was shown precisely how to construct the
QLS associated to any given edge α of a network. Here
we briefly repeat that construction for completeness. We
consider the network that remains after removing the α-th
edge, and decorate with a tilde (∼) quantities defined on
the network after the removal of the α-th edge. We next
define the set of edge forces |f̃ (α)〉 that balance a dipo-
lar force 	Dα ≡ ∂rα

∂�x (with rα the length of the removed



Page 4 of 9 Eur. Phys. J. E (2018) 41: 93

edge and 	x the nodes’ coordinates) applied on the nodes
that were connected by the α-th edge before its removal,
namely

S̃T
∣∣∣f̃ (α)

〉
= −|Dα〉. (10)

Operating on this equation with S̃ and inverting it in favor
of |f̃ (α)〉 we obtain

∣∣∣f̃ (α)
〉

= −
(
S̃S̃T

)−1

S̃|Dα〉, (11)

where the superscript ◦−1 here and in what follows should
be understood as the pseudo-inverse of a matrix wherever
applicable. We note that eq. (11) uniquely defines the as-
signment of forces |f̃ (α)〉 on the edges of the network that
balance the dipolar force 	Dα.

In order to construct the spanning as introduced in
SUS, we reconnect the removed edge α at its original lo-
cation, and first construct the QLS |φq〉 as follows: we
calculate a normalization factor

gα ≡
(〈

f̃ (α)|f̃ (α)
〉

+ 1
)−1/2

, (12)

and assign for every edge β �= α, 〈φq|β〉 = gα〈f̃ (α)|β〉,
and finally we set 〈φq|α〉 = gα. The rest of the members
of the spanning set are obtained by considering any span-
ning set {|φ̃�〉} of S̃S̃T and assigning zero to the additional
α-th component of each member. From this construction
it is clear that while the resulting QLS is unique, the or-
thonormal basis of SSS, of which the constructed QLS is
a member, is not uniquely defined.

It is immediately verified that the construction de-
scribed above is precisely the construction introduced by
SUS; for any � �= q, 〈φ�|α〉 = 0, and 〈φq|α〉 �= 0, both by
construction. Furthermore, eq. (11) implies that |f̃ (α)〉 is
a superposition of nonzero modes of S̃S̃T , and therefore
〈f̃ (α)|φ̃�〉 = 0, then for � �= q

〈φq|φ�〉 = gα

(〈
f̃ (α)|φ̃�

〉
+ 〈α|φ�〉

)
= 0, (13)

as required. Finally, following eq. (10)

ST |φq〉 = gα

(
S̃T

∣∣∣f̃ (α)
〉

+ ST |α〉
)

= gα

(
S̃T

∣∣∣f̃ (α)
〉

+ |Dα〉
)

= 0. (14)

Another definition of the QLS |φq〉 is obtained by using
our constructed set of SSS as described above, and writing

|φq〉 ∝
∑

�

〈φ�|α〉|φ�〉 =

(
∑

�

|φ�〉〈φ�|
)
|α〉, (15)

where the index � is again understood to exclusively repre-
sent SSS, i.e. the zero modes of SST , and notice that the
above is merely a proportionality relation and not an equa-
tion. We next denote with the index m the nonzero modes

of SST ; since the identity operator can be expressed as
I =

∑
m |φm〉〈φm| +

∑
� |φ�〉〈φ�|, one has

∑

�

|φ�〉〈φ�| = I −
∑

m

|φm〉〈φm|, (16)

which is a projection operator onto the space that is or-
thogonal to the null-space of ST . In order to relate it to
the equilibrium matrix S itself, notice that if z > zc the
nonzero modes |φm〉 of SST are related to the eigenmodes
|Ψm〉 of STS via [35]

S|Ψm〉 = ωm|φm〉, (17)

where ω2
m is the eigenvalue associated to |Ψm〉, and there-

fore

∑

m

|φm〉〈φm| = S
(

∑

m

|Ψm〉〈Ψm|
ω2

m

)
ST = S

(
STS

)−1 ST .

(18)
Using this relation together with eq. (16), we obtain

∑

�

|φ�〉〈φ�| = I − S
(
STS

)−1 ST . (19)

An expression for QLS follows from eq. (15) as

|φq〉 =
(I − S(STS)−1ST )|α〉√
〈α|I − S(STS)−1ST |α〉

. (20)

Equation (20) constitutes a second, explicit and unique
definition of QLS, which is entirely equivalent to the con-
struction based on eqs. (11) and (12). We have verified
numerically that the two definitions exactly agree. Finally,
by comparing eqs. (7) and (20), it is clear that for edges
β �= α, 〈β|φq〉 ∝ 〈β|ϕ〉, i.e. the dipole response |ϕ〉 is
proportional to the QLS |φq〉, except for their α-th com-
ponents. The proportionality constant that separates the
two objects is the normalization factor, denoted by cα and
discussed in detail below.

2.3 Normalization factors of QLS

In [34] eq. (15) was suggested as the definition of |φq〉, to-
gether with a declaration that normalization factors were
neglected for the sake of brevity. Notice that the relevant
normalization factors cα are different than the normaliza-
tion factors gα defined by eq. (12). Instead, they read

cα ≡ 1√
〈α|I − S(STS)−1ST |α〉

, (21)

then the QLS follow

|φq〉 = cα

(
I − S

(
STS

)−1 ST
)
|α〉. (22)

The normalization factors cα are closely connected
to key observables discussed in previous work. To sim-
plify notations, we denote the projection operator that
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appears in the definition of cα in eq. (21) as W ≡ I −
S(STS)−1ST =

∑
� |φ�〉〈φ�|, then we can write

cα =
1√

〈α|W|α〉
, (23)

i.e. the normalization factors are the square root of the in-
verse of the diagonal elements of W. What is the mechan-
ical interpretation of the operator W and of its diagonal
elements? The operator W was shown in [4] to play a key
role in determining the athermal elastic moduli Cijkl [36]
of relaxed Hookean spring networks of unit stiffness, which
can be expressed as

Cijkl = Ω−1

〈
∂r

∂εij

∣∣∣∣W
∣∣∣∣

∂r

∂εkl

〉
, (24)

with Ω denoting the system’s volume, and ε is the strain
tensor. A similar operator to W was used in [37] in the
study of a simple model for supercooled liquids. A dual
operator to W, that projects onto the space of zero modes
of STS in floppy materials (i.e. with z < zc), was intro-
duced in [38], and used to construct simulation methods of
driven overdamped hard spheres. The diagonal elements
of W can be shown to be equivalent to the “local mod-
uli” recently introduced in [39] for a single spring in net-
works of relaxed Hookean springs. In that work the local
moduli were proposed as a framework to understand the
sensitivity of moduli to removal of springs from simple
networks [40].

The operator W offers in turn a mechanical interpre-
tation of the normalization factors cα; we start by writ-
ing the total energy Eα associated with imposing a dipo-
lar force on the α-th spring as a sum of squares of the
compressions or extensions |ϕ〉 of all springs, as given by
eq. (7), namely

Eα =
1
2
〈ϕ|ϕ〉 =

1
2
〈α|S

(
STS

)−1 STS
(
STS

)−1 ST |α〉

=
1
2
〈α|S

(
STS

)−1 ST |α〉 =
1
2
〈ϕ|α〉. (25)

The energy stored in the α-th spring is simply 1
2 〈α|ϕ〉2,

and so the fraction of elastic energy stored in all springs
except for the α-th spring is

Eα − 1
2 〈ϕ|α〉2
Eα

=
〈ϕ|α〉 − 〈ϕ|α〉2

〈ϕ|α〉 = 1 − 〈ϕ|α〉

= 〈α|I − S(STS)−1ST |α〉
= 〈α|W|α〉 = c−2

α , (26)

i.e. it is precisely the α-th diagonal element of W, or the
inverse square of the normalization factor cα. The diagonal
elements can therefore be understood as indicators of the
degree of mechanical coupling of the α-th spring to the
rest of the network in which it is embedded: if a certain
spring can be pushed against with very little cost of energy
in the rest of the system, we deem it weakly mechanically
coupled.

Returning to the discussion about the normalization
factors cα, we conclude that large normalization factors
correspond to weakly mechanically coupled edges of the
network, in the sense described above. This conclusion is
consistent with the relation between the dipole response
|ϕ〉 as spelled out in eq. (7), and the definition of QLS.
Indeed, if a particular spring can be pushed against with-
out perturbing much the rest of the network, we expect
the resulting tensions and compressions in the system to
be small. Since QLS are defined as the normalized form
of the response |ϕ〉, a large normalization factor would be
required for normalization to be achieved, in consistency
with eq. (26). We comment further on this point in sect. 5.

3 Models and methods

In this work we study random networks in 2D, derived
from the underlying network of contacts between soft discs
in large two-dimensional packings. Our soft discs interact
via the pairwise potential

ε(rij) = Θ((ρi + ρj) − rij)
κ

2
(rij − (ρi + ρj))2, (27)

where ρi denotes the radius of the i-th particle, κ is a
stiffness (set to unity in what follows), rij is the pairwise
distance between the centers of particles i and j, and Θ(x)
is the heaviside step function. All particles share the same
mass m (also set to unity). We created packings of up to
N = 106 particles, half of which have a radius of ρ = 0.5
and the other half have ρ = 0.7. Distances are measured
in terms of the diameter D of the smaller particles, ener-
gies in terms of κD2, and stresses in terms of κ. The key
control parameter for our packings is the pressure, which
is set by applying compressive or decompressive strain in
small steps, followed by a relaxation of the potential en-
ergy by means of the FIRE algorithm [41]. We created
packings at pressures ranging from p = 10−1 to p = 10−5,
where the highest pressure states were created by relax-
ing a random configuration, and subsequent lower pressure
packings were created by manipulating the higher pressure
packings. A packing is deemed relaxed once the ratio of
the typical net force on the particles to the pressure drops
below 10−7. The connectivity z is measured in each pack-
ing by eliminating “rattler” particles from the analysis as
described in [38]. In what follows we solve linear systems
of equations by a conventional conjugate gradient solver.

4 Results

We have calculated the dipole responses |ϕ〉 and the QLS
|φ〉 for 600 randomly selected edges of packing-derived net-
works generated as explained in sect. 3 above. Notice that
here and in the rest of what follows we suppress the sub-
script “q” in the QLS notation. For each randomly selected
edge |ϕ〉 and |φ〉 were calculated by solving numerically
eq. (7) for |ϕ〉, and using eqs. (21) and (22) to obtain the
correponding QLS.
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Fig. 2. Spatial decay of the mean amplitude squared of QLS
(filled circles, (a), (c), (e)) and of dipole responses (filled
squares, (b), (d), (f)), plotted against the distance r to the
randomly chosen edge that defines these two objects, see text
for further details. The continuous lines enclose the 5th to 95th
percentiles of the data, and demonstrate that the normaliza-
tion factors that distinguish between QLS and dipole responses
act to substantially reduce the edge-to-edge amplitude fluctu-
ations of QLS.

We first present data that demonstrate how the nor-
malization factors cα that distinguish between the QLS
|φ〉 and the dipole responses |ϕ〉 actually act to substan-
tially decrease edge-to-edge amplitude fluctuations in our
ensemble of QLS, compared to the edge-to-edge amplitude
fluctuations observed in the dipole responses. We denote
by φ2(r) and ϕ2(r) the square of the magnitude of |φ〉
and |ϕ〉, respectively, as a function of the distance r to
the edge that defines each of these objects. In fig. 2 we
plot the means of φ2(r) (left column, green circles) and
ϕ2(r) (right column, brown squares) vs. the distance r,
averaged over our entire calculated ensembles. The pres-
sures from which the networks were derived (see sect. 3
for further details) are indicated by the legends. It is clear
that for both objects the crossover to the continuum be-
havior occurs at a larger lengthscale as p → 0. This length
is further discussed below.

We have also outlined in fig. 2 the areas around the
mean spatial decays which cover the 5th–95th percentiles
of the data (i.e. the outlined areas cover 90% of the data),
in order to visualize the reduction of the edge-to-edge

amplitude fluctuations of QLS compared to those found
for the dipole responses. We find that the relative spread
of the dipole responses as represented by our percentile
analysis can be larger by a factor of 100 compared to the
spread of the QLS, when measured in networks derived
from packing at the lowest pressures (compare the out-
lined areas shown in panels (e) and (f) of fig. 2).

We next focus on resolving the scaling with network
connectivity z of the lengthscale that characterizes the
spatial decay of QLS. To this aim, we note first that the
amplitude squared of dipole responses ϕ2(r) was shown
in [23] to scale as r−4 in the far field (in 2D), with a pref-
actor that approaches a constant as z → zc. This means
that in order to achieve a data collapse of the products
r4φ2(r) (see footnote1), they must be rescaled by the char-
acteristic normalization factors squared c2

α. The latter are
estimated as

c2
α =

1
〈α|I − S(STS)−1ST |α〉 =

1∑
�〈φ�|α〉2

. (28)

The sum in the denominator on the right-hand side of
the above relation runs over the ∼ N(z − zc) degener-
ate basis vectors that span the null-space of SST [31].
Assuming their delocalization and normalization, we ex-
pect each overlap to follow 〈φ�|α〉 ∼ 1/

√
N , and therefore∑

�〈φ�|α〉2 ∼ (z − zc), and finally we expect

c2
α ∼ 1

z − zc
. (29)

Recalling that in our harmonic-discs-packing-derived
networks z − zc ∼ √

p [42], and assuming that the length-
scale that characterizes the decay of QLS is �c ∼ p−1/4,
we postulate that r4φ2(r)

√
p should approach a scaling

function F(x) if plotted against rp1/4, where F(x) ∼ xχ

for small x and F(x) approaches a constant for large x.
In fig. 3 this hypothesis is tested; we indeed find that as
p → 0, r4φ2(r)

√
p appears to approach a scaling form with

χ ≈ 3.5, indicating that the lengthscale that characterizes
QLS follows �QLS ∼ �c ∼ (z − zc)−1/2. This assertion
clearly ignores the uprise in the products r4φ2(r) at large
r, which is an artifact of the finite size of our systems, and
the periodic boundary conditions, as also seen in [23]. The
identification of �c as the relevant lengthscale is further es-
tablished in fig. 3(b), where we test the scaling suggested
in [31,34] by plotting r4φ2(r)

√
p vs. rp1/3 to find a clear

misalignment of the data.
It should be noted that the approach of the signals of

r4φ2(r)
√

p displayed in fig. 3(a) to the postulated scaling
form appears to be slow; nevertheless, it is clear that the
differences between the curves correponding to different
pressures p becomes smaller as p → 0 (ignoring again the
finite-size-induced uprise at large r), supporting that if
lower pressures (and therefore smaller z − zc) could be
probed, the scaling collapse would improve.

1 The strong spatial decay of QLS results in a variation of
their amplitude squared over up to 10 orders of magnitude,
as seen in fig. 2. For this reason, the identification of the fine
details of the spatial structure of QLS is best achieved by con-
sidering the products r4φ2(r).
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Fig. 3. (a) The products r4φ2(r) rescaled by the characteristic
scale of the normalization factors squared c2

α ∼ p−1/2, plotted
as a function of the rescaled distances rp1/4. (b) Same as (a),
but plotted as a function of the rescaled length as proposed
by [31,34], namely rp1/3.

Up to this point we have established that the normal-
ization factors cα of QLS (see eq. (21)) lead to a sup-
pression of relative edge-to-edge fluctuations in the am-
plitude of QLS compared to those seen in amplitudes of
dipole responses, and that the scaling with connectivity of
�QLS is the same as found for dipole responses in [23], i.e.
�QLS ∼ �c ∼ (z − zc)−1/2. We next check whether there
exist correlations between normalization factors and the
spatial decay length of their associated QLS. To this aim,
we sort the QLS in each ensemble according to their nor-
malization factors cα, and in fig. 4 we plot the products
r4φ2(r) for the QLS with the largest normalization factors
(green squares), and the means of r4φ2(r), taken over the
QLS with the 10 largest and the 100 largest normalization
factors. Each panel displays data calculated in our differ-
ent ensembles as specified by the values of the pressure
reported in the upper left corner. We do not identify a
systematic trend that is indicative of correlations in these
data; instead, it appears that the length �QLS that char-
acterizes the QLS decay depends only weakly, if at all, on
the normalization factors cα.

Further evidence for this apparent independence of
�QLS on cα (for fixed connectivity) can be directly visu-
alized by considering the displacement response δ 	R to a
dipole (see definition in eq. (5)), applied to an edge that
possesses a large cα, and comparing it to the response

Fig. 4. Panels (a), (b), and (c) show the products r4φ2(r) vs.
distance r measured in networks derived from packings at pres-
sures p = 10−1, p = 10−3, and p = 10−5, respectively. We show
the products pertaining to the QLS with the largest normal-
ization factor cα (green squares), the products averaged over
the 10 and 100 QLS with the largest cα’s (orange diamonds
and brown stars, respectively), and the full average over our
entire calculated ensemble of QLS (black circles).

pertaining to an edge with a characteristic cα. An exam-
ple of such a comparison is shown in fig. 5, where the
left (right) panel shows the displacement field pertaining
to the large (small) cα. We emphasize that the large-cα

response shown in fig. 5(a) is consistently found for other
high-cα edges: it consists of a few (O(1)) very large compo-
nents near the imposed dipole (shown in red and shortened
by a factor of 5 in fig. 5(a)), embedded in a background
disordered core, whose size depends on the connectivity
of the network. In the example of fig. 5 it is also apparent
that the disordered core of both displacement responses
have comparable sizes, despite that their associated cα’s
differ by a factor of almost 40, further indicating that �QLS

depends on connectivity (as shown above), but not on
edge-to-edge fluctuations of cα.

The established lack of correlations between the nor-
malization factors cα of QLS and their decay length �QLS,
together with i) the well-established scaling of the de-
cay length of the response to local force dipoles �c ∼
(z−zc)−1/2 in disordered spring networks [23], and ii) our
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Fig. 5. Displacement responses δ �R as defined by eq. (5), calculated in a random network derived from a packing of N = 6400
discs at p = 10−4, for two different edges with cα

√
p ≈ 2.7 (a) and cα

√
p ≈ 0.07 (b). The long red arrow in panel (a) represents

one of the displacement field components, highlighted and shortened due to its enormous length; in the original, unaltered
displacement field its length is 5 times longer. The linear size of the disordered core of both objects is comparable, while their
associated normalization factors cα differ by a factor of almost 40, further supporting that the size of the cores only depends
on the network connectivity, and not the normalization factors.

theoretical arguments of sect. 2 directly relating QLS to
dipole responses, constitute additional strong support to
our assertion that �QLS ∼ (z − zc)−1/2, on top of the nu-
merical evidence reported in fig. 3.

5 Summary and discussion

In this work we have studied in detail the spatial structure
of QLS in 2D packing-derived networks. We find strong
evidence that the lengthscale �QLS that characterizes the
spatial decay of QLS scales with the connectivity differ-
ence to the isostatic point as (z−zc)−1/2, as argued in [33],
and at odds with the claims made in [31,34]. We further
showed that the normalization factors cα that distinguish
between QLS and dipole responses substantially suppress
edge-to-edge fluctuations of QLS amplitudes, compared to
the same fluctuations in dipole responses. We then tested
whether averaging the spatial decay of high-cα QLS leads
to observable differences in their decay length, however no
systematic effect was observed.

We have also showed that a direct visualization of dis-
placement responses to local dipolar forces imposed on
high-cα reveals an interesting pattern: nodes in the imme-
diate vicinity of the dipolar force can have huge displace-
ments compared to their close by neighbors. These large
displacements are embedded in a disordered core back-
ground whose size appears to be �QLS. This finding is
reminiscent of the observation of localized excitations in
isostatic packings of hard spheres [43], which were shown
to be the dominant origin of weak contact forces in such
packings. The presence of these weak contacts was later at-
tributed to loosely connected particles in sphere packings,
coined “bucklers” [44]. Interestingly, in a recent work [39]
it was shown that QLS with large normalization factors
precisely correspond to edges that connect to buckler par-

ticles in the original packing, that are only marginally con-
nected to the rest of the packing. We find consistency with
these results when comparing the spatial patterns of dis-
placements that appear upon forcing high-cα edges.

Our work highlights the importance of considering
large systems in studies of diverging lengthscales near un-
jamming. We find that for networks derived from our two
lowest-pressure packings, namely p = 10−4 and p = 10−5,
the distances in connectivity to the Maxwell threshold are
on the order of 10−2. The spatial decay of QLS at these
connectivities appear to be close to, but still not converged
to, their asymptotic form. Reliably studying lower connec-
tivities would require systems of several millions of parti-
cles.

The applicability of the theoretical framework pre-
sented in what follows is not limited to packing-derived
networks, but could be applied to networks generated by
other protocols as well. Our results regarding lengthscales
associated with QLS, however, are only expected to hold
if fluctuations of the connectivity are limited [32]. Our fo-
cus here on packing-derived networks is motivated by the
statistical and mechanical properties of the normalization
factors associated with QLS (see also [39] in this context),
which could be underwhelming in networks constructed
using other protocols. In packing-derived networks, large
normalization factors can be observed (see, e.g., fig. 5(a)),
which are related to the existence of weakly coupled con-
tacts [43,44] in the packings from which the networks were
derived.

We have focused our study on 2D systems, in which di-
mensionality could have drastic effects on elasticity; for ex-
ample, recent work [45] has shown that the stiffnesses as-
sociated with the response to local force dipoles in generic
2D model computer glasses vanishes logarithmically, by
virtue of the r−(d̄−1) spatial decay of the displacement
responses. Notwithstanding, it has been established that
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the upper critical dimension of the unjamming tranition
is two [46], and therefore we do not expect dimensionality
effects to be important in determining the coordination
dependence of the decay length of QLS.

Finally, the spatial decay profiles we have measured
for QLS suggest that for small distances r � �QLS from
the target edge α, the amplitude squared of QLS follows
φ2(r) ∼ r−1/2. This observation is still not understood
theoretically, and calls for further numerical tests of its
dependence on spatial dimension.
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